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Abstract

The focus of my PhD has been two-fold:

First, to improve the understanding of the biology behind a well-known
cardiovascular disease (CVD) risk factor - left ventricular mass, by identifying novel
genetic loci associated with this risk factor. A large-scale association meta-analysis
in over 10,000 individuals identified four novel loci associated with

electrocardiographically-determined left ventricular mass.

Second, to explore the application of known genetic determinants of the main
blood lipid fractions, the latter being well-known CVD risk factors and therapeutic
targets. | assess the use of genetic variants associated with total cholesterol, low-
density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C)
and triglycerides for discriminating healthy individuals from those that have a high
absolute risk of CVD, those that require lipid-lowering medication, and those that
have a coronary event. The lipid genetic variants showed poor discriminatory ability
for all three outcomes and provided no improvement over the widely-used, non-
genetic Framingham 10 year CVD risk score. Lipid-associated genetic variants were
also used to generate genetic risk score instruments for LDL-C, HDL-C and
triglycerides, which were applied in a Mendelian randomisation analysis to
determine their causal relationship with carotid-intima media thickness (CIMT).
CIMT has been a widely used surrogate outcome measure in clinical trials of CVD
drugs. LDL-C-lowering drugs have shown to reduce CIMT progression and CHD risk
in clinical trials. However, the extent of any causal association between HDL-C or
triglycerides and CIMT is unclear. The results from this MR analysis support a casual
relationship with LDL-C, but not with HDL-C and triglycerides, which may indicate
that CIMT is a less useful surrogate end point in clinical trials of primarily HDL-C or

triglyceride modifying therapies.
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1 Introduction

1.1 Background

Chapter 1: Background

Cardiovascular disease (CVD) is the main cause of death in the UK. The World

Health Organisation (WHO) has predicted that 23 million people per year will die

from CVD globally by 2030 (World Health Organisation 2012). CVD encompasses a

wide range of Mendelian and complex disorders, including diseases of the

vasculature, diseases of the myocardium, diseases of the heart's electrical circuit,

and congenital heart disease (Table 1.1)

Table 1.1 Cardiovascular disorders.

CVD Group

Description

Coronary heart disease
(CHD) or coronary artery
disease (CAD)

Stroke or cerebrovascular
disease

Peripheral arterial disease

Cardiomyopathy

Cardiac dysrhythmia

Rheumatic heart disease

Congenital heart disease

Deep vein thrombosis and
Pulmonary embolism

Disease of the blood vessels supplying the heart muscle; mainly
caused by a build-up of fatty deposits on the inner walls of the
blood vessels that reduce or prevent blood flow to the heart,
which can result in angina (chest pain) or myocardial infarction
(heart attack).

Disease of the blood vessels supplying the brain; the main causes
of stroke include restriction of blood flow to the brain either due
to fatty-acid build up or formation of blood clots due to bleeding
from a blood vessel in the brain.

Disease of blood vessels supplying the arms and legs.

Disease of the heart muscle where the muscle becomes
enlarged, thick, or rigid, preventing efficient pumping of blood
through the body.

Disorders of the heart rhythm due to abnormal electrical activity
in the heart.

Damage to the heart muscle and heart valves from rheumatic

fever, caused by streptococcal bacteria.

Malformations of heart structure existing at birth.

Blood clots in the leg veins which can dislodge and move to the

heart and lungs.

Modified from WHO Cardiovascular diseases Fact sheet N°317 (September 2012) (World Health

Organisation 2012).
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Chapter 1: Background

Family and twin studies of common CVDs provide evidence for considerable genetic
contribution (Marenberg et al. 1994; Wienke et al. 2005). Hence, genetic research
has long been pursued to enhance our understanding of the contributing molecular
mechanisms, with the potential of identifying new therapeutic targets and

improving current disease risk prediction models.

There are two main approaches to the discovery of genes for CVD and its risk
factors in humans — linkage analysis and genetic association. For Mendelian
disorders, where a simple pattern of inheritance suggests a single casual gene with
large effect on phenotype (Kathiresan & Srivastava 2012), linkage analysis has
largely been successful in identifying the causal mutation. For example, in 1989
Jarcho et al. localised the chromosomal position of a causal gene for familial
hypertrophic cardiomyopathy (Jarcho et al. 1989), and a year later causal mutations
in the beta cardiac myosin heavy chain were identified within this region
(Geisterfer-Lowrance et al. 1990). On the other hand, complex disorders follow
complex inheritance patterns that are suggestive of interaction between multiple
loci and non-genetic factors. Early genetic research into common CVD using a
candidate-gene approach revealed few replicated positive findings. For example,
candidate-gene sequencing identified mutations in the MEF2A gene, a member of
the myocyte enhancer family of transcription factors. This was the first locus to be
implicated in the autosomal dominant form of CAD (Wang et al. 2003), but the
casual role of this gene was soon disputed due to lack of replication (Weng et al.

2005).

The sequencing of the human genome (Lander et al. 2001; Venter et al. 2001) and
the subsequent development of affordable high-throughput genotyping technology
have made it possible to identify associations of common genetic variants with
disease events or with risk factors at the genome-wide level — genome-wide
association studies (GWAS) (described later in section 1.3.3). As a result, the last

five years have seen the identification of numerous replicated novel loci for some of
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the most important CVD traits, including CAD (McPherson et al. 2007; Samani et al.
2007; Schunkert et al. 2011; Davies et al. 2012) and myocardial infarction (Ml)
(Helgadottir et al. 2007; Kathiresan et al. 2009).

Efforts have also been focused on large-scale identification of genetic determinants
of well-known modifiable CVD risk factors, including serum lipids (e.g. low- and
high-density lipoprotein-cholesterol (LDL-C and HDL-C), and triglycerides) (Talmud
et al. 2009; Teslovich et al. 2010; Asselbergs et al. 2012), body mass index (BMI)
(Speliotes et al. 2010), electrocardiogram (ECG) measures (Chambers et al. 2010;
Pfeufer et al. 2010; Sotoodehnia et al. 2010), left ventricular (LV) mass (Mayosi et
al. 2008; Arnett et al. 2009), carotid-intima media thickness (CIMT) (Baldassarre et
al. 2010; Bis et al. 2011) and blood pressure (Levy et al. 2009; Ganesh et al. 2013).

Some of these risk factors are discussed in more detail in section 1.5.

The proportion of the total phenotypic variance explained by all genetic
contributions is known as broad-sense heritability, while that attributed only to the
additive genetic contribution is referred to as narrow-sense heritability. For all the
mentioned CVD and risk factor traits, despite the discovery of numerous associated
loci, their combined effects explain only a modest fraction of the estimated
(narrow-sense) heritability of the trait (Manolio et al. 2009), indicating that there
may be other genetic factors that are yet to be identified. This may explain why in
most analyses the current known genetic risk factors have failed to provide
substantial improvement over traditional non-genetic risk factors in disease risk
prediction (Kathiresan et al. 2008; Talmud et al. 2010), leaving their utility for this
purpose unclear. Another application of genetic variants has been in addressing the
guestion of whether an epidemiologically observed relationship between risk factor
and outcome is due to the causal effect of the former on the latter, termed
Mendelian randomisation (MR) (Smith & Ebrahim 2003). Such studies have
confirmed a causal relationship between LDL-C and coronary disease (Ference et al.

2012; Linsel-Nitschke et al. 2008).
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In the rest of this chapter, | describe the biology and genetics behind CVD and some
of the above mentioned risk factors, as well as introduce methodological concepts,

both of which aim to provide the background to the work presented in this thesis.

1.2 Genetic Variation and Disease

Disease causing variants range from exceedingly rare mutations to very common
genetic variations, and their effects from large to negligible (Marian & Belmont
2011). Single nucleotide polymorphisms (SNPs), which consist of differences
between individuals at a single nucleotide position, are the most common type of
variation, with approximately 15 million SNPs identified in European, African and
Asian populations (The 1000 Genomes Project Consortium 2010). Other types of
variation include deletions, duplications, and copy number variations (CNVs). The
vast majority of known SNPs are thought to be neutral as they are located in
apparently non-functional regions of the genome (Frazer et al. 2009). However,
when they occur within coding or regulatory regions they may affect protein

sequence or expression, potentially resulting in an altered phenotype.

Mendelian disorders are usually caused by mutations in a single gene that often
have large, deleterious effects. Though there are exceptions (e.g. cystic fibrosis
transmembrane conductance regulator (CTFR) mutations that cause cystic fibrosis
(Mateu et al. 2002)), such mutations tend to have more recent origins and are rare
due to negative selection. Though important for conferring disease risk in the
individual carrying the mutation and in relatives, the impact of rare mutations at
the population level is usually low. Complex diseases, on the other hand, are
polygenic in nature with significant genetic and environmental contribution (Schork
1997). The underlying architecture of common complex diseases has been

attributed to four possible models:
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1. Common disease — common variant (CD-CV) model: This assumes an
additive contribution of multiple common polymorphisms (defined as
having a minor allele frequency (MAF) >5%) in multiple loci (Bodmer &
Bonilla 2008). However, almost without exception, the combined effect of
common genetic variants accounts for only a small proportion of the trait
variance — referred to as the ‘missing heritability’ problem (Manolio et al.
2009). Despite this, the attributable risk of common alleles in a population
may be considerable due to their frequency in the population (Marian &

Belmont 2011).

2. Infinitesimal model: Every gene contributes to every trait, but with effect
sizes that are so small that samples greater than the population size of the
species would be needed to detect them (Gibson 2012). The GWAS on
height in over >180,000 individuals, identified hundreds of variants in at
least 180 loci that passed the pre-defined significance threshold, but these
only explained 10% of the phenotypic variation in height (Lango et al. 2010).
Rather than selecting variants passing a pre-defined association significance
threshold, a recently developed method considering all SNPs
simultaneously, estimated that 45% of the phenotypic variance in height
was explained by all SNPs on the genotyping platform used in the height
GWAS (Yang et al. 2010). This suggests the idea that heritability is not so
much missing as it is hidden below the stringent significance thresholds used

in GWAS (Gibson 2010).

3. Rare allele model: This model is the opposite of the CD-CV model, assuming
many rare alleles with large effects are the main genetic contributors.

(Bodmer & Bonilla 2008).

4. Broad sense heritability model: Where a combination of genotypic,

environmental and epigenetic interactions contribute to the phenotype

(Gibson 2012).
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Currently there is insufficient empirical evidence to support any single model, and
no single technological platform to assess all models simultaneously. However, it is
reasonable to assume that allelic architecture (number, type, effect size and
frequency of genetic variants) may differ across traits (Manolio et al. 2009), and
that all models may contribute, at varying levels, to different diseases or traits. For
example, GWAS analysis identified common variants in seven loci associated with
triglyceride levels, while re-sequencing of selected genes identified an excess of
rare, non-synonymous variants across four genes when comparing individuals in
extremes of the plasma triglyceride distribution (Johansen et al. 2010). In addition,
the large overlap between genes identified by GWAS and those identified earlier
through Mendelian families also provides support for genetic variants across the
spectrum of allele frequencies contributing to complex common diseases

(Kathiresan & Srivastava 2012).

1.3 Investigating the Genetic Basis of Disease

1.3.1 Linkage Disequilibrium

The International HapMap project (HapMap Consortium 2003) was launched in
2002 with the aim of providing a public resource to aid medical genetic research.
The goal was to characterise common genetic variants (MAF >5%) in humans and
determine their frequency and correlation within different ethnic populations. Two
hundred and seventy individuals with African, European and Asian ancestry were
sequenced, characterising over 3 million SNPs. The co-inheritance of SNP alleles on
a chromosome leads to associations between these alleles in the population
(known as linkage disequilibrium (LD)). Recombination is more likely to occur as the
distance between two SNPs increases, and the correlation between two SNPs is

therefore likely to decline with physical distance on the chromosome.
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The presence of LD between SNPs in a region means that genotyping only a few,
carefully chosen ‘tag’ SNPs in the region will provide enough information to predict
much of the information about the remainder of the common SNPs in that region
(HapMap Consortium 2003). The genomic distance at which LD decays determines
how many genetic markers are needed to tag a haplotype (Visscher et al. 2012). On
the basis of empirical studies, it has been estimated that genotyping around
500,000 common SNPs, combined with the knowledge of LD structure, is sufficient
to allow the vast majority of common variants to be tested for association with
phenotypes in non-African populations (The International HapMap Consortium
2005). This serves the basis for commercial genome-wide association SNP arrays,
which due to the limitation of the physical size of the array, use a tag SNP approach
to capture a large proportion of the variation in the genome using a substantially

smaller number of SNPs on the array (de Bakker et al. 2005).

With recent advances in DNA sequencing technologies (next-generation
sequencing), the 1000 Genomes Project (The 1000 Genomes Project Consortium
2010) was launched in 2008. The aim was to discover and provide accurate
haplotype information for most genetic variants that have frequencies of at least
1% in about 2500 individuals from 27 different populations with ancestry from
Europe, East Asia, South Asia, West Africa and the Americas (The 1000 Genomes
Project Consortium 2010). The data released thus far provides a much deeper,
more uniform picture of human genetic variation than was previously available
through HapMap (The 1000 Genomes Project Consortium 2010). The development
of computational and statistical methods make it possible to use the haplotypic
information from HapMap and 1000 Genomes to computationally impute the
genotypes in samples for millions of additional variants beyond those that are
genotyped using commercial SNP arrays, with the added benefit of no additional
genotyping cost. In all approaches to gene mapping, the underlying assumption is
that a disease-predisposing allele will pass from generation to generation together

with other variants in high LD (Balding 2006).
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1.3.2 Linkage Analysis

Linkage analysis tests whether a genetic marker tagging a region along the genome
is co-transmitted with disease more often than expected by chance within large
pedigrees, followed by fine-mapping of these regions to identify the casual gene
and variant. The success of linkage studies depends on the availability of
phenotypically well-characterised families that include a sufficiently large number
of informative affected individuals (Cambien & Tiret 2007) and where the causal
variants have strong heritability. An important advantage of linkage methods is that
the combined information from several affected families has the potential to
identify a causal locus even when different rare variants within the same locus are
responsible for the disease in different families, making it appropriate when many
rare variants at a locus each contribute to disease risk (Balding 2006). However,
even in monogenic disorders the relationship between genotype and phenotype

can be complex due to three genetic phenomena:

1. Penetrance — not all individuals with a given genotype will exhibit the
phenotype associated with the genotype, referred to as incomplete
penetrance. This may be due to modifier gene or environmental interactions

(Kathiresan & Srivastava 2012).

2. Expressitivity — individuals with the same genotype can show varying

degrees of the same phenotype.

3. Pleiotropy — mutations in a single gene can influence multiple phenotypic

traits.

Some non-hereditary phenotypes, induced by certain environmental conditions,
can also resemble a phenotype with a known genetic cause (phenocopy). Together
these make gene discovery more difficult, since genotype may not segregate

perfectly with phenotype (Kathiresan & Srivastava 2012). Linkage analysis generally
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lacks statistical power for identifying causal variants with low penetrance and small

effect, which are more characteristic of complex disease traits (Balding 2006).

1.3.3 Genetic Association Analysis

Genetic association studies compare the frequency of genetic variants in control
and disease groups of unrelated individuals, or test for association with a
continuous trait. If the proportion of cases to controls, or the mean of the
continuous trait significantly differs between the genotype groups for a particular
genetic variant, then this provides evidence for association (Balding 2006).
Association studies in unrelated individuals using genome-wide SNP arrays have
been widely used to identify genetic variants associated with complex diseases
without a priori knowledge of candidate genes and pathways, with the assumption
that the associated variant is either casual or is tagging the causal variant. The
power to detect associations using genome-wide platforms depends directly on
sample size, MAF, strength of LD between the genotyped variant and causal variant,
and the effect size (Spencer et al. 2009). Since 2005, the number of published
GWAS has dramatically increased. A catalogue of published GWAS (Hindorff et al.
2009) is maintained by the National Human Genome Research Institute (NHGRI) at
the National Institutes of Health (NIH). By mid-2012 it contained results from over

1300 published GWAS on over 200 traits.

Despite the value of the genome-wide approach, the technology still has
considerable cost and relatively low power to detect subtle, but potentially
important effects, in studies of typical sample sizes (a few thousand individuals)
(Keating et al. 2008). In addition, given the large number of statistical tests
performed when using such platforms, very stringent statistical significance
thresholds have been adopted to reduce false discoveries, at the cost of discarding

true associations. This is evident in the fact that significant associations reported in
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publications explain a relatively small proportion of the total phenotypic variation,
despite studies showing a much higher heritability estimate when all SNPs on the
genotyping platform are considered (Yang et al. 2010). Due to the tag-SNP
approach in the design of genome-wide arrays, and depending on the size of the LD
block tagged by the genotyped SNPs, fine-mapping of the identified regions is often
needed in order to identify the causal variant. In addition, rare genetic variants are
difficult to tag with common markers and are therefore under-represented on

genome-wide platforms.

Array-based genotyping technologies that have enabled GWAS also permit
flexibility in choosing the scope and density of SNPs for candidate gene studies. This
has led to the development of several custom gene-centric chips such as the
Cardiochip (Keating et al. 2008) designed for studying cardiovascular disease, the
Metabochip for cardiovascular and metabolic traits (Voight et al. 2012), and the
Immunochip (Cortes & Brown 2011) for auto-immune and inflammatory traits.
Compared to genome-wide arrays, though these have fewer SNPs, they provide
much denser coverage of candidate genetic loci enabling cost-effective fine-
mapping of loci for both rare and common variants, and reduce the multiple-testing

problem that is a major issue in genome-wide studies.

1.3.4 Association with Disease Outcome versus Continuous Risk Factors

Association studies with disease outcomes have the potential to uncover novel
disease pathways. However, there are two major limitations of such an approach to
genetic discovery. Firstly, CVD encompasses a range of conditions, and for the
purpose of GWAS, phenotypes are often classified on the basis of observed disease
outcomes such as CAD, Ml or stroke. However, even within these broad categories
individuals may have different disease aetiologies as well as different genetic and

biological risk factors (Arking & Chakravarti 2009). Secondly, the success of such
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studies for identifying common variants with small effect relies heavily on power
and sample size. This realisation has led to the formation of large, collaborative
consortia which enable combining of results from multiple independent studies
(meta-analysis) in order to obtain sufficient numbers of case samples. One such
effort is the Coronary Artery Disease Genome-wide Replication And Meta-Analysis
(CARDIOGRAM) consortium which combines 14 CAD GWAS, accruing data for
22,233 CAD cases and 64,742 controls (Schunkert et al. 2011).

Given these limitations, many groups have diverted efforts to studying intermediate
CVD risk factors as they tend to be more homogenous and easily obtainable in
existing population cohorts. Genetic determinants of intermediate phenotypes
could potentially be linked to disease risk using a step-wise process of association in
circumstances where the overall association between genotype and disease would
be too small for direct detection in a case-control GWAS design (Carvajal-Carmona
2010). More recently, interest in the discovery of genetic determinants of risk
factors has also been growing given their potential application in MR analysis to

determine the causal relationship between risk factor and disease (section 1.6.2).

1.4 Genetics of Cardiovascular Disease

1.4.1 Mendelian Disorders

1.4.1.1 Cardiomyopathy

Cardiomyopathy is the functional deterioration of the cardiac muscle. There are
several types of cardiomyopathies, including hypertrophic, dilated and restrictive.
The most common type is hypertrophic cardiomyopathy (HCM) which affects up to
1 in 500 individuals (Ramaraj 2008), and is the most common cause of sudden
cardiac death (SCD) in young people. HCM is characterised by the presence of LV

hypertrophy (increase in cell size), disorganised cardiac myocyte (muscle cell)
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architecture and widespread myocardial fibrosis (formation of excess fibrous tissue)
(Maron et al. 1995). Several hundred mutations in over 20 different HCM
susceptibility genes have been identified, most commonly in sarcomeric protein-
coding genes (Fokstuen et al. 2011). Other HCM genes, such as Titin (TTN) (Satoh et
al. 1999) and Myozenin 2 (MY0OZ2) (Osio et al. 2007), code for sarcomere-
interacting Z-disc proteins, which provide mechanic stability and act as nodal points
for signalling (Knoll et al. 2011). Though there are several known genetic causes for
cardiomyopathy, in around 25-35% of HCM patients the mutation remains
unknown (Seidman et al. 2011). There is also marked variation in expressitivity and
penetrance, with some patients remaining asymptomatic throughout their lifetime

(Charitakis & Basson 2010), making genotype-phenotype correlation complex.

1.4.1.2 Arrhythmogenic Disease

Cardiac arrhythmia is characterised by an abnormal heart rhythm, whereby the
heart beats too fast (tachycardia), too slow (bradycardia) or irregularly (fibrillation).
Arrhythmogenic diseases can be caused by mutations in ion channels and ion
channel-controlling genes (e.g. SCN5A, sodium channel, voltage-gated, type V, alpha
subunit; KCNA5, potassium voltage-gated channel, shaker-related subfamily,
member 5), as well as calcium regulatory proteins, all of which play an important
role in the propagation of the electrical signal in the heart, resulting in the
synchronised contraction and relaxation of the atrial and ventricular chambers.
Arrhythmogenic diseases include long-QT syndrome, short-QT syndrome, Brugada
syndrome and catecholaminergic polymorphic ventricular tachycardia. The vast
proportion of SCD cases are due to cardiomyopathies and arrhythmogenic disease

(Pazoki et al. 2010).
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1.4.1.3 Lipid Disorders

Familial hypercholesterolaemia (FH) is an autosomal dominant disorder with an
estimated prevalence of 1 in 500 in the UK (Marks et al. 2003). It is characterised by
exceptionally high total cholesterol and LDL-C levels and is associated with a greatly
elevated risk of CHD and death (Simon Broome Register Group 1991). Mutations in
three genes are known to cause FH: LDL receptor (LDLR), apolipoprotein B (APOB),
and proprotein convertase subtilisin/kexin type 9 (PCSK9) (the functions of the
encoded proteins are discussed in section 1.5.2.1). However, in about 60% of
clinically diagnosed FH patients no mutations are detected in these three genes

(Taylor et al. 2010; Talmud et al. 2013).

1.4.2 Complex Disorders — Atherosclerosis-Related Disorders

The underlying disease process in coronary heart and cerebrovascular disease is
atherosclerosis. Atherosclerosis is a multi-factorial process resulting in the
thickening and hardening of arteries due to the build up of plaque (a combination
of white blood cells, fatty acids, fibrous tissue, cholesterol and calcium deposits)
within the artery walls. This results in the narrowing of the artery and restricted
blood flow. The plaque can rupture leading to the formation of a blood clot which
may completely block the artery. If this process occurs within the coronary artery,
which supplies the heart, it results in MI, while complete blockage of the carotid

artery supplying the brain results in stroke.

As mentioned previously, early candidate gene studies failed to identify replicated
associations with CAD. However, in the last 5 years the widespread use of genome-
wide association analysis has led to a huge increase in the discovery of replicated
genetic variants associated with cardiovascular phenotypes including CAD, M,
heart failure, and stroke. In 2007, three studies (Helgadottir et al. 2007; McPherson

et al. 2007; Samani et al. 2007) simultaneously reported genetic variants within a

28



Chapter 1: Cardiovascular Risk Factors

region on chromosome 9p21.3 associated with CAD and Ml, and since then many
other studies have confirmed this association. The region does not contain any
annotated genes and research into the functional relevance of this region is
ongoing. At the end of 2011, 26 CAD-risk loci had been identified through large
GWASs (Zeller et al. 2011), with all loci exhibiting small to modest effect sizes.
Several loci included well-known lipid genes, such as LDLR and PCSK9, supporting
the importance of LDL-C in disease development (Lusis 2012). A few others showed
evidence of association with hypertension, however, for most there was no

established functional link to CVD pathways.

Despite the identification of multiple loci associated with disease, their combined
effect explains a relatively small proportion of the total phenotypic variance.
Heritability of CAD has been estimated at around 40% (Marenberg et al. 1994), and
the SNPs identified by the CARDIOGRAM study together with previously known loci
explain approximately 10% of the additive genetic variance of CAD (Schunkert et al.

2011).

1.5 Cardiovascular Risk Factors

1.5.1 Left Ventricular Mass

1.5.1.1 Background

An increase in LV mass is associated with a higher incidence of cardiovascular
events (Levy et al. 1990). Gender (independent of body size), age, blood pressure,
ethnicity and BMI are all important determinants of this trait. LV mass measures are
used in the diagnosis of left ventricular hypertrophy (LVH), the abnormal
enlargement of the LV muscle tissue, which is a major risk factor for CVD (Kannel et
al. 1987). LVH is a major cause of morbidity and mortality in hypertensive
individuals, and historically it was considered to be an adaptive response to

increased dynamic load caused by high blood pressure. However, the presence and
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magnitude of LVH varies substantially among individuals with similar blood
pressure, and the relation between LV mass and cardiovascular risk has shown to
be continuous in hypertensive individuals (Schillaci et al. 2000). Furthermore,
studies on pathways resulting in LVH have shown that LVH may also occur in the
absence of clear-cut recognisable changes in cardiac loading conditions (De Simone
et al. 2001). Therefore, the discovery of genetic factors that contribute to even

small increases in LV mass will likely have clinical importance.

1.5.1.2 Measurement of LV Mass

LV mass can be measured by echocardiography, cardiac magnetic resonance
imaging (MRI) or ECG. Echocardiography uses ultrasound techniques to obtain
ventricular dimensions. Mathematical formulas are then used to estimate cardiac
volume by fitting ventricular shape to geometric figures such as ellipse, cylinder,
cone, and truncated polyhedrons (Foppa et al. 2005). MRI calculates volume from a
three-dimensional set of images, without requirement for any assumptions about
ventricular geometry. ECG is a graphical representation of the electrical activity of
the heart over time (Figure 1.1) as measured by electrodes placed on the surface of
the skin (Figure 1.2). The different ECG components are used to calculate ECG
indices of LV mass (Figure 1.2). Increased LV mass is known to increase the height
and depth of the QRS complex (Figure 1.1) and the length of the QRS duration
(Figure 1.1).

Many different criteria for electrocardiographic LV mass (ECG-LV mass) measures
have been proposed over the years, the most commonly used including Cornell
Product, Sokolow-Lyon Index, QRS Voltage Product and QRS Voltage Sum (Figure
1.2). These four indices incorporate different components of the ECG, show
differential pairwise correlation (shown in Section 2.3.2) and have a range of
reported heritability estimates (mentioned below). Each measure, therefore, may

provide independent information. Though cardiac MRI is currently considered the
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Figure 1.1 Description of the main ECG components.
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P wave: Represents atrial depolarisation that results in the contraction of the atria and the expulsion of
blood into the ventricles.

QRS complex: Corresponds to ventricular depolarisation. The first downward deflection in the QRS
complex is the Q wave, which represents septal depolarisation. The first upward deflection of the QRS is
called the R wave. Most of the ventricle is activated during the R wave. The R wave may be unusually tall in
the presence of left ventricular hypertrophy. The rim of the ventricular muscle is the last to contract and
this late depolarisation is represented by the S wave, shown as the downward deflection following the R
wave. An abnormally large S wave may also indicate hypertrophy. If a second upward deflection is
recorded, this is indicative of a problem in the ventricular conduction system, including conduction blocks
in the branches of the bundle of His. These are referred to as the R-prime and S-prime waves (R’ and S’).

QRS Duration: Duration of the QRS complex.

ST segment: The isoelectric period when the entire ventricle is depolarized and roughly corresponds to the
plateau phase of the ventricular action potential.

T wave: Represents repolarisation and relaxation of the ventricles.

QT interval: Measured from the beginning of the QRS complex to the end of the T wave, the QT interval
represents the time for both ventricular depolarisation and repolarisation to occur. It is dependent on the
heart rate (the faster the heart rate, the shorter the QT interval) and is therefore usually reported after

correcting for heart rate.

(Images modified from www.cvphysiology.com and www.cardionetics.com)
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Figure 1.2 Left ventricular mass indices from 12-lead ECG.
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The figure shows the placement of 10 electrodes (6 chest and 4 limb) for the measurement
of 12-lead ECG. ECG-LV mass indices are calculated as follows:
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* Sokolow-Lyon Index (uV) = SV1 + max (RV5, RV6) i.e. (Sokolow & Lyon 1949)
* Cornell Product (uV.s) = Cornell voltage x QRS Duration (where Cornell voltage =

RaVL + SV3 (600uV added for females) (Casale et al. 1987)
* QRS Voltage Sum (uV) = the sum of |Q| + R+ |S| + R” + |S’| amplitudes in all 12
leads (Molloy et al. 1992; Okin et al. 1995)

* QRS Voltage Product (u1V.s) = QRS Voltage Sum x QRS duration (Molloy et al. 1992;
Okin et al. 1995)

where,

SV1 and SV3 — amplitude of the S wave as measured by lead V1 and lead V3
RV5 and RV6 — amplitude of the R wave as measured by leads V5 and V6
RaVL — amplitude of the R wave as measured by the aVL lead

|Q| and |S| — absolute amplitude of Q wave and S wave

|R”| and |S’| — absolute amplitude of R’ and S’ wave

R — amplitude of the R wave
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gold standard for estimating LV mass, its utility is restricted due to high cost and
limited availability. There is evidence that echocardiographically-derived LV mass
(echo-LV mass) has greater sensitivity than ECG-LV mass for LVH diagnosis.
However, a study in 475 elderly men comparing echo-LV mass with ECG-LV mass
(based on Cornell Product) for the diagnosis of LVH concluded that the two
predict mortality independently of each other and other CVD risk factors,
suggesting that they capture somewhat different information on cardiac status
(Sundstrom et al. 2001). The cost and operational considerations tend to limit the
use of echocardiography in large-scale population studies and clinical trials. The
ECG, on the other hand, is inexpensive and data easily obtainable or already

available for participants of existing epidemiological studies.

1.5.1.3 Genetics of Left Ventricular Mass and Hypertrophy

Echo-LV mass has significant heritability, with reported estimates between 24-50%
(Swan et al. 2003; Post & Levy 1994). ECG-LV mass indices have also been shown to
have significant heritability (Sokolow-Lyon Index ~40%, Cornell Product ~23%)
(Mayosi 2002). Until recently, discovery of genes associated with LVH in humans
has mostly been restricted to severe familial forms of hypertrophy, such as HCM,
with causal mutations being identified in several sarcomeric protein-coding genes.
However, it is unclear whether genetic variation in these genes influences less
severe forms of LVH. Genes involved in haemodynamic load, calcium homeostasis
and cell growth have also been suggested to play a role in LVH development (Arnett
et al. 2004). For example, polymorphisms in the angiotensin converting enzyme
(ACE), which plays an important role in arterial vasoconstriction, have been
associated with LVH in some studies (Gharavi et al. 1996; Perticone et al. 1997), but

have failed to replicate in others (Kauma et al. 1998; Gomez-Angelats et al. 2000).

33



Chapter 1: Cardiovascular Risk Factors

A previous genome-wide linkage analysis of ECG- and echo-LV mass in hypertensive
families found suggestive evidence for loci on chromosomes 10g23.1 for Sokolow-
Lyon Index, on 17p13.3 for Cornell Product and on 5p14.1 for echo-LVH (Mayosi et
al. 2008). The identified regions, however, were large and spanned several genes
and a causal mutation has yet to be identified in these regions. However, a recent
study did show that one of the SNPs in the 17p13.3 region lies within the 3’UTR of a
gene with unknown function, TLCD2, which is also immediately downstream of a
microRNA (miR-22) (Harper et al. 2013). MicroRNAs are a group of small non-coding
RNA molecules involved in posttranscriptional gene regulation, and there are now
several studies supporting the role of miR-22 as a pro-hypertrophic modulating
miRNA (Jentzsch et al. 2012; Gurha et al. 2012; Xu et al. 2012). Therefore, miR-22
and TLCD2 may be strong candidates to account for this observation (Harper et al.
2013). The few GWAS studies that have been published have not been very
successful in identifying many common variants. Two studies on echo-LV mass
(including the largest GWAS to date for this trait, with discovery in 12,612
individuals and replication in 4,094 individuals) reported no definite associations
with LV mass (Vasan et al. 2009; Arnett et al. 2011). Therefore, the
pathophysiological mechanisms that wunderlie LVH remain incompletely
characterised and genetic studies may help expose mechanisms not previously

recognised to play a role in the development of LVH.

1.5.2 Lipids

1.5.2.1 Background

Lipids have been known CVD risk factors for over half a century. Cholesterol and
triglycerides are two types of lipids that circulate within the blood. Triglyceride is
the form in which dietary intake of fat or excess carbohydrate is stored. Cholesterol

is an essential steroid found in the plasma membrane of all cells and is the
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precursor to all steroid hormones. Cholesterol is present in tissues and in plasma
either as free cholesterol or as a storage form, combined with a long-chain fatty
acid (cholesteryl ester) (Mayes & Botham 2012). The cholesterol in the body is
synthesised and also provided by the average diet. When cholesterol levels in the
blood are excessive, the liver secretes it into bile for excretion from the body.
Lipids, being insoluble in aqueous solution, are transported in plasma by
apolipoproteins, forming lipid-protein complexes known as lipoproteins (Feher &
Richmond 2006). LDL (apolipoprotein B being the main protein component) and
HDL (apolipoprotein Al being the main protein component) are two classes of
lipoproteins. Plasma lipoproteins are characterised by the proportion of protein in
the lipoprotein complex, which determines their density. There are five major
density classes: chylomicrons, very low-density lipoprotein (VLDL), intermediate-
density lipoprotein (IDL), LDL and HDL (Feher & Richmond 2006). Plasma LDL is the
vehicle of uptake of cholesterol and cholesteryl ester by many tissues while HDL
transports excess cholesterol to the liver for elimination (Mayes & Botham 2012).
There are three main pathways involved in the synthesis and transport of lipids

within the body:

1. Exogenous (Dietary) Lipid Pathway: After digestion and absorption of dietary
fat, triglycerides and cholesterol are packaged into chylomicrons in the
intestine. Chylomicrons consist mainly of triglycerides. These are secreted
into the lymphatic system and eventually join the blood circulation. When
the chylomicrons reach muscle and adipose tissue, the triglycerides are
hydrolysed by lipoprotein lipase (LPL) to release fatty acids that are taken up
by the cells for energy or storage. The remaining components are known as
chylomicron remnants. Cholesterol that is not used by the cells remains in
the chylomicron remnants and these are eventually taken up by the liver
(Figure 1.3). Apolipoprotein E (ApoE), the main protein component of
chylomicron remnants, acts as a binding ligand for receptors located on the

liver.
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2. Endogenous Pathway: This involves the synthesis of cholesterol and
triglycerides by the liver. These are transported in the blood stream to
muscle and adipose tissue by VLDLs, where triglycerides are processed by
LPL. Some of the VLDL remnant particles are removed from circulation by
the liver via LDL receptors, while others are hydrolysed to form smaller,
denser LDL particles, which are cholesterol-rich particles (Figure 1.3). Most
of the LDL particles are also taken up by LDL receptors on hepatic cells,
releasing free cholesterol which accumulates within the liver cells. The
number of LDL receptors on the surface of the liver determines how quickly
LDL particles are cleared from the bloodstream. When cells have abundant
cholesterol, LDL receptor synthesis at the level of transcription, is blocked to
prevent further cholesterol uptake. Conversely, more LDL receptors are
made when the cell is deficient in cholesterol. Proprotein convertase
subtilisin/kexin type 9 (encoded by the PCSK9 gene) is believed to induce
degradation of LDL receptors in the liver, resulting in reduced clearance of

LDL particles from the blood.

3. Reverse Cholesterol Transport: This is the process by which excess
cholesterol is removed from the tissues and returned to the liver by HDL,
where it is metabolised to bile acids and salts that are eliminated from the

body.

Excess circulating LDL-C can penetrate endothelial walls where it is oxidised by free
radicals and becomes toxic to cells. The damage caused to the artery wall by
oxidised LDL triggers an immune response, resulting in the recruitment of
macrophages to the site of damage. The oxidised LDL molecules are taken up by
macrophages which become engorged and form foam cells (cholesterol-loaded
cells) (Libby et al. 2011). These foam cells may rupture, depositing a greater amount
of oxidised cholesterol into the artery wall. This deposition of necrotic debris

provokes further inflammation, continuing the cycle (Lusis 2012). The surrounding
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Figure 1.3 Synthesis of lipoprotein complexes in the small intestine, liver, and blood plasma and

their delivery to peripheral tissues of the body.
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muscle cells secrete a collagen-rich extracellular matrix to cover the lesion with a
fibrous cap that separates the plaque from the blood (Figure 1.4). The formation of
plaque causes the artery to narrow and restricts blood flow. Rupture of the plaque
leads to the formation of a blood clot which may completely block the artery. High
levels of circulating LDL-C are known to contribute to the development of
atherosclerosis, while high levels of circulating HDL-C are thought to have a
protective effect from atherosclerosis, as it removes excess cholesterol deposited in

the blood vessels and transports it back to the liver.

Figure 1.4 Formation of atherosclerotic plaque.
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1.5.2.2 Measurement of Lipid Levels

Serum total cholesterol and triglycerides can be measured using a centrifugal
analyser. HDL-C can be measured by first precipitating apoB-containing lipoproteins
(non-HDL-C components) with dextran sulphate-magnesium chloride, followed by
centrifugation. The HDL-C in the supernatant can then be measured by an
enzymatic procedure. Direct measurement of LDL-C is time-consuming and requires
expensive instrumentation that is not available in routine laboratories (Branchi et
al. 1998). Therefore, LDL-C is commonly calculated from HDL-C and triglyceride

measurements using an empirical equation - the Friedewald formula (Friedewald et
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al. 1972). However, the accuracy of LDL-C estimation can be affected by serum
triglyceride levels and errors inherent to the methods used to obtain HDL-C and

triglyceride measures.

1.5.2.3 Lipid Genetics

Plasma-lipid levels are highly heritable traits with estimates ranging from 40% —
70% (Krauss 2008; Weiss et al. 2006). A major contributor to LDL-C and total
cholesterol levels is the APOE gene which codes for apolipoprotein E. SNPs at two
sites (rs7412 and rs429358) result in three major protein isoforms with either a
cysteine (cys) or arginine (arg) residue at positions 112 and 158: ApoE2 (cys112,
cys158), ApoE3 (cys112, argl58; the most common form), and ApoE4 (argll2,
arg158) (Utermann et al. 1980; Weisgraber et al. 1981) (Table 1.2)

Table 1.2 Combinations of rs429358 and rs7412 responsible for the observed APOE alleles.

APOE alleles rs429358 rs7412
€2 T T
€3 T C
€4 C C

Not observed C T

These differences in the amino acid composition affect its binding to hepatic
lipoprotein receptors. The three common alleles: €2, €3 and €4, result in six possible
genotypes: €2€2, €2¢€3, €2¢€4, €3€3, €3e4 and e4¢€4. A large meta-analysis in 61,463
healthy participants showed an approximately linear relationship of APOE
genotypes with LDL-C levels, and with coronary risk in 21,331 cases and 47,467
controls (Figure 1.5). However, the presence of the Apoe E2/E2 genotype is also

known to cause hyperlipoproteinemia type lll, characterised by the accumulation of
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remnant lipoproteins in the plasma and development of premature atherosclerosis,

which complicates the relationship with CVD.

Figure 1.5 Association of APOE genotypes with lipid levels and coronary risk. (a) Differences in LDL-
C levels and (b) odds ratios for coronary disease by APOE genotypes using individuals with the €3€3
genotype as reference group. Size of data markers is proportional to the inverse of the variance of
the weighted mean difference or odds ratios (e3€3 is represented by a square with arbitrarily fixed
size) and vertical lines represent 95% confidence intervals (Cls).
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Several large-scale association analyses have identified large numbers of genetic
variants associated with lipid traits (Talmud et al. 2009; Teslovich et al. 2010;
Asselbergs et al. 2012), some of which have also been shown to be associated with
CAD (Teslovich et al. 2010). These loci explain around 10-15% of the total
phenotypic variance of the lipid traits (Teslovich et al. 2010). Many of these loci
show strong overlap with those responsible for Mendelian disorders - of the 19
genes identified as monogenic causes of extremely low or high levels of LDL-C, HDL-
C and triglycerides, common variants in or near 16 of these genes have been
identified through GWAS (Kathiresan & Srivastava 2012) (Figure 1.6). Around one-
third of the identified genes are known to play a role in lipid metabolism, including

those that are already targets of lipid-modifying therapies. The rest offer novel
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insight into lipid biology, and for a few of these, mouse models have subsequently
confirmed their role in lipoprotein regulation (Musunuru et al. 2010; Varbo et al.
2011). Therefore, despite each independent SNP explaining a very small proportion
of the phenotypic variance, the biological and therapeutic value of the gene

mapped by the variant may be very high.

Figure 1.6 Lipid Genetic Loci. Of 19 genes previously implicated in Mendelian lipid disorders, 16 lie
within 100 kilobases of one of the lead SNPs mapped by GWAS, including nine that lie within 10
kilobases of the nearest lead SNP.

Loci identified
in GWAS

PABPC4, EVIS, SORT1,
ZNF648, MOSC1, GALNT2,
IRF2BP2, GCKR, RAB3GAP1, COBLL1,
IRS1, RAF1, MSL2L1, KLHLS, SLC39A8,
ARL15, MAP3K1, TIMDA4, IDOL, HFE, HLA,
Céorf108, FRK, CITED2, LPA, DNAH11, TYW1B,
MLXIPL, KLF14, PPP1R3B, PINX1, NAT2, CYPTA1,
TRPS1, TRIB1, PLEC1, TTC39B, ABO, JMJD1C,
CYP26A1, GPAM, AMPD3, SPTY2D1, LRP4,
FADS1-2-3, UBASH3B, ST3GAL4, PDESA,
LRP1, MVK, BRAP, HNF1A, SBNO1, ZNFG64,
SCARB1, LIPG, among others

Loci causing
Mendelian
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syndromes

ABCA1, ABCGS,
ABCGS, APOA1,
APOAS, APOC2, APOE,
LCAT, LDLR, LDLRAP1,
ANGPTL3, LIPC

Loci targeted
by lipid
lowering
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Image taken from Kathiresan & Srivastava (2012).

1.5.3 Carotid Intima-Media Thickness
1.5.3.1 Background

CIMT is a measure of the thickness of the two inner-most layers, the tunica intima
and tunica media, of the carotid artery wall. The right and left common carotid
arteries extend up the right and left side of the neck, respectively, to supply the

head, neck and brain with oxygenated blood. The common carotid arteries branch
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at the bifurcation point into the internal (supplying the brain) and external

(supplying the face and neck) carotid arteries (Figure 1.7).

Figure 1.7 Carotid arteries.
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Image taken from http://www.umm.edu/graphics/images/en/13939.jpg

Increased CIMT is strongly associated with atherosclerosis and cardiovascular
events (Bots et al. 1997; Chambless et al. 1997, 2000; O’Leary et al. 1999). As a
result, it is commonly used as a surrogate endpoint for cardiovascular events in
intervention trials. The use of a surrogate marker in clinical drug trials is much more
cost-effective, as the sample size requirements are not as large, and the follow-up
time not as long compared to trials with disease morbidity or mortality end-points.
Trials using CIMT as a surrogate end-point determine drug efficacy by its ability to
regress or slow progression of CIMT, with the assumption that this translates into a

reduction in cardiovascular risk.

42



Chapter 1: Cardiovascular Risk Factors

1.5.3.2 Measurement of CIMT

CIMT can be measured using non-invasive ultrasound imaging as shown in Figure
1.8. Measurements can be made from different combinations of segments
(common carotid, carotid bifurcation and/or internal carotid artery), walls (far wall
and/or near wall), and angles (single angle or a combination of angles) (Dogan et al.
2010), all of which are associated with differences in reproducibility, magnitude,
and precision of CIMT measurement (Dogan et al. 2010). Lack of standardised
protocol for CIMT measurement usually means that there is significant diversity in

the protocols used to measure CIMT in different studies.

Figure 1.8 Ultrasound scan of the carotid artery. The arrows mark the inside border of the carotid
tunica intima (innermost) layer, which is in direct contact with the blood, and the outside border of
the tunica media, which consists of smooth muscle and elastic tissue.
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Image taken from http://londoncardiovascularclinic.co.uk

1.5.3.3 Genetics of CIMT

CIMT constitutes an attractive quantitative intermediate disease phenotype for the
study of atherosclerosis-related CVD (Gertow et al. 2012). Although family studies
have shown consistent evidence for moderate heritability for CIMT (Zhao et al.

2008; Sacco et al. 2009), candidate gene studies have not found consistent genetic
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associations with CIMT (Bis et al. 2011). Two large-scale association studies have
reported significant, but different, associations with common CIMT. The first is a
GWAS meta-analysis identifying three independent loci, including the APOC1 gene
(codes for apolipoprotein C1) on 19q13, a region that also includes APOE, APOC2,
and APOC4 genes (Bis et al. 2011), and the second a gene-centric analysis
identifying the BCAR1-CFDP1-TMEM170A locus on chromosome 16, which was also

shown to be associated with CAD (Gertow et al. 2012).

1.6 Applications of Genetic Variants

1.6.1 Disease Risk Prediction

In clinical practice, risk prediction algorithms have been used to identify individuals
at high risk of developing CVD in the short term. These individuals could then be
selected to receive therapeutic or lifestyle interventions that would reduce their
risk and prevent or postpone the occurrence of disease. With the development of
LDL-C-lowering drugs, as well as several randomised-controlled treatment trials
confirming their casual role in the development of CHD (LaRosa et al. 2000; The
Lipid Research Clinics Coronary Primary Prevention Trial 1984), a more targeted
approach has been adopted world-wide in order to balance the inconvenience, risks
and costs of intervention with the potential benefits of risk reduction (Dent 2009).
Prescription of LDL-C-lowering statin drugs for primary prevention of CHD in the
general population was initially informed by lipid level thresholds. However,
cholesterol levels identify patients at risk of future coronary events only moderately
well (Law & Wald 2002). Many individuals have a cholesterol concentration
sufficient to raise the risk of coronary events, but the strength of the association of
LDL-C with coronary events is only modest, with about a three-fold relative
difference in the risk of coronary events among those at the extremes of the

population LDL-C distribution (Di Angelantonio et al. 2009). There is a lot of
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supporting evidence that major CVD risk factors like blood pressure or blood lipid
levels are individually poor predictors of a patient’s CVD risk when compared with
multifactor CVD risk prediction estimates (Jackson 2008). As a result, current UK,
European, and Australasian guidelines recommend prescription of statins on the

basis of absolute CVD risk rather than solely on LDL-C thresholds.

Guidelines from the National Institute for Health and Clinical Excellence (NICE) and
other associations recommend commencing statin therapy in individuals estimated
to have a 10 year absolute risk of CVD greater than 20% (NICE, 2010). The
recommended methods for evaluating absolute CVD risk incorporate multiple,
established risk factors. The most widely-used model is the Framingham 10 year
CVD risk score (Anderson et al. 1991). This method uses a multivariable regression
equation derived from a population sample of the Framingham Heart Study and the
Framingham Offspring Study (Anderson et al. 1991). The Framingham Heart Study
has been operational for more than 40 years and has identified a number of risk
factors that have a cumulative impact on CVD (Anderson et al. 1991). The initial
study in around 5,500 residents of Framingham, a town in Massachusetts, USA,
included parents and offspring between the age of 30 and 74 who were initially free
of cardiovascular disease and presented prediction equations for several CVD
endpoints based on measurements of several known risk factors, including lipids,
age, sex, blood pressure, smoking habit, and diabetes status (Anderson et al. 1991).
Other risk scores used in Europe include QRISK (Hippisley-Cox et al. 2007),
EuroSCORE (Nashef et al. 1999)and PROCAM (Assmann et al. 2002), with the latter

incorporating information on family history, a surrogate for genetic effects.

Unfortunately, all the available risk models are far from perfect. This rests on the
fact that our knowledge of the disease’s aetiology is incomplete, both in terms of
which risk factors are independently important and how they should each be
weighted. Many of the important risk factors, such as blood pressure and serum

cholesterol level, also show considerable intra-individual variation and cannot be
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measured with sufficient accuracy to support risk assessment with the required
degree of certainty (Dent 2009). Given the number of genetic variants associated
with CVD risk factors there is great interest in their utility for improving risk
prediction, since genotype is fixed from conception and should therefore capture
long-term differences in risk factor values without the biological variation that

affects measurement.

1.6.2 Mendelian Randomisation Analysis

1.6.2.1 Background

Many known risk factors for CVD have been identified through epidemiological
studies that have examined the direct association of the observed risk factor with
disease outcome. ldentification of modifiable risk factors can inform lifestyle or
therapeutic interventions to reduce disease risk. However, inferring causality from
observational data is problematic as it is not always clear which of the two
associated variables is the cause and which the effect, or whether both are
common effects of a third unobserved variable, or confounder (Sheehan et al.
2008). Confounding factors such as social, behavioural and environmental factors,
are often more difficult to measure and control for, and it may not be possible to

identify and account for all the relevant confounders.

Randomised controlled trials provide the most robust estimate of causal effect,
however, they are not always feasible and have cost and ethical implications
(Lawlor et al. 2004). One approach which circumvents the issues faced in
observational studies, and that is increasingly being used to determine causal
relationships, is MR analysis. MR is a relatively recent development in genetic
epidemiology where genetic variants are used as a proxy for modifiable risk factors

that are associated with disease (Thomas & Conti 2004). Since heritable units are
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randomly assigned at conception, genotypes should not be associated with
confounding factors, such as smoking and socioeconomic circumstances, nor will
the genotype be affected by disease processes that influence the intermediate risk

factor (reverse-causation) (Smith & Ebrahim 2003).

Observational studies, for example, have shown C-reactive protein (CRP), a
nonspecific marker of acute phase inflammatory response, to be a strong marker
for CHD risk (Chambless et al. 1997). Inflammation plays a key role in the
underlying disease process for the development of CHD, and CRP is currently the
most widely used biomarker of inflammation (Ridker et al. 2000). However, it is
unclear whether CRP is a causal factor. If a casual relationship is established, it
would warrant the development of drugs specifically targeted at reducing CRP
activity. However, if CRP levels are simply a marker of inflammation, targeting CRP
is unlikely to be an effective means of reducing cardiovascular disease burden.
Epidemiological studies may identify spurious associations due to confounding
factors related to both exposure and disease outcome. In the case of CRP, higher
levels are associated with smoking, which is also a risk factor for CHD, and this
three-way relationship (Figure 1.9) might confound the purported causal link

between CRP and CHD (Lawlor et al. 2008).

Figure 1.9 The Mendelian randomisation paradigm using CRP and CHD as an example.
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A recent meta-analysis used MR analysis to look at the association of known CRP-
associated genetic variants with CHD in 47 studies (total N = 194,418, with 46,557
CHD cases) (Wensley et al. 2011). Their findings indicate that CRP concentration

itself is unlikely to be even a modest causal factor in CHD.

1.6.2.2 Principles of Instrumental Variable Analysis

The method of instrumental variables (IVs) is an established method in
econometrics used to estimate causal relations using observational data (Angrist et
al. 1996). Standard regression estimates of the relation of interest may be biased
because of the presence of unmeasured confounding factors, reverse causality,
selection bias, or measurement error (Stock 2001). In such cases a third,
‘instrumental' variable can be used to extract variation in the variable of interest
that is unrelated to these problems. This variation can then be used to estimate its
causal effect on an outcome measure (Stock 2001). IV analysis where genotype is
used as an instrument is known as MR. A valid instrument is defined as a variable

that satisfies the following three assumptions:

1. The instrument (G), which in MR analysis is genotype, is strongly associated

with the modifiable risk factor of interest (X) (Figure 1.10).

2. The instrument (G) is independent of any unmeasured confounding factors,

(U) (Figure 1.10).

3. The instrument (G) is related to the outcome (Y) only via the risk factor of

interest (X).
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Figure 1.10 The Mendelian randomisation model. G, a genetic instrument with a specific effect on
an intermediate phenotype, X; Y, an outcome; U, unobserved confounders of the suggested X-Y
relationship.

1.6.2.3 Estimating Causal Effects using IV Methods

In the case of linear associations and a continuous outcome, the IV estimate of the

causal effect of the exposure X on Y has been shown to be:

Equation 1.1

0 _/))GY
/))IV - oA
/J)GX

where /;’GY is the coefficient for the regression of outcome Y on the genetic

instrument G, and /3’GX is the coefficient for the regression of the exposure X on the
genetic instrument G (Thomas & Conti 2004; Lawlor et al. 2008). The above
estimator /;’[V only applies when there is a single IV (Lawlor et al. 2008) and this

approach is known as the ratio of coefficients method. Where there is more than
one IV, the simplest and most commonly used technique is the two-stage least
squares (2SLS) method (Basmann 1957). The IV estimate is derived, as the name

suggests, by two regression steps:

1. Performing a least-squares regression of the intermediate phenotype X on

the instrumental variable G.
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2. A second least-squares regression of the outcome Y on the predicted values
of X obtained from the first regression. 2SLS assumes linear relationship
between G, X and Y. The causal estimate is derived from this second

regression.

Both 2SLS and the ratio method are applicable with a single instrument, in which
case the causal estimates are identical, but 2SLS can also be used with multiple

instruments.

1.6.2.4 Instrument Strength and Weak Instrument Bias

The power to detect a casual relationship depends on the sample size and the
strength of the instrument, which in MR studies depends on the proportion of
variance explained by the known genetic factors (R?) (Pierce et al. 2010). Although
genetic variants are independent of confounders, confounders will not be perfectly
balanced between genotypic sub-groups in finite samples (Burgess & Thompson
2011). If the instrument is weak and does not explain much of the intermediate
phenotypic variance, the chance difference in confounders may explain more of the
phenotypic difference between sub-groups than the instrument (Burgess &
Thompson 2011). In finite samples, IV estimates are biased in the same direction as
ordinary least squares (OLS) (a method for estimating the unknown parameters in a
linear regression model) estimates between the observed intermediate phenotype
and outcome. The magnitude of the bias of IV estimates approaches that of OLS
estimates as R approaches zero (Bound et al. 1995). However, it is important to
note that the sample sizes typical of genetic studies nowadays are usually large

enough to avoid weak instrument bias.

50



Chapter 1: Applications of Genetic Variants

1.6.2.5 Population Stratification

Since independent heritable units are randomly assigned from parent to offspring
during gamete formation, they are not expected to be affected by any confounding
factors other than ancestry (Pierce et al. 2010). Presence of population
stratification may therefore violate the second assumption of IV analysis. However,
restricting analysis within ethnically homogenous populations or incorporating

population structure into the analysis should overcome this problem.

1.6.2.6 Pleiotropy

SNPs identified from association studies may be within pleiotropic genes (genes
that affect multiple phenotypic traits) that influence outcome directly or indirectly
through risk factors other than the intermediate trait of interest (Palmer et al.
2011). Unless it is known that these other risk factors are in the same pathway
downstream of the intermediate trait of interest, these may not be valid
instruments. In the case of protein traits, such as CRP levels where a cis-acting
genetic variant is used as an instrument, it is known that any association of this
variant with other risk factors is via the downstream effect on CRP and assumptions
for MR are not violated. However, in the case of non-protein traits, such as lipids,
several SNPs in different genes have been reported to be associated with more
than one of the three lipid fractions and also with other CVD risk factors. Such SNPs
may violate the assumptions of IV and would need to be carefully considered when

used in MR analysis.

1.6.2.7 Linkage Disequilibrium

Genetic association studies rely on the LD between tag SNPs and functional

variants. IV assumptions are not violated when tag SNPs are used as IVs, unless they
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are also in LD with a functional variant that affects the outcome through a pathway

that does not include the risk factor of interest (Palmer et al. 2011).

1.6.2.8 Single SNP, Genetic Risk Score and Multiple SNP IVs

When multiple SNPs are associated with an exposure of interest, either a single SNP
may be chosen as the IV, the SNPs can be used as multiple IVs, or multiple SNPs can
be combined into a single genetic risk score IV (Figure 1.11).

Figure 1.11 Causal diagram for a Mendelian randomisation study. (a) a single SNP instrumental

variable, (b) multiple, independent instrumental variables and (c) combining SNPs into a composite
genetic score instrumental variable. The effect size for each relationship is denoted by .
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Image taken from Pierce et al (Pierce et al. 2010)

Previous lipid MR analyses have either used the single most significantly associated
SNP as an instrument (Sarwar et al. 2010) or a combined genetic risk score where

the lead SNP from each locus has been selected (Kathiresan et al. 2008; Levy et al.
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2009). Methodological studies have shown that a combined genetic score or
multiple instruments approach are more appropriate when multiple SNPs are

associated with the exposure (Pierce et al. 2010; Burgess & Thompson 2011).

1.7 Thesis Outline

As the title of my thesis suggests, the focus of my PhD has been two-fold: Firstly, to
improve the understanding of the biology behind well-known cardiovascular risk
factors, and secondly to explore the application of known genetic variants
associated with CVD risk factors in disease risk prediction, and in determining

causality between CVD risk factors and clinically relevant outcomes.

In Chapter 2 | report the large-scale discovery of genetic variants associated with LV
mass. As mentioned in section 1.5.1, the pathophysiological mechanisms of LVH
remain incompletely characterised, and novel loci associated with LV mass may
provide insight into the pathways involved in the development of LVH. Initially,
digital ECG measures were available for around 5000 individuals from 20 London-
based Civil service departments (Whitehall Il (WHII) Cohort). These individuals had
also been genotyped using the Cardiochip SNP array. To increase the sample size,
and hence power for detection of genetic associations, collaboration with two
additional UK studies: the British Women’s Health and Heart Study (BWHHS) and
the Genetic Regulation of Arterial Pressure of Humans in the Community (GRAPHIC)
study doubled the sample size for discovery through meta-analysis of summary-
level data. Both additional studies had digital ECG data, and study participants had
already been genotyped using the Cardiochip. Significant associations were

validated in three additional replication cohorts.

In Chapter 3, | explore the potential of known lipid-associated genetic variants in

risk prediction for clinically relevant outcomes, including high CVD risk status, need
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for lipid therapeutic intervention, and CHD outcome. The ability of genetic data to
discriminate individuals in each outcome category was compared with the
commonly used non-genetic CVD risk score —the Framingham 10 yr CVD risk score.
This work was based on lipid genetic variants identified by a large-scale association
analysis in the WHII study published in 2009 (Talmud et al. 2009). Analysis was

carried out in two British cohorts — WHIl and BWHHS.

Finally, | use known genetic variants associated with lipids to determine their causal
relationship with common CIMT. Clinical trials of drugs targeting HDL-C and
triglycerides that use progression of CIMT as a marker for drug efficacy have
provided contradictory results, leaving their causal role in atherosclerosis and CHD
uncertain. Since many lipid-associated variants have been identified, | assessed the
suitability of different approaches for instrument development for LDL-C, HDL-C
and triglycerides in Chapter 3. The final instruments, together with a second set of
independently derived instruments based on SNPs reported by the GLGC, were
applied in an MR analysis in WHII, in around 3000 individuals, and in the IMT
Progression as Predictors of Vascular Events in a High Risk European Population
(IMPROVE) study, in around 3400 individuals, to determine the casual relationship

between the three lipid fractions and common CIMT.

54



Chapter 2: Introduction

2 Discovery of Genetic Determinants of Left Ventricular

Mass

2.1 Introduction

Measures of LV mass are used in the diagnosis of LVH, the abnormal enlargement
of the LV muscle tissue, which is a major cause of morbidity and mortality. The
relation between LV mass and cardiovascular risk has shown to be continuous (Levy
et al. 1989; Schillaci et al. 2000), therefore the discovery of genetic factors that
contribute to even small increases in LV mass will likely have clinical importance.
Though echocardiography is more sensitive than ECG for detecting LVH, the cost
and operational considerations limit its use in large-scale population studies. ECG
data is more widely available in existing cohorts and several methods exist to

calculate indices of LV mass from this data (refer to section 1.5.1.2).

Though both echocardiographic and ECG LV mass measures have shown to have
significant heritability (Mayosi 2002), to date very few loci have been robustly
associated with these traits. Two studies on echo-LV mass (including the largest
GWAS to date for this trait, with discovery in 12,612 individuals and replication in
4,094 individuals — the EchoGen consortium) reported no definite associations with
LV mass (Vasan et al. 2009; Arnett et al. 2011). A study in a total of 202 individuals
from the extreme tails of the LV mass distribution and replication in 704 Caucasian
individuals reported associations in two regions (5p13.2 and 12q14.3) (Arnett et al.
2009), and a genome-wide linkage analysis found suggestive evidence for loci on
chromosomes 10g23.1 for the Sokolow-Lyon index, and on 17p13.3 for the Cornell
product (Mayosi et al. 2008). It is unclear whether genetic variation in genes causal
of Mendelian forms (e.g. sarcomeric genes) influences less severe forms of LVH as

these have not been identified in previous studies.
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Given the lack of loci reported for LV mass, and the increasing interest of linking
genetic variants affecting genes involved in cardiovascular disease pathways and
the more common forms of LVH, a large-scale cardiovascular gene-centric analysis
of four ECG-derived indices of LV mass (Sokolow-Lyon Index, Cornell Product, 12-
lead QRS Voltage Sum and 12-lead QRS Voltage Product) was carried out in three
population-based cohorts: British Women’s Health and Heart Study (BWHHS),
Genetic Regulation of Arterial Pressure of Humans in the Community (GRAPHIC)
study and Whitehall 1l (WHII), with a total sample size over 10,000 individuals. All
studies had previously collected digital ECG and biometric data, and genotyped
individuals using the Illumina cardiovascular gene-centric 50K SNP array
(Cardiochip) (Keating et al. 2008). Promising signals were replicated in three further

cohorts, with a total sample size of 11,777 individuals.

2.2 Materials & Methods

2.2.1 Discovery Study Cohorts

2.2.1.1 British Women’s Heart and Health Study (BWHHS)

The BWHHS is a prospective cohort study of 4286 British women who were
between the ages of 60 and 79 at baseline (1999 - 2001) (Ebrahim et al. 2008).
Participants were randomly selected from general practice registers in 23 British
towns (Lawlor et al. 2003). Baseline demographic, anthropometric, 12-lead ECG and
biological data were collected between 1999 and 2001 and used in this analysis.
During this time face-to-face interviews were also conducted for the completion of
medical questionnaires, and a DNA repository was made. Ethical committee

approval was obtained for the study.
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2.2.1.2 Genetic Regulation of Arterial Pressure of Humans in the Community

(GRAPHIC) Study

The GRAPHIC study selected 2024 individuals from 520 nuclear families recruited
from the general population in Leicestershire, UK, between 2003 - 2005 for the
purpose of investigating the genetic determinants of blood pressure and related
cardiovascular traits (Tobin et al. 2008). Families were included if both parents were
aged between 40 and 60 years, and two offspring were 18 years or older and
wished to participate. A detailed medical history was obtained from study subjects
by standardised questionnaires, and clinical examinations were performed by
research nurses following standard procedures. Blood samples and other
measurements such as height, weight, waist-hip ratio, clinic and ambulatory blood
pressure, and 12-lead ECG were obtained from participants. Ethical committee

approval was obtained for the study.

2.2.1.3 Whitehall Il (WHII)

The WHII study recruited 10,308 participants (70% men) between 1985 and 1989
from 20 London-based Civil service departments (Marmot & Brunner 2005). The
study was initially set up as a longitudinal study of cardiorespiratory disease and
diabetes. Clinical measurements are taken every 5 years and postal questionnaires
are conducted in between clinical phases. Clinical data were available from four
phases: 1985 - 1988, 1991 - 1993, 1995 - 1999 and 2003 - 2004. Clinical and
questionnaire data collected between 1991 and 1993 provided the first
comprehensive phenotypic dataset for WHII and is considered the baseline phase.
By 2003, only 6914 of the original 10,308 participants attended the clinic. Blood
samples for DNA were collected between 2002 and 2004. For the purpose of this
study, data collection from 2003 - 2004 provided the most comprehensive ECG

data, and these were used in the calculation of the ECG-LV mass indices
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investigated in this analysis. Participant age during this period ranged between 50

and 75. Ethical committee approval was obtained for the study.

2.2.2 Replication Study Cohorts
2.2.2.1 British Regional Heart Study (BRHS)

The initial focus of the BRHS was on the prevalence and incidence of CVD and their
relations to established behavioural and biological risk factors (Walker et al. 2004).
The study comprises of 7735 men aged between 40 and 59 years recruited from 24
medium sized British towns between 1978 and 1980. Clinical measurements were
made at baseline. Twenty years later (1998 - 2000) participants were re-measured,
including the application of 12-lead ECG, and whole blood samples taken for DNA
analysis. Phenotypic measures from the follow-up phase (1998 - 2000) were used in

this analysis. Ethical committee approval was obtained for the study.

2.2.2.2 British Genetics of Hypertension (BRIGHT) Study

The BRIGHT study comprises of hypertensive families recruited between 1996 and
2002. Cases were defined as having blood pressure readings 2150/100 mmHg (if
based on one reading), or 2145/95 mmHg (if based on the mean of three readings).
Each family contained at least two affected siblings, in whom onset of hypertension
was diagnosed before the age of 60 years. Hypertensive individuals who self-
reportedly consumed more than 21 units of alcohol per week; had diabetes; had
intrinsic renal disease; had a self-reported history of secondary hypertension that
was confirmed by the family physician; or had coexisting illness, were excluded.
Recruitment was aimed for hypertensive individuals with BMI less than 30 kg/m’.

ECGs were obtained at the time of recruitment. Only single individuals from each
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family were genotyped (Caulfield et al. 2003). Ethical committee approval was

obtained for the study.

2.2.2.3 Prevention of Renal and Vascular End Stage Disease (PREVEND) Study

The PREVEND study is a prospective investigation of the natural course of
albuminuria (elevated levels of albumin in the urine), and its relationship to renal
and cardiovascular disease. The patients of the PREVEND cohort were selected in
1997 from 40,856 individuals from the general population in the Netherlands
(Smilde et al. 2005). In total, 8592 subjects were included in the PREVEND baseline
cohort. At baseline (1997-1998) biometric measurements were taken; participants
completed a questionnaire on demographics, CVD history, renal disease history,
and use of hypertensive medication; blood pressure was measured; a fasting blood
sample was drawn and standard 12-lead ECGs were recorded. Ethical committee

approval was obtained for the study.

2.2.3 Calculation of ECG-LV Mass Indices

For all studies the standard 12-lead ECG digital data was transferred to the
University of Glasgow ECG Core Lab based at the Glasgow Royal Infirmary, where
they were reviewed manually and checked for technical problems which would
have interfered with analysis. Technically unsatisfactory ECGs (which may include
ECGs of individuals with existing CHD) were excluded. The reviewed ECGs were then
analysed by the University of Glasgow ECG analysis program (Macfarlane et al.
2005) and four LV mass indices (Sokolow-Lyon Index, Cornell Product, 12-lead QRS
Voltage Sum and 12-lead QRS Voltage Product) generated (refer to Figure 1.2 for
calculation of these measures). This software meets all of the required

specifications in terms of measurement accuracy and is used widely in various
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commercial products and clinical trials. For each ECG-LV mass index, outliers more
than 3 standard deviations (SD) away from the mean were excluded from the
analysis. Based on the observed distribution of the phenotypic measures, analysis

was done on untransformed data.

2.2.4 Genotyping

The discovery cohorts were all genotyped using the ITMAT Broad-CARe (Cardiochip)
(Keating et al. 2008). The Cardiochip is a gene-centric SNP array containing ~50,000
SNPs covering ~2000 loci that are known to be involved in cardiovascular pathways,
as determined from GWAS of vascular and inflammatory disease and
comprehensive literature searching. During array design, gene loci were prioritised

into 3 density groups:

* Group 1 (n =435 loci): Genes and regions with a high likelihood of functional
significance, including established mediators of vascular disease, loci derived
from GWAS and those shown to be associated with cardiovascular
phenotypes of interest. SNPs were inclusive of the intronic, exonic,
untranslated regions (UTRs) and 5 kilobases of the proximal promoter
regions. The average number of SNPs in the Group 1 loci is ~35.6 (Keating et

al. 2008)

* Group 2(n = 1,349 loci): Candidate loci that are potentially involved in
phenotypes of interest. SNPs were inclusive of intronic, exonic and flanking
UTRs. The average number of SNPs in the Group 2 loci is ~16.3 (Keating et al.
2008)

* Group 3 (n = 232 loci): Comprised mainly of the larger genes (>100 kb)
which were of lower interest a priori. Only non-synonymous SNPs (nsSNPs)
and known functional variants of MAF>0.01 were captured for these loci

(Keating et al. 2008)
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Genotyping in each study was done at different genotyping centres. However, for
all studies that used the Cardiochip, genotypes were called using the Illumina
BeadStudio (version 3) Genotyping Module using the default GenCall software
application (lllumina 2005) to automatically cluster and call genotypes from the
intensity data. The same quality control (QC) criteria were applied, in the order

specified below, to each discovery study to ensure data integrity.

1. Exclusion of low-performing SNPs, where the percentage of missing calls per

SNP was > 10%.
2. Exclusion of low-quality samples with percentage missing calls > 5%.

3. ldentity-by-descent (IBD) was used to estimate relatedness between every
pair of individuals in the dataset. IBD is a measure of how many alleles at
any marker in each of the two samples came from the same ancestral
chromosomes. IBD was calculated using PLINK software (Purcell et al. 2007)
which uses a Hidden Markov Model in which the hidden IBD state is
estimated given the observed identity-by-state (IBS - a measure of how
many alleles at any marker in each of the two samples happen to be the
same). IBD should identify known duplicates that have been genotyped
multiple times for quality control purposes. IBD will also identify individuals
in the study sample that have unknown residual, non-trivial degrees of
relatedness, which can violate the independence assumptions of standard
statistical techniques (McCarthy et al. 2008). Unexpected duplicate pairs
may indicate sample mix-up or sample contamination. Given the gene-
centric design of the array with dense coverage of loci, there are many
clusters of highly correlated SNPs. To avoid biases from groups of correlated
markers, pairwise IBD was performed on a pruned set of ‘independent’ SNPs
selected based on a SNP pairwise correlation threshold (R?<0.5). One sample
from each known duplicate or related pair was removed from further

analysis. Unknown duplicate samples are likely to arise from contamination
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or mix-up, and these were also excluded. Since GRAPHIC is a family-based
study, related individuals were included in the data and family structure was

taken into account in downstream analysis.

Multidimensional scaling (MDS) was used to investigate any structure in the
data which may be due to population structure, family relatedness, long-
range LD or genotyping assay artefacts. MDS is a method that represents
measurements of similarity (or dissimilarity) among pairs of objects as
distances between points in a low-dimensional space (Borg & Groenen
2005). MDS can be applied to either IBD or IBS to identify population
structure and outliers. In this case, MDS was applied to the pairwise IBS
distances (calculated using the same set of independent SNPs as for the IBD
calculation) to cluster groups of individuals with similar genotypes. MDS
allows the representation of the genotype data in a lower-dimensional
space, in this case only 3 dimensions were used, which enables the
visualisation of any significant structure present in the data. Together with
self-reported ethnicity, arbitrary cut-offs were used to exclude non-
Caucasian samples and any additional outliers based on the plot of the first
3 dimensions from the MDS analysis. This is shown for WHII data in Figure

2.1.

Samples where the genotype-inferred sex did not match the reported sex
were excluded. This was determined by looking at the call rates of the Y
chromosome SNPs and also by calculating the homozygosity rate of X
chromosome SNPs. Discordance between reported and genetically-
estimated gender is most likely to occur due to sample mix-up or

contamination.
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Figure 2.1 Population structure in WHII based on multidimensional scaling. The first 3
dimensions are plotted below. Individuals in black have self-reported Caucasian ethnicity and
those in red have self-reported non-Caucasian ethnicity. The three clusters correspond to
Caucasian, Asian and African ancestry. Individuals that clustered away from the Caucasian
individuals were assumed to be ethnic outliers and excluded from further analysis.
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6. The Hardy-Weinberg equilibrium (HWE) test determines whether the
observed genotype frequencies for a SNP significantly differ from the
expected frequencies, and is used to flag poorly performing assays and
anomalous genotype clustering. The HWE test was performed after removal
of outliers and in founders only. SNPs with HWE p-value < 1 x 10 are
considered to be of poor quality (Laurie et al. 2010) and were excluded from

further analysis.

7. Rare SNPs are more prone to error, as fewer samples would be within a
genotype cluster and most clustering-based calling algorithms do not
perform well with rare alleles (Neale and Purcell 2008; Teo 2008). The
power to detect association is also much lower for rare SNPs. Therefore,

SNPs with minor allele frequency (MAF) < 1% were excluded from analysis.

SNPs and samples that passed the above QC filters were used in the discovery
association analysis. For replication of the SNPs taken forward from the discovery

phase, genotypes were generated de novo for the PREVEND Study and BRHS using
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KASPAR assays (KBioSciences) and extracted in silico from Cardiochip array data for
the BRIGHT Study. Replication studies with existing Cardiochip data used their own
QC steps and thresholds, which were similar to those used for the discovery studies.

For all studies analysis was restricted to Caucasian samples.

2.2.5 Statistical Analysis
2.2.5.1 Within-Study Association Analysis

In each of the discovery cohorts, linear regression analyses were performed for
each SNP with each ECG-LV mass index assuming a per-allele additive genetic
model. Age, sex, BMI, and systolic blood pressure (SBP) were added as covariates in
the model. For individuals on blood pressure lowering medication, SBP was
adjusted by adding a constant of 15mmHg based on a study comparing methods for
adjusting blood pressure for treatment effects (Tobin et al. 2005). Covariates were
selected based on prior knowledge of non-genetic risk factors of LVH. In GRAPHIC,
additional adjustments for age2 (due to the older age of parents compared to
children in the cohort) and familial correlation were taken into account using
generalised estimating equations with an exchangeable correlation structure (Liang

& Zeger 1986).

2.2.5.2 Between-Study Meta-Analysis

Meta-analysis is a statistical method for combining results (in this case the per-
allele beta-coefficients) from multiple independent studies to estimate the
combined effect. This has more power to detect an effect than any of the studies
individually. Since some studies may have more precise estimates than others,
rather than calculating a simple mean of the effect sizes, a weighted mean is

calculated where the study-specific effects are weighted by the inverse of the study
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variance i.e. studies with large variance will be down-weighted and contribute less
to the overall effect estimate. Meta-analysis can be performed using a fixed or
random effects model. Under the fixed effect model it is assumed that there is one
true effect size which is shared by all the included studies. By contrast, the random
effects model allows the true effect to vary from study to study. This between study

heterogeneity is incorporated into the meta-analysis.

The relative strengths of fixed and random effects analyses remain controversial
(Thompson et al. 2011) and both have been applied in published meta-analyses.
Heterogeneity was measured using /? (Higgins et al. 2003), which describes the
percentage of variation across studies attributed to heterogeneity rather than
chance. An F value of 0% indicates no observed heterogeneity, and larger values
show increasing heterogeneity. Because ~30% of SNPs passing the discovery
threshold (specified below) showed moderate to high heterogeneity (/> between 40
and 70), a random-effects model was applied using the commonly used
DerSimonian and Laird procedure for a random effects meta-analysis (DerSimonian
& Laird 1986), whereby the between-study heterogeneity estimates are used to
adjust the standard errors of each study-specific estimate. The fixed effect meta-
analysis did not identify SNPs in any additional genes to the ones reported by the
random effects model. Therefore only results from the random effects model are

reported here.

If a Bonferroni correction for multiple testing of 33,950 SNPs that passed QC in all
three discovery cohorts was applied, the p-value threshold would have been
1.47x10°°. However, given the lower number of independent SNPs, the higher prior
odds of association due to the informed selection of loci covered by the array and
the opportunity to eliminate false positives at the replication stage, the discovery

threshold to take SNPs forward for replication was relaxed to 1x10™.
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2.2.5.3 Conditional Analysis

Typically many SNPs in a region harbouring one or more causal variant(s)
demonstrate univariate associations with the traits of interest but the majority of
these associations are indirect and operate through LD with the causal site(s).
When multiple SNPs within the same locus reached significance, conditional
association analyses were performed, whereby the lead (most significant) SNP was
added to the linear regression model as a covariate. Any SNPs that remained
significant at the discovery threshold in conditional analysis were considered to be
independent association signals from the lead SNP. If the most significant SNP in
the conditional analysis passed the discovery p-value threshold it was also added as
a covariate to the regression model in addition to the original lead SNP. This
process was repeated until no more SNPs showed an association p-value less the

discovery threshold. All independent signals were taken forward for replication.

2.2.5.4 Genomic Inflation

When association analysis is carried out on a large number of SNPs it is important
to test the distribution of the test statistic in comparison with the expected null
distribution. Any deviation of the observed test statistic distribution from the null
distribution may suggest systematic bias (from unrecognized population structure,
analytical approach, genotyping artefacts, array design etc). This deviation is
guantified by calculating the genomic inflation factor and can be visualised by
guantile—quantile (QQ) plots. The genomic inflation factor, lambda, is defined as
the ratio of the median of the observed distribution of the test statistic to the
expected median, thus quantifying the extent of the bulk inflation (Devlin & Roeder

1999).

66



Chapter 2: Materials & Methods

2.2.5.5 Replication

Linear regression analysis was carried out in each of the three replication cohorts
for the selected SNPs with the ECG-LV mass trait with which they were significantly
associated in the discovery stage. As before, age, sex, BMI and corrected SBP were
added as covariates in the regression model. A meta-analysis of the results from the
replication studies was done using the same method as in the discovery phase. A
Bonferroni correction for the number of independent signals taken forward for
replication (12 SNPs) was applied to the standard 0.05 significance threshold, giving

a replication threshold of p=4.17x10".

2.2.5.6 Calculation of Variance Explained

A univariate linear regression was used to determine the proportion of trait
variation (R?) explained by each of the four replicated SNPs within each study. In

GRAPHIC only the parental generation was used to calculate the R® value.

2.2.5.7 Top Decile Analysis

To examine the effect of each of the four replicated SNPs on the odds of being in
the top decile of their associated trait distribution i.e. QRS Voltage Sum (rs2290893,
rs2292462, rs4966014) and Cornell Product (rs6797133), logistic regression was
performed in each discovery study (adjusting for the same covariates as previously),
and the results meta-analysed using random effects. In addition, to look at the
combined effect of the three QRS Voltage Sum-associated SNPs, a genetic risk score
was generated for each individual which was the sum of the number of risk alleles
(trait-raising alleles) across the three SNPs (for a single SNP, an individual can have
0, 1 or 2 risk alleles), assuming a per-allele additive effect. Individuals carrying 0-2

risk alleles were used as the reference group, and the odds of being in the top
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decile of QRS Voltage Sum were calculated for subjects carrying 3, 4, 5 or 6 risk

alleles.

2.2.6 Functional Analysis

Bioinformatics resources were used to assess if the replicated SNPs, or SNPs in
strong LD with them, could have a functional impact on nearby genes. For SNPs
found in coding regions, their likelihood of affecting protein structure and function

was assessed using Polyphen (http://genetics.bwh.harvard.edu/pph/), which uses

structural knowledge, evolutionary conservation and knowledge of functional sites
to assess how likely an amino acid substitution will alter protein structure and
function (Adzhubei et al. 2010). For SNPs found outside of coding regions the

RegulomeDB bioinformatics server (http://regulome.stanford.edu/) was used to

assess whether the SNPs were found within any regulatory regions, which may
suggest a regulatory role on gene expression. The RegulomeDB server uses publicly
available data to annotate SNPs within known and predicted regulatory elements.
One such available resource is the Encyclopaedia of DNA Elements (ENCODE)
(Birney et al. 2007). The ENCODE project used genome-wide experimental

techniques to identify the following regulatory regions in multiple cell types:

1. Transcription factor (TF) binding sites identified by chromatin immuno-
precipitation with sequencing (ChIP-Seq) (Landt et al. 2012). TF-bound DNA
from nuclear extract can be isolated using a TF-specific antibody (by
chromatin immuno-precipitation) and then sequenced. Mapping the
sequenced DNA fragments to the genome locates the regions where the TF

was bound.

2. Open chromatin regions — Active regulatory regions (including enhancers,
silencers and promoters) tend to have an open chromatin structure which

allows access to DNA-binding regulatory proteins. The open nature of the
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chromatin structure also increases sensitivity of these regions to digestion
by nucleases such as DNase |. DNase | hypersensitive sites sequencing
(DNase-Seq) (Song & Crawford 2010) was used to map DNase |
hypersensitivity sites across the genome. Open chromatin regions can also
be identified by Formaldehyde-Assisted Isolation of Regulatory Elements
with sequencing (FAIRE-Seq) which separates nucleosomes from open
chromatin. Sequencing of these open chromatin regions followed by

mapping onto the genome provides the location of these regions.

3. Histone-methylation - chemical modifications (e.g. methylation and
acylation) to the histone proteins present in chromatin influence gene
expression by changing how accessible the chromatin is to transcription.
Specific histone modifications can differentiate between promoter and
enhancer-sites e.g. H3K4Me3 is Histone H3 with the addition of 3 methyl
groups to Lysine reside 4, which is associated with active promoters. The
same ChIP-Seq method using antibodies specific for each type of histone
modification can be applied to identify regions where specific histone

modification has occurred.

In addition, the RegulomeDB server queries TF binding site databases which contain
information on both predicted and experimentally validated TF binding sites.
Another source of functional information is expression quantitative trait loci (eQTL)
data. These are genomic loci that regulate expression levels of mRNAs.
RegulomeDB queries eQTL data from lymphoblastoid cells (Montgomery et al.
2010). The Genevar v3.2.0 software (Yang et al. 2010) was also used to query eQTL
datasets from lymphoblastoid cells, skin cells, adipose tissue, T-cells and fibroblasts

(Grundberg et al. 2012; Stranger et al. 2012; Nica et al. 2011; Dimas et al. 2009).

69



Chapter 2: Materials & Methods

2.2.7 Comparison of ECG- and Echo-LV Mass-Associated Variants

To assess if any of the replicated SNPs were also associated with echo-LV mass, a
look-up of their association in the EchoGen Consortium (Vasan et al. 2009), who
were responsible for the largest published GWA meta-analysis on echo-LV mass to
date, was carried out. Briefly, EchoGen had performed meta-analysis of GWA data
from 5 population-based cohort studies (Cardiovascular Health Study, Framingham
Heart Study, Rotterdam Study, Multinational Monitoring of Trends and
Determinants in Cardiovascular Disease study (MONICA-KORA), and Gutenberg
Heart Study) with a total sample size of 12,612. Within each study summary
estimates for each SNP were obtained using linear regression assuming an additive
model with age, sex, height and weight as covariates, and a meta-analysis carried

out using an inverse variance fixed effect model.

2.2.8 Association with Candidate Genes

Previous studies have suggested association of variants in genes of the renin-
angiotensin system cascade with LVH, notably the A1166C variant in angiotensin |l
receptor, type 1 (AGTR1), the M235T polymorphism in angiotensinogen (AGT), the
insertion/deletion (I/D) polymorphism in the ACE gene and the -344 C/T
polymorphism in cytochrome P450, family 11, subfamily B, polypeptide 2
(CYP11B2). Genes involved in haemodynamic load, calcium homeostasis have also
been suggested to play a role in LVH development and causal mutations in
sarcomeric-protein coding genes are known to be responsible for Mendelian forms
of cardiac hypertrophy. Association of such genes implicated in LVH (identified

through literature search) were also reported.
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2.3 Results

2.3.1 Cohort Characteristics

After QC, the discovery sample with genotype data comprised of 10,497 individuals:
3414 from BWHHS, 2024 from GRAPHIC and 5059 from the WHII Study. Replication
was undertaken in 3 additional cohorts (PREVEND, BRHS and BRIGHT) totalling
11,777 individuals. Discovery and replication cohort characteristics are shown in

Table 2.1.

2.3.2 Phenotype Distribution

The distributions of the ECG-LV mass measures were very similar in each cohort
(Figure 2.2). There was strong intra-individual correlation between 12-lead QRS
Voltage Sum and 12-lead QRS Voltage Product, moderate correlations between
either Cornell Product or Sokolow-Lyon index and the 12-lead QRS indices and no

correlation between Cornell Product and Sokolow-Lyon index (Table 2.2).

2.3.3 SNP Quality Control Analysis

After genotyping QC, over 34,000 SNPs in each study remained for analysis. A large
number of these were excluded due to low MAF (<1%), since rare SNPs are more
prone to genotyping error. A total of 33,950 SNPs were present in all three studies

after applying QC thresholds.
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Chapter 2: Results

Table 2.2 Pearson correlation coefficients for traits and covariates.

Cornell Sokolow- QRS Voltage
Product Lyon Sum
BWHHS -0.0139
Sokolow-Lyon GRAPHIC  -0.0588
WHII -0.0265 1.000
BWHHS 0.3917 0.614
QRS Voltage Sum 0 /ppic 0.1199 0.7499
WHII 0.330 0.684 1.000
BWHHS 0.6138 0.429 0.8434
QRS Voltage
Product GRAPHIC 0.2121 0.6425 0.9269
WHII 0.444 0.500 0.880

2.3.4 Association Analysis

A total of 47 SNPs in 12 loci passed the discovery meta-analysis p-value

threshold of 1x10® The QQ plots for each cohort show that the

distribution of the observed p-values did not deviate much from the

expected distribution (Figure 2.3), with genomic inflation factors ranging

between 1.000 and 1.09. Conditional analysis of the lead SNPs in each locus

did not identify any additional independent effects and therefore only the

lead SNPs were selected for replication. These comprised six SNPs selected

on the basis of an association with 12-lead QRS Voltage Sum, one with 12-

lead QRS Voltage Product, four with Cornell Product and one with Sokolow-

Lyon Index (Table 2.3).
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2.3.5 Replication

Of the 12 SNPs taken forward for replication, four showed evidence of significant
association for their specific trait in the replication studies after allowing for
multiple testing (p-value < 4.17x10®) (Table 2.3). These were variants in the PTGES3
(12913.3), NMB (15925.2) and IGF1R (15q26.3) genes for 12-lead QRS Voltage Sum
and the SCN5A (3p22.2) gene for Cornell Product. Meta-analysis of the combined
discovery and replication data gave p-values of 3.74x10®, 3.23x10°, 1.26x10” and
1.22x107 for the lead SNPs in the PTGES3 (rs2290893), NMB (rs2292462), IGFIR
(rs4966014) and SCN5A (rs6797133) loci, respectively. For each of the replicated
loci the study-specific estimates for each SNP and the pattern of association across
the four ECG-LV mass traits in the regions are shown in Figure 2.4 — Figure 2.11.
Summary findings in the replication samples for the 8 SNPs that did not pass the

replication p-value threshold are also shown in Figure 2.12 A-H.
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Chapter 2: Results

Figure 2.12 A-H Forest plots of unreplicated SNPs. Associations are reported by study separately for
the discovery and replication cohorts, together with pooled discovery, replication and overall
estimates. Beta-coefficients (with 95% confidence intervals) describe per allele effect of the minor
allele of the SNP for the trait shown. The heterogeneity index (/%) value is shown in the bottom left
hand corner.
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2.3.6 Variance Explained

The percentage of trait variance explained by each of the four novel loci was less

than 0. 5% in each study (Table 2.4).

Table 2.4 Percentage variance explained.

% Variance Explained

SNP Gene Locus Trait BWHHS GRAPHIC WHII
rs6797133 SCN5A Cornell Product 0.12 0.08 0.25
rs2290893 PTGES3 QRS Voltage Sum 0.26 0.46 0.06
rs2292462 NMB QRS Voltage Sum 0.11 0.17 0.34
rs4966014 IGFIR QRS Voltage Sum 0.28 0.01 0.11

2.3.7 Risk Allele Count

To investigate the potential clinical relevance of these findings, the extent to which
carriage of a trait-raising allele increased the chance of being in the top decile of
the trait distribution was determined. Carriage of the rs6797133 (SCN5A) risk-allele
increased the chances of being in the top decile of the Cornell Product distribution
by 8%, while carriage of the rs2292462 (NMB) risk-allele increased the chances of
being in the top decile of the QRS Voltage Sum distribution by 19% (Figure 2.13). To
assess the combined effects of the three loci (PTGES3, NMB and IGF1R) affecting
QRS Voltage Sum, the odds ratio of being in the top decile of the trait for those
carrying 3 or more trait-raising alleles versus those carrying 0-2 alleles was
calculated. Individuals carrying 6 risk alleles had a 1.60-fold (95% Cl = 1.20 — 2.29)
increased likelihood of being in the top decile of the QRS Voltage Sum distribution
(Figure 2.14).
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Figure 2.13 Odds Ratios for being in the top decile for the associated ECG-LV mass trait per trait-

raising allele for each of the four replicated SNPs. Data from meta-analysis of all three discovery

cohorts are shown and represented as odds ratio (95% Cl) and association p-values. For rs2290893,
rs2292462 and rs4966014 the odds ratios for being in the top decile of the QRS Voltage Sum
distribution are shown, while for rs6797133 the odds ratios for being in the top decile of the Cornell

Product distribution is shown,
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Figure 2.14 Meta analysis of the odds ratio for being in the top decile for QRS Voltage Sum decile

The group carrying 0-2 alleles was used as the reference group. Data shows the odds ratio and 95%
Cl of each risk-allele score derived from the three SNPs associated with this trait (rs2290893,
rs2292462, rs4966014). The sample size in each risk allele and decile group are shown at the bottom

of the figure.
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2.3.8 Functional Analysis

SNP rs2290893 is located in the first intron of the PTGES3 gene. Based on analysis
using the RegulomeDB server there was evidence that this SNP could have an effect
on protein binding and expression: it was found within a region enriched for
histone-modifications characteristic of both promoters and enhancers, as well as
within a DNase hypersensitive region, characteristic of active promoters. The SNP
also lies within an experimentally-determined binding site for the transcription
factor Cdx-2. It was also significantly associated with higher RBMS2 (a gene
upstream of PTGES3) expression in adipose and skin tissue (p-value < 1x10°%). At
the NMB locus, the lead SNP rs2292462 was associated with expression of NMB in
adipose tissue (p-value < 1x10). The SNP was also in LD (r’=0.48, D’=1.0) with a
non-synonymous SNP (rs1051168, Proline to Threonine), 234 base pairs away that
had an association signal (p-value = 4.3x10) with QRS Voltage Sum in the discovery
meta-analysis, comparable with that of the lead SNP. However, based on Polyphen
prediction this SNP is unlikely to affect protein structure or function. There was no

evidence to support any functional impact of the other two SNPs.

2.3.9 Variants Associated with Echo-LV Mass

There was no evidence for association of any of the replicated variants with echo-

LV mass in the EchoGen data (Table 2.5).

Table 2.5 Association of ECG-LV mass signals with echo-LV mass.

Non- Meta
Coded Coded Meta Meta p- Mean
SNP Gene  Chr  Position Allele Allele Beta SE value  MAF
rs2290893 PTGES3 12 55364887 A G -0.08 0.46 0.87 0.36
rs2292462 NMB 15 83001758 G T -0.33 0.45 0.47 0.46
rs4966014 IGF1R 15 97065541 C T 0.18 0.54 0.74 0.32
rs6797133 SCNS5A 3 38631037 A G 0.17 0.45 0.71 0.39
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2.3.10 Association with Candidate Genes

Renin-angiotensinogen system polymorphisms, previously suggested to be
associated with LVH, were not associated with ECG-LV mass indices (Table 2.6).
Upon examination of variants in other candidate genes and pathways linked to
development of LVH, nominal associations with variants in several genes were
found (Table 2.7). Although the level of significance achieved for these variants in
the context of the large number of SNPs examined cannot exclude the possibility
that many of these associations are false positives, their location within genes
known to be involved in LVH suggests the need for further analysis in much larger

sample sizes.

2.4 Discussion

2.4.1 Summary of Results

Large-scale association meta-analysis identified four genetic variants robustly
associated with some of the ECG-derived indices of LV mass, providing novel
insights into the genetic determinants of this widely assessed cardiovascular trait.
The SNPs demonstrated association with Cornell Product at 3p22.2 in SCN5A and
with QRS Voltage Sum at 12q13.3 in PTGES3, 15¢25.2 in NMB and 15qg26.3 in IGFIR.
These variants do not appear to be associated with echo-LV mass suggesting that

these phenotypes may measure somewhat distinct aspects of cardiac biology.

2.4.2 Insulin Growth Factor Pathway in Cardiac Biology

Cardiac hypertrophy is characterised by an increase in cardiomyocyte size, disarray

of myofibrils, fibrosis in the extracellular matrix, re-activation of fetal transcriptional
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programs, and decreased cardiac function (Sun et al. 2009). Cardiac myocytes
undergo rapid proliferation during fetal life, but in the perinatal period proliferation
ceases. Adult cardiac myocytes generally do not re-enter the cell cycle when
exposed to growth signals, and further increases in cardiac mass are partly achieved
through an increase in cell size (hypertrophy) (Ahuja et al. 2007). The association of
variants in the insulin growth factor 1 receptor (/IGF1R) gene with ECG-LV mass is
plausible given the current knowledge of the role of the IGF pathway in the heart.
IGF1 binds to IGF1R triggering a signalling cascade that plays an essential regulatory
role in cardiac biology. During the post-natal period, the switch in cardiac
metabolism and  the cardiomyocyte’s withdrawal from the cell cycle is
characterized by a marked decrease in the expression of IGF1 and IGF1R (Knezevic
et al. 2012). There have been several mouse studies that have demonstrated the
importance of the IGF-1 signalling pathway in cardiac remodelling. Transgenic mice
over-expressing IGF1R in the heart displayed cardiac hypertrophy, which was the
result of an increase in myocyte size (McMullen et al. 2004). A recent study in mice
also demonstrated that postnatal repression of cardiac IGF1R is associated with the
up-regulation of a micro-RNA (miR-378) promoting cardiomyocyte apoptosis
(Knezevic et al. 2012). IGF-1-injected hearts of infarcted mice showed improved
ventricular function and cardiomyocyte survival (Urbanek et al. 2005; Welch et al.
2002). Interestingly, SNPs in the IGF1 gene did not show association with ECG-LV

mass traits in this analysis.

2.4.3 SCN5A

Mutations in SCN5A, which encodes the sodium channel, voltage-gated, type V,
alpha sub-unit, cause long QT syndrome, a Mendelian arrhythmogenic disease
characterised by a prolonged QT interval (represents the ventricular contraction on
the ECG (refer to Figure 1.1). SNPs in this gene have been associated with two other

ECG parameters, PR Interval and QRS duration (Chambers et al. 2010; Holm et al.
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2010). Increased LV mass is known to increase the height and depth of the QRS
complex and the length of the QRS duration. Association of SCN5A variants were
only observed with the two ECG-LV mass indices incorporating QRS duration —
Cornell Product and QRS Voltage Product. Given the high correlation of the QRS
Voltage Product with the QRS Voltage Sum and the lack of association with the
latter index which incorporates the amplitude of the Q, R and S waves but not the
duration, it is unclear whether the observed association of SCN5A variants with
ECG-LV mass reflects changes in the function of the sodium channel that simply
affect the propagation of the electrical signal, or whether variants in SCN5A actually

affect myocyte size.

2.4.4 PTGES3 and NMB

Neither PTGES3 nor NMB are a priori biological candidates likely to influence ECG-
LV mass. PTGES3 codes for prostaglandin E synthase 3 (also known as p23 or TERT
binding protein). NMB codes for neuromedin B, the mammalian homologue of
bombesin-like peptide. Fine-mapping of these regions may help identify the causal

gene in these regions.

2.4.5 Sarcomeric Protein-Coding Genes

Though SNPs in MY0OZ2 (Myozenin 2) and TTN (Titin), both playing an important
role in sarcomere structure and function, did not pass the replication threshold,
they showed suggestive evidence for association in the replication studies. Given
that both genes are associated with hypertrophic cardiomyopathy (Osio et al. 2007;

Satoh et al. 1999), they may be plausible candidates for LV mass variation.
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2.4.6 Comparison of Echo-LV Mass and ECG-LV Mass

Interestingly, the loci associated with ECG indices of LV mass did not show evidence
of association with echo-derived LV mass in the large meta-analysis by the EchoGen
Consortium (Vasan et al. 2009). However, several observations indicate that the
two may reflect different biological processes. The electrocardiogram measures the
algebraic sum of the action potentials of myocardial fibres. Therefore, the ECG
changes in cardiac hypertrophy reflect the electrical remodelling of the action
potential of the cardiac myofibres, which is measured in voltage and time (Hill
2003). By contrast, the echocardiogram captures anatomical remodelling of the
myofibres, fibroblasts, other interstitial changes (such as inflammation) and the
cardiac chambers of the heart. This is reflected in the poor correlation between
ECG- and echo-LV mass measures in several clinical contexts (Casale et al. 1987;
Epstein et al. 1990; Rosenzweig et al. 1991). More direct evidence that they may be
genetically different comes from assessment of ECG-LVH indices and echo-LV mass
in the same families showing greater heritability for the ECG indices (Mayosi 2002).
This observation underscores the importance and relevance of identifying genetic

determinants of both traits.

2.4.7 Combined Effect of Four Loci

Consistent with variants identified for other complex quantitative traits, the
amount of trait variance explained by each SNP individually was low (<1%).
Carriage of the trait-raising allele at each of the locus was associated with an 8 -
19% higher probability of lying in the top 10% of the population distribution for that
trait. The effect of the three loci affecting QRS Voltage Sum was additive.
Individuals carrying all six trait raising alleles for these loci (~ 6% of the population)
had a 1.60 (95% Cl = 1.23 - 2.29) fold increased probability of lying in the top decile

for QRS Voltage Sum compared with those carrying 0-2 alleles. Whether these
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differences impact on the cardiovascular risk associated with ECG-LVH will require

further evaluation in large-scale population samples.

2.4.8 Limitations

The Cardiochip array contains only about 10% of all genes in the human genome
with a known or suspected cardiovascular function (Keating et al. 2008). While
providing a cost-effective analysis of variants in these genes, a significant limitation
is that it does not provide full genome coverage and there are likely to be many
missed variants with similar or indeed greater effects than those identified that lie
outside of known cardiovascular pathways. Even within the genes studied
additional variants may not have been identified, given the threshold used for
taking variants forward for replication. Larger and more comprehensive studies will
be required to identify more loci associated with ECG-LV mass traits and explain a
larger proportion of their variances. Analysis in the extremes of the LV mass
distribution may be an additional strategy for genetic discovery if larger studies are

available.

As with any study of this type, the association findings provide a first step towards
identifying and studying the functionality of candidate genes in the associated
region. For some of the identified regions, where no functional link to LV mass
could be identified, the causal gene is unclear. In such cases fine-mapping via
imputation of additional SNPs or sequencing in these regions may help refine the

location of the causal gene and variant.

Though there is evidence for some of these SNPs being associated with gene
expression of nearby genes, to establish a more confirmatory role in relation to the
trait of interest, eQTL analysis of heart tissue would need to be carried out. Though

the data is not yet available for all tissues, the Genotype-Tissue Expression project
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(https://commonfund.nih.gov/GTEx/), an initiative to understand how genetic

variation may control gene activity and its relationship to disease, is currently
underway, which will eventually provide eQTL data in heart tissue. SNPs that fall
within regulatory regions may alter transcription factor binding, histone
methylation signatures and chromatin accessibility. Experimental techniques can be
used to measure allele-specific differences in protein binding (electrophoretic
mobility shift assay), gene expression (luciferase reporter assay) and open
chromatin (FAIRE), to confirm the functional role of SNPs. However, this

information would still need to be related to changes in phenotype.

Though these findings provide new insights into the genetic influences on a
routinely recorded clinically-relevant cardiovascular trait, the biologic meaning of
the findings requires consideration of the specific traits, variants and genes at the
loci, and annotations of their potential functions before their possible clinical

relevance will be understood.
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3 Lipid-Associated Genetic Variants for Risk Prediction

3.1 Introduction

Ideally, a predictive model would be able to categorise people dichotomously into
those who would develop CHD and those who would not (Dent 2009). Those
predicted to have a CHD event could then be targeted to receive therapeutic or
lifestyle interventions that would reduce their risk and prevent or postpone the
occurrence of the disease. Unfortunately, all available risk models are far from
perfect and there is ongoing research into whether additional risk factors can

improve current risk prediction models.

Blood lipid levels have been known CVD risk factors for over half a century, and
therapeutic intervention for primary prevention of CVD in the general population
was initially informed by lipid level thresholds. However, lipid levels identify
patients at risk of future coronary events only moderately well. NICE and other
organisations recommend commencing LDL-C-lowering statin therapy for primary
prevention in individuals estimated to have a 10 year absolute risk of CVD >20%,
where the recommended methods for evaluating absolute CVD risk are based on
multiple, established risk factors. The most widely-used model is the Framingham
10 year CVD risk score (Anderson et al. 1991), based on analysis carried out in the
Framingham Heart Study (see section 1.6.1). Despite these guidelines, doctors may
still be persuaded in their therapeutic decisions by high absolute values of total

cholesterol or LDL-C.

All the principal blood lipid fractions: total cholesterol, LDL-C, HDL-C, and
triglycerides, have both environmental and genetic determinants, with a reported
heritability of 40 - 70% (Krauss 2008). Recently, association studies using whole
genome and dense gene-centric arrays have identified numerous common SNPs

associated with these four lipid fractions. Each SNP has a small average effect but
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any individual may carry numerous variants which, collectively, have a more
substantial influence on blood lipid levels (Talmud et al. 2009). Genetic variants
have some potential advantages over non-genetic risk factors as predictors of
disease risk. Genotype is fixed from conception and so should represent long-term
differences in blood lipid values without the biological variation that affects assays
of blood lipids themselves. Genotyping assays have very high fidelity and low cost.
This has led to an interest in the potential use of genetic information for evaluation
of cardiovascular risk. Despite lipids being important CHD risk factors, there is little
information on the population effect of multiple lipid-associated SNPs on clinically
relevant healthcare outcomes such as estimates of cardiovascular risk, prescription

of lipid-lowering drug therapies, and subsequent clinical events.

The aim of the work in this chapter was to evaluate the influence of common SNPs
associated with total cholesterol, LDL-C, HDL-C and triglyceride levels on the
following outcomes: (1) being identified as a ‘high-risk’ individual as determined by
a Framingham 10 year CVD risk greater than 20%, which is the qualifying threshold
used to identify such individuals in Britain (and many other countries), and is a
reference against which many other methods of risk prediction are routinely
assessed; (2) receiving lipid lowering treatment, since guidelines encourage primary
therapeutic intervention for these high-risk individuals; and (3) coronary disease
events. Analysis was carried out in two British cohorts (WHIl and BWHHS), in which
prescribing decisions were made without knowledge of participants’ genotype. For
comparison, the association of the Framingham 10 year CVD risk score (Anderson et
al. 1991), which is based on phenotypic rather than genetic measurements, with

the odds of receiving lipid medication and CHD outcome was also assessed.
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3.2 Materials and Methods

3.2.1 Study Populations

Data from the WHII and BWHHS cohorts were used for this analysis, both of which
were described previously in section 2.2.1. Baseline lipid and CVD risk factor
measurements (1991-1993 in WHII, and 1999-2001 in BWHHS) were used, while
information on CHD events and lipid medication use was obtained from the 2003-
2004 follow-up phase (10 years from baseline) in WHII and the 2007 follow-up
phase (8 years from baseline) in BWHHS.

3.2.2 Lipid Measurements

In WHII venous blood samples at each examination were taken after at least 5
hours of fasting. Serum obtained after centrifugation was refrigerated at -4°C and
assayed within 72 hours of the blood draw. Total cholesterol and triglycerides were
measured using a centrifugal analyser. HDL-C levels were determined by measuring
cholesterol in the supernatant fluid obtained after precipitating non-HDL-C with
dextran sulfate-magnesium chloride with the use of a centrifuge (Kivimaki et al.
2008). In BWHHS, total cholesterol, HDL-C, and triglycerides were measured on
frozen serum sample using the same methods used in WHII. In both studies, LDL-C
concentration was estimated based on the Friedewald formula (Friedewald et al.
1972). Because isolation of the LDL fraction requires ultracentrifugation, a
technique not generally available in service laboratories, the concentration of LDL-C
was calculated by this formula. Individuals with triglyceride levels >4.5 mmol/L did
not have their LDL-C levels calculated and were set as missing, since calculated LDL-
C cannot be accurately estimated when triglyceride levels exceed this threshold

(Friedewald et al. 1972).
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3.2.3 Coronary Events Data Collection

In WHII, guestionnaires were sent at each phase of data collection to gather
information on self-reported non-fatal coronary events (Ml or angina), and this was
supplemented by information on coronary events identified by research clinic ECGs,
and through verification of primary care and hospital records (Marmot & Brunner
2005). At baseline in BWHHS, women were recorded to have CHD if they had a
medical record of an MI or angina, or if they self-report that a doctor had ever
diagnosed a heart attack or angina. At subsequent phases in BWHHS, incident (new)
cases of CHD were collected through detailed medical record reviews and
participant questionnaires and by linkage to the National Health Service (NHS)

Central Register for information on date and cause(s) of all deaths during follow-up.

3.2.4 Lipid Medication Use Data Collection

In WHII, participants were asked to name any medication taken in the 14 days prior
to the survey at each phase. The medication list was recoded using the British

National Formulary (BNF) codes (http://bnf.org/bnf/index.htm) and participants

were categorised as users of lipid lowering drug therapy if they used statins or
other lipid lowering drugs such as fibrates, nicotinic acid and its derivatives,
cholesterol absorption inhibitors, or omega-3 fatty acid compounds. Baseline lipid-
lowering drug use in BWHHS was determined by face to face interview. Participants
were asked to bring to the assessment their repeat medication slips or their actual
medications. Data on all medications, including their dosage, were entered onto a
guestionnaire sheet by the interviewer. For women who forgot their repeat
prescription document they were asked about any medications, including dosage
and the reason for which they were prescribed the medication. Medications were
catalogued using codes from the BNF. For subsequent phases in BWHHS,
information on medication was obtained from self-administered postal

guestionnaire, where participants were encouraged to write medication details
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direct from their repeat prescription sheet and/or mail a copy of the prescription

sheet back with the questionnaire.

3.2.5 Genotyping

As described in section 2.2.4 both WHII and BWHHS individuals were genotyped
using the Cardiochip (Keating et al. 2008), which contains ~50,000 SNPs covering
~2000 loci that are known to be involved in cardiovascular pathways. After quality
control filters (previously described in section 2.2.4), 5059 WHII and 3414 BWHHS

individuals with genotype data remained for analysis.

3.2.6 Selection of Lipid-Associated SNPs

A previously published large-scale genetic association analysis of SNPs on the
Cardiochip genotyping platform with baseline measurements of blood lipids in the
5059 individuals from WHII (Talmud et al. 2009) reported 60 SNPs in 12 genes to be
associated with LDL-C, 73 SNPs in 10 genes associated with triglycerides, and 71
SNPs in 5 genes associated with HDL-C (Talmud et al. 2009), all passing the
significance threshold of p-value <1x10%. Associations with total cholesterol (53

SNPs) were also identified, though not published.

Since the genotyping platform used is a gene-centric array and was not designed
using a tag-SNP approach, typically many SNPs in a region harbouring one or more
causal variant(s) demonstrate univariate associations with the traits of interest, but
the majority of these associations are indirect and operate through LD with the
causal site(s). In the study by Talmud et al (2009), the lipid-associated SNPs were
therefore passed through a stepwise variable selection scheme with the Akaike's

Information Criterion (AIC) (Akaike 1974), with the aim of removing redundant
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associations and retaining the best predictors for each lipid trait (Talmud et al.
2009). Information criteria are used to select the best regression model from a set
of possible models given the data. AIC is the most commonly used criterion. The AIC
value reflects the goodness of fit of the model, but also includes a penalty that
increases as the number of estimated parameters increases, which discourages
over-fitting. The preferred model is the one with the minimum AIC value. SNP
selection was carried out separately for each chromosome (since independence
between SNPs on different chromosomes is expected) whereby the genetic model
assumed an additive effect. Age and gender were included in the base model for

the variable selection stage for all three lipid traits (Talmud et al. 2009).

For the selection of total cholesterol and LDL-associated SNPs, the APOE genotype
was also included in the base model as it is the major determinant of total
cholesterol and LDL-C levels (see section 1.5.2.3). Of the two SNPs that determine
the major APOE isoforms, only rs7412 is represented on the Cardiochip genotyping
platform. However, in both studies the two SNPs had been separately genotyped
and the APOE genotype determined (Abdollahi et al. 2006; Sabia et al. 2010), and
this data was used for this analysis. The SNPs that were retained after variable
selection included 21 SNPs (including the 2 APOE SNPs) for total cholesterol, 23
SNPs (including the 2 APOE SNPs) for LDL-C, 12 SNPs for HDL-C, and 16 SNPs for
triglycerides (Table 3.1 - Table 3.4).

3.2.7 Calculation of Lipid Genetic Risk Scores

In order to evaluate the combined effects of the common lipid-associated SNPs, a
genetic risk score was calculated for each lipid fraction in each individual, which
was a simple count of the number of risk alleles (for HDL-C-associated SNPs these
are the number of HDL-C-lowering alleles) present in each individual. The score

represents a summary of the genetic risk from the different variants that

107



Chapter 3: Materials and Methods

predispose an individual to increased lipid levels (in the case of HDL-C, decreased
levels) and therefore increased CHD risk. For each lipid trait, genetic scores for each
participant were calculated by summing the number of risk alleles (0, 1 or 2 for
each SNP). Based on prior knowledge of the relationship between the APOE
genotypes and LDL-C levels from a large meta-analysis in 86,067 healthy
participants (Bennet et al. 2007) (refer to section 1.5.2.3), and for simplicity, the
APOE risk count was coded as follows: €2 carriers (e2€2, €2€3, €2e4) =0, €3e3 =1
and €4 carriers (€3€4, €4e4) = 2, and included in the LDL-C and total cholesterol
score calculation. The genetic scores were calculated in the same manner for

BWHHS participants. Individuals with missing genotypes were excluded.

Where per-allele effects for each SNP are similar, a simple risk allele count is an
easy and appropriate method to generate genetic risk scores since it assumes that
each risk allele contributes equally to the phenotype. However, if the effect sizes
are known to be different across risk alleles, then a weighted score is more

appropriate. Weighted genetic risk scores can be calculated as follows:

Equation 3.1
m
GS, = Ej:] ﬁJXU

where, GS, is the genetic score for the ith individual, m is the number of SNPs used
in the score calculation, Xij is the risk allele count for the j-th SNP in individual i,
and /))j is the per-risk allele effect of SNP j on the trait of interest. Though a

weighted score was developed in WHII using the per risk allele beta-coefficients
from the regression of lipid fractions on SNPs in WHII, it provided very similar
results to that of the unweighted score. The unweighted score is more likely
to have clinical application because of its simplicity. Therefore, for ease of

interpretation, only the results from the unweighted scores are presented here.
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Chapter 3: Materials and Methods

3.2.8 Estimation of the 10-year Absolute Risk of Cardiovascular Disease

To calculate the Framingham 10 year risk of CVD, the equation presented by
Anderson et al. (1991) was used, which uses linear model coefficients estimated in
the Framingham Heart Study to weight each risk factor contribution to the overall
risk. The equation incorporates information on gender, age, diabetes mellitus
status, smoking status (current), systolic blood pressure, total cholesterol and HDL-
C. The text and equations below, extracted from Anderson et al. (1991), describe

how the risk of a CVD event within a given time frame can be calculated.

A parametric statistical model (Anderson 1991) was used to provide predicted
probabilities for CVD outcome. This modelling is based on risk factor levels and
times until events. Let T denote the time until the event of interest, and x,, x, ... x,
represent the risk factor measurements for an individual. The coefficients
By Bys By Br as well as 6 and 0y, are the parameters estimated from the
Framingham Heart Study and are extracted from Table 1 of the published
manuscript by Anderson et al. (1991). The model assumes that T follows a Weibull

distribution (Weibull 1951), and 6 and 8, are the scale and shape parameters for

this distribution.
Equation 3.2
u=py+Bix +..+ frx,

where, u is assumed to be a linear function of the risk factors and log(o) =6 + O, is
considered to be a linear function of u. To compute the probability that time until

event is less than some arbitrary time t for given values of u and o, let

Equation 3.3

L _log(n - u
(o}
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Assume,
P(T > t)=P{M> u}
o

then,

Equation 3.4

P(T <t)=1-exp(-exp(u))

where, P(T<t) is the predicted probability of an event by time t. The weights for the

CVD risk factors and the values for ©, ©; and f, are given below (extracted from

Anderson et al. (1991)):

S} 0.6536
0, -0.2402
Bo 18.8144
Female -1.2146
loge(age) -1.8443
log.(age) x female 0.3668
log(systolic BP) -1.4032
Smoking status -0.3899
loge(total cholesterol/ HDL-C) -0.5390
Diabetes status -0.3036
Diabetes status x female -0.1697

Baseline measures in individuals with complete phenotype data in both studies
(1991-1993 in WHII, and 1999-2001 in BWHHS) were used for calculating the
Framingham 10 year CVD risk score. Since the equation incorporates total
cholesterol levels and is designed for estimating risk in individuals without heart
disease, the risk was not estimated for participants on lipid lowering medication or

with CHD at baseline.
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3.2.9 Association of Genetic Scores with Lipid Levels

The effects of the genetic scores on baseline lipid concentration were expressed per
additional risk allele (equivalent to a unit change in the score), and also as the
difference in lipid value between participants in the highest and lowest quintile of
the genetic score distribution. Individuals on lipid medication at baseline were
excluded from this analysis. Linear regression analysis was performed unadjusted
and adjusted for gender (only in WHII) and age. To obtain a normal distribution, the

HDL-C and triglyceride variables were loge-transformed prior to analysis.

3.2.10 Association of Genetic Scores with ‘High-Risk’ Status

An individual with Framingham 10 year risk of CVD greater than 20% was
considered as ‘high-risk’, since this is the cut-off that has been used for therapeutic
intervention in the UK. Using logistic regression, the odds ratio for having a
baseline 10 year CVD risk > 20% was calculated for individuals in the top quintile of
each lipid genetic score distribution with reference to those in the lowest quintile,

unadjusted and adjusted for the respective lipid fraction.

3.2.11 Association of Genetic Scores with Lipid Medication Use

Using logistic regression and lipid medication data from the follow-up phases in
both studies, the odds ratios for lipid medication use for primary prevention were
calculated for individuals in the top quintile of the genetic score distribution with
reference to individuals in the lowest quintile, unadjusted and adjusted for the
respective lipid fraction. Since genotype precedes outcome, both incident and
prevalent lipid drug users in the follow-up phases were considered. To ensure that

analysis was restricted to subjects receiving lipid lowering treatment for primary
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rather than secondary prevention, individuals who had a CHD event prior to
receiving lipid medication were excluded from this analysis. For comparison, the
odds ratio for lipid medication use was also calculated for individuals with a

Framingham 10 year CVD risk greater than 20% compared to those with lower risk.

3.2.12 Association of Genetic Scores with Coronary Events

Using CHD event data at the follow-up phases in both studies, the odds ratios for
having a CHD event for those in the top quintile of the lipid score distribution
compared to those in the bottom quintile, both unadjusted and adjusted for the
relevant lipid level, were calculated using logistic regression. Since genotype
precedes outcome, all individuals with a CHD event by the follow-up phase (both
incident and prevalent) were included in the analysis. For comparison, the
unadjusted odds ratio of developing CHD for individuals with high baseline
Framingham 10 year CVD risk (> 20%) compared to those with lower risk was also

calculated.

3.2.13 Discriminative Ability of Genetic Risk Scores

To evaluate the potential value of the lipid genetic scores for discrimination, the
area under the receiver operating characteristic curve (AUROC) was calculated for
each lipid genetic score for distinguishing ‘high-risk’ individuals, lipid medication
usage, and CHD outcome. The receiver operating characteristic curve illustrates the
performance of a binary classifier system, as its discrimination threshold is varied,
by plotting the proportion of true positives (sensitivity) versus the proportion of
false positives (specificity), at various threshold settings. For comparison, the

AUROC using the individual lipid levels as predictor of all three outcomes were also
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calculated. The AUROC for the Framingham 10 year CVD risk score as a predictor for

lipid drug use and CHD outcome were also calculated.

3.2.14 Improvement over Framingham 10 year CVD Risk

To determine if the lipid genetic scores improved discrimination of lipid drug users
and CHD events above the Framingham 10 year CVD risk score, the predicted risk
for each outcome was first calculated using a logistic regression model with only
the Framingham risk score as a predictor (the baseline model), followed by both the
Framingham risk score and each lipid genetic score in turn as predictors (enhanced
model). The AUROC for both the baseline and enhanced models for each lipid
genetic score were calculated. Analysis was done using the PredictABEL package

v1.2.1 (Kundu et al. 2011) in R CRAN (R Development Core Team 2012).

3.2.15 Net Reclassification Improvement for in WHII

To quantify any improvement in classification of individuals with and without CHD
when the lipid genetic scores were used in addition to the Framingham 10 year CVD
risk score, the commonly used net reclassification improvement (NRI) (Pencina et
al. 2008) was calculated in WHII. When calculating NRI, each subject in the data set
has two risk values calculated, one according to the baseline model and one
according to the enhanced model, and are then classified into pre-defined risk
categories. The proportion of individuals that are reclassified into a different risk
category by the enhanced model as compared with the baseline model are
determined. The percentage that are correctly reclassified are CHD cases that are
classified into a higher risk category, or non-cases that are reclassified into a lower

risk category, in the enhanced model compared to the baseline model. The NRI
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summarises this information into a single value and represents the difference in

proportions moving up and down risk categories among cases versus controls:

Equation 3.5

NRI=[P(up |D=1)-P(down | D=1)]-[P(up | D = 0) - P(down | D = 0)]

where, upward movement (up) is the change into a higher category based on the
new model and downward movement (down) is the change in the opposite
direction, and D denotes the event indicator (cases=1, controls=0). An NRI of 0.1
means that 10% more cases were appropriately moved up a risk category than
down compared with controls. NRI has the advantage over the ROC curve in that
the categories can be formed based on clinically important risk estimates. The risk
of a CHD event using either the baseline model (Framingham risk as the predictor)
or using the enhanced model (both Framingham risk and the lipid genetic score as
predictors) was calculated and individuals classified into two risk categories (risk
<20% and risk >=20%), and the NRI calculated. Analysis was done using the
PredictABEL package v1.2.1 (Kundu et al.,, 2011) in R CRAN (R Development Core
Team 2012).

3.2.16 Summary of Phenotypic Data Used

For clarification, a summary of whether baseline or follow-up variables were used in

each of the above described analyses is shown below.

Table 3.5 A summary of the phenotypic data used in each analysis.

Analysis WHII BWHHS
Baseline measurement 1991-1993 1999-2001
Follow-up measurement 2003-2004 2007
Collection of biological samples for DNA extraction Follow-up Baseline
Calculation of Framingham 10 year CVD risk Baseline Baseline
Association of gene scores with lipid levels Baseline Baseline
Association of gene score with lipid medication use Follow-up Follow up
Association of gene score with CHD Follow up Follow up
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3.3 Results

3.3.1 Participant Characteristics

The baseline characteristics of the participants from the two studies are shown in
Table 3.6. WHII individuals are younger and have much lower baseline CVD risk
compared to BWHHS individuals. In WHII, of those individuals that did not have
CHD and were not on lipid medication at baseline, 8% had an estimated 10-year
CVD risk > 20%. On follow-up (~10yrs later) 32% of these ‘high-risk’ individuals were
on lipid medication, while only 7% of low-risk individuals (baseline CVD risk <20%)
were on lipid medication at follow-up. In BWHHS, 49% had CVD risk > 20% at
baseline, of which 34% were on medication at follow-up (~8 years later), while only
8% of BWHHS individuals with baseline CVD risk <20% were on lipid medication at

follow-up.

Table 3.6 Cohort characteristics for WHIl and BWHHS.

Whitehall 1l BWHHS

Men (N=3721) Women (N=1338) Women (N=3414)
Baseline
Age (yrs) 49.1 (5.9) 49.6(6.1) 68.8(5.5)
BMI (kg/mz) 25.0(3.1) 25.3(4.7) 27.6(4.9)
% Smokers (current) 11 15 11
% Smokers (ex/current ) 51 46 44
Diastolic BP (mmHg) 80.7 (8.9) 76.1(9.3) 79.4 (11.7)
Systolic BP (mmHg) 121.5(12.8) 116.6 (13.7) 146.9 (25.3)
Framingham 10yr risk (%) 10.6 (6.9) 5.6 (4.9) 22.1(11.7)
Total Cholesterol (mmol/l) 6.5 (1.1) 6.4 (1.2) 6.6 (1.2)
LDL-C (mmol/l) 4.4 (1.0) 4.2 (1.1) 4.2 (1.1)
HDL-C (mmol/l) 1.3(0.4) 1.7 (0.4) 1.7 (0.5)
Triglyceride (mmol/l) 1.6 (1.2) 1.1 (0.7) 1.9(1.2)
Baseline
Lipid drug users 33 (0.9%) 10 (0.7%) 204 (5.9%)
CHD cases 96 (2.6%) 25 (1.9%) 460 (13.4%)
Follow-up phase
Duration from baseline ~10yrs ~8yrs
Lipid drug users 426 (11.4%) 121 (9.0%) 692 (20.1%)
CHD cases 334 (9.0%) 87 (6.5) 802 (23.3%)
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3.3.2 Association of Genetic Risk Scores with Blood Lipids

Though per allele effects on lipid values are small (Table 3.7) there is substantial
difference in mean lipid levels between individuals in the highest and lowest
quintile of the genetic score distribution. Individuals in the top quintile of the
cholesterol genetic score distribution have 0.96 (0.85 — 1.07) mmol/L and 0.62 (0.46
— 0.78) mmol/L higher total cholesterol than those in the bottom quintile in WHII
and BWHHS, respectively (Table 3.7). Those in the top quintile of the LDL genetic
score distribution had 0.85 (0.76 — 0.94) and 0.63 (0.50 — 0.76) mmol/L higher LDL-C
than those in the bottom quintile in WHII and BWHHS, respectively. Similarly, the
mean HDL-C levels were substantially lower (20% and 15%) and mean triglyceride
levels higher (38% and 26%) in the top quintile compared to the bottom quintile in
WHII and BWHHS, respectively (Table 3.7).

3.3.3 Association of Genetic Risk Scores with ‘High-Risk’ Status

Individuals in the top quintile of the distributions of each of the four lipid genetic
scores tended to have a higher odds of being identified as ‘high-risk’, as determined
by the Framingham 10 year CVD risk >20% (Table 3.8). The triglyceride genetic score
showed the strongest association, with individuals in the top quintile of the
triglyceride score distribution having a 1.99 (1.39 — 2.85) and 1.56 (1.22 — 2.00) fold
higher odds of having 10 year CVD risk >20% compared to those in the bottom
quintile in WHII and BWHHS, respectively. Adjusting for the respective baseline lipid
levels completely attenuated the association of all genetics scores (Table 3.8).
None of the lipid genetic scores were associated with risk factors incorporated in
the Framingham risk equation other than blood lipids (shown for WHII in Table 3.9,
indicating the association of the genetic scores with Framingham risk is driven

simply by the effect of genotype on lipid levels.

120



Chapter 3: Results

SLT 8TC 06€ 743 180 (S€'T6L°0) €0°'T L€0000 (00T ‘TT’T)9S'T SHHME apuisoASIL

€55 €L 168 65 180 (v¥'T ‘€9°0) S6°0 LT0000  (S8'C‘6ET)66'T IHM ) ’

4 6€T1 Y4 Y44 GE0 (6T°T '29'0) 98°0 LT°0 (99'T‘T6°0) €T'T SHHME ~aH

999 6L 60T €9 Lo (Le'Tv9°0) €6'0 LT0000 (VLT LET) V6T HM

86T 6¢C Y4 00t 6L°0 (6€'T‘8L°0) ¥O'T €00°0 (v6'TVT'T) 6V'T SHHM4 a1

159 69 588 65 870 (0T'T ‘€5°0) 08°0 110 (86T “€6°0) 9€'T IIHM

61T 8¢T 67T 907 8L°0 (s¥'192°0)SO'T £60°0 (££T's6°0) 0E'T SHHM4 |0J9153]0Y2

oy 6v 0S8 9 €90 (6€°T '85°0) 06°0 ¥€0°0 (9z'z‘e0'T) €S'T HM |e101
0Z>MSHAAD  0Z<ASMAAD  0Z>ASMAAD  0Z<YSH AAD anjead (10%S6) ¥O anjea-d (1D%S6) ¥O 21095

ayumnb do3 u N ayuInb Wo0q ul N uoidesd pidiq 4oy paisnipy sisAjeuy paisnfpeun Apnis >1oUsD

91uINY wonog ‘sndoy

9|13uInD wonog ‘sndoy

*(%02< s aAD JAQT weySuiwesd) snieis Hsu-ysiy, Yum sa103s 21329uas Jo UONIBIIOSSY 8°E d|qel

*28e pue ([|JHM ul Ajuo) Japuas Joj paisnipe aJe sjusid1}}2023-e13q ay) ased ydes u| ‘s|aAs| pidi| ul adueyd adejusdiad
9Y1 s1uasaudal JUSI214490I 1] BY} SWO0IIN0 PaWI0)suel}-80| 404 *S|9Ad| pidi| ul 98ueyd |/joww ay3 S1uasaldal JUSIDI4}902 B3] Y} SSWOIIN0 PIWIOJSURIIUN SO,

v8z1 0TXS'T (T€°0°T2°0) 920 €55¢ 2 0TXT'C (50°0 “v0°0) ¥0°0 SHHME
STl 0s.0TX0'T> (€70 “€€°0) 8€°0 6vSY 0. 0TX0'T> (500 “v0°0) ¥0°0 [IHM (2p1a2413113)30) 3pHadA3IL
998 40198 (2170 '61°0-) ST'0- 3314 5. 0TX6'T (T0°0- '20°0-) 200 SHHME
1102 0. 0TX0'T> (81°0- "€7°0-) OZ'0- vESY 0 0TX0'T> (€0°0- ‘€0°0-) €0°0- [IHM (0-1aH)30 1aH
100T 2 0TXG'€ (9£°0°05°0) €£9°0 705¢ £ 0TXL'9 (80°0 '90°0) £0°0 SHHM8
98.1 0 OTX0'T> (¥6'0 '92°0) 58'0 9657 0. 0TX0'T> 0T°0 '80°0) 60°0 [IHM 2101 a1
018 L 0TXL'8 (8£°0‘9%°0) 290 095¢ 5 0TXTT 60°0 £0°0) 80°0 SHHMg
L1ST 0 0TX0'T> (£0'1 '58'0) 96°0 LL9Y 5. 0TX0'T> T1°0 ‘60°0) 0T°0 [THM [0J33s3]0Y2 [e30] |0J33s3]0Y2 [e30
N anjea-d x(12%56) e1eg N anjea-d x(12%56) e1eg
9|1uInb wonoq ‘sn doy 109440 3|9||e 43d Apnis awo2hQ 94025 2139UdH

*S|9A3] pidi] YHM S3403s 2133U38 JO UOIBIIOSSY /'€ d|qeL

121



Chapter 3: Results

24025 2139ua8 pidi| Yyoes Jo sajiuIinb wolloq pue dol syl UM} UOSLIEAWOD 3Y] JOJ UMOYS SIUDIDILJD0D-R1ag

££°0(20°0°€0°0-) ¥00°0-

T€0‘(¥0°0'T0°0-) TO'0

LT°0‘(800°0'¥0°0-) 20'0-

L¥'0‘(20°0 ‘¥0°'0-) TO0-

sajaqelq

21°04(90°0'900°0-) €0°0

0€'0‘(S0°0'¥T0°0-) 200

8¢°0 ‘(z0°0'¥0°0-) TO'0-

98°0 ‘(€0°0'¥0°0-) £00°0-

(3ua44n2) Supjows

¥9°0 ‘(0T'T°29°0-) TT'O ¥£°0 ‘(96'0°89°0-) ¥T°0 ¥€°0(9%°0°€C’1-) 8€°0- ¥£0(T8°0PT'T-) LT O- dga
¥5°0'(80°7'60°T-) 050 98'0 ‘(LST'TET-) €T'0 SS°04(90°'T°0°T) LY O- 9£'0 ‘(€6'0°€S°T-) 08°0- dgs
6,0 ‘(6%7°0 ‘v9°0-) 80°0- 8%°0 {(EL'0'7E€°0-) 6T°0 €5°0(8€°0'7L0-) 8T°0- #9°0 ‘(L¥°0 ‘LL°0-) ST'O- a8y
£9°0‘(S0°0°€0°0-) 600°0 1£°0(SO°0°€0°0-) £00'0 0T°0‘(9£0°0°200°0-) €0°0 85°0 ‘(90°0°€0°0-) T0°0 Japuan
anjen-d ‘(1D %S6) e32q anjen-d ‘(1D %S6) 8199 , anjen-d (1D %S6) e12q
anjen-d ‘(1D %S6) e19q

9102S 9p14adA|S1L 9402S 1aH 9402S 141 9402S |0431S9|0YD

Su

an) Jeak 0T weySujwe. Jo uoileINd|EI Y} Ul pasn ‘spidi] ueyl JAYIo ‘S1030e} YSI JB[NISEAOIPIED YHM S340IS 2132uas pidi] 4O ||H/W Ul UO1IeIDOSSY 6°€ d|qel

122




Chapter 3: Results

3.3.4 Association of Genetic Risk Scores with Lipid Medication Use

Individuals in the top quintile of the LDL-C genetic score had a 2.38 (1.57 - 3.59) and
2.24 (1.52 - 3.29) fold higher odds of receiving lipid medication than those in the
lowest quintile (Figure 3.1A) in WHII and BWHHS, respectively. However,
adjustment for LDL-C concentration completely attenuated this association in WHII
(Figure 3.1B). In BWHHS, though the association was substantially reduced, it
remained significant (Figure 3.1B). Individuals in the top quintile of the total
cholesterol and triglyceride genetic scores were more likely to use lipid medication

and these associations were attenuated to the null after adjusting for total
cholesterol and triglyceride levels (Figure 3.1). The HDL-C genetic score was not
significantly associated with lipid medication use (Figure 3.1). As expected,
individuals with an estimated CVD risk >20% had a higher likelihood (WHII OR = 4.15
(3.04 — 5.67); BWHHS OR = 2.98 (2.32-3.83)) of receiving lipid medication compared

to those with lower risk.

3.3.5 Association of Genetic Risk Scores with CHD Events

Individuals in the top quintile (compared to bottom quintile) of the LDL-C genetic
score distribution had a higher risk of CHD (WHIl OR = 1.43 (1.02 — 2.00) and
BWHHS OR = 1.31 (0.99 - 1.72)) (Figure 3.2A). After adjusting for LDL-C levels, this
association was completely attenuated in WHII but not in BWHHS (Figure 3.2B).
Similar associations were seen in both studies for the total cholesterol genetic score
(Figure 3.2). The triglyceride score showed association with higher risk of CHD in
WHII but not in BWHHS (Figure 3.2). The HDL-C genetic score was not associated
with CHD outcome. By comparison, individuals with a Framingham 10 year CVD risk
>20% had a 4.21 (3.08 — 5.75) and 2.49 (1.80 — 3.44) fold higher odds of CHD in
WHIIl and BWHHS, respectively.
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Figure 3.1 Association of lipid genetic scores with lipid medication use. Odds ratio (with 95% ClI
and p-value) of using lipid-modifying drugs in top vs. bottom quintiles of each genetic score
distribution for (A) unadjusted analyses and (B) adjusted for the respective lipid fraction.

(A)

Lipid Genetic Score  Study
Total Cholesterol WHII
BWHHS

LDL-C WHII
BWHHS

HDL-C WHII
BWHHS

Triglycerides WHII
BWHHS

0.0

2.69 (1.79 — 4.06); p=2.2x10-06
1.55 (1.01 — 2.37); p=0.043

2.38 (1.57 — 3.59); p=3.9x10-05
2.24 (1.52 — 3.29); p=4.24x10-05

1.33(0.93 — 1.91); p=0.12
1.14 (0.76 — 1.7); p=0.53

2.18 (1.47 — 3.22); p=1.0x10-04
1.55 (1.14 — 2.12); p=0.0056

Odds Ratio for Lipid Medication Use

(B)

Lipid Genetic Score Study
Total Cholesterol WHII
BWHHS

LDL-C WHII
BWHHS

HDL-C WHII
BWHHS

Triglycerides WHII
BWHHS

1.14 (0.72 - 1.81); p=0.58
1.08 (0.68 — 1.7); p=0.76

0.98 (0.62 — 1.55); p=0.93
1.62 (1.06 — 2.48); p=0.026

0.93 (0.63 — 1.38); p=0.73
0.82 (0.53 — 1.27); p=0.38

1.34 (0.88 — 2.05); p=0.18
1.06 (0.76 — 1.48); p=0.74

[ N N I
0.0 1.0 20

Odds Ratio for Lipid Medication Use
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Figure 3.2 Association of lipid genetic scores with CHD. Odds ratio (with 95% Cl and p-value) of CHD
outcome for individuals in the top quintile of each lipid genetic score distribution compared to
individuals in the bottom quintile. Odds ratios and p-values are shown for (A) unadjusted analyses
and (B) adjusted for the respective lipid fraction.

(A)

Lipid Genetic Score  Study

Total Cholesterol WHII 1 1.42 (0.98 — 2.05); p=0.06
BWHHS 1 1.3 (0.95-1.78); p=0.1
LDL-C WHII 1 1.43 (1.02 — 2); p=0.04
BWHHS i 1.31 (0.99 - 1.72); p=0.055
HDL-C WHII 1 1.17 (0.85 — 1.62); p=0.33
BWHHS ] 1.12 (0.83 — 1.52); p=0.46
Triglycerides WHII 1 1.44 (1.03 — 2.02); p=0.03
BWHHS | 1.1 (0.87 — 1.39); p=0.42
T T T 1

0.0 1.0 20

Odds Ratio for CHD
(B)

Lipid Genetic Score  Study

Total Cholesterol WHII ' 1.16 (0.77 — 1.73); p=0.48
BWHHS [ 1.37 (0.99 — 1.9); p=0.06
LDL-C WHII ' 1.08 (0.75 — 1.56); p=0.68
BWHHS 1 1.4 (1.05 — 1.88); p=0.02
HDL-C WHII ' 0.9 (0.63 — 1.26); p=0.53
BWHHS ' 0.91 (0.66 — 1.26); p=0.46
Triglycerides WHII ' 1.05 (0.73 — 1.51); p=0.78
BWHHS ] 0.98 (0.77 — 1.25); p=0.89

0.0 1.0 20

Odds Ratio for CHD
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3.3.6 Comparison of Genotype-based and Phenotype-based Discrimination

Blood lipid measurements performed better that the respective genetic scores for
discriminating high-risk individuals, lipid medication use and CHD outcome, with all
AUROC in WHII above 0.6, while those for the respective genetic scores were all
below 0.6 (shown for WHII in Table 3.10). Total cholesterol and LDL-C levels
performed the best for discriminating lipid medication, exhibiting an AUROC of 0.79
(0.76 — 0.81) and 0.78 (0.75 — 0.80), while HDL-C and triglyceride levels performed
best for discriminating high-risk individuals. The latter is not surprising, since both
of these measures are incorporated into the Framingham risk calculation. The
Framingham 10 year CVD risk score performed the best for CHD discrimination, and
the inclusion of the lipid genetic scores in addition to the Framingham risk score in
the model did not improve discrimination (Table 3.11). The performance of each of
the lipid genetic scores in comparison to the Framingham 10 year CVD risk score for
discriminating high-risk individuals, lipid medication use and CHD in both studies is

shown in Figure 3.3.

3.3.7 Net Reclassification for Coronary Disease Events in WHII

There was no significant improvement in classification over the Framingham 10
year CVD risk when any of the genetic scores were added to the risk prediction
model, with less than 1% of individuals being correctly reclassified in the enhanced
model (p-value > 0.13) (Table 3.12). Addition of all four genetic scores to the risk
prediction model also did not improve classification (0.03% correctly reclassified, p-

value = 0.97).
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Table 3.10 Area under the receiver operating curve (AUROC) for lipid levels and lipid genetic risk

scores in WHII

AUROC

High-risk

Lipid drug use

CHD

Total Cholesterol

Cholesterol genetic score

LDL-C

LDL-C genetic score

HDL-C

HDL-C genetic score

Triglycerides

Triglyceride genetic score

0.70 (0.67 - 0.73)
0.54 (0.51-0.57)

0.71(0.68-0.74)
0.54 (0.50-0.57)

0.76 (0.74 - 0.79)
0.58 (0.54 - 0.61)

0.78 (0.75-0.80)
0.56 (0.53 - 0.59)

0.79 (0.76 - 0.81)
0.60 (0.57 - 0.64)

0.78 (0.75-0.80)
0.59 (0.56 - 0.62)

0.59 (0.56 - 0.62)
0.53 (0.50-0.57)

0.71(0.68-0.74)
0.56 (0.53 - 0.60)

0.61 (0.58 - 0.64)
0.54 (0.51-0.57)

0.62 (0.59-0.64)
0.53 (0.50- 0.56)

0.60 (0.57 - 0.63)
0.52 (0.49 - 0.55)

0.62 (0.59 - 0.65)
0.53 (0.50 - 0.56)

Table 3.11 Area under the receiver operating curve (AUROC) for combined Framingham 10yr CVD

risk score (FRS) and lipid genetic scores

Exposure Study AUROC for actual druguse  AUROC for CHD
WHII 0.73 (0.70-0.76) 0.71(0.67 - 0.74)
FRS BWHHS 0.67 (0.64 —0.70) 0.65 (0.61 - 0.69)
FRS + cholesterol genetic WHII 0.74 (0.71-0.77) 0.68 (0.65—0.72)
score BWHHS 0.68 (0.65-0.71) 0.65 (0.61 - 0.69)
WHII 0.74 (0.71-0.77) 0.68 (0.64 —0.71)
FRS +LDL genetic score BWHHS 0.68 (0.65-0.71) 0.65 (0.61 - 0.69)
WHII 0.71 (0.67 - 0.74) 0.70 (0.66 — 0.73)
FRS +HDL genetic score BWHHS 0.67 (0.64 —0.70) 0.64 (0.60 — 0.68)
FRS +triglyceride genetic WHII 0.72 (0.69 - 0.76) 0.70 (0.66 — 0.73)
score BWHHS 0.67 (0.64 —0.70) 0.64 (0.60 — 0.68)
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3.4 Discussion

3.4.1 Summary of Results

Individuals in the top quintile of the LDL-C and total cholesterol genetic score
distributions, calculated using 23 LDL-C-associated and 21 total cholesterol-
associated genetic variants, respectively, tended to have greater odds of having
high CVD risk status, receiving lipid-lowering medication and having a CHD event
than individuals in the bottom quintile, in two UK studies of middle-aged men and
women. Despite predisposing to lifelong differences in levels of blood lipids, the
strength of the genetic associations was insufficiently large to usefully discriminate
individuals likely to require lipid-lowering treatment or develop CHD. The
Framingham 10 year CVD risk score which incorporates a single mid-life
measurement of total cholesterol and HDL-C as well as other non-genetic risk
factors, performed better than genetic scores for CHD discrimination, and addition
of the genetic risk scores to the Framingham 10 year CVD risk did not improve

discrimination or reclassification.

3.4.2 Comparison with Previous Studies

Murray et al (2009) found that LDL-C and triglyceride genetic scores based on 7 and
11 SNPs (identified by previous GWAS), respectively, were associated with the
likelihood of exceeding the lipid thresholds for intervention, as advocated by US
guidelines (by the National Institutes of Health Expert Panel on Detection,
Evaluation, and Treatment of High Blood Cholesterol in Adults), in an Italian sample
of 1155 individuals over 65 years, but that a score based on 9 HDL-C- associated
variants was not (Murray et al. 2009). The study also showed that the HDL-C and
triglyceride risk allele counts were associated with MI. This study did not examine
associations with estimates of absolute CVD risk or the number of individuals

actually treated with lipid-modifying drugs. Any improvement in discrimination or
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reclassification over commonly used non-genetic risk scores was also not assessed.
For the analysis in WHII and BWHHS, the genetic scores were based on SNPs
identified in WHII using the Cardiochip (Keating et al. 2008), which has denser SNP
coverage of many of the loci associated with blood lipid fractions, but lesser
genome coverage than the arrays used in GWAS. SNPs studied by Murray et al were
either present or had proxy SNPs (based on HapMap CEU LD estimates; R*> 0.8)
present on the Cardiochip, which allowed the use of variable selection methods to
identify the best genetic predictors of lipid levels from the much larger number of

significant associations observed in each region.

A study by Kathiresan et al. (2008) examined the utility of LDL-C and HDL-C genetic
scores for the discrimination of CVD events. They generated a single score based on
a smaller subset of 11 SNPs in 9 genes associated with either LDL-C or HDL-C from
published studies. The genetic score was associated with incident CVD events even
after adjustment for lipid levels. They found that a model that incorporated the
genetic score did not improve the discrimination of CVD events but did modestly
improve risk classification in 193 CVD cases (M, ischemic stroke, and death from
CHD) and 4039 controls. However, the three risk categories used were 0-10%,
>10-20%, and >20%. In the context of UK guidelines for primary CVD prevention,
there would be no alteration in therapeutic intervention decisions for those

reclassified between the lowest two risk categories.

3.4.3 CVD-Associated SNPs and Prediction

Since this analysis, new variants associated with the principal lipid fractions have
been identified by large-scale association analysis (Teslovich et al. 2010; Asselbergs
et al. 2012). In addition, GWAS have also identified multiple variants associated
with CVD outcome (McPherson et al. 2007; Samani et al. 2007; Aulchenko et al.

2009). Whether these additional genetic variants can provide sufficiently accurate
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predictions to enable genetically-informed intervention decisions remains unclear.
Several studies have explored whether genetic markers can improve risk prediction
using genetic risk scores, but the results from these studies have been conflicting or
modest. Although some have shown that genetic variants are associated with CVD
outcome independent of conventional risk factors, only one study was able to
demonstrate a clinically significant improvement in predictive ability using both
measures of risk reclassification and discrimination, which are more informative for
the purpose of risk prediction (Table 3.13) (Di Angelantonio & Butterworth 2012).
However, these findings need to be considered in the light of several limitations of
the studies. Firstly, the number of events considered in these studies is relatively
small and therefore they are likely to be underpowered to detect significant
improvement in risk prediction. Second, only a few (typically around a dozen)
selected genetic variants, are included in the genetic risk score (Di Angelantonio &

Butterworth 2012).

New approaches have shown that the proportion of variance explained when all
SNPs on the array are considered is much larger than that explained by SNPs
passing a preset significance threshold (Yang et al. 2010). Alternative approaches to
risk prediction that incorporate all variants nominally associated with CVD risk may
provide more power but may also be prone to bias and non-transferability (Di
Angelantonio & Butterworth 2012). The selection and combination of genetic
variants is essential to maximise the potential improvement in risk prediction over
and above risk factors currently used in risk prediction. Recent work on the power
and predictive accuracy of polygenic scores has shown that very large sample sizes,
up to an order of magnitude greater than currently available, would be needed for
estimating predictors to a level which is useful for prediction (Dudbridge 2013).
Therefore, as sample sizes begin to grow, prediction using polygenic scores may

become more feasible.
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3.4.4 Clinical Implications

Consistent evidence from this and other studies now indicates that prediction
based on phenotype outdoes prediction based on common genotypic variation. The
current American Heart Association policy on the use of common genetic variants
for risk prediction states that though there is robust evidence linking common
variants to complex CVD, the minor improvement in discrimination creates
scepticism about the clinical utility for risk prediction (Ashley et al. 2012). It is
currently uncertain how the genotype results can or should influence clinical
management. More importantly, interpretation of results can be challenging and
time consuming for clinicians and patients, which is likely to steer them away from
the use of genotyping for CVD risk prediction (Ashley et al. 2012). There is a lack of
studies informing the clinical benefit of providing such genetic information to
patients and funding for such clinical studies is essential to build an evidence base

for the field (Ashley et al. 2012).

3.4.5 Limitations

Though a large number of SNPs associated with the major blood lipid fractions were
studied, these variants collectively explain only a small proportion of the variance in
blood lipid levels and only a fraction of the heritability (Talmud et al. 2009). Given
the gene-centric design of the array, loci outside known cardiovascular pathways
would have been missed. Since this work was completed, the Global Lipids Genetic
Consortium (GLGC) conducted a meta-analysis of GWAS involving more than
100,000 participants, and together with the recent Cardiochip-based discovery
meta-analysis in over 60,000 individuals, the list of loci influencing the major blood
lipid fractions has increased to almost 100 (Teslovich et al. 2010; Asselbergs et al.
2012). Scores based on a larger number of lipid related SNPs will likely explain a
larger proportion of the variance in blood lipids and have larger average differences

in lipid concentrations in individuals at opposite extremes of the score distribution.
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However, the ability of genetic scores incorporating these additional SNPs to
identify individuals with ‘high-risk’ status or CHD events may not be
correspondingly large because the effect sizes of additional loci identified in very
large meta-analysis tend to be extremely small. Additionally, new SNPs are also
distributed across different chromosomes and inherited independently, so that only
a small proportion of the population carries a large burden of lipid raising alleles.
Further analysis based on all currently known lipid related loci will be needed to
determine if the interpretations of these findings, based on the Cardiochip array-
derived lipid genetic risk scores, on the utility of lipid related SNPs for predicting
important healthcare outcomes will substantially alter. It is important to note that
despite individuals with Apoe e2e2 having lower total-cholesterol and LDL-C levels
based on the Bennet et al meta analysis, the relationship with CHD is complex due
to its causal role in hyperlipoproteinemia. However, since this genotype is rare, any

impact on the results would be insignificant.

Ongoing efforts to fine map causal variants at the known loci may increase the
number of eligible SNPs and improve the performance of lipid related genetic
scores. The effects of gene-gene and gene-environment interactions were not
modelled and may also contribute to the missing phenotype variance explained.
Efforts to deeply re-sequence for rare variants at the relevant genomic regions may
also identify highly penetrant (albeit rare) alleles with a larger effect on blood lipid
levels than those studied here, and incorporating these into genetic risk score

calculations may improve performance.

The associations observed in WHII are likely to be overestimated since the same
data was used both for SNP discovery and evaluation of the performance of the
allele scores. However, associations and performance estimates were broadly
similar in BWHHS. Given the strong association of some lipid genetic scores with

lipid drug usage, individuals with a higher number of risk alleles are more likely to
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be put on lipid medication, thus reducing their risk of an event. Therefore the
association of lipid genetic scores with CHD outcome may be underestimated. This
also applies to the Framingham 10 year CVD risk score, whereby those with a
baseline risk >20% were more likely to be put on lipid medication and the exclusion
of higher-risk CHD patients from the latter analysis may have blunted the true

association of Framingham risk with CHD outcome.

The Framingham risk equations were developed based on data from a sample
population in Framingham, Massachusetts, and there have been studies showing
that this method over-estimates risk in other populations (Hense et al. 2003; Kent
2002; Brindle et al. 2003). Despite this, they have been used widely both within the
UK and elsewhere. The QRISK cardiovascular disease risk algorithm (QRISK2)
(Hippisley-Cox et al. 2007) has been developed to provide accurate estimates of
cardiovascular risk in patients from different ethnic groups in England and Wales
and would be a more appropriate estimator for the cohorts used. However, the
QRISK requires information on participant post codes, which is not available in
WHII, and also the equations underpinning the calculation are not freely available

since QRISK is licensed for commercial or healthcare use.

136



Chapter 4: Introduction

4 Developing Genetic Instruments for Lipids

4.1 Introduction

For prognostic research, all factors associated with an outcome, whether causal or
not, are of interest (Sheehan et al. 2008). Causality on the other hand, is relevant
for informing health interventions and in drug discovery. MR analysis uses genetic
variants as unbiased proxies for modifiable risk factors in order to determine
whether their relationship with an outcome is causal (refer to section 1.6.2). Due to
the random assortment of alleles at the time of gamete formation, the population
distributions of genetic variants are generally independent of behavioural and
environmental factors that typically confound epidemiological associations
between putative risk factors and outcome (Smith & Ebrahim 2004). The
unidirectional flow of biological information from gene through to risk factor and
then to disease outcome avoids reverse causation, since the disease or outcome
cannot change the inherited genetic variants that are associated with the risk

factor.

Higher LDL-C concentration is associated with a higher risk of CHD, and the
relationship is considered causal because randomised trials using LDL-C-lowering
interventions such as HMG-CoA reductase inhibitors (statins) have shown to reduce
CHD risk in proportion to the LDL-C reduction (Baigent et al. 2005; Baigent et al.
2010). Epidemiological studies have shown that increased triglyceride levels and
decreased HDL-C levels are both associated with CHD. However, randomised trials
of drugs directed at HDL-C and triglycerides have not shown consistent results and
have therefore been unable to confirm or refute whether these associations are
causal (Cannon et al. 2010; Ginsberg et al. 2010; Jun et al. 2010; NHLBI
Communications 2011). There is therefore a lot of interest in assessing the causal

relationship of these lipid fractions with various clinically relevant outcomes.
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Confirmation of causality would determine whether development of drugs
designed to raise HDL-C or lower triglyceride levels are worth pursuing for
cardiovascular disease risk management. Given the large number of genetic
variants reported to be associated with lipid levels, the aim of this work is to
explore different approaches for the development of suitable genetic instruments
for LDL-C, HDL-C and triglycerides to use in MR analyses. Genotypic and phenotypic
data from 5059 Caucasian individuals from the WHII cohort were used for lipid

instrument development.

4.2 Materials & Methods

4.2.1 Genotypic and Phenotypic Data

The development of genetic instruments utilised genotype data for 5059 Caucasian
individuals from the WHII cohort (see section 2.2.1.3 for cohort description) that
had been genotyped using the lllumina Cardiochip (as described in section 2.2.4),

and baseline (1991-1993) lipid measurements (as described in section 3.2.2).

4.2.2 Measuring the Strength of a Genetic Instrument

As mentioned in section 1.6.2.4, the strength of an instrument can be measured by
the proportion of the total phenotypic variance explained by the instrument, R?
also known as the coefficient of determination. This can be calculated from the
simple linear regression of the genetic instrument with the exposure of interest as

follows:

Equation 4.1

Rz —1- Ei(yi _JA’i)j
Ei(yi _J_/)
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where, y, is the observed risk factor value for the jth individual, y,is the fitted
value for the jth individual and y is the mean of the observed data. The numerator

is the residual sum of errors (the unexplained variance) and the denominator is the
total sum of squares (the total variance in the observed data). The F-statistic is
another measure of instrument strength and is related to R?, sample size (n) and

number of instruments (k) used, and is calculated as follows:

Equation 4.2

o R*(n-k-1)
(1-R)k

As mentioned in section 1.6.2.3, the causal effect can be estimated using the 2SLS
method. In the presence of confounding between the exposure and outcome, the
casual estimate from a 2SLS regression will be biased towards this confounded
association, and the extent of bias is inversely related to the F-statistic (Staiger and
Stock 1997). Bias occurs when genetic variants explain not only systematic variation
in the risk factor of interest, but also chance variation in the confounders (Burgess
& Thompson 2013). As R? increases, the F-statistic increases and the bias decreases.
However, including additional instruments that do not increase the first stage R
results in a decrease in the F-statistic (Equation 4.2), and hence increases the bias
(Palmer et al. 2011). Therefore, weak instrument bias may arise in situations where
the number of instruments is large and sample size small. By rule of thumb, an F-
statistic >10 is usually an indicator of a strong instrument, as the bias of the IV
estimator is 10% of the bias of the observational estimator (Staiger & Stock 1997;
Lawlor et al. 2008). However, weak instrument bias is a continuous rather than
binary phenomenon, and such application of F-statistic thresholds for assessing
weak instruments are not considered useful by some (Burgess & Thompson 2013).
However, with large enough sample sizes, estimates using a weak instrument will

be consistent for the causal effect. The R? is usually preferred over the F-statistic
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when comparing strength of different IVs, since the latter is dependent on the

number of instruments used as well as sample size.

4.2.3 Unweighted Genetic Risk Score

When multiple, independent SNPs are associated with the exposure of interest, a
simple approach for MR analysis is to combine them into a single genetic risk score
instrument (refer to section 1.6.2.8). This approach avoids the problem of weak
instrument bias that may potentially arise in the presence of a large number of
possible instruments. Use of such scores assumes an approximately additive effect
on phenotype. In the large-scale lipid association analysis by Talmud et al (2009),
SNPs that passed the initial discovery significance threshold (p-value < 1x10%; with
age and sex as covariates in the regression model) were entered into a stepwise
regression step using the AIC (Akaike 1974) for model selection, in an attempt to
select a model with the best, non-redundant genetic predictors for each lipid
fraction (described in section 3.2.6). The set of SNPs retained in the model included
23 SNPs (including the 2 SNPs making up the APOE genotype) for LDL-C, 12 SNPs for
HDL-C, and 16 SNPs for triglycerides (refer to Table 3.2 - Table 3.4). The set of SNPs
selected for each lipid fraction were combined into a genetic risk score, where for
each individual this was the sum of the risk allele counts across the SNPs (previously
described in section 3.2.7). To explore how the addition of each SNP to the genetic
score affected the strength of the instrument, the following steps, using LDL-C as an

example, were carried out:

e Step 1: Genetic variants were ranked in order of decreasing R® (obtained

from the univariate linear regression of LDL-C on each genetic variant).

¢ Step 2: The unweighted score was first calculated for the single genetic

variant with the highest R% In this instance the genetic score for all
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individuals was either O (no risk alleles), 1 (heterozygous) or 2 (homozygous

for the risk allele).

e Step 3: To assess instrument strength, the R®> and F-statistic for the

unweighted score were obtained from the linear regression with LDL-C.

e Step 4: To assess specificity, the R® values from the linear regression of the
LDL-C unweighted score with the other (non-specific) lipid fractions and CVD
risk factors (systolic blood pressure (SBP), diastolic blood pressure (DBP),

CRP and BMI) were also obtained.

* Step 5: The next ranking SNP was added to the genetic score calculation and

steps 3 and 4 repeated with this new score.

* Step 6: Step 5 was repeated until all SNPs had been incorporated into the

genetic score calculation.

For simplicity, as was done in the previous chapter (section 3.2.7), the APOE
genotype was coded as follows: €2 carriers (€2€2/ €2€3/ €2e4) =0, e3e3 =1 and €4
carriers (e3€4/c4ed4) = 2. The above steps were repeated for the HDL-C and
triglyceride SNPs, with the R? and F-statistic for assessing instrument strength
derived from the regression with loge-transformed HDL-C and loge-transformed

triglycerides, respectively.

4.2.4 Multiple Instruments Approach

Multiple SNPs associated with the exposure of interest can also be used
simultaneously as individual IVs in a multiple instruments approach (refer to section
1.6.2.8). The multiple instruments approach maximises power, while making no
assumptions regarding the effect sizes of each SNP (Pierce et al. 2010). However, if

a large number of SNPs are used as individual instruments, there is potential for
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introducing weak instrument bias. As was done with the unweighted score, SNPs
were ranked by decreasing R? values, and for each successive SNP addition, the R
and F-statistic values were extracted from a multiple regression of the SNPs in
question with the respective lipid fraction. To examine specificity, the R values
were also extracted from the multiple regression of the SNPs with the other non-

specific lipid fractions and CVD risk factors.

4.2.5 Weighted Genetic Score using Univariate Beta-Coefficients

As discussed in section 3.2.7, genetic risk scores can also be weighted by the effect
size of each risk allele, which is more appropriate when effects sizes of SNPs are
different. The beta-coefficients from the univariate regression of the lipid fraction
on each SNP in WHII were used as weights. Though it was possible to generate
weights for the APOE genotypes from the WHII data, a previously published meta-
analysis with a sample size more than 10 times that of WHII had estimated the
effect (in mmol/L) of the APOE genotype on LDL-C levels (Bennet et al. 2007)
(section 1.5.2.3). Based on this study, where €3/£3 individuals were used as the
reference group, the APOE genotypes were weighted as follows: €22 =-0.9, €2e3 =

-0.4,€2e4=-0.2,€3/€3 =0, €3e4 = 0.1 and €44 = 0.2.

4.2.6 SNP Multicollinearity

The problem of multicollinearity occurs when two or more predictor variables are
highly correlated (Montgomery et al. 2012). Presence of correlated SNPs can lead to
large changes in individual effect estimates when other predictors are added or
removed from the model, and may also result in an insignificant coefficient of a

predictor variable in a multiple regression analysis, despite the simple linear
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regression showing the coefficient to be significantly different from zero

(Montgomery et al. 2012).

To determine the presence and quantify the degree of collinearity between the AIC-
selected SNPs, the beta-coefficients from the univariate regression of each SNP
with the respective lipid fraction were compared to the beta-coefficients obtained
from a multiple regression where all SNPs were used as predictors simultaneously.
The variance inflation factor (VIF) was also calculated for each SNP in each lipid
genetic score using the vif() function from the car package in R CRAN (R
Development Core Team 2012). The VIF is a measure of how much the variance of
an estimated regression coefficient is increased due to collinearity and is calculated

using Equation 4.3.

Equation 4.3

VIF = ——
1-R?

J

where, R}Z. is the coefficient of determination of a regression of predictor j obtained

when j is regressed on all the other predictors. When the predictor j is uncorrelated

R}Z. will be small and VIF close to 1, while if j is nearly linearly dependent on some of

the subset of the remaining predictors, R}Z. will be close to 1 and VIF becomes very

large. The square root of the VIF is an indication of how much larger the standard
error is, compared with what it would be if that variable were uncorrelated with the
other predictor variables in the model (Belsey et al. 1980) e.g if the VIF of a
predictor variable is 5, the standard error for the coefficient of that predictor
variable is V5 = 2.2 times as large as it would be if that predictor variable was
uncorrelated with the other predictor variables. VIFs exceeding 5 are commonly
considered high and are an indication of a possible multicollinearity problem, while

VIFs exceeding 10 indicate a definite multicollinearity problem.

143



Chapter 4: Materials & Methods

4.2.7 Weighted Genetic Score using Bayesian Information Criterion for SNP

Selection followed by Ridge Regression

A straightforward solution to avoid multicollinearity would be to simply use the

most significantly associated SNP from each gene region in the score calculation.

However, with this approach multiple independent signals in a single gene would be

missed, there is ambiguity in defining gene boundaries, and SNPs in different

(neighbouring) genes may not necessarily be independent since LD blocks can span

several genes. To automate SNP selection and allow multiple SNPs in a gene to be

selected, but reduce the multicollinearity problem between selected SNPs, two

measures were taken:

1.

Firstly, the SNPs associated with baseline LDL-C, HDL-C or triglycerides in
WHII (p-value < 1x10%) were included in a stepwise variable selection
scheme with a more stringent information criterion - the Bayesian
Information Criterion (BIC) (Schwarz 1978), using the step() function from
the stats package in R CRAN (R Development Core Team 2012). The BIC
imposes a larger penalty than AIC as the number of predictors in the model
increases, and therefore tends to choose a model with fewer SNPs than AIC.
Sex and age were included in the baseline model, and for selection of LDL-C

SNPs, the APOE genotype was also included in the baseline model.

Secondly, the beta-coefficients used to weight the SNP risk allele counts
were obtained from a Ridge regression (Brown 1994). The Ridge regression
is a variant of ordinary multiple linear regression that ‘shrinks’ the beta-
coefficients of redundant SNPs, thereby circumventing issues that may arise
if highly-correlated SNPs are present in the model. Though OLS estimates
are unbiased, the presence of multicollinearity results in large variances for
the estimated regression coefficients. Ridge regression trades a small
amount of bias in the coefficient estimates for a substantial reduction in

coefficient sampling variance, producing a smaller mean-squared error of
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estimation of the coefficients. Ridge regression requires the specification of
a Ridge constant, which controls the extent to which Ridge estimates differ
from the least-squares estimates. The larger the Ridge constant, the greater
the bias and the smaller the variance of the Ridge estimator. The Ridge
regression using the Lawless and Wang estimate of the Ridge constant
(Lawless & Wang 1976) was carried out on the BIC-selected SNPs using the
Im.ridge() function from the MASS package in R CRAN (R Development Core
Team 2012), with sex and age included in the base model. For the LDL-C
SNPs, the APOE genotype was also included in the base model. The final
weights for each SNP were the beta-coefficients from the Ridge regression.
For the APOE genotype, weights were derived from the Bennet et al (2007)

paper, as specified in section 4.2.5.

4.3 Results

4.3.1 Comparison of Instrument Strength

The single strongest SNP instruments explained 5%, 3% and 2% of the total
variation in LDL-C, HDL-C and triglycerides, respectively (Figure 4.1). As more SNPs
were added, either to the genetic score calculation or used as multiple instruments,
the R? value tended to increase. This is shown for the AlC-selected SNPs using both
the unweighted genetic score in Figure 4.1, and the multiple instruments approach
in Figure 4.2. When all SNPs (whether selected using AIC or BIC) were combined
into a single genetic risk score or used as multiple instruments, the final R® values
were twice as large as that of the single, strongest SNP instrument (Table 4.1). For
each lipid fraction, three approaches provided the best instruments with equivalent
strength: the multiple instruments approach using AlC-selected SNPs, multiple
instruments approach using BIC-selected SNPs, and the weighted genetic score

based on BIC-selected SNPs and beta-coefficients from a Ridge regression as
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weights, with all three explaining 13%, 7% and 7% of the total variation in LDL-C,
HDL-C and triglycerides, respectively (Table 4.1). For all approaches, the final F-
statistics were much larger than 10 (Table 4.1). As the number of SNP instruments
increased, the F-statistic for the genetic score also increased, while that for the
multiple instruments approach decreased. As SNPs with very small effect are
added, the R? does not increase by much, and since the F-statistic depends on the
R? and the number of instruments used, as more instruments with small effect are
added, the F-statistic will decrease. With the genetic risk score the number of

instruments is always one, regardless of the number of SNPs used.

4.3.2 Instrument Specificity

To evaluate specificity of the instruments, the R? values from the regression of each
instrument with the other, non-specific lipid fractions and CVD risk factors were
extracted. Table 4.2 shows the R® values for each instrument from the regression
with the lipid fraction of interest, as well as the largest R? from the association of
the instrument with a non-specific risk factor. As well as explaining 5% of the
variation in LDL-C, the APOE genotype explained 1% of the total variation in CRP
levels. As more SNPs were added to the genetic score, the strength of the
association with CRP decreased, with the final AlC-selected unweighted genetic
score explaining only 0.2% of the variation in CRP. Overall, the LDL-C genetic scores
appeared to be specific for LDL-C, explaining less than 0.7% of the variation in any
of the other non-specific CVD risk factors. The single strongest SNP instruments for
HDL-C and triglycerides explained less than 0.6% of the variation in any of the other
CVD risk factors. However, the HDL-C genetic scores explained 1-2% of the variation
in triglycerides, while the triglyceride genetic scores also explained between 1-2%
of the variation in HDL-C (Table 4.1). For the multiple instruments approach,
whether selected using AIC or BIC, the LDL-C SNPs also explained 3% of the
variation in HDL-C, the HDL-C SNPs explained 4% of the variation in
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triglycerides, and the triglyceride SNPs explained 2% of the variation in HDL-C
(Figure 4.2).

4.3.3 SNP Collinearity

For the AlC-selected SNPs, rather than a continuous increase in R? addition of
certain SNPs to the genetic score resulted in a drop in the R? value (Figure 4.1). This
was due to the presence of multicollinearity between some SNPs. Multicollinearity
was not an issue in the multiple instruments approach since no assumptions are
required regarding the effect size for each SNP (Figure 4.2). As mentioned earlier,
presence of multicollinearity can result in unstable beta-coefficient estimation.
Table 4.3 compares the univariate beta-coefficients with those obtained from a
multiple regression of the AlC-selected SNPs with LDL-C. For some SNPs, the effect
estimate from the multiple regression analysis was in the opposite direction to that
of the univariate beta-coefficient, in others the estimate was inflated, and for some
the association with LDL-C was no longer significant. Two SNPs (rs629301 and
rs12740374), both in the CELSR2 gene, had inflated beta-coefficients, and both had
very large VIFs (> 100). For rs629301 the effect size was also in the opposite
direction (Table 4.3). These two SNPs were found to be in perfect LD according to
HapMap and 1000 Genomes data. For the AlC-selected HDL-C SNPs, though the
multiple regression p-values were less significant than the univariate p-values, there
were no large differences in the beta-coefficients and all VIFs were less than 5
(Table 4.4). Two of the triglyceride-associated SNPs, rs331 and rs3916027, had VIFs
>100 (Table 4.5). These two SNPs were also in perfect LD based on HapMap and
1000 Genomes data. In addition, the two SNPs with VIF ~6 were also in LD (r2=0.54;
D’=1). For three of the triglyceride-associated SNPs, the beta-coefficients from the
multiple regression were in the opposite direction to the univariate beta-

coefficients (Table 4.5).
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4.3.4 BIC-SNP Selection and Ridge Regression

Variable selection using AIC failed to remove all highly correlated SNPs. Therefore
the more stringent BIC was used for model selection. For both LDL-C and
triglycerides, stepwise regression using BIC retained a smaller number of genetic
predictors in the model than with AIC (Table 4.6). None of the triglyceride-
associated SNPs selected by the BIC had large VIFs. Though the 2 AlC-selected, LDL-
C-associated SNPs with very large VIFs were retained by the model selection using
BIC, applying a Ridge regression shrunk the coefficients for these 2 SNPs from 1.21
and -1.09 (from the multiple regression) to 0.23 and -0.068, respectively. For HDL-C,
using the BIC selected the same number of SNPs (Table 4.6) (but not necessarily the
same SNPs) as AIC.

Table 4.6 Comparison of SNP selection by AIC and BIC. The table compares the number of SNPs
retained after variable selection using AIC or BIC. BIC selects a smaller number of LDL-C- and
triglyceride-associated SNPs. Presence of SNPs with high variance inflation factors (VIF >5) indicates
presence of multicollinearity. With AIC, SNP multicollinearity is an issue with the selected set of LDL
(2 SNPs with VIF>5) and triglyceride SNPs (4 SNPs with VIF>5). Using BIC overcomes this problem for
the triglyceride SNPs, but multicollinearity remains even after BIC-selection of LDL-C associated
SNPs.

Number of genetic predictors Number of genetic predictors with VIF>5
selected by model
Exposure AIC BIC AIC BIC
LDL 22 16
HDL 12 12
Triglyceride 16 13
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4.4 Discussion

4.4.1 Summary of Results

Two important considerations when performing MR analysis are the strength and
specificity of the instrument. Based on the SNPs associated with lipid levels in WHII,
assessment of the different approaches to instrument development shows that the
weighted genetic score consisting of SNPs selected by a stepwise regression
approach using the BIC for model selection and weighted by coefficients derived
from a Ridge regression, provide the best instruments in terms of both strength and
specificity for the exposure of interest. Though the multiple instruments approach
was equivalent in strength to the genetic score, a genetic score instrument that
combines multiple SNPs into a single IV is less likely to suffer from weak-instrument

bias when the number of SNPs used is large and/or sample size is small.

4.4.2 Multicollinearity

Multicollinearity is often caused by the choice of model, such as when two highly
correlated predictors are used in the regression model (Montgomery et al. 2012).
Stepwise regression using AlIC for model selection was initially adopted to select the
best genetic predictors of each lipid fraction, with the assumption that redundant
SNPs would be removed. However, several correlated SNPs, some of which are in
perfect LD, were retained by the model. Re-specifying the model by manually
removing the correlated SNPs can overcome the problem of multicollinearity.
However, this would require several iterations of model specification and may not
be a satisfactory solution if the SNPs dropped from the model have significant
explanatory power (Montgomery et al. 2012). Presence of multicollinearity may
result in poor estimates of the regression coefficients, and subsequently, inaccurate

weights for the genetic score. The above issues were overcome by using a more
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stringent model selection criterion which excluded some of the correlated SNPs,
followed by the use of a Ridge regression to obtain the weights for each SNP. The
latter has the effect of shrinking the beta-coefficients and thus the contribution of
redundant SNPs towards zero. An alternative to this multi-stage approach to SNP
selection and weight estimation is to use a method such as lasso, which is a
penalised regression technique that carries out variable selection and estimates
coefficients of the selected variables, shrinking estimates of redundant variables
towards zero. The lasso method eliminates the need to select an initial subset of
SNPs using a pre-defined association p-value threshold, and available software that
implement this method enable the efficient analysis of a very large number of SNPs

characteristic of large-scale association studies.

4.4.3 Weak Instrument Bias

The F-statistic can be used as an indication of the degree of bias of the 2SLS
estimator to the observed association between exposure and outcome. Based on
previous studies, where the F-statistic is greater than 10, the bias becomes typically
negligible (Pierce et al. 2010). In the case of the lipid instruments considered here,
whether using genetic scores or multiple instruments, all F-statistics were much
greater than 10. However, if the number of SNPs used in a multiple instruments
approach increases with little increase in R?, this may create weak instrument bias,
since the F-statistic is dependent on R? and the number of instruments. Current
genetic studies usually have large enough sample sizes to avoid weak instrument
bias, however, there will be a limit to the number of lipid-associated SNPs that can
be used with the multiple instruments approach. On the other hand, weak
instrument bias is unlikely to be an issue when a large number of SNPs are

combined into a single genetic score instrument.
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4.4.4 Specificity

At the individual SNP level, some SNPs may be associated with more than one lipid
fraction or with other CVD risk factors. If these risk factors are downstream in the
same biological pathway (Figure 4.3A) then the assumption that the instrument
only affects outcome via the exposure of interest is not violated. However, this is
not the case when a SNP exerts an effect on outcome via an independent pathway
to the exposure of interest (Figure 4.3B). Unfortunately, the path of association
between instrument and exposure of interest is not always known, making it
difficult to interpret results when an instrument is associated with other risk
factors. A number of SNPs were associated with both triglycerides and HDL-C.
Further selection of SNPs associated only with the lipid fraction of interest would
provide a more specific instrument and may help better dissect the causal pathway.
Using a multiple instruments approach appears to be less specific than using a
weighted genetic score derived from the same set of SNPs, which may suggest that
when combining multiple SNPs into a single score, some of the pleiotropic effects

may balance out.

4.4.5 Limitations

The major limitation of this analysis is that instrument strength was estimated in
the same sample used to identify the SNPs and estimate effect sizes. Instrument
strength reported here will therefore be inflated due to discovery bias. If MR
analysis is also carried out in the same dataset, there is likely to be bias due to
“winner’s curse”. Recent work by Burgess and Thompson (2013) showed that the
use of variants and weights chosen based on the strength of their association with
the risk factor in the data under analysis gives biased causal estimates in the
direction of the confounded association. The genetic instruments developed in one

dataset should therefore be applied in an MR analysis in an independent dataset.
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Figure 4.3 Association of a variant in a causal pathway. X denotes the exposure of interest, B an
additional risk factor, Y the outcome of interest and G the genetic instrument. (A) Though a genetic
variant determining the exposure of interest may also be associated with other downstream risk
factors, it is still a valid instrument. (B) Where the instrument is associated independently with both
the exposure of interest and other risk factors it becomes invalid.

(A)

0 — X

(B)

G /Y
X

When the only source of information on weights is the data under analysis, an
alternative approach recommended by Burgess and Thompson is to use a ten-
foldcross-validation approach whereby weights are calculated based on 90% of the
data and the ten sets of weights are applied in the (10%) validation data (Burgess &
Thompson 2013). In this way the correlation between the weights and the data
under analysis is removed. However, large enough sample sizes would be required

to allow sufficient numbers in the validation data.
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The analysis carried out in this chapter assumes only additive effects of alleles for
each SNP and no gene-gene interactions. Though not explored in this work, if these
assumptions did not hold, it would be possible to incorporate such knowledge into
the model. However, analysis by Burgess & Thompson (2013) showed that an

unweighted allele score is robust to model mis-specification.

Since this analysis, the GWAS meta-analysis by the GLGC in over 100,000 individuals
(Teslovich et al. 2010) and the more recent gene-centric meta-analysis (using the
Illumina Cardiochip) in around 66,000 individuals (Asselbergs et al. 2012) have both
identified a large number of novel loci associated with each of the three lipid
fractions. The SNPs and regression coefficients reported by these studies could be
used to generate unbiased weighted lipid genetic scores for MR analysis. Using
more than one genetic score generated from SNPs and weights identified and
estimated from independent datasets would provide evidence for the robustness of
the IV estimate, as independently derived genetic scores are unlikely to be

influenced by the same pleiotropy or linkage disequilibrium-induced confounding.

Since the study by Yang et al (2010), which showed that when all SNPs on the GWA
platform are considered they explain a much larger proportion of the phenotypic
variation than those chosen by a p-value threshold, there has been a lot of interest
in the use of all SNPs on the genotyping platform for MR instrument development.
However, the issue of specificity and weak instrument bias would need to be

carefully considered when exploring such an approach for MR analysis.
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5 Determining the Causal Relationship between Blood
Lipids and Carotid-Intima Media Thickness: a Mendelian

Randomisation Analysis

5.1 Introduction

Higher LDL-C concentration is associated with a higher risk of CHD, and the
relationship is considered causal because randomised trials using LDL-C-lowering
interventions such as statins have shown to reduce CHD risk in proportion to the
degree of LDL-C reduction (Baigent et al. 2005; Baigent et al. 2010). Interventions to
elevate HDL-C or reduce triglycerides might also confer incremental protection
against CHD, but thus far randomised trials of drugs directed at these two lipid
fractions have been unable to confirm or refute such effects (Cannon et al. 2010;
Forrest et al. 2008; Ginsberg et al. 2010; Jun et al. 2010; NHLBI Communications
2011).

Conclusive demonstration of the benefit and safety of new lipid-modifying
interventions requires evaluation in large, expensive randomised trials with hard
clinical end points in people already receiving effective drugs for CHD prevention.
Approaches that help validate treatment targets ahead of such trials may help
reduce the risk of late-stage failures in drug development. One approach has been
to use a non-invasive measure of atherosclerosis, CIMT, as a surrogate end-point.
CIMT is considered to be a subclinical measure of atherosclerosis, which is strongly
associated with risk of CHD (O’Leary et al. 1999; Chambless et al. 1997). Statin drugs
that are effective in reducing CHD also reduced progression of CIMT in proportion
to the degree of LDL-C-lowering (Bedi et al. 2010; Espeland et al. 2005; Kastelein et
al. 2003). However, interventions developed so far that reduce triglycerides or raise
HDL-C have shown inconsistent effects on CIMT (Bots et al. 2007; Hiukka et al.

2008; Taylor et al. 2009), making it uncertain whether the specific agents are
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ineffective for CHD prevention, whether these two lipid fractions in general are not
causally related to CHD and therefore invalid targets, or whether CIMT is an
inadequate marker of HDL-C or triglyceride-mediated effects on CHD risk. MR,
described in section 1.6.2, provides a means of evaluating and quantifying the
extent to which associations between a putative risk factor (e.g. HDL-C or
triglycerides) and an outcome, such as CHD or CIMT, are causal (Ebrahim & Smith,

2008).

Using large-scale genotyping arrays, many SNPs influencing LDL-C, HDL-C and
triglycerides have recently been identified (Talmud et al. 2009; Teslovich et al.
2010; Asselbergs et al. 2012), and these provide potential instruments for MR
analyses. The aim of the work in this chapter was to determine the casual
relationship between these three lipid fractions and common CIMT using MR
analysis. The LDL-C, HDL-C and triglyceride weighted genetic scores developed in
the previous chapter, based on lipid-associated SNPs on the Cardiochip and weights
estimated in WHII, were used as instruments for the three lipid fractions to
estimate their causal association with common CIMT in around 3000 participants
from the WHIIl study (Marmot & Brunner 2005) and also in around 3400
individuals from the IMT Progression as Predictors of Vascular Events in a High Risk
European Population (IMPROVE) study (Baldassarre et al. 2010) using the 2SLS
approach for instrumental variable analysis (described in section 1.6.2.3). In
addition, the causal association was also determined in both studies using weighted
genetic scores based on the independently identified lipid-associated SNPs and
effect sizes reported by the GLGC GWAS meta-analysis in over 100,000 individuals
(Teslovich et al. 2010).
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5.2 Materials & Methods

5.2.1 Study Cohorts

The WHII cohort has been described in section 2.2.1.3. The IMPROVE longitudinal
study (Baldassarre et al. 2010) recruited a total of 3711 individuals (48% men)
between March 2004 and April 2005 from 7 centres in 5 European countries, with a
median age of 64.4 years. Eligibility criteria included age between 55 to 79 years,
presence of at least three vascular risk factors, and absence of symptoms of
cardiovascular diseases and any conditions that might limit longevity or
visualisation of the carotid intima. The study was designed in accordance with the
rules of Good Clinical Practice, and with the ethical principles established in the
Declaration of Helsinki. Informed consent was obtained from all participants.

Baseline data from the IMPROVE data was used in analysis.

5.2.2 CIMT Measurement

In WHII, ultrasound vascular measurements were taken in the 2003-2004 follow-up
phase. Participants were examined in a supine position, with the head turned to a
45 degree angle away from the side to be scanned. The far walls of the left and
right common carotid artery were visualised in the lateral projection. The common
CIMT was measured at its thickest part, 1 cm proximal to the bifurcation. A
measurement was taken between the leading edge of the intima and the media
adventitia on three separate images on each side using electronic callipers, and the
mean of the six measures was used for analysis. The overall coefficient of variation
(defined as the ratio of the standard deviation to the mean) for repeated measures
of CIMT was 4.7% (N = 89), indicating high reproducibility (Kivimaki et al. 2008). For

all analyses, the CIMT variable was loge-transformed.
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In IMPROVE, the far walls of the left and right common carotid artery were
visualised in the lateral projection and recorded on sVHS videotapes.
Measurements were taken at the thickest part of common carotids, 1 cm proximal
to the bifurcation. The far walls of the common carotids in their entire length were
measured in at least three different images on each side using dedicated software
able to automatically recognise the leading edge of the intima and the media
adventitia. For each segment the mean of the six measures was used for the
analysis. The overall coefficient of variation for repeated measures of CIMT was
3.9% (N = 121) (Baldassarre et al. 2010). In both studies, to obtain a normal

distribution, the CIMT variable was loge-transformed.

5.2.3 Lipid Measurements

For WHII, baseline lipid measurements were used for the analysis, since very few
individuals were on lipid-lowering therapy at baseline (previously described in
section 3.2.2). In the IMPROVE study, blood sampling for laboratory tests was
performed after an overnight fast. Serum was frozen at —=80°C prior to shipment for
centralised biochemical analyses and biobanking in Stockholm (Karolinska Institute
Stockholm, Sweden). Serum concentrations of total cholesterol, HDL-C and
triglycerides were analysed in a centralised laboratory. LDL-C concentration was
calculated using the Friedewald (Friedewald et al. 1972). HDL-C and triglyceride

variables were log.-transformed for all analyses.

5.2.4 Genotyping

As described in section 2.2.4, DNA was extracted from whole blood samples from
WHII participants between 2003 and 2004, and genotyping on a total of 5592

samples using the lllumina Cardiochip (Keating et al. 2008) was completed in 2008.
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At the beginning of 2012, genotyping of 3413 WHII samples was also completed
using the lllumina Metabochip platform (Voight et al. 2012). In the IMPROVE study,
3695 samples were genotyped using the Metabochip. The Metabochip is a custom
genotyping array that provides cost-effective genotyping of nearly 200,000 SNPs
chosen based on GWAS results from meta-analyses of 23 traits that include
cardiovascular disease outcomes (CAD, type 2 diabetes (T2D) and MI), and risk
factors (fasting glucose, fasting insulin, 2-hour glucose, glycated haemoglobin
(HbA1c), T2D age of diagnosis, LDL-C, HDL-C triglycerides, total cholesterol, systolic
and diastolic blood pressure, QT interval, BMI, waist-to-hip ratio adjusted for BMI,
waist circumference adjusted for BMI, height, body fat percentage, platelet count,

mean platelet volume, and white blood cell count).

After applying quality control steps (refer to section 2.2.4) (filtering for duplicates,
cryptic relatedness, ambiguous gender, self-reported non-Caucasians, outliers
based on the genome-wide identity-by-state analysis implemented in PLINK,
sample call rate <80% and SNP call rate <98%), 5059 Cardiochip genotyped samples
and 3126 Metabochip genotyped samples from WHIl were available for the
analysis. In the IMPROVE study, after quality control (SNP and sample call rate
<95%, removing individuals for relatedness (confirmed or cryptic), reported non-
European descent, outliers identified by multi-dimensional scaling, and mismatch
between recorded and genotype-determined sex), 3430 individuals remained for

analysis.

5.2.5 Generating Lipid Genetic Score Instruments

Two lipid genetic scores were derived: one based on an internal analysis in the WHII
study using SNPs present on the Cardiochip and one based on lipid-associated

variants reported by the GLGC (Teslovich et al. 2010), as described below.
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5.2.5.1 Cardiochip Genetic Scores

The SNPs and weights used for calculating the Cardiochip genetic scores for LDL-C,
HDL-C and triglycerides in both WHII and IMPROVE were derived using variable
selection with BIC and Ridge regression in WHII (Table 5.1 - Table 5.3), as described
in the previous chapter (section 4.3.7). SNPs not present in the IMPROVE data
(because they were not represented on the Metabochip genotyping platform or
failed quality control) were excluded from the genetic score calculations. In both
studies, individuals with any missing genotypes for the SNPs used in the score

calculation were excluded from the analysis.

5.2.5.2 GLGC Genetic Scores

In the published GLGC meta-analysis, an association p-value <5x10° was used to
denote significant association between SNPs and lipid traits (Teslovich et al. 2010).
For the purpose of the genetic score calculation only the lead SNP from each locus
was selected, and if a SNP was associated with more than one lipid fraction it was
only used in the genetic score calculation for the trait with which it had the most
significant association p-value (primary trait association). These are the SNPs listed
in the primary tables of the GLGC publication (Teslovich et al. 2010). Since the
design of the Metabochip was based on GWAS results, a large number of the lipid-
associated SNPs reported by the GLGC meta-analysis were present on the
Metabochip platform. Risk allele counts were therefore calculated in WHII and
IMPROVE using the Metabochip genotype data. Risk allele counts were weighted
using the univariate beta-coefficients reported by the GLGC discovery meta-analysis
(Table 5.1 - Table 5.3). The GLGC reports a strong association of rs4420638 on
chromosome 19 with LDL-C levels, but this SNP is not independent of the APOE SNP
rs429358. Therefore, as was done for the Cardiochip scores, the weighted APOE

genotypes were used in the calculation of the LDL-C genetic score instead of the
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GLGC-reported SNP. Since the discovery of the GLGC SNPs was carried out in an

independent dataset and only a single SNP was selected at each locus, the issues of

discovery bias and multicollinearity due to LD were minimised. SNPs not present in

the data (because they were not represented on the genotyping platform or failed

quality control) were excluded from the genetic score calculations. Individuals with

missing data for SNPs used in the score calculation were excluded.

Table 5.1 SNPs contributing to the LDL-C genetic scores.

In

Cardiochip  In GLGC Risk Non-risk  Cardiochip GLGC
SNP Gene Score Score Allele Allele Weight weight
rs4299376 ABCGS8 yes yes G T 0.12 0.071
rs2072560 APOA5 yes no T C 0.21 -
rs1367117 APOB no yes A G - 0.1
rs562338 APOB yes no G A 0.14 -
rs934197 APOB yes no A G 0.094 -
rs12721109 APOC4 yes no G A 0.26 -
rs10402271  BCAM/PVRL2 yes no G T 0.062 -
rs12740374 CELSR2 yes no G T 0.23 -
rs629301 CELSR2 yes yes T G -0.068 0.15
rs17231506 CETP yes no C T 0.1 -
rs1800562 HFE no yes G A - 0.057
rs12916 HMGCR yes no C T 0.11 -
rs8017377 KIAA1305 no yes A G - 0.029
rs6511720 LDLR no yes G T - 0.18
rs17248720 LDLR yes no C T 0.43 -
rs2228671 LDLR yes no C T -0.21 -
rs8110695 LDLR yes no T A 0.066 -
rs3757354 MYLIP no yes C T - 0.037
rs2479409 PCSK9 no yes G A - 0.052
rs11591147 PCSK9 yes no G T 0.52 -
rs283813 PVRL2 yes no T A 0.14 -
rs1564348 SLC22A1 no yes T C - 0.014
rs11220462 ST3GAL4 no yes A G - 0.05
Total 15 10
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Table 5.2 SNPs contributing to HDL-C genetic scores

In

Cardiochip  In GLGC Risk Non-risk  Cardiochip GLGC
SNP Gene Score Score Allele Allele Weight weight
rs1883025 ABCA1 no yes T C - 0.024
rs4148008 ABCA8 no yes G C - 0.011
rs2923084 AMPD3 no yes G A - 0.011
rs2072560 APOA5 yes no T C 0.064 -
rs6450176 ARL15 no yes A G - 0.013
rs11820589 BUD13 yes no A G 0.054 -
rs2814944 Cé6orf106 no yes A G - 0.013
rs581080 C9orf52 no yes G T - 0.017
rs3764261 CETP no yes C A - 0.088
rs12708967 CETP yes no C T 0.031 -
rs17231506 CETP yes no c T 0.041 -
rs5880 CETP yes no C G 0.04 -
rs5883 CETP yes no C T 0.091 -
rs711752 CETP yes no G A 0.023 -
rs9989419 CETP yes no A G 0.016 -
rs2925979 CMIP no yes T C - 0.012
rs737337 DOCK6 no yes C T - 0.017
rs3136441 F2 no yes T C - 0.02
rs4846914 GALNT2 no yes G A - 0.016
rs1800961 HNF4A no yes T C - 0.049
rs4731702 KLF14 no yes c T - 0.015
rs2652834 LACTB no yes A G - 0.01
rs386000 LILRA3 no yes G C - 0.021
rs1532085 LIPC no yes G A - 0.037
rs261342 LIPC yes no C G 0.036 -
rs4775041 LIPC yes no G C 0.028 -
rs17410962 LPL yes no G A 0.027 -
rs301 LPL yes no T C 0.027 -
rs12967135 MC4R no yes A G - 0.011
rs4660293 PABPC4 no yes G A - 0.012
rs7134375 PDE3A no yes C A - 0.01
rs4129767 PGS1 no yes G T - 0.01
rs6065906 PLTP no yes C T - 0.024
rs9987289 PPP1R3B no yes A G - 0.031
rs16942887 PSKH1 no yes G A - 0.033
rs838880 SCARB1 no yes T C - 0.016
rs13107325 SLC39A8 no yes T C - 0.022
rs11869286 STARD3 no yes G C - 0.012
rs2293889 TRPS1 no yes T G - 0.011
rs181362 UBE2L3 no yes T C - 0.012
rs1689800 ZNF648 no yes G A - 0.012
Total 12 29
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Table 5.3 SNPs contributing to Triglyceride genetic scores

Present in Present

Cardiochip  in GLGC Risk Non-risk  Cardiochip GLGC
SNP Gene Score Score Allele Allele Weight weight
rs442177 AFF1 no yes T G - 0.025
rs10750097 APOA5 yes no G A 0.042 -
rs651821 APOA5 yes no C T 0.22 -
rs33989105 APOC3 yes no T C 0.038 -
rs17145713 BAZ1B yes no C T 0.085 -
rs10195252 COBLL1 no yes T C 0.023
rs2068888 CyP26A1 no yes G A - 0.026
rs2131925 DOCK7 no yes T G - 0.058
rs174546 FADS1 no yes T C - 0.043
rs2412710 GANC/CAPN3 no yes A G - 0.079
rs1260326 GCKR yes yes T C 0.05 0.099
rs2304128 GMIP yes no G T 0.086 -
rs17108993 GPR120 yes no G C 0.11 -
rs12678919 LPL no yes A G - 0.15
rs10503669 LPL yes no C A 0.047 -
rs285 LPL yes no C T 0.051 -
rs3289 LPL Yes no c T 0.15 -
rs331 LPL Yes no G A 0.032 -
rs9686661 MAP3K1 No yes T C - 0.029
rs645040 MSL2L1 No yes T G - 0.025
rs11776767 PINX1 No yes C G - 0.023
rs5756931 PLA2G6 No yes T C - 0.017
rs11613352 R3HDM2 No yes C T - 0.03
rs17145738 TBL2 No yes C T - 0.11
rs2954029 TRIB1 No yes A T - 0.064
rs17321515 TRIB1 Yes no A G 0.048 -
rs13238203 TYW1B No yes C T - 0.089
rs12286037 ZNF259 Yes no T C 0.18 -
Total 13 16

5.2.6 Association of Genetic Scores with Lipid Levels

Linear regression was used to evaluate the association of lipid levels with their
respective genetic scores, without any adjustment for covariates. For comparison of
effect sizes across the different lipid traits, regression analysis was also performed
on standardised variables (Z-scores). The proportion of variance explained (R?) and

the F-statistic derived from the regression were reported as measures of the
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strength of each genetic score as an instrument. The R values from the regression
of each genetic score with the non-indexed lipid fractions were also reported as an

indication of instrument specificity.

5.2.7 Observed Association between Lipids and CIMT

Association of CIMT with lipid levels was determined using linear regression, with
and without adjustment for sex, age, smoking (current status), diabetes status and
statin use. For comparison of effect sizes across traits, regression analysis was also

performed on standardised variables.

5.2.8 Direct Association between Lipid Genetic Scores and CIMT

Direct association between the genetic scores and CIMT using linear regression was
carried out unadjusted for any covariates, and adjusted for the first three
dimensions from multidimensional scaling (refer to section 2.2.4). To ensure that
any association with CIMT was only through the effect of the genetic scores on the
relevant lipid fraction, analysis was also repeated adjusted for the other two lipid

fractions.

5.2.9 Causal Effect Estimate using 2SLS

To estimate the causal effect of each lipid fraction with CIMT, instrumental variable
analysis using 2SLS was carried out without any adjustment for covariates, using the
ivreg() command from the AER package (Kleiber & Zeileis 2010) in R CRAN (R
Development Core Team 2012). A meta-analysis of the effect estimates from the

two studies was also carried out using a fixed effect model, where the summary
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estimate was the weighted (by the inverse of the study variance) mean of the
study-specific effects. The analysis was then repeated using lipid levels corrected
for statin use by applying multiplicative correction factors derived from an analysis
of repeatedly measured lipid levels in WHII, including levels measured before and
after lipid-lowering treatment. This method was reported in a recent large-scale
genetic meta-analysis (Asselbergs et al. 2012). For statin users, the recorded lipid
values were multiplied by a constant: LDL-C by 1.352; HDL-C by 0.949, and
triglycerides by 1.210 (Asselbergs et al. 2012). For comparison of effect sizes across

lipid traits, regression analysis was also performed on standardised variables.

5.3 Results

5.3.1 Study Characteristics

Population characteristics and sample sizes with both genotype and phenotype
data are shown in Table 5.4. The mean age of WHII participants at the follow-up
phase when CIMT measurements were taken was 60.9 (SD = 6.0) years, similar to
the mean age of 64.2 (SD = 5.4) years for the IMPROVE participants. Mean CIMT in
WHII and IMPROVE was 0.8 mm (SD = 0.2) and 1.2 mm (SD = 0.3), respectively. The
mean baseline LDL-C level in WHII was 4.4 mmol/L (SD = 1.0). The lower mean LDL-
C level in IMPROVE (3.6 mmol/L; SD=1.0) may partly be explained by the larger
proportion of participants on statin medication at the time of lipid measurement
(0.9% in WHII versus 40% in IMPROVE). The distributions and range of lipid values in
the two studies were comparable (Figure 5.1). The range of CIMT values in
IMPROVE was larger than in WHII, with 101 individuals having CIMT > 2mm in
IMPROVE but none in WHII (Figure 5.1).
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5.3.2 Cardiochip Lipid Genetic Scores

Seventeen SNPs (including the 2 APOE SNPs) contributed to the Cardiochip LDL-C
genetic score (Table 5.1), and 12 and 13 SNPs, respectively, to the HDL-C (Table 5.2)
and triglyceride (Table 5.3) genetic scores. After applying quality control filters, all
SNPs for each lipid score were available in the WHII dataset. In the IMPROVE
dataset 13 of 17 LDL-C SNPs (including 2 APOE SNPs), 11 of 12 HDL-C SNPs, and 9 of

13 triglyceride SNPs were available for the score calculation.

5.3.3 GLGC Lipid Genetic Scores

Of the lead SNPs reported by the GLGC meta-analysis, 12 (including the 2 APOE
SNPs), 29 and 16 SNPs associated with LDL-C, HDL-C and triglycerides, respectively,
were present on the Metabochip (Table 5.1 - Table 5.3) and contributed to the
genetic scores. In WHII, all LDL-C SNPs, 28 of 29 HDL-C SNPs and all triglyceride
SNPs were present. In IMPROVE, 10 of 12 LDL-C SNPs (including the 2 APOE SNPs),

28 of 29 HDL-C SNPs, and all triglyceride SNPs were available for score calculation.

5.3.4 Association of Lipid Levels with Lipid Genetic Scores

A 1 SD higher Cardiochip LDL-C genetic score was associated with 0.37 mmol/L (95%
Cl =0.34 - 0.39) and 0.16 mmol/L (95% Cl = 0.13 — 0.20) higher LDL-C in WHII and
IMPROVE, respectively. A 1 SD higher HDL-C genetic score was associated with 8%
(beta (95% Cl) = -0.08 (-0.09, -0.07)) and 6% (beta (95% Cl) = -0.06 (-0.07, -0.05))
lower HDL-C in WHII and IMPROVE, respectively. A 1 SD higher triglyceride genetic
score was associated with 14% (beta (95% ClI) = 0.14 (0.13, 0.16)) and 13%
(beta (95% ClI) = 0.13 (0.11, 0.14)) higher triglycerides in WHIl and IMPROVE,
respectively. For comparison of effect sizes, Figure 5.2 shows the standardised

beta-coefficients which represent the SD change in lipids per 1 SD change in
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Figure 5.2 Association of lipid genetic scores with lipid levels in WHII and IMPROVE. Effect sizes are
shown for standardised variables: standard deviation change in LDL-C, log.-transformed HDL-C and
loge-transformed triglycerides per 1 SD change in the respective (A) Cardiochip genetic score and (B)

GLGC genetic score.
(A) Cardiochip Genetic Scores
LDL-C
WHII - 0.36 (95% Cl = 0.33, 0.38)
IMPROVE - 0.14 (95% CI = 0.11, 0.18)
HDL-C
WHII - -0.27 (95% Cl = -0.3, -0.25)
IMPROVE - -0.23 (95% Cl =-0.26, -0.2)

Triglycerides

WHII - 0.26 (95% Cl = 0.23, 0.29)
IMPROVE - 0.24 (95% Cl = 0.2, 0.27)
f | I | | T ]
-04 -0.2 0.0 0.2 04 0.6 0.8
Standardised Beta Coefficient
(B)
GLGC Genetic Scores

LDL-C

WHII - 0.32 (95% Cl = 0.29, 0.35)
IMPROVE - 0.11 (95% CI = 0.08, 0.15)
HDL-C

WHII - -0.21 (95% Cl = -0.24, -0.17)
IMPROVE - -0.24 (95% Cl =-0.27,-0.2)
Triglycerides

WHII - 0.17 (95% Cl = 0.14, 0.21)
IMPROVE - 0.2 (95% Cl = 0.16, 0.23)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Standardised Beta Coefficient
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genetic score. Differences in lipid levels associated with the GLGC genetic scores

were in the same direction but were slightly lower in magnitude in both studies

(Figure 5.2B)

5.3.5 Lipid Genetic Score Instrument Strength

The Cardiochip genetic scores explained 13% and 3% of the total variance in LDL-C,

7% and 5% of the variance in HDL-C, and 7% and 4% of the variance in triglycerides

in WHII and IMPROVE, respectively. The GLGC genetic scores explained 11% and 2%

of the total variance in LDL-C, 4% and 5% of the variation in loge(HDL-C), and 2% and

2% of the variation in loge(triglycerides) in WHII and IMPROVE, respectively (Table

5.5). All genetic scores had very large F-statistics (F > 70) (Table 5.5).

Table 5.5 Strength of genetic instruments. R’ and F-statistic obtained from the first stage regression

between lipid levels and the respective genetic scores

2

R F-statistic Sample Size
Genetic Scores WHII  IMPROVE  WHII IMPROVE  WHIl  IMPROVE
Cardiochip
LDL-C 0.13 0.03 697 90 4635 3354
HDL-C 0.07 0.05 371 181 4745 3410
Triglycerides 0.07 0.04 259 137 4760 3414
GLGC
LDL-C 0.11 0.02 366 75 3005 3352
HDL-C 0.04 0.05 143 194 3052 3342
Triglycerides 0.02 0.02 76 78 3062 3410
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In WHII, R? and F-statistics for the Cardiochip scores were much higher than those
in IMPROVE due to discovery bias and larger sample size in WHII. The considerably
lower R® values for the LDL-C genetic score in IMPROVE also reflects the large
number of individuals on statins. For individuals not on statin medication, the
Cardiochip and GLGC LDL-C genetic explained 7.5% and 6%, respectively, of the
total variation in LDL-C in IMPROVE. The R” values from the association of each
genetic score with all three lipid fractions are shown in Figure 5.3 and Figure 5.4.
Though there is association between the triglyceride score and HDL-C, and the HDL-
C score and triglyceride levels, the scores are much stronger instruments for the

lipid fraction in question.

5.3.6 Association of Lipid Fractions and CIMT

After adjustment for age, sex, smoking, diabetes mellitus status and statin use, only
LDL-C and HDL-C were associated with CIMT in both studies. A 1 mmol/L higher
LDL-C was associated with 0.01 mm (95% Cl = 0.006 — 0.02) and 0.02 mm (95% Cl =
0.005 — 0.03) higher CIMT in WHII and IMPROVE, respectively. Associations of
standardised measures, unadjusted and adjusted for covariates are shown in Table

5.6.

5.3.7 Direct Association of Lipid Genetic Scores and CIMT

Only the Cardiochip and GLGC LDL-C genetic scores were significantly associated
with CIMT in both studies, and this remained the case after adjustment for other

lipid fractions and the first three dimensions from MDS (Figure 5.5).
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Figure 5.3 Specificity of the Cardiochip genetic scores for the respective lipid fractions. For LDL-C,
regression was carried out in all individuals and separatly in indviduals not on statin medication (N =
4884 and 2049 in WHII and IMPROVE, respectively).
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Figure 5.4 Specificity of the GLGC genetic scores for the respective lipid fractions. For LDL-C,
regression was carried out in all individuals and separatly in indviduals not on statin medication (N =

3047 and 2049 in WHII and IMPROVE, respectively).
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Table 5.6 Associations of the lipid fractions with CIMT in the WHII and IMPROVE studies. Effect
sizes are shown as SD change in log.-transformed CIMT per 1 SD change in LDL-C, log.-transformed
HDL-C and log.-transformed triglycerides. Association is shown for the unadjusted analysis and
adjusted for sex, age, smoking, diabetes status and statin use.

Adjusted for sex, age,
smoking, diabetes status

Unadjusted and statin use
Lipid Phenotype Study Beta (95% ClI) P Beta (95% ClI) P
WHII 0.14 (0.10-0.17) 9x10™  0.07(0.03,0.10) 0.0002
Standardised LDL-C IMPROVE 0.01 (-0.02, 0.04) 0.54 0.06 (0.02,0.09) 0.002
Standardised WHII -0.07 (-0.10, -0.03) 0.0003 -0.06 (-0.10, -0.03) 0.001
loge (HDL-C) IMPROVE ~ -0.09 (-0.12,-0.06))  5.2x10% -0.06 (-0.09, -0.02) 0.002
WHII 0.09 (0.06,0.13)  1.4x10%  0.05(0.01,0.08) 0.007
Standardised
loge(triglycerides) ~ IMPROVE  -0.02 (-0.05, 0.02) 0.36 -0.02 (-0.05,0.01) 0.24

5.3.8 Causal Effect Estimation using 2SLS

Based on the meta-analysis of the estimates derived from the 2SLS instrumental
variable analysis, a 1 mmol/L higher LDL-C was associated with a 3% (beta (95% Cl)
=0.03 (0.02 -0.05)) and 4% (beta (95% CI) = 0.04 (0.02 — 0.06)) higher CIMT, when
using the Cardiochip and GLGC LDL-C genetic scores, respectively, as instruments.
Taking the mean CIMT in the two studies (0.8 mm and 1.2 mm), this would translate
into a 0.02 — 0.05 mm difference in CIMT per mmol/L difference in LDL-C. HDL-C
and triglycerides were not found to be associated with CIMT using instrumental
variable analysis. For comparison, results using standardised variables are shown in
Figure 5.6. There was no change in the overall IV estimate when using lipid levels

corrected for statin use (Figure 5.7).
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Figure 5.5 Association of LDL-C, HDL-C and triglyceride genetic scores with CIMT. (A) Unadjusted
for covariates (B) adjusted for first three principal components (C) adjusted for the first 3 dimensions
from MDS and non-index lipid fractions. Beta-coefficients are shown as SD change in loge-
transformed CIMT per 1SD change in genetic score.
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Figure 5.6 Two-stage least squares regression analysis. Association of lipid fractions with CIMT
obtained from the instrumental variable analysis in which lipid genetic scores act as instruments for
the non-confounded effect of each lipid fraction. Effect sizes and 95% confidence intervals in each
study and summary estimates from a fixed-effect model are shown as SD change in log.-transformed
CIMT per 1 SD change in LDL-C, log.-transformed HDL-C and log.-transformed triglycerides.
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I T T T 1 T T T T 1
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Figure 5.7 Instrumental variable analysis using lipid levels corrected for statin use. Effect sizes and

95% confidence intervals in each study and summary estimates from a fixed-effect model are shown
as SD change in loge-transformed CIMT per 1 standard deviation change in LDL-C, log.-transformed

HDL-C and log.-transformed triglycerides.
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5.4 Discussion

5.4.1 Summary of Results

LDL-C, HDL-C and triglyceride genetic scores were used in an MR analysis to assess
the causal relationship between each lipid fraction and CIMT. Though there was a
positive association between directly measured LDL-C and common CIMT and a
negative association between directly measured HDL-C and CIMT, the results from
the MR analysis support a causal association with LDL-C only. Despite differences in
cohort characteristics (i.e. healthier individuals and much smaller proportion on
lipid-lowering medication in WHII compared to IMPROVE), the different effect of
genetic score on lipid levels (smaller in the IMPROVE study) and the different SNPS
used in the two genetic scores (Cardiochip versus GLGC), the causal association
between LDL-C and CIMT was found to be consistent in both studies for both the
Cardiochip and GLGC genetic score instruments. Although the HDL-C and
triglyceride genetic scores explained a similar proportion of the variation in the
index trait to the LDL-C score (not taking into account the R® for the Cardiochip
genetic score in WHII which was inflated due to discovery bias), there was a lack of
significant effect on CIMT for these two lipid fractions. The findings suggest that
CIMT is likely to be a reliable surrogate outcome measure in randomised trials of
LDL-lowering therapy. However, due to the lack of evidence in the genetic
association between HDL-C, triglycerides and CIMT, the findings from the current
analysis cast doubt on the use of CIMT as a surrogate outcome measure in trials of

HDL-C and triglyceride-modifying therapies.

One criterion for causality is the magnitude of effect. Taking the mean CIMT in the
two studies (0.8 mm and 1.2 mm), the IV beta-coefficients estimated from the two
genetic scores would translate into approximately a 0.02 — 0.05 mm difference in
CIMT per mmol/L difference in LDL-C. To contextualise these findings, a meta-

analysis of 11 statin trials (Bedi et al. 2010) found that after treatment with statins
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(mean treatment duration of 25.6 months), there was a significant reduction in the
mean LDL-C (pre-treatment: 4.36 + 0.85 mmol/L, post-treatment: 2.64 + 0.72
mmol/L, P<0.05, N=2132) and also a 0.04 mm (95% CI=0.028-0.052) difference in
mean CIMT between statin therapy arm and placebo arm (Bedi et al., 2010). This is
roughly equivalent to a 0.02mm decrease in CIMT per mmol/L decrease in LDL-C,
and therefore reasonably concordant with the genetically-inferred casual

association from the current analysis.

5.4.2 CIMT as a Surrogate Marker

Randomised controlled drug trials with hard clinical end points require a very large
number of participants and follow-up over a long period, making them technically
and financially challenging. As a result, surrogate endpoints are frequently
employed in earlier phase studies to inform the decision to undertake a larger
outcome trial. CIMT has been used as a surrogate end-point in many trials of lipid-
modifying drugs (Crouse et al. 2007; MacMahon et al. 1998; Smilde et al. 2001;
Taylor et al. 2004). However, the suitability of CIMT as a surrogate marker in
cardiovascular drug trials is controversial (Lorenz et al. 2012). The underlying
assumption in trials using CIMT as a surrogate marker is that the rate of change in
CIMT over time in response to drug therapies reflects the change in the risk of
cardiovascular outcomes. The majority of CIMT trials, however, have short follow-
up periods and modest sample sizes and therefore lack power to identify
associations with cardiovascular outcomes. Rather, they are designed to provide
inferences on cardiovascular outcomes based on a presumed inverse relationship
between atherosclerosis progression and cardiovascular benefit (Taylor et al.,

2011).

A recent large-scale meta-analysis of 41 randomised trials assessing CIMT at

baseline and follow-up after treatment (Costanzo et al. 2010), including a total of
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18,307 participants, concluded that regression of CIMT induced by cardiovascular
drug therapies was not associated with a reduction in cardiovascular events.
Though the meta-analysis was technically sound, the heterogeneity in the
interventions evaluated, the methods used for CIMT measurement, the outcome
definition, study design, population characteristics and follow-up time between the
41 trials may have reduced the ability to detect an association between carotid IMT
and cardiovascular event reductions in such trials. On the other hand, the ACCORD
Lipid trial (Ginsberg et al. 2010) aimed to test whether treatment of T2D patients
with fenofibrate, to increase plasma HDL-C and reduce triglyceride levels, would
result in additional cardiovascular benefit compared with simvastatin (LDL-
lowering) therapy alone. Though the addition of fenofibrates to statin treatment
did not show any significant reduction in clinical events in the placebo versus
treatment groups, sub-group (defined by baseline lipid levels) analyses suggested
benefits of fenofibrate therapy in mixed dyslipidemia individuals (individuals with
triglyceride levels in the upper tertile and HDL-C levels in the lower tertile at
baseline). Therefore, a MR analysis to determine causality between HDL-C,
triglycerides and CIMT in a sufficiently large mixed dyslipidemia sample may be

worthwhile.

5.4.3 Previous Mendelian Randomisation Studies of Lipids and CIMT

To date there have been very few Mendelian randomisation studies addressing
association of lipids with CIMT or CHD. A study by Aulchenko et al (Aulchenko et al.
2009) generated genetic scores for total cholesterol (11 SNPS), LDL-C (8 SNPs), HDL-
C (8 SNPs) and triglycerides (11 SNPs) based on SNPs identified in a meta-analysis in
around 20,000 European individuals. They looked at the direct association of the
genetic scores with CIMT in the Rotterdam study (~5700 individuals over the age of
55) and found only the total cholesterol genetic score and a combined score with all

lipid SNPs to be associated with CIMT. The scores explained less than 5% of the
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variation in each of the respective lipid fractions. However, they did not use an

instrumental variable approach to quantify the causal effect.

5.4.4 Previous Mendelian Randomisation Studies of Lipids and CVD Events

Four SNPs that were associated with either HDL-C or triglycerides, but not with LDL-
C in the GLGC meta-analysis, were also associated with CAD (Teslovich et al. 2010).
However, one of the SNPs in the /IRS1 locus was also associated with increased risk
of type 2 diabetes mellitus, insulin resistance and hyperinsulinemia. Therefore, the
genes in these loci may have pleiotropic effects on non-lipid parameters that are
causal for CAD risk reduction (Teslovich et al. 2010). The Triglyceride Coronary
Disease Genetics Consortium and Emerging Risk Factor Collaboration compared the
risk of genetically elevated triglycerides levels based on a single SNP (the APOA5
SNP rs662799) among over 20,000 CHD cases and 35,000 controls (Sarwar et al.
2010). They concluded that there was a causal role for triglycerides-mediated
pathway(s) in CHD. However, the APOA5 variant was also associated with HDL-C
levels. The association of genetically determined triglycerides levels with CHD was
also attenuated to the null after adjusting not only for HDL, but also for non-HDL
cholesterol and other variables. Since the effect of the rs662799 SNP is not
exclusive to triglycerides, this compromises one key assumption for a valid MR
analysis and complicates the inference on the potential causal role of triglycerides
in CHD. A study by Voight et al (Voight et al. 2012b) used a genetic score consisting
of 14 common SNPs selected for a predominant effect on HDL-C and tested this
score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a
positive control, they also tested a genetic score of 13 common SNPs exclusively
associated with LDL-C. They found no casual association of HDL-C with MI but were
able to confirm an association of LDL-C with MI. A study currently under review (Do
et al. 2013) found that triglycerides may causally effect risk of CAD even after taking

into account any pleiotropic effects of triglyceride-associated SNPs with other lipid
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fractions, and therefore novel therapeutic approaches to triglyceride-rich
lipoproteins might be expected to reduce CAD risk. This would suggest that
previous failed trials of drugs targeting triglycerides could have been related to the
specific drug or drug target, or the use of an unsuitable surrogate marker (i.e. CIMT)

for CVD risk.

5.4.5 Limitations
5.4.5.1 Validity of Instruments

Validity of any MR analysis may be compromised by a) population stratification,
where allele frequencies and disease rates differ between population subgroups; b)
pleiotropy, where genetic instruments affect the outcome through more than one
intermediate risk factor; and c¢) linkage disequilibrium, where another
polymorphism in close proximity (and in linkage disequilibrium) to the variant of

interest, is causing disease through another pathway; and d) weak instrument bias.

Analysis in the WHII was restricted to Caucasians and MDS revealed no substantial
population stratification after quality control analysis. In the IMPROVE study,
though all individuals were Caucasians there was population stratification that
reflected the geographical location from which the samples were obtained
(Baldassarre et al. 2010). However, the SNPs used to generate the GLGC genetic
scores were also discovered in individuals of European descent from the United
States, Europe or Australia. Therefore, the scores should be applicable to the
general European population and stratification is less likely to be an issue in this MR
analysis. Also, adjusting for population stratification did not alter the overall

conclusions made from the analysis.

Often, genes act on multiple pathways and may therefore be associated with

multiple intermediate phenotypes, especially those that act as transcription factors

188



Chapter 5: Discussion

for other genes. Some SNPs included in the score may be independently associated
with other cardiovascular risk factors and so individually they would not be valid
instruments. By combining these multiple SNPs into one score the issue of
pleiotropy can be addressed. This was demonstrated in chapter 4, where the
difference in the proportion of variance explained by the genetic score in the index
and non-index traits was much larger than that for a single SNP, suggesting that
when a large number of genetic variants are combined into a single genetic score,
pleiotropic effects may be expected to balance out. An alternative to overcoming
non-specificity would be to only use SNPs associated with the exposure of interest
for generating the genetic risk score. This approach has been used by recent work
currently under review (Do et al. 2013), whereby a genetic risk score for
triglycerides was generated using SNPs that showed large effect on triglyceride
levels but minimal effect on LDL-C. Another approach used in this study to
overcome pleiotropic effects of SNPs was to use the residuals from the regression
of the exposure of interest on the non-specific risk factors, so that any SNP effects
on the non-specific risk factors were accounted for. Therefore, several approaches
can be adopted to ensure that the problem of specificity of the instrument is

appropriately addressed.

Association of an outcome with one polymorphism could have arisen by chance or
confounding due to LD, but associations with more than one polymorphism in
different genes marking the same exposure are unlikely unless the exposure is
causal (Lewis 2010). Given the large number of lipid genetic variants that have been
identified by different studies, it is possible to generate many independent
combinations of such variants, and from these many independent instrumental
variable estimates of the causal effect of exposure of interest on outcome. Both the
Cardiochip and GLGC genetic scores, which used only partially overlapping SNP sets,
supported the causal association of LDL-C with CIMT in each study. Using two

different scores containing only partially overlapping SNPs provides confidence that
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the results are not biased by the SNP set used, as the two instruments are unlikely

to be influenced by the same pleiotropy or LD-induced confounding.

Though the instrument strength of the Cardiochip genetic scores in WHII are
inflated due to discovery bias, it is important to note that all genetic scores had
comparable instrument strength in the IMPROVE study, and despite the HDL-C
genetic scores being the strongest instruments in this cohort, causality was only
observed for LDL-C. MR analysis in a much larger sample size sizes would be needed

to confirm or refute the findings for HDL-C and triglycerides from this study.

Our method for generating genetic scores makes several assumptions: additive
effects of alleles, no gene-gene interactions and a linear effect of lipids on CIMT.
Though not explored in this work, if these assumptions did not hold, it would be
possible to incorporate such knowledge into the model. However, previous work
has shown that genetic scores are robust even in the presence of a different

underlying genetic model.

5.4.5.2 Refinement of Instruments

It remains to be seen whether the addition of more SNPs that increase the HDL-C
and triglyceride instrument strength will alter the conclusions based on this
analysis. However, the effect sizes of additional loci identified in very large meta-
analysis tend to be extremely small, therefore addition of these may not

significantly improve instrument strength.

Conventional laboratory measures of LDL-C, HDL-C, total cholesterol and
triglycerides sum up the lipids carried in lipoprotein particles of various sizes and
composition (Tukiainen et al. 2012). Recent developments in high-throughput

analytical technologies such as nuclear magnetic resonance (NMR) and mass
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spectrometry allows more refined metabolic profiling, including measurement of a
broader range of lipoprotein subclasses. Large-scale metabolomics studies have
provided examples of SNPs associated with HDL-C showing associations in the
opposite direction with larger and smaller HDL particles for the same allele
(Tukiainen et al. 2012). Therefore, the observed heterogeneity in the biological
effects of HDL-C and triglycerides may mask the detection of any true association
with CIMT to CHD. Metabolomic studies have also shown that SNPs show stronger
association with, and explain a greater proportion of the variance of lipoprotein
subclasses compared to enzymatic lipid measures (Tukiainen et al. 2012). Several
studies have shown that HDL subclasses differ in their relationship to CHD, with
larger HDL particles thought to be more anti-atherogenic than smaller ones (Ala-
Korpela 2008; Krauss 2010; Morgan et al. 2004). MR studies using genetic scores
representative of the specific lipoprotein subclasses would therefore be a logical

future direction.
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6 Discussion

The key aim of cardiovascular disease genetics has been to correlate genotype with
phenotype in order to identify the genes and sequence changes contributing to trait
variation and disease susceptibility in humans and, in doing so, provide insight into
the biological mechanisms involved in disease development (Kathiresan &
Srivastava 2012). Large-scale association studies have identified numerous common
genetic variants associated with CVD traits and risk factors. Some of the better
studied traits include lipids, blood pressure, CAD, Ml and stroke. However, there
are still many important CVD risk factors that have not been extensively studied,
and large-scale genetic discovery has the potential to provide new insight into the
biological pathways responsible for variation in these traits. For risk factors where a
large number of genetic variants have already been identified, there is great
interest in exploring how these can be applied, not only for disease risk prediction
but also for assessing causal disease pathways. The aims of the work in this thesis
were therefore two-fold: first, discovery of genetic variants influencing variation in
left ventricular mass, an important CVD risk factor for which the few large-scale
association studies that have previously been carried out have not been very
successful, and second, investigating the application of prior knowledge of the large
number of genetic variants associated with well-studied lipid traits for risk

prediction and Mendelian randomisation analysis.

In chapter 2, | presented the results from an association analysis with ECG-derived
LV mass, a convenient clinical measure of LVH. Genetic variants in four genes
(SCN5A, IGF1R, PTGES3 and NMB) were robustly associated with one or more of the
ECG LV mass indices. Other plausible loci, such as SNPs in sarcomeric genes, showed
suggestive association, and larger studies would be needed to confirm or refute
these associations. There is some evidence based on ENCODE data that some of the

identified variants are within regulatory regions. However, a variant can have a
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direct effect on gene expression in human tissues or be functional in another way,
without necessarily having a causal effect on the trait (Kathiresan & Srivastava

2012).

A combination of fine-mapping of the identified loci, either through imputation or
sequencing, and functional experiments would be required to identify (1) the causal
gene (2) the causal variant (3) the mechanism by which the variant affects the gene
and (4) the mechanism by which the gene affects phenotype, making the road from
genotype to phenotype a potentially long and arduous one. The chromosome
9p21.3 locus which was first associated with CAD and MI in 2007 (Samani et al.
2007; McPherson et al. 2007; Helgadottir et al. 2007) provides an extreme example
of the difficulties that may be encountered partly perhaps because the most
strongly associated SNPs are non-coding and over 100 kilobases downstream of the
nearest protein-coding genes CDKN2A and CDKN2B (both cyclin-dependent kinase
inhibitors with a role in cell-cycle regulation). Re-sequencing and fine-mapping
studies in this region were unable to identify a causal variant (Shea et al. 2011).
Alteration of a non-coding RNA (antisense non-coding RNA in the INK4 locus
(ANRIL)), and disruption of binding of the STAT1 transcription factor binding
(Harismendy et al. 2011; Holdt & Teupser 2012) have both been explored as
potential mechanisms by which the non-coding variants may alter susceptibility to
CAD, but no definitive answers have yet emerged. Variants in this region have
shown to be independently associated with expression of CDKN2A, CDKN2B, and
ANRIL, with individual SNPs influencing ANRIL and CDKN2B expression in opposite
directions, suggesting that modulation of ANRIL expression may mediate
susceptibility to disease (Cunnington et al. 2010). A recent eQTL study found the
9p21 locus to be associated with the expression of multiple genes enriched for
biomarkers of myocardial infarction, response to wounding and inflammatory
processes. However, none of the genes identified as having altered expression in

association with the 9p21.3 risk allele remained significant after correction for
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multiple comparisons (Pilorow et al. 2012). An independent study showed that the
locus had no effect on a wide range of known and putative CVD biomarkers
(Angelakopoulou et al. 2012). Six years on, the functional relevance of this region

for CAD is therefore yet to be determined.

Genetic association studies have identified over 100 loci associated with one or
more of the major lipid fractions, providing substantial biological insights into lipid
biology. However, as was shown in chapter 3, their performance in discriminating
individuals with high absolute risk of CVD, those that require lipid medication to
manage CVD risk and those that develop CHD is poor, offering no improvement
over non-genetic factors. This may reflect the fact that the proportion of overall
phenotypic variance explained by the combined effects of the variants used is
relatively small. In addition, the distribution of CVD risk alleles in the general
population is normal, therefore, more disease events are observed among the large
majority who have intermediate numbers of risk alleles than the minority who have
a large number of risk alleles and are therefore considered to be at high risk of
disease — the prevention paradox (Rose 1985). More recent methodologies that
analyse all SNPs simultaneously have shown that the SNPs on the genotyping
platform explain a much larger proportion of the phenotypic variance (Yang et al.
2010) than is estimated from SNPs selected based on some significance criteria.
Extending such methodology to risk prediction may improve predictive
performance. A recent study assessing the performance of risk prediction by
polygenic models showed that the predictive ability depends on both the total
heritability of phenotype as well as the underlying effect-size distributions
(Chatterjee et al. 2013). They show that under the most likely effect-size
distributions, the optimal significance threshold for selecting SNPs for prediction
models in large GWAS can be much less stringent than the standard (p-value <
5x10%) used in discovery association analyses. They also concluded that the effect-

size distributions of genetic variants from large GWAS suggest that though increase
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in total sample size of the training dataset will improve risk prediction models, the
improvement will be slow and modest even when common SNPs account for large
proportion of heritability of the underlying traits (Chatterjee et al. 2013). Though
such polygenic models may not achieve high discriminatory power, it is worth
noting that even models with modest discriminatory power may provide important
stratification for absolute risk (Chatterjee et al. 2013). Development of robust
prediction models in the future will need to consider integrating both common and

rare alleles as well as other non-genetic CVD risk factors.

More recently, there has been a lot of interest in identifying suitable instruments
that can be used to distinguish causal from non-causal biomarkers of disease.
Though both types are useful for predicting disease risk, only causal biomarkers are
a suitable as therapeutic targets. In chapter 4, | explored different approaches to
instrument development for LDL-C, HDL-C and triglycerides, all of which are
polygenic traits with multiple associated SNPs. A weighted genetic score based on
SNPs selected using variable selection with the Bayesian Information Criterion for
model selection and Ridge regression for shrinkage of beta coefficients provided
the best instrument in terms of strength and specificity. These lipid instruments
were then applied in an MR analysis to assess the causal relationship between the
three lipid fractions and CIMT in two cohorts (chapter 5). Completely independent
weighted genetic scores based on SNPs and beta-coefficients identified by the GLGC
meta-analysis were also used as instruments. LDL-C was found to be a casual factor
in both studies regardless of which genetic score instrument was used, but no
robust causal association was found with HDL-C and triglycerides. This would
suggest that for trials of therapeutic interventions targeting HDL-C and triglycerides
levels, CIMT may not be a suitable surrogate marker for assessing the efficacy of
such drugs in reducing CHD risk. However, larger studies are needed to confirm

these findings.
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It still remains to be confirmed whether these two lipid fractions are causal for CHD.
Two clinical trials involving therapeutic elevations of HDL-C on patients on statin
therapy were prematurely terminated based on the failure to improve
cardiovascular outcomes, including Ml and stroke. The AIM-HIGH study (Boden et
al. 2011) was conducted with niacin, the most effective HDL-C-raising drug currently
on the market; the dal-OUTCOMES study (Schwartz et al. 2009) involved
dalcetrapib, a drug in development that partially inhibits CETP, which transfers
cholesterol from HDL to VLDL or LDL. A recent MR analysis used a single SNP as well
as a 14-SNP genetic score as an instrument for HDL-C and found no casual
association with risk of Ml in around 12,500 cases and over 41,000 controls,
challenging the concept that therapeutic interventions that specifically raise plasma
HDL-C will translate into reductions in risk of MI (Voight et al. 2012). These would
suggest that HDL-C may simply be a risk marker and not a causal risk mediator
(Rader & Tall 2012). However, a small study recently published results on the
effects of niacin on HDL function. They assessed functional properties using two
tests - cholesterol efflux capacity (a measure of how well HDL removes cholesterol
from lipid-loaded cells) and the HDL inflammatory index (which quantifies the
antioxidant properties as it relates to preventing the oxidation of LDL). Though
treatment of patients on statins with niacin increased HDL-C levels by 29%
compared to only a 2% increase in those without niacin, they saw no significant
changes in HDL function. Another MR analysis found non-fasting remnant
cholesterol to be causally associated with ischemic heart disease (Varbo et al.
2011). Remnant cholesterol is the cholesterol content of triglyceride-rich
lipoproteins, composed of very low-density lipoproteins and chylomicron remnants
in the nonfasting state. This study suggests that the elevated cholesterol content of
triglyceride-rich lipoprotein particles causes ischemic heart disease. However, given
the pleiotropic effects of the genetic variants studied, these findings would need to
be confirmed using additional genetic variants and/or randomized intervention

trials (Varbo et al. 2013). In light of these new studies, it has become apparent that
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shifting focus from HDL-C levels to HDL function or other lipid and lipoprotein
subclasses will be imminent in future research on lipids in relation to CVD. The
mechanism by which HDL-C is elevated may be equally important and drugs that
raise HDL-C through alternative mechanisms may still be useful. With enhances in
high-throughput analytical technologies such as mass spectrometry, it has become
feasible to measure a much broader range of lipoprotein subclasses in large
cohorts (Tukiainen et al. 2012). Already, several UK population cohorts (including
WHII and BWHHS) have begun metabolic profiling of individuals, with the potential
to further dissect the lipid metabolic pathway in relation to CVD outcome and drug

development strategies.

In the future, larger collaborations; newer analytical methods; analysis of other
types of genetic variants (rare variants and CNVs); integration of genetic, genomic
and metabolomic data; functional experiments; and the availability of more
affordable next-generation sequencing technology will all ensure continued
progression in biological discovery and research into the utility of genetic risk

factors for complex CVD traits.
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