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Abstract 

Various statistical model specifications for describing spatio-temporal processes 

have been proposed over the years, including the space-time autoregressive integrated 

moving average (STARIMA) and its various extensions. These model specifications 

assume that the correlation in data can be adequately described by parameters that are 

globally fixed spatially and/or temporally. They are inadequate for cases in which the 

correlations among data are dynamic and heterogeneous, such as network data. The aim of 

this paper is to describe autocorrelation in network data with a dynamic spatial weight 

matrix and a localized STARIMA (LSTARIMA) model  that captures the autocorrelation 

locally (heterogeneity) and dynamically (nonstationarity).  The specification is tested with 

traffic data collected for Central London. The result shows that the performance of 

estimation and prediction is improved compared with standard STARIMA models that are 

widely used for space-time modelling.  
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Introduction  

 

Modelling of spatio-temporal processes requires the use of specialized models that account 

for its special properties, the most widely studied of which is spatio-temporal 

autocorrelation. Autocorrelation is the tendency for near observations to be more similar 

than distant observations in space and/or time (see Cliff and Ord 1969; Box and Jenkins 

1994). Its presence violates the assumption of stationary; that is, that the data have constant 

mean and variance. Autocorrelation is inherent in spatio-temporal data and renders 

traditional statistical techniques such as ordinary least squares (OLS) inefficient. However, 

to date, little research has been carried out about how autocorrelation varies in a spatio-

temporal context, and its implications for space-time modelling (Cheng et al 2011a). This is 

reflected in the range of models that currently are applied to spatio-temporal data, with 

structures that are globally fixed both spatially and temporally (Pfeifer and Deutsch 1980; 

Giacinto 2006; Cheng et al 2011b; Cressie and Wikle 2011).  

In autoregressive integrated moving average (ARIMA) models (Tiao and Box 1981) 

and space-time autoregressive integrated moving average (STARIMA) models (Pfeiffer and 

Deutsch 1980, 1981), the spatio-temporal series must be transformed to stationarity, usually 

by differencing.  It then can be modelled using a combination of autoregressive (AR) and/or 

moving average (MA) terms. STARIMA is a generalization of a family of space-time 

models, with STARMA (Hooper and Hewings 1981), STMA and STAR models (Griffith 

and Heuvelink 2012) being special cases. The latter, which is more widely applied than 

STARIMA, does not include a moving average term, and correlation in space and time is 

captured only by the autoregressive parameters that are fixed globally both spatially and 

temporally. Elhorst (2001) provides a general framework for identifying autoregressive 

distributed lag models in space and time.  
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Spatial panel data models (Elhorst 2003; Elhorst et al. 2010) can be specified to 

account for autocorrelation in one of two ways: either with a spatial autoregressive process 

in the error term - a spatial error model (equivalent to a spatial moving average) - or with a 

spatial autoregressive dependent variable - a spatial lag model. Parameter estimates for 

panel data models can be heterogeneous in space to account for local variations in 

autocorrelation properties. More recently, models have been put forward for continuous 

space-time panels (Oud et al. 2012). In space-time geostatistical models (Gething et al. 

2008; Heuvelink and Griffith 2010), the spatio-temporal process is decomposed into a 

deterministic trend and a space-time stochastic residual, and a space-time covariance 

function is fitted to the residuals. Then Kriging is used for forecasting (Heuvelink and 

Griffith 2010). Characterization of the covariance function usually is simplified by 

assuming spatio-temporal stationarity, which may be restrictive. Furthermore, geostatistical 

models are less accurate when extrapolating rather than interpolating. Griffith (2010) 

provides a good overview of the progress to date in statistical space-time modelling. 

The assumption of a stationary spatio-temporal process has been shown to be 

unrealistic in some circumstances. For example, traffic theories say that the current 

conditions on a section of a road can be influenced by the previous conditions of adjacent 

road sections in either upstream or downstream directions depending on the degree of 

congestion (see, for example, Lighthill and Whitham,1955; Richards 1956). In congested 

conditions, the influence comes mainly from downstream, whereas in free-flowing 

conditions, the influence comes from upstream. On a road network comprising hundreds or 

thousands of links, such spatio-temporal autocorrelation structure is dynamic (in time) and 

heterogeneous (in space) (Cheng et al 2011a). For example, Cheng et al (2011a) reveal that 

the spatio-temporal autocorrelation between unit journey times recorded on a 22-link subset 

of London’s road network is spatially heterogeneous and temporally dynamic. Spatial 
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heterogeneity results from variation in the level of correlation between individual road links 

across the study area. Temporal dynamics result from changes in the strength of correlation 

between locations over time, with stronger correlation apparent in the morning peak period 

compared with the inter-peak and evening peak. Furthermore, the size of the spatial 

neighbourhood also changes with time, becoming smaller in congested conditions and 

larger in free flowing conditions. Capturing the most relevant information at any point in 

time is a problem of determining the instantaneous forecastability of neighbourhood data 

using a dynamic spatial weight and a dynamic spatial neighbourhood. 

Progress has been made in introducing spatial heterogeneity and/or temporal 

dynamics to space-time models. Giacinto (2006) propose a generalized space-time 

autoregressive moving average (STARMAG) model that generalizes the STARMA model 

to include spatially varying AR and MA coefficients. The generalised STARIMA 

(GSTARIMA) model of Min et al. (2010) also allows the AR and MA parameters to vary 

by location, and outperforms a standard STARIMA model in terms of forecasting accuracy. 

Although these methods allow for spatially dynamic parameter estimates, their spatial 

structure is fixed to an extent, as the size of the spatial neighbourhood considered is the 

same for each location. They also are fixed temporally. Min and Hu (2009) present a 

dynamic form of the STARIMA that accounts for temporal dynamics. They replace the 

traditional distance weighted spatial weight matrix with a temporally dynamic matrix that 

reflects the current traffic turn ratios observed at each road intersection. The weight matrix 

can be updated in real time based on current conditions, but the method is limited to 

intersection-based flow data, and is fixed spatially.  

A simpler and more generalizable approach that accounts for both spatial 

heterogeneity and temporal nonstationarity draws from a set of models, each of which 

pertains to a certain traffic state. Min and Wynter (2011) devise a multivariate STAR 
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(MSTAR) model in which the weight matrix is selected from a set of templates that reflect 

typical traffic states. Average speeds are used to calculate a dynamic spatial neighbourhood 

based on the number of links that can deliver their traffic to the current location within the 

forecast horizon. This approach shows impressive forecasting performance for multiple 

steps ahead, and the authors claim it is scalable to large networks. Ding et al. (2010) 

propose a similar approach in which the weight matrix varies based on the current level of 

service (LOS). The approaches of Min et al. and Ding et al. go some way to accounting for 

the spatial and temporal variability in conditions on a road network. However, calculation 

of the templates they use is based on historical traffic conditions. Therefore, a natural 

tendency exists for them to perform better when conditions are close to average conditions. 

How well they perform when the conditions differ from the typical conditions captured in 

the templates is unclear.  

The aim of this paper is to describe the modeling of dynamic (transient) and 

heterogeneous autocorrelation in network data with improved traditional models that 

constitute a generic dynamic model capable of capturing the autocorrelation locally (spatial 

heterogeneity) and dynamically (temporal nonstationarity), providing an improvement over 

the traditional space-time series models. We incorporate the concepts of dynamic spatial 

weights and dynamic spatial neighbourhood using a dynamic spatial weight matrix to 

model the spatial heterogeneity and temporal nonstationarity in network data, which is 

introduced in next Section.  

 

Dynamic Spatial Weight Matrices 

This section describes the construction of a dynamic spatial weight matrix for road network 

data. The weight matrix has an adjacency and weight structure that is dynamic in time and 

space, which is updated based on the current traffic condition.  
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Spatial weight matrix for networks 

A spatial weight matrix W encapsulates what we know or hypothesize about the structure 

and behaviour of some phenomenon over space. When a temporal dimension is included, W 

also must encapsulate our knowledge or hypotheses about spatial structure and behaviour 

over time.  W comprises two components, a spatial adjacency structure and a spatial 

weighting structure.  

Spatial Adjacency 

Drawing from graph theory, an arrangement of spatial units may be viewed as a 

graph G = (N, E) with a set N of n nodes and a set E of e edges joining pairs of nodes. The 

incidence structure of this graph is defined by the presence or absence of an edge (i,j) 

linking nodes i and j, and can be represented by an N  N binary [0,1] adjacency matrix in 

which non-zero elements signify edges (Peeters and Thomas 2009). Two nodes directly 

linked by an edge are adjacent and termed first-order spatial neighbours. The adjacency 

matrix containing all first-order relations between spatial units is termed its first-order 

adjacency matrix. Second-order spatial neighbours of a node are the first-order neighbours 

of its first-order neighbours (excluding itself) and so on. By following the paths between 

nodes in the graph, adjacency matrices           of orders up to k can be defined. In 

networks, an alternative definition of adjacency often is used in which i and j are edges 

where a variable is observed, and the nodes represent connections between them. Black 

(1992) proposes this formulation, which has been applied to transport networks (Black and 

Thomas 1998) and migration flows (Chun 2008) amongst other phenomena, and is the 

definition we adopt in this study. Because they often are used to represent flows, networks 

also can include another dimension, namely direction. Transport networks fall somewhere 

between directed and undirected networks because vehicles can move only in one direction 

on a carriageway while exerting influence in two directions. Therefore, the influence of 
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upstream and downstream may be different, necessitating a different formulation for the 

spatial weight of each. 

Spatial Weights 

Spatial weights     is the element of an adjacency matrix W that describes the perceived 

influence on spatial unit i of its neighbour j. A weight can be chosen in various ways, the 

simplest of which is the binary scheme previously outlined. Application-specific schemes 

include the length of shared border or distance between centroids in areal data (Cliff and 

Ord 1969), the length of road links in network data (Kamarianakis and Prastacos 2005) and 

the resources of actors in social networks (Leenders 2002). It to Row normalizing a spatial 

weight matrix (making all rows sum to one) is common practice. However, in some studies, 

column normalization has been used, allowing the matrix to represent influence exerted by i 

rather than accepted influence from j (Leenders 2002).  

 

The choice of weighting scheme is non-trivial, and can be very important because different 

weight matrices often lead to different inferences being drawn, and can introduce bias into 

an analysis. The effect of this bias has been explored in the spatial literature (see Stetzer 

1982, Florax and Rey 1995, Griffith 1996, Griffith and Lagona 1998) and the network 

literature (Paez et al 2008). In spatio-temporal data, assuming that the relative contributions 

of the spatial neighbours of a unit remain the same across all times may not be reasonable. 

For example, weather conditions are spatio-temporally correlated, but the direction of 

dependence relates to wind direction, which constantly is changing. On road networks, the 

direction of dependence relates traffic conditions (Chandra and Al-Deek 2008, Cheng et al. 

2011a).  
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In the next section, we introduce the dynamic spatial weight matrix, which accounts for 

spatio-temporal nonstationarity by extending existing spatial weight matrix structures in the 

context of dynamic network processes. 

A Dynamic Spatial Weight Matrix 

A dynamic spatial weight matrix is a spatial weighting scheme that has the flexibility to 

account for autocorrelation structures that are nonstationary in time and/or heterogeneous in 

space. This is achieved by incorporating two key concepts: a dynamic spatial 

neighbourhood, which means the size of a spatial neighbourhood can change at each time 

step; and, a dynamic spatial weight, which means that the influence of each neighbour can 

change at each time step. These two concepts can be incorporated into existing space-time 

model structures by modifying the spatial weight matrix W at link   with a time varying 

matrix,       , where t is a time index, and h=1,2,…,m is the spatial order at time t. In this 

specification, a spatial neighbourhood is updated by changing the value of h; m is the 

maximum size of a spatial neighbourhood, and a spatial weight is updated by changing its 

i,j element in                          are the spatial units. Updating these values is 

application specific, and depends on a researcher’s view of the nature of the autocorrelation 

between locations. To illustrate this point, we use the example of road networks, which are 

networks of flows where spatio-temporal correlation depends on the traffic state.   

 

A dynamic spatial neighbourhood of road networks 

Assuming we have link (road section) based traffic data with sampling time interval  

(e.g., 5 minutes). The effective spatial neighbourhood      of a link i can be defined as the 

neighbourhood of links that can deliver their traffic to link i within  , based on the 

information available at time t-1. Links that fall outside the range of  cannot have an 

t

t

t
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influence, and hence are excluded. This definition ensures a parsimonious specification of 

spatial neighbourhood. A spatial neighbourhood is larger in free flowing conditions, and 

smaller in congested conditions.    

A dynamic spatial weight of road networks 

Here we assume that prediction is based upon historic travel time, and the dynamic spatial 

weight between a pair of links is calculated as a function of their relative traffic speeds. If 

we see a drop in speed on one link, we expect this decrease to translate in to a drop in speed 

on an adjacent link, and vice versa. For all link pairs (i, j) that are of spatial lag h, the 

corresponding  is defined as  

 

,  (if j is upstream of i)   (1) 

 

wij
(h)(t) =

vi(t)- v j (t)

vi(t)
   (if j is downstream of i)   (2) 

 

where  and  are the respective average traffic speeds on links  and  at time . 

The entry  takes the value of zero if the spatial lag between  and  is not .  

Here the neighbourhood matrix tends to equilibrate the speed differentials over 

space. Given a link pair (i, j), suppose that traffic on link  proceeds at a lower speed than 

upstream link  (i.e., ), which gives . The contribution of traffic from 

link  increases the travel time on link  due to the arrival of higher speed upstream flow. 

In contrast, suppose that traffic on link  proceeds at a lower speed than downstream link  

wij
(h)

wij
(h)(t) =

v j (t)- vi(t)

vi(t)

)t(vi )t(v j
i j t

ijw i j h

i

j )t(v)t(v ji  0wij 

j i

i j
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(i.e., ), which gives wi, j < 0. The contribution of traffic from link  decreases 

the travel time on link  due to its higher speed downstream flow.  

A Localized Space-Time Model: LSTARIMA 

In this section, we define a new space-time model, the localized space-time autoregressive 

integrated moving average (LSTARIMA) model. Like the traditional STARIMA model, 

LSTARIMA makes use of a spatial weight matrix W to model the influence of the spatio-

temporal neighbourhood. However, it relaxes the globally fixed parametric structure of 

STARIMA by allowing the AR and MA parameters to vary by location, which allows it to 

account for spatial heterogeneity. Furthermore, it accounts for temporal nonstationarity by 

allowing the size of the spatial neighbourhood to vary with time. In this sense, it is a locally 

dynamic space-time model. 

Model Specification 

Let  be an N-dimensional column vector containing the observations  on each 

link i, where i = 1,2,…,N, during each time interval t, where t = 1,2,…,T. The conventional 

STARIMA model can be defined as 

 ̂    ∑ ∑               ∑ ∑                   

  

   

 

   

  

   

 

   

 

                                                                                                                                            (3)

 

 

The first term in equation (3) is the AR component, while the second term is the MA. The 

parameters p and q are the AR and MA orders respectively. The term  is an N-

dimensional column vector of residuals on each link, and h is the spatial order, which 

represents the order of spatial separation between two locations. The parameters  and 

)t(v)t(v ji  j

i

)t(z )(tzi

)(ε

km
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 are the spatial orders associated with the k
th  

and l
th

 temporally lagged terms in the AR 

and MA components, respectively. They specify the size of the spatial neighbourhood that 

could influence the link of interest i within temporal lags k and l. The notation     and  

are the AR and MA parameters respectively, to be calibrated for the entire network. The 

matrix  is an N  N spatial weight matrix for spatial lag h, containing the set of 

weights  specifying the assumed relationship between i and j (see Kamarianakis and 

Prastacos 2005, Getis 2009). The number of parameters to be calibrated in equation (3) is 

           . 

We extend the standard STARIMA model to account for spatial heterogeneity and 

temporal nonstationarity using the following formulation, which we call localized 

STARIMA (LSTARIMA):  

 

 ̂     ∑ ∑                        ∑ ∑                             

         

   

  

   

         

   

  

   

 

           (4) 

 

where            and            are the elements of dynamic spatial weight matrix        

pertaining to link   at temporal lags   and  . LSTARIMA has a separate set of AR and MA 

parameters for each link i, which are stored in N  N diagonal matrices      and      such 

that  

 

        ([     ] [     ]   [     ]) and         ([     ] [     ]   [     ])    (5) 

 

ln

lh

)(h
W

ijw



 

 

 
12 

where          and          are the parameters for each link i (i=1,2,…,N). The number of 

parameters that needs to be calibrated in equation (4) is (                       ), although the 

whole model needs to calibrate N links of the entire network. 

The STARIMA and ARIMA models can be viewed as special cases of the LSTARIMA 

model. For example,   

if          and          (i.e., p and q are spatially fixed), 

 and ( i.e., 

the spatial influence of adjacent links does not change over time), and [     ]  [     ]    

[     ] and [     ]  [     ]    [     ] (i.e., all  parameters are the same for all of the 

links), then LSTARIMA [equation (4)] becomes a STARIMA model [equation (3)]. This is 

unlikely for road network data, but for other data sets such as annual temperature, spatial 

autocorrelations may not change rapidly overtime. Moreover, If  and 

, (i.e., the adjacent links produce no spatial influence, then the LSTARIMA becomes 

an ARIMA. This reduction might happen when traffic is flowing freely (or possibly is highly 

congested), resulting in the speeds on all the links being more or less the same. 

In the next sections, we use LSTARIMA(pi, qi), ARIMA(pi, di, qi) and STARIMA 

(p, d, q) specifications to represent the models because differencing (which is described by 

parameter d) is not needed for the LSTARIMA model.    

Model Calibration 

Equation (4) is a time series model that considers the spatial influence of adjacent links in 

networks. Thus, its parameters can be estimated by means of standard time series 

calibration algorithms. The procedure of parameter estimation in equation (4) can be 

regarded as the minimization of the following sum of squared errors function: 

m
k
( t -1,i )=m

k
( t -2,i )= ...=m

k
( t - k ,i ) n

l
( t -1,i )= n

l
( t -2,i )= ...= n

l
( t - l ,i )

0)i,kt(mk 

0)i,lt(nl 
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 ( ̂ )  ∑ ( ̂     ∑ ∑       
                

         

   

  

   

 ∑ ∑       
                

         

   

  

   

)

 
 

   

 

      (6) 

where  is the number of observations in time,       is the observation vector at time  

and link ,       is the random error vector at time , and  

 ̂  [ ̂    ̂      ̂    ̂    ̂      ̂  ]. 

Equation (6) presents a nonlinear least squares minimisation problem because       

is required for the calibration of the MA parameter , but is unknown a priori. Thus,       

must be estimated first in order to determine     and    . Furnishing appropriate starting 

values is important in order to ensure convergence of the optimization procedure. Although 

trial-and-error can be used to implement the parameter optimization process, it cannot 

guarantee convergence. Moreover, an exhaustive search is needed, which is time-

consuming.  

Hannan and Rissanen (1982) demonstrated that the Hannan-Rissanen (HR) 

algorithm is an effective approach for parameter optimization of time series models. It 

makes use of the residuals of a high order AR model to feed the       as initialized values. 

Then, parameters     and  are calibrated using the linear least squares method. The 

methodology has been proven valid in their work, and has been broadly accepted in 

practice. Here we use the same procedure for LSTARIMA model calibration by considering 

       to be an independent random variable after the spatio-temporal auto-correlation has 

been fully modelled by the dynamic weight matrix. This result is verified by testing for 

spatial, temporal and spatio-temporal autocorrelation in the predictive residuals in the 

subsequent case study. 

Although Box and Jenkins’s algorithm (Box and Jenkins, 1970, p. 498-505) was 

proposed earlier than the HR algorithm, it doesn’t provide the details of how to furnish 

T t

i t

lh

lhθ
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appropriate initial values (epsilon) in order to ensure convergence of the optimization 

procedure of model calibration. Given the implementation method and mathematical proof 

has been provided (Hannan and Rissanen, 1982), HR algorithm is common used in practice, 

and is chosen here to calibrate our model.   

 

A Case Study   

The LSTARIMA model is designed specifically to deal with highly heterogeneous and 

nonstationary spatio-temporal (network) processes, an example of which is road traffic. On 

traffic networks, the spatio-temporal relationship between observations recorded at detector 

locations is dependent on the traffic state, which is constantly changing. In this section, we 

use an empirical example to demonstrate the model building procedure for a LSTARIMA 

model in the context of travel time prediction on London’s road network.  

 

The study area and road traffic network data 

The case study area is identical to that used in Cheng et al. (2011a). It consists of 22 road 

links located in central London, UK (Fig. 1a). The topological representation of the test 

network can be seen in Fig. 1b. The average length of road links in the test network is 

1.4km, with minimum and maximum lengths of 0.473km and 3.85kmm respectively.  

 

The data are travel times collected using automatic number plate recognition 

(ANPR) technology by Transport for London (TfL) as part of their London Congestion 

Analysis Project (LCAP). The raw observations are 5-minute aggregated travel times (in 

seconds). The dataset spans 166 successive days (Monday to Sunday), from 24
th

 May, 2010 

to 5
th

 Nov, 2010, which were selected after discussions with Transport for London (TfL). 
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To reduce noise in the data, only the period between 6 am and 9pm is used because capture 

rates often are low overnight.  

The traffic pattern differs between weekends and working days, and within the 

working week it differs from Monday to Friday. Wednesday is considered to be a neutral 

day during the week. Strictly speaking, traffic is different everyday (even for a single link), 

even between Saturday and Sunday. A recent investigation into the autocorrelation 

structure of traffic data in a study by Cheng et al. (2011a) demonstrates that the 

autocorrelation of the traffic road network is nonstationary in both time and space, 

revealing that the data violate the assumption of spatial homogeneity and temporal 

stationarity of the STARIMA model. Many ways exist to deal with these kinds of 

differences in a traffic study. For example, modelling each day of the week separately, or 

grouping them into working days and weekends. Differencing either daily and/or weekly 

normally is required to transform the time series into stationary data so that it can be 

accommodated by an ARIMA or STARIMA model. The proposed LSTARIMA model 

tackles this challenge by using a dynamic weight matrix, which requires no such 

transformation. 

 

To train and predict the LSTARIMA model, the dataset was separated into two subsets: the 

training set (24
th

 May–24
th

 Oct, 2010, 154 days) for calibrating the model parameters; and, 

the testing set (25
th

 Oct-5
th

 Nov, 2010, 12 days) for evaluating the prediction performance 

of the model. The raw travel time data have been converted to unit travel times 

(seconds/kilometre) to allow comparability between travel times on links of differing 

lengths. 
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Figure 1. Selected road network in central London.  (a) spatial location of selected links in central London, (b) 

network diagram of links; arrows represent traffic flow direction, numbers are link IDs (Cheng et al. 2011a).  

Construction of a dynamic spatial weight matrix 

As discussed previously, the impact of the spatial neighbourhood can be modelled using a 

dynamic spatial weight matrix. The following three steps achieve this purpose: 1) Model 

the adjacency structure; 2) Determine the dynamic spatial order; and, 3) Calculate the 

dynamic spatial weights.  

Step 1: build a spatial adjacency matrix 

The first step is to build a spatial adjacency matrix based on the topological structure of the 

network, which appears in Figure 1. Spatial adjacency matrices of spatial order up to 3 were 

constructed using the method described in this paper. Figure 2 shows the sketch map of 

W
(1)

, where 1 indicates that two links are spatially adjacent, and “-“ (zeros have been 

replaced with “-“ for clarity of presentation) that they are not. This matrix is used in both 

the STARIMA and LSTARIMA model specifications. Several nodes in the adjacency 

matrix have entries of zero (in the respective column/row). This is the border effect. The 

2
nd

-order of adjacency of these nodes is much more connected. When this adjacency 

definition is applied to a large network, such boundary effects are not substantial. 
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425 - - - - - - - - - - - - - - - - - - - 1 - - 

432 - - - - - - - - - - - - - - - - - - - - - - 

448 - - - - - - - - - - - - - - - - 1 - - - - - 

463 - - - - - - - - - - - 1 - - - - - - - - - - 

474 - - - - - - - - 1 - - - - - - - - - - - - - 

524 - - - - - - - - - - - - - - - - - - - - - - 

1025 - - - - - - - - - - - - - - - - - - - - 1 - 

1384 - - - - - - - - - - - - - - - - - - - - - - 

1419 - - - - - - - - - - - - - - - - - - - - - - 

1447 - - - - 1 - - - - - - - - - - - - - - - - - 

1592 1 - - - - - - - - - - - - - - - - - - - - - 

1593 - - - - - - - - - - - - - - - - - - - - - 1 

1616 - - - - - 1 - - - - - - - - - - - - - - - - 

1623 - - - - - - - - - - - - - - - - - - - - - - 

2007 - - - 1 - - - - - - - - 1 - - - - - - - - - 

2052 - - - - - - - - - 1 - - - 1 - - - - - - - - 

2055 - - - - - - - - - - - - - - - - 1 - - - - - 

2079 - - - - - - - - 1 - - - - - - - - - - - - - 

2085 - 1 - - - - - - - - 1 - - - - - - - - - - - 

2140 - - - - - - - 1 - - - - - - - - - - - - - - 

2301 - - - - - - - - - - - - - - 1 - - - - - - - 

2324 - - - - - - - - - - - - - - - 1 - - 1 - - - 

 

Figure 2 Sketch map of spatial adjacency matrix W
(1)

 

Step 2: determine the dynamic spatial order 

The second step is to determine the dynamic spatial order for each link in the network using 

the method described in this paper. Figures 3 (a) and (b) show sketch maps of the dynamic 

spatial order of L463 between 06:00 and 21:00 on 24 May, 2010. Figure 3(a) reveals that, 

in most cases, L463 only can deliver its traffic to its first-order spatial neighbour within the 

forecasting horizon, and rarely reaches its second-order spatial neighbour. In contrast, 

Figure 3(b) portrays the situation upstream, revealing that, in most cases, L2301 (a second-

order spatial neighbour of L463) can deliver its traffic to L463. Investigation of the 

dynamic spatial order for all 22 links reveals considerable variation across links, with a 

maximum spatial order of three.  
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Figure 3. Sketch map of dynamic spatial adjacency in L463 downstream (a) and upstream (b). 

Step 3: calculate dynamic spatial weights 

The third step is to calculate dynamic spatial weights by means of equation (1), which is the 

difference of the average speeds of two adjacent links divided by the speed of the target 

link (i.e., L463). Here, the average speed of each link is the reciprocal of unit travel time. 

Table 1 shows a snapshot of the dynamic spatial weight matrix of L463 for 7:00 am to 

9:00am on 24 May, 2010. The weights, which are updated every 5 minutes, represent the 

strength of spatial influence of adjacent links on the target link. In this case, L463 involves 

three upstream links (L2301, L2007, and L1616), and two downstream links (L1593 and 

L2324). Table 1 shows that the weights vary across time, reflecting the dynamics of the 

spatial influence of the road traffic network. 

 

 

0

1

2

3

6:00 9:00 12:00 15:00 18:00 21:00

N
u

m
b

e
r
 o

f 
sp

a
ti

a
l 
a

d
ja

c
e
n

t 
li

n
k

s

Time

Dynamic Spatial Adjacency of L463 at downstream

(a)

0

1

2

3

6:00 9:00 12:00 15:00 18:00 21:00

N
u

m
b

e
r
 o

f 
sp

a
ti

a
l 
a

d
ja

c
e
n

t 
li

n
k

s

Time

Dynamic Spatial Adjacency of L463 at upstream

(b)



 

 

 
19 

Table 1. Snapshot of the dynamic spatial weight of L463  

 Upstream links Downstream links 

Spatial 

order h 
1st 

2nd 

 
1st 2nd 

Temporal 

order k 

L2007 

(len=0.6km) 

L2301 

(len=3.7km) 

L1616 

(len=0.5km) 

L1593 

(len=1.2km) 

L2324 

(len=0.6km) 

7:00 0 8.71 0.21 -1.82 0 

7:05 0 8.80 -0.25 -3.13 0 

7:10 0 2.31 -0.07 0.00 0 

7:15 0 10.29 0.87 -1.42 0 

7:20 0 6.39 1.56 -0.29 0 

7:25 0 3.70 2.00 0.34 0 

7:30 0 2.92 0.21 0.40 0 

7:35 0 3.57 1.18 0.06 0 

7:40 0 3.00 0.83 -0.70 0 

7:45 0 1.87 0.25 -0.23 0 

7:50 0.37 0 0.24 -0.45 0 

7:55 -0.14 0 0.32 0.21 0 

8:00 0.06 0 0.03 -0.04 0 

8:05 0.00 1.53 0.98 0.07 0 

8:10 0.12 0 0.91 -0.18 0 

8:15 0.00 1.96 0.54 0.00 -0.08 

8:20 0.25 0 0.32 0.04 0 

8:25 0.36 0 0.51 0.20 0 

8:30 0.25 0 0.43 -0.36 0 

8:35 0.20 0 0.49 -0.06 0 

8:40 0.24 0 0.65 -0.05 0 

8:45 0.38 0 0.26 -0.76 0 

8:50 0 2.32 0.62 -0.57 0 

8:55 0 3.52 1.27 -1.69 0 

9:00 0 3.81 1.21 -0.97 0 

 

Model training 

The LSTARIMA model is trained using the HR calibration algorithm (Hannan and 

Rissanen, 1982). One model must be trained for each AR order  and MA order . This 

training can be time consuming, so the search range must be constrained to realistic values. 

In this case, and  are varied from 1 to 5 because we expect the correlation to decline 

after 5 time lags (30 minutes at 5 minute aggregation intervals) based on spatio-temporal 

autocorrelation analysis. Then the best performing model is chosen from these possibilities. 

p q

p q
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Results 

This section summarizes the experimental results. First, we introduce three models which 

we use to benchmark the model. Then we examine the results in terms of predictive 

accuracy, model structure and residual autocorrelation analysis. 

Benchmark Models 

To assess the performance of the LSTARIMA model, we compare its accuracy with three 

other models: a naïve model, the ARIMA model, and the STARIMA model.  

 

The naïve model, also called a random walk model, has the following form 

(Thomakos and Guerard 2004):  

 ̂                                                                                                    (7) 

where         is an historical observation at time ;  ̂    is the predicted value at time 

; and  is a zero-mean residual. The forecast of the naïve model is just the previously 

observed data point in the series (nothing changes). This model is the simplest forecasting 

model such that the minimum requirement for any more complicated model is to 

outperform it. 

 The ARIMA and STARIMA models are two popular models that can be used for 

benchmarking. Both models have proved reliable in the traffic forecasting context 

(Thomakos and Guerard 2004, Kamarianakis and Prastacos 2005, Min and Wynter 2011). 

For consistency, the HR algorithm that is used to train the LSTARIMA model also is used 

to train the ARIMA and STARIMA models. Again, AR and MA orders of 1 to 5 are tested. 

For the STARIMA model, spatial orders of 1 to 3 are fixed globally and tested. After an 

extensive search, the preferred model is found to be a STARIMA (4, 0, 3) at spatial order 2. 

Because the LSTARIMA model extends the principles of the ARIMA and STARIMA 

models, it should outperform both models in the majority of cases in order to be preferable. 

t -1

t e
t
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Prediction Accuracy 

To assess the prediction accuracy of each of the models, the root mean squared error 

(RMSE) index is used. Figure 4(a) shows a bar graph of RMSE of the best performing 

models for each link at 5 minute intervals. The more sophisticated models perform only 

slightly better than the naïve model at this aggregate level. The traffic in the test dataset 

generally does not change much during 5-minute time increments, making the naïve model 

a strong predictor.  
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Figure 4. Predictive accuracy (RMSE) of LSTARIMA vis-á-vis the benchmark models at a) 5-minute b) 15-

minute and c) 30-minute intervals. 
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However, we do observe that the LSTARIMA model has the lowest average RMSE 

compared with the other models for this time interval. The second best performing model is 

the ARIMA model, followed by the naïve model. The most surprising result is that the 

STARIMA model performs worse than the naïve model. The STARIMA model uses global 

parameter coeffeicients and a fixed spatial adjacency structure to explain spatio-temporal 

autocorrelation, and thus can not capture the spatio-temporal nonstationarity and 

heterogeneity of travel time on the road traffic network, even after differencing. Figures 4 

b) and c) show the bar graphs of RMSE at 15 minute and 30 minute intervals.  The results 

are similar to those for the 5-minute interval, with the LSTARIMA being the best 

performing model. However, the naïve model shows a sharp decrease in performance at 

these levels of aggregation.  

To assess the differences in predictive performance of the various models, a pairwise F-test 

was carried out with their residuals. An F-test (Snedecor and Cochran, 1989) is a test of 

statistical significance of the ratio of two sample variances, which is used here to test if the 

residual variance of one model is significantly less than that of another (one-tailed test). 

Because the residuals of the fitted models have zero mean, their variances can be used as a 

measure of model performance, with smaller values being preferred. The ratio of the 

variances of the residuals of a pair of models is used to calculate the F value using the 

following expression: 

     
    

 ⁄                                                                                                (8)

        

where   
  and   

  are the error variances. The quotient of equation (8) would have the F 

distribution if the error terms were independent in time and space; failing this, Pitman’s t 

test (Pitman, 1939) can be used, though in the present case the results from the more 

straightforward but approximate F  test are so strong as to be conclusive. In this case, we 
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test the null hypotheisis that “model 1” (i.e., LSTARIMA) is no better than “model 2” (i.e., 

STARIMA). This is a one-tailed (left side) F-test because the alternative hypothesis is that 

model 1 performs better as indicated by a smaller error variance with an  F  value less than 

1 . The significance level is set to 0.05. If the probability value of the F-test is less than 

0.05 there is sufficient evidence to reject the null hypothesis that model 1 (i.e. LSTARIMA) 

performs no better than model 2 (i.e. STARIMA).  

The F-test of residuals between LSTARIMA and STARIMA shows LSTARIMA 

performs better than STARIMA on all 22 links at 5-minute, 15-minute and 30-minute 

intervals (with p-values less than 0.05). The same tests are applied to other group 

comparisions (i.e., LSTARIMA and the naïve, and LSTARIMA and ARIMA). The F-test 

results for LSTARIMA and the naïve model also indicate that LSTARIMA performs 

significantly better. Although the comparision between LSTARIMA and ARIMA does not 

indicate a significant difference in predictive accuracy, LSTARIMA is superior to ARIMA 

in terms of RMSE link by link, achieving better accuracy on 22, 18 and 12 links at the 5-, 

15- and 30-minute intervals, respectively.  

Model Structure 

For the ARIMA and LSTARIMA models, one model must be built for each link, whereas 

only one STARIMA model is required for the entire network. Both ARIMA and 

STARIMA involve preprocessing as part of model fitting to remove trend and cyclical 

patterns. The strategy adopted here involves testing combinations of differencing and 

logarithmic transformations. Examples of the preferred models includes ARIMA(3, 0, 1) 

with a logarithm transformation for L463; and, ARIMA(2, 0, 1) and ARIMA(4, 0, 2) 

without a transformation for links L1593 and L2324, respectively. Table 2 summarizes the 

AR and MA orders for each of the best models across the test network.  
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Table 2 AR and MA orders (p and q) of the LSTARIMA and ARIMA models for all 22 road links 

LSTARIMA           

Pars L1025 L2301 L2007 L1616 L524 L463 L1593 L2324 L2085 L432 L1592 

p 1 2 3 2 1 4 2 2 3 3 2 
q 1 3 4 4 1 2 1 2 4 4 1 

Pars L425 L2140 L1384 L2079 L1419 L474 L1447 L1623 L2052 L448 L2055 

p 3 2 3 2 4 1 1 1 1 1 1 
q 2 3 4 1 1 1 2 2 3 4 1 

   ARIMA           

Pars L1025 L2301 L2007 L1616 L524 L463 L1593 L2324 L2085 L432 L1592 

p 4 2 4 1 3 3 2 4 3 3 2 

d 0 0 2 0 0 0 0 0 0 0 1 

q 1 3 2 4 1 1 1 2 4 2 1 

Pars L425 L2140 L1384 L2079 L1419 L474 L1447 L1623 L2052 L448 L2055 

p 4 4 3 3 3 2 4 4 4 2 4 

d 2 1 0 1 0 0 0 1 0 0 0 

q 1 3 2 1 2 2 1 1 1 1 1 

 

Table 2 reveals that different p and q values exists for LSTARIMA and ARIMA 

models on the same links. For example, at link L1025, ARIMA (4, 0, 1) achieves the best 

accuracy, whereas the preferred LSTARIMA model is LSTARIMA (1,0,1). This 

discrepancy might be caused by the spatial contribution of adjacent links in the 

LSTARIMA specification. Statistical results for the 22 road links show that generally a 

simpler LSTARIMA model with smaller p and q values can perform better than a 

complicated ARIMA model with larger p and q values. The best STARIMA model is 

STARIMA(4, 0, 3), which also has larger p and q values than most LSTARIMA models. 

Residual Autocorrelation Analysis 

Pure predictive accuracy is not the only measure of a good spatio-temporal model. The 

model also must be able to capture the dynamics of the underlying spatio-temporal process 

and account for spatio-temporal autocorrelation and nonstationarity in data. One way of 

evaluating this is to test the predictive residuals of a model for autocorrelation. If a model 

truly captures the underlying process, then its residuals should be independent and 
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identically distributed (i.i.d.) random variables. To assess this, we examine the temporal, 

spatial, and spatio-temporal autocorrelation in the residuals of the LSTARIMA, STARIMA 

and ARIMA models. Strictly speaking, we do not think ACFs and Moran’s I are good 

indicators for space-time data because, unlike the ST-ACF, they cannot capture the 

interaction between the spatial and temporal dimensions. However, they are presented here 

for reference because most temporal and/or spatial models use these indicators. 

Figures 5 (a)-(c) show snapshots of the residual profile (3 days from 25 October －

27 October, 2010) on L1025 for each of the models at a 5-minute interval. Visual 

inspection suggests a cyclical pattern in the residuals of the ARIMA (Fig 5b)) and 

STARIMA (Fig. 5c)) models that is stronger than one in the LSTARIMA residuals. The 

largest residual of the LSTARIMA model (around 150 seconds) is smaller than the other 

two (around 200 seconds). autoregressive conditional heteroskedastic (ARCH) processes 

exist in the data (stochastic volatility in the variances) that are very common in series of 

high frequency, such as the traffic data here.
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Figure 5. Snapshot of profile of residuals for three models (3 days from 25th Oct －27th Oct, 2010) on L1025; 

(a) LSTARIMA; (b)ARIMA; (c) STARIMA. 

 

Temporal autocorrelation 

We investigate the statistical significance of this pattern using the temporal autocorrelation 

function (ACF). Figures 6 (a)-(c) show the ACF plots of the entire residual series of each 

model. 
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Figure 6. ACF analysis of residual series of the three models on L1025; (a) LSTARIMA; (b) ARIMA; (c) 

STARIMA. 

 

The most striking observation is that the ACF plot of the STARIMA model (Fig. 6c) 

shows significant autocorrelation up to temporal lag 3 (2 negative correlations, 1 positive 
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correlation). Similar results are observed when examining the residuals of the STARIMA 

model on other links, indicating that the STARIMA specification cannot fully capture the 

temporal autocorrelation in the network. This problem is caused by the global parametric 

structure of the STARIMA model, and has been avoided in the LSTARIMA (and ARIMA) 

model because it relaxes the assumption of fixed temporal dependence for all locations, 

allowing the autoregressive parameters  and moving average parameters  to change 

across space (links). The ACF plots for the LSTARIMA and ARIMA models appear 

broadly similar, although the ARIMA model has more significant spikes, indicating that the 

LSTARIMA model performs slightly better in dealing with temporal autocorrelation. 

Although the coefficients keep on changing from positive to negative, or vice versa, there is 

no regular wave-shaped pattern. This outcome indicates that the ARIMA model, and the 

LSTARIMA model in particular, can account for most of the temporal autocorrelation in 

the data. However, all three models exhibit significant residual autocorrelation at a lag of 

one day (180), indicating that the daily cyclical pattern is not fully accounted for. Although 

this feature does not affect the performance of the models, it will be addressed in further 

research.  

 

Spatial autocorrelation 

Spatial autocorrelation is tested for by calculating the value of local Moran’s I [abbreviated 

to LISA (local indicator of spatial autocorrelation), after Anselin 1995] for each hour 

between.6:00am and 9:00pm on 25 October, 2010. Figures 7(a)-(c) show level plots of the 

LISA of all 22 links at spatial order 1.. In general, Figures 7 (a) to (c) reveal that positive 

and negative autocorrelation is staggered over space and time, and the minority of LISA 

values are statistically significant, indicating that the residuals of the three models seem to 

p q



 

 

 
30 

approximate a random distribution in space. However, the number of statistically 

significant cells increases from Figure 7(a) to (c). Specifically, there are 35 statistically 

significant cell values in Figure 7(c), indicating that the spatial autocorrelation at those 

times and positions (link) cannot be fully captured by the STARIMA specification. The 

LSTARIMA model has the fewest cells that are statistically significant - only 10 compared 

with 13 for ARIMA - indicating that the LSTARIMA model is the most effective model for 

capturing spatial autocorrelation. 

 

 

(a) 



 

 

 
31 

 

          (b) 

 

         (c) 

Figure 7.  Map of local indicator of spatial autocorrelation (LISA) of all 22 link at spatial order one on 25th 

Oct, 2010 for the three models, where the x-axis is the link ID and the y-axis is time (6:00am-9:00pm); (a) 

LSTARIMA; (b) ARIMA; (c) STARIMA. Grayscale is the strength of LISA; cells with black borders indicate 

statistically significant LISA values (p-value < 0.05) 

Spatio-temporal autocorrelation 

Finally, we evaluate the residual spatio-temporal autocorrelation for each of the models. 

The indicator we use is the spatio-temporal autocorrelation function (STACF, Martin and 
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Oeppen 1975). Figures 8(a)-(c) show the STACF plots for the three models at spatial order 

one and the 5-minute interval. Strong, significant spatio-temporal autocorrelation is 

observed at temporal lags 1 to 3 in the residuals of the STARIMA model. The STACF plots 

of the LSTARIMA and ARIMA models are comparatively closer to a random distribution 

over space and time. However, the ARIMA model displays moderately higher spatio-

temporal autocorrelation at temporal lags 1 to 10. 
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Figure 8.  STACF plots for three models at first order spatial weight matrix; (a) LSTARIMA; (b) ARIMA; (c) 

STARIMA.  

 

 

Summary of Results 

In summary, the F-test results confirm that the LSTARIMA model achieves the best overall 

performance across all timeframes, followed closely by the ARIMA model. The STARIMA 

model does not perform as well and only performs better than the naïve model when the 

temporal interval of prediction increased to 30 minutes. The LSTARIMA appears to be a 

better model than the STARIMA because of greater parameter flexibility (dynamic spatial 

neighbourhood and dynamic spatial weight). Although the F-test indicates that the 

LSTARIMA and ARIMA models are equivalent, higher predictive accuracy for individual 
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links is obtained with the LSTARIMA model. Although the principle of ARIMA seems 

simpler than LSTARIMA, the structure of the ARIMA model is more complicated than that 

for the LSTARIMA model because larger p and q values are obtained for the estimated 

ARIMA models. 

The residuals from the three models are not fully independent (in time and in space). 

This implies that pre-processing for the ARIMA and STARIMA models may be 

inappropriate. This possibility supports our previous supposition in Cheng et al. (2011a) 

that the extraction of a globally stationary spatio-temporal process through differencing 

may not be realistic. Although some pre-processing for the LSTARIMA model also might 

be needed, its predictive residuals display almost negligible temporal, spatial and spatio-

temporal autocorrelation, suggesting that preprocessing seems unnecessary. Therefore, we 

think pre-processing is not needed for the LSTARIMA model, especially for practical 

purposes, because finding an adequate transformation given the results for the ARIMA and 

STARIMA models is very difficult. No data pre-processing is a great advantage of the 

LSTARIMA specification, as is its simpler structure (low p and q values) compared with 

the ARIMA and STARIMA specifications. 

Discussion and Conclusions 

Existing space-time models such as the STARIMA one are designed to account for the 

effects of autocorrelation in spatio-temporal data. Their global parametric structure does not 

equip them to deal with spatial heterogeneity and temporal nonstationarity, even though 

these are characteristic of many spatio-temporal datasets, with networks of traffic flows 

being just one example. As we demonstrate in this paper, extracting a stationary spatio-

temporal process from highly nonstationary data can be unrealistic, which limits the 

efficacy of existing global models. This article addresses the shortcomings of such models 

by introducing a new concept; the dynamic spatial weight matrix. This weight matrix 
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comprises the following three components that enable local dynamics to be incorporated 

into established model structures: an adjacency structure; a dynamic spatial neighbourhood; 

and a dynamic spatial weight..  

We demonstrate application of the dynamic spatial weight matrix by extending the 

STARIMA model specification to create a new space-time model－the LSTARIMA model 

– which is aimed at improving the ability of the STARIMA model to cope with the 

dynamics and heterogeneity of spatio-temporal data on networks. This new model 

specification relaxes the assumption of fixed temporal dependence for all locations, 

allowing the autoregressive parameters  and moving average parameters  to change 

across space. By introducing space-varying     and  coefficients for each location, 

spatial heterogeneity is substantially accounted for in the specification. This model 

framework is generic, and we demonstrate that the ARIMA and STARIMA models are 

special cases of it.  

 

We examine the efficacy of the LSTARIMA model with the case of road traffic networks in 

London. Unlike the traditional (ST)ARIMA models, our experiment demonstrates that the 

LSTARIMA model works well without the need for data pre-processing (e.g., a logarithmic 

transformation and differencing) used widely with (ST)ARIMA models, suggesting that the 

LSTARIMA model is capable of dealing with traffic time series better than the 

(ST)ARIMA model. With smaller p and q values, the LSTARIMA model also has a simpler 

structure than the (ST)ARIMA model. This results from the innovative dynamic spatial 

weight matrix used in the LSTARIMA specification, which allows it to capture unstable 

traffic states in a space-time series.  

Although we only examine the case of road traffic networks in this study, one of the 

key strengths of our methodology is its modularity. Each of the three components of the 

p q
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dynamic spatial weight matrix (i.e., an adjacency structure, a dynamic spatial 

neighbourhood, and a dynamic spatial weight) can be modified according to the application 

of interest.  

 

For example, within the transport setting, this model could be used to predict traffic flows 

as well as speeds by replacing the speed based dynamic spatial weight with a flow based 

weight. This substitution could be linked to, for example, Kinematic wave theory (Lighthill 

and Witham 1955). Modification of the spatial adjacency structure and the dynamic spatial 

neighbourhood may not even be needed in this case. Furthermore, the method could be 

applied to flows on other networks, such as the internet, where the heterogeneity may result 

from global and local shifts in usage. This application would require domain specific 

knowledge to be incorporated into each of the three elements of the dynamic spatial weight 

matrix, but would not change the overall model structure. Moreover, the method is not 

limited to networks, and a range of other spatio-temporal processes exist that may benefit 

from its application, such as environmental monitoring and house price forecasting. In this 

latter case, the update of dynamic spatial weights may be driven by knowledge of 

exogenous factors in the wider (local) economy. As an aside, the dynamic spatial weight 

matrix framework is not dependent on the LSTARIMA estimator algorithm used here.  

 

 The algorithm can be seen as a fourth module, and there is scope to replace the 

linear model used here with nonlinear models from the field of machine learning such as 

kernel-based approaches (Wang et al 2012). Combining this with Geographically Weighted 

Regression (GWR) could lead to a localized dynamic GWR; i.e., a spatio-temporal GWR 

(STGWR). This will be the direction for our future research. 
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In conclusion, the results presented here demonstrate that the combination of a 

dynamic spatial weight matrix and the LSTARIMA model specification is a viable 

approach for space-time modelling of highly dynamic, heterogeneous network processes. 

Further studies will be carried out on a city-wide scale to demonstrate the effectiveness of 

the approach in a real time, applied setting. Furthermore, the general framework presented 

here lends itself to applications in a wide range of network and spatial processes. All that is 

required is to define an application-specific adjacency structure, dynamic spatial weight 

matrix, and dynamic spatial neighbourhood that can replace the traffic-specific 

formulations given here. 
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