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Abstract

In competing risks models one distinguishes between several distinct target

events that end duration. Since the effects of covariates are specific to the target

events, the model contains a large number of parameters even when the number of

predictors is not very large. Therefore, reduction of the complexity of the model,

in particular by deletion of all irrelevant predictors, is of major importance. A

selection procedure is proposed that aims at selection of variables rather than

parameters. It is based on penalization techniques and reduces the complexity of

the model more efficiently than techniques that penalize parameters separately.

An algorithm is proposed that yields stable estimates. We consider reduction of

complexity by variable selection in two applications, the evolution of congressional

careers of members of the US congress and the duration of unemployment.

Keywords: Competing risks, event history, discrete survival, penalized likelihood, reg-

ularization, variable selection

1 Introduction

In survival or, more general, time-to-event regression analysis, one aims at quantifying

the effects of explanatory variables on the duration time. Simple survival analysis con-

siders one terminating event, for example death in disease studies. In many applications,

however, duration can end by the occurrence of several possible events. For example, in

unemployment studies the time of unemployment ends if an individual takes a full-time

job, a part-time job, or retires. Modeling of the event times in the presence of multiple

outcomes is usually referred to as competing risks modeling. Alternatively, one also
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speaks of competing events, competing causes or failures to convey that several events

compete with each other to be observed.

Most of the literature for competing risks considers the case of continuous time,

see, for example, Beyersmann et al. (2011), Kalbfleisch and Prentice (2002), Klein and

Moeschberger (2003) and Kleinbaum and Klein (2013). If time is discretely observed, for

example in months, ties may cause problems in the estimation procedure and the model

might become inappropriate, especially for a low number of time periods. Competing

risks models for discrete time have been considered, for example, by Han and Hausman

(1990), Enberg et al. (1990) Narendranathan and Stewart (1993), Steele et al. (2004),

Fahrmeir and Tutz (2001), Tutz (1995) and Fahrmeir and Wagenpfeil (1996), but without

referring to the problem of variable selection.

When modeling the effects of covariates on duration one wants to identify those

variables that actually have an effect. But variable selection in competing risks model

differs from variable selection in models that allow for one terminating event only. While

in simple survival models the impact of an explanatory variable is typically contained

in one parameter, in competing risk models there is always a group of parameters that

are linked to one predictor. This special feature calls for specific variable selection

techniques.

Conventional variable selection methods are forward - and backward-stepwise selection

(e.g. Hastie et al., 2009). However, these methods are frequently unstable and cannot be

recommended. More current alternative model selection approaches use regularization

techniques. In particular, penalization is nowadays widely used to regularize estimates

by adding a penalty term to the log-likelihood. For suitably chosen penalties, stable and

structured estimates are obtained. One of the oldest penalization methods is the ridge

method, which uses a squared L2-type penalty on the regression coefficients. However,

it does not enforce variable selection. An alternative penalty approach that has become

very popular is the lasso (Tibshirani, 1996) , which uses an L1-type penalty on the

regression coefficients and enforces variable selection. Several improvements for the lasso

method have been proposed in the last decade, for example the group lasso proposed

by Yuan and Lin (2006), which can handle categorical predictors efficiently. To obtain

consistent estimates of the parameters, Zou (2006) extended the lasso to the adaptive

lasso by including different weights on the penalty for different coefficients. Further

extensions and alternatives are SCAD (Fan and Li, 2001), the elastic net (Zou and

Hastie, 2005) and the Dantzig selector (Candes and Tao, 2007).

However, these methods are designed for models with univariate response. If used in

multiple response models as the competing risks model they are not efficient in terms of

variable selection because the effect of one predictor variable is represented by several

parameters. Hence, there is a difference in providing variable selection and parameter
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selection. Variable selection is obtained only if all the parameters belonging to a variable

are simultaneously set to zero. The available penalty techniques for multinomial logit

models, which could be used in competing risks modeling, (Krishnapuram et al., 2005;

Friedman et al., 2010) use L1-type penalties that shrink all parameters separately. Thus,

they pursue the goal of parameter selection and not the goal of variable selection as the

lasso method does not enforce that all coefficients belonging to a covariate are shrunk

to zero. More recently, alternatives that enforce variable selection instead of variable

select in multiple response models were proposed by Tutz (2012), Tutz et al. (2012) and

Simon et al. (2013).

In the present paper, variable selection in competing risks models is obtained by

extending these penalties to account for the special features of discrete survival. In Sec-

tion 2, the framework of competing risks for discrete time is given. Section 3 introduces

penalty terms that enforce variable selection. Computational issues are treated in Sec-

tion 4. In Section 5, the method is applied to two modeling problems, the congressional

careers of members of the US congress and the duration of unemployment in Germany.

2 Competing Risks Models for Discrete Time

In this section a competing risk model for discrete duration time is considered. We

define the model and embed maximum likelihood (ML) estimation into the framework

of multivariate generalized linear models (GLMs).

2.1 The Discrete Competing Risks Model

Let time take values from {1, . . . , k} and let q = k−1. If it results from intervals, one has

k underlying intervals [a0, a1), [a1, a2), . . . . . . , [aq−1, aq), [aq,∞), where typically a0 = 0

is assumed and aq denotes the final follow-up. Discrete time T ∈ {1, . . . , k} means that

T = t is observed if failure occurs within the time interval [at−1, at). If is intrinsically

discrete, T is the original observation.

Let the distinct terminating causes be denoted by R ∈ {1, ...,m}. Then the cause-

specific discrete hazard function resulting from cause or risk r is determined by the

conditional probability

λr(t|x) = P (T = t, R = r|T ≥ t,x),
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where x is a vector of covariates and r = 1, ...,m, t = 1, ..., q. The m hazard functions

λ1(t|x), ..., λm(t|x) sum up to an overall hazard function

λ(t|x) =
m∑

r=1

λr(t|x) = P (T = t|T ≥ t,x).

The survival function and the unconditional probability of an event in period t have the

same form as in the simple case of one target event and are given by

S(t|x) = P (T > t|x) =
t∏

j=1

(1− λ(j|x))

and

P (T = t|x) = λ(t|x)
t∏

j=1

(1− λ(j|x)) = λ(t|x)S(t− 1|x).

If an individual reaches interval [at−1, at), there are m + 1 possible outcomes, transi-

tion to one of the m target events or survival. The corresponding conditional response

probabilities are given by

λ1(t|x), ..., λm(t|x), 1− λ(t|x),

where 1− λ(t|x) is the probability for survival.

Therefore, given an individual reaches interval [at−1, at), a natural parametric model

for the hazards is the multinomial logit model given by

λr(t|x) =
exp(β0tr + xTγr)

1 +
∑m

s=1 exp(β0ts + xTγs)
, (1)

where t = 1, ..., q, and r = 1, ...,m. Then the parameters β01r, ..., β0qr determine the

cause-specific baseline hazard functions and γr contains the cause-specific effects of

covariates. It suffices to specify the conditional probability of the target events 1, ...,m

since conditional survival corresponds to the reference category in the multinomial logit

model. Conditional probability of survival is implicitly determined by

P (T > t|T ≥ t,x) = 1−
m∑

r=1

λr(t|x) =
1

1 +
∑m

s=1 exp(β0ts + xTγs)
.

With R ∈ {1, ...,m}, where R = 0 denotes the conditional survival, the conditional

probabilities are given by λ0(t|x) = P (T > t|T ≥ t,x), λ1(t|x), ..., λm(t|x), which sum

up to one.
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2.2 Estimation

In this section, the ML estimates for the multinomial logit model are given. Let data

be given by (ti, ri, δi,xi), i = 1, . . . , n, where ti = min(Ti, Ci) is the observed discrete

time, which is the minimum of survival time Ti and censoring time Ci. We always

assume random censoring, that is, Ti and Ci are assumed to be independent. Moreover,

ri ∈ {1, ...,m} indicates the type of the terminating event, xi a covariate vector and δi
denotes the censoring indicator with

δi =





1, Ti ≤ Ci, i.e. event of interest occured in interval [ati−1, ati)

0, Ti > Ci, which means censoring in interval [ati−1, ati) .

This definition of the censoring indicator implicitly assumes that censoring occurs at the

end of the interval. The likelihood contribution of the i-th observation for the model (1)

is

Li = P (Ti = ti, Ri = ri)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi , (2)

where for notational simplicity, the conditioning on the covariate vector xi is omitted.

Under the assumption that censoring does not depend on the parameters that determine

the survival time (non-informative censoring, Kalbfleisch and Prentice, 2002), the factor

ci = P (Ci ≥ ti)
δiP (Ci = ti)

1−δi can be omitted, yielding the reduced likelihood

Li = λri(ti|xi)δi(1− λ(ti|xi))1−δi
ti−1∏

t=1

(1− λ(t|xi)).

Let Rt = {i : t ≤ ti} be the risk set containing all objects who are at risk in interval

[ati−1, ati). For an alternative form of the likelihood, indicators for the transition to the

next period are defined by

yitr =





1, event of type r occurs in interval [ati−1, ati)

0, no event of type r occurs in interval [ati−1, ati) ,
(3)

and

yit0 =





0, event of type r occurs in interval [ati−1, ati)

1, no event of type r occurs in interval [ati−1, ati) ,
(4)

where i ∈ Rt and r = 1, ...,m. That means, the indicator variable (4) is derived from

the indicator variable (3) by yit0 = 1 − yit1 − ... − yitm. These indicator variables are

gathered in the vector yTit = (yit0, yit1, ..., yitm) denoting the response vector of object i,
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i = 1, ..., n, t = 1, ..., ti. By means of the indicator variables (3) and (4) the likelihood

contribution of the i-th observation is given by

Li =

ti∏

t=1

( m∏

r=1

λr(t|xi)yitr
)(

1− λ(t|xi)
)yit0

=

ti∏

t=1

( m∏

r=1

λr(t|xi)yitr
)(

1−
m∑

r=1

λr(t|xi)
)yit0 .

That means, the likelihood for the i-th observation is identical to that for the ti obser-

vations yi1, ...,yiti of a multinomial response model. Given that an object reaches inter-

val [at−1, at), the response is multinomially distributed with yTit = (yit0, yit1, ..., yitm) ∼
M
(
1, (1− λ(t|xi), λ1(t|xi), ..., λm(t|xi))

)
. Therefore, the likelihood is that of the multi-

categorical model

P (Yit = r|xi) = P (yitr = 1|xi) =
exp(ηitr)

1 +
∑m

s=1 exp(ηits)
,

with ηitr = β0tr + xTi γr. Accordingly, the total log-likelihood is given by

l =
n∑

i=1

ti∑

t=1

(
m∑

r=1

yitr log λr(t|xi) + yit0 log

(
1−

m∑

r=1

λr(t|xi)
))

=

q∑

t=1

∑

i∈Rt

(
m∑

r=1

yitr log λr(t|xi) + yit0 log

(
1−

m∑

r=1

λr(t|xi)
))

.

(5)

Hence, ML estimates can be easily computed by using statistical software for multi-

nomial regression models after construction of an appropriate design matrix, which we

describe in the following. Let 1t = (0, . . . , 0, 1, 0, . . . , 0)T be a vector of length q with

1 in t-th position and zeros otherwise and let x̃Tit = (1Tt ,x
T
i ) denote a design vector

that includes the baseline effect for time period t and the covariate vector xi. With

corresponding parameter vectors γ̃Tr = (β01r, . . . , β0qr,γ
T
r ) = (βT0r,γ

T
r ), one obtains for

the linear predictors ηitr = β0tr + xTi γr the closed form

ηit = (ηit1, ..., ηitm)T = (x̃Titγ̃1, ..., x̃
T
itγ̃m)T .

6



In compact matrix notation, the matrix of linear predictors for all artificial data points

that belong to one real observation is then given by

ηi =



ηTi1
...

ηTiti




ti×m

= X̃iΓ̃ =



x̃Ti1
...

x̃Titi




ti×(q+p)

[
γ̃1 · · · γ̃m

]
(q+p)×m

.

Finally, for the whole dataset, one obtains with ηT = (ηT1 | · · · |ηTn ) and X̃T =

(X̃T
1 | · · · |X̃T

n ) the form η = X̃Γ̃, so that unpenalized estimation and inference for

our model is readily available via standard methods for multivariate GLMs.

Some applications, for example the congressional careers study in Section 5.1, involve

covariates that vary over time. This case of time-varying predictor variables is easily

handled within our framework because all affected formulas in this paper remain valid

if ’xi’ is simply replaced by ’xit’.

3 Penalization

3.1 Choice of the Penalty Term

The linear predictor for modeling the cause-specific hazard function λr(t|xi) has the

form

ηitr = β0tr + xTi γr, t = 1, ...q; r = 1, ...,m,

where xTi = (xi1, ..., xip) and γTr = (γr1, ..., γrp). Because there are m competing risks,

each covariate adds m parameters, which increases the need for effective variable selec-

tion. Since the baseline hazard parameters β0tr in addition vary over time, the number

of parameters can be very large, rendering simple ML estimators unstable and difficult

to interpret. To obtain a sparse representation and in particular variable selection, we

consider penalized ML estimation, which uses a penalty term in the log-likelihood (5),

yielding the penalized log-likelihood

lζ1,ζ2(β0,γ) = l(β0,γ)− Jζ1,ζ2(β0,γ), (6)

where βT0 = (βT01, . . . ,β
T
0m) and γT = (γT1 , ...,γ

T
m) collect all the corresponding parame-

ters. The first term, l(β0,γ), denotes the ordinary log-likelihood, written as a function

of the model parameters, whereas the second term, Jζ1,ζ2(β0,γ), stands for a penalty

term that depends on scalar tuning parameters ζ1 and ζ2. The choice of the penalty

Jζ1,ζ2(β0,γ) determines the properties of the penalized estimator.
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The penalty on the baseline parameters β0 must ensure that the estimated hazard

rates are sufficiently smooth over time. Concerning the covariate effects γ, our goal

is variable selection, that is, finding those covariates that are influential at predicting

hazard rates or survival. It immediately follows from (1) that the influence of a variable,

say xj, is only removed from the model if all of its effects γTj = (γ1j, ..., γmj) are set to

zero simultaneously. For example, if we have γ̂1j = 0 and γ̂2j 6= 0, then λ̂1(t|x) would

still be influenced by xj.

A penalty that enforces such a structured and thus effective variable selection and

that smooths the baseline hazards over time is given by

Jζ1,ζ2(β0,γ) = ζ1

m∑

r=1

q∑

t=2

(β0tr − β0,t−1,r)
2 + ζ2

p∑

j=1

φj
∥∥γ j

∥∥

= ζ1J1(β0) + ζ2J2(γ),

(7)

where ‖u‖ = ‖u‖2 =
√
uTu denotes the L2-norm and φj =

√
m is a weight that adjusts

the penalty level on parameter vectors γ j for their dimension. The first term in (7)

uses that time intervals are ordered. Therefore, for each cause r, differences between co-

efficients of adjacent time periods are penalized in a similar way as in penalized splines

(Eilers and Marx, 1996) and regression with ordered predictors (Gertheiss and Tutz,

2009). The penalty controls how quickly hazard rates can change and hence smooths

them over time. The second term enforces variable selection, that means, all parameters

collected in γ j are simultaneously shrunk towards zero. It is strongly related to the

group lasso method (Yuan and Lin, 2006), but in the group lasso the grouping refers to

the parameters that are linked to the dummies of a categorical predictor within a univari-

ate regression model, while in the present model grouping arises from the multivariate

model structure. The strength of the penalty terms is determined by the tuning param-

eters ζ1 and ζ2. Without a penalty, that is with ζ1 = ζ2 = 0, ordinary ML-estimation is

obtained.

3.2 Complexity Reduction by Incorporating Splines

Even though penalty (7) smooths the cause-specific baseline coefficients β0 and hence

reduces their effective dimensionality, one might want to reduce their complexity a priori,

for example if the number of time periods q is very large. To simplify the baseline effects,

they can be expanded in basis functions, for example in an equidistant, low-rank B-spline

basis, resulting in

β0tr =
dr∑

s=1

α0srBs(t)
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with dr < q. The incorporation of B-splines yields more parsimonious models, but

requires a modification of the penalty term which is given by

Jζ1,ζ2(α0,γ) = ζ1

m∑

r=1

dr∑

s=2

(α0sr − α0,s−1,r)
2 + ζ2

p∑

j=1

φj
∥∥γ j

∥∥ . (8)

Again, the first term of the penalty steers the smoothness of the baseline effects, whereas

the second term enforces variable selection.

3.3 Adaptive Penalties

Since penalization necessarily introduces bias (which grows with ζ2), the choice of this

tuning parameter involves a tradeoff between ’sharp’ variable selection and unbiasedness.

In the light of this conflict, the common penalty level ζ2 in the penalties (7) and (8)

cannot be an optimal choice. As was shown by Zou (2006) for the simple lasso and by

Wang and Leng (2008) for the group lasso the methods are inconsistent if used with a

common penalty parameter. The proposed remedy are so-called adaptive weights, which

for the penalties (7) or (8) are obtained by replacing the weights φj by

φaj =

√
m

||γ̂Init
j ||

, (9)

where γ̂Init
j denotes an appropriate initial estimator. For our model, γ̂Init

j is the penalized

estimator that results from application of penalties (7) or (8) with ζ2 = 0. Thus, the

initial estimator uses unpenalized covariate effects, but an active smoothing penalty on

the baseline effects.

The intuition behind this weighting procedure is rather straightforward. Assuming

that all predictors are centered around zero and standardized to a common variance, the

norm of unpenalized estimates for the parameter groups is rather large if they belong

to strong predictors and small otherwise. Consequently, the corresponding penalization

is small/large for strong/weak predictors, respectively. Zou (2006) and Wang and Leng

(2008) prove that these penalized estimators provide consistent variable selection if used

with adaptive weights. In Tutz et al. (2012), the improved performance of adaptive

penalties was empirically confirmed for the multinomial logit model.
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4 Computational Issues

In the following, some details regarding the computation of numerical estimates are

described. First, details of the estimation approach itself are outlined, then the tuning

parameter selection for discrete competing risk models is presented.

4.1 Numerical Estimates

To estimate the parameters β0 and γ, the penalized log-likelihood lζ1,ζ2(β0,γ) from (6)

has to be maximized, which can also be formulated as

(β̂0, γ̂) = argmin
β0,γ

(
− l(β0,γ) + ζ1J1(β0) + ζ2J2(γ)

)
. (10)

Our algorithm for solving (10) is based on proximal gradient algorithms, for an overview,

see Parikh and Boyd (2013). The key building block is the so-called proximal operator,

which for a generic search point v and a generic penalty ζJ(·) is defined as

Prox ζJ(v) = argmin
u

(
||u− v||22 + ζJ(u)

)
. (11)

For s = 0, 1, 2, . . . until convergence, the proximal gradient iterations are given by

β̂
(s+1)

0 = Prox ζ1/ν(s)·J1


v(s) := β̂

(s)

0 +
1

ν(s)
· ∂l
(
β̂

(s)

0 , γ̂(s)
)

∂β0


 (12)

and

γ̂(s+1) = Prox ζ2/ν(s)·J2


w(s) := γ̂(s) +

1

ν(s)
· ∂l
(
β̂

(s)

0 , γ̂(s)
)

∂γ


 , (13)

where ν(s) > 0 is an inverse stepsize parameter. In (12) and (13), it was exploited that

both the overall penalty term Jζ1,ζ2 (see (7)) and the L2
2-term in (11) can be decomposed

into nonoverlapping parts that only contain either β0 or γ. The search points v and

w for β0 and γ, respectively, are obtained from a first order approximation of the

log-likelihood term in (10) and can be considered a one-step approximation of the ML

estimator, based on the current solution. Applying the proximal operator to these search

points incorporates the penalties and ensures solutions with structured sparsity.

Since the penalty on the γ-parameters in (7) is a groupwise L2-norm, the solution

to (13) is obtained by blockwise application of the well-known group-soft-thresholding
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operator. Let J2(γ) =
∑p

j=1 φj||γ j|| =
∑p

j=1 J2j and let w be partitioned like γ. Then,

one obtains with (u)+ = max(u, 0) the analytical solution

Prox ζ2/ν·J2j(w j) =

(
1− ζ2φj/ν

||w j||

)

+

w j, j = 1, . . . , p.

To derive a closed solution to (12), we rewrite the penalty on the baseline parameters:

J1(β0) =
∑m

r=1

∑q
t=2(β0tr−β0,t−1,r)

2 =
∑m

r=1 J1r. Let D denote the first-order difference

matrix, that is,

D =




−1 1 0

−1 1
. . .

0 −1 1



,

so that we have J1r = ||Dβ0r||22. Hence, the proximal operator in (12) only contains

quadratic terms and thus, with Ω = DTD and identity matrix I, admits an analytical

solution:

Prox ζ1/ν·J1r(v r) =
(
I + ζ1

ν
Ω
)−1

v r, r = 1, . . . ,m. (14)

To the best of our knowledge, formula (14) has never been explicitly given in the litera-

ture.

The steps described above are crucial and sufficient for the computation of numer-

ical estimates with proximal gradient algorithms. However, our implementation uses

an accelerated version of proximal gradient, the so-called Fast Iterative Shrinkage and

Thresholding Algorithm (FISTA) of Beck and Teboulle (2009). By a technical modi-

fication to the search points in (12) and (13), FISTA achieves quadratic convergence,

which is optimal within the class of first-order algorithms. The proposed algorithm is

an extension of the algorithm given in Tutz et al. (2012). The latter contains only one

penalty term, which is enough when modeling multinomial logit models but not when

modeling survival.

4.2 Tuning Parameter Selection

The tuning parameters ζ1 and ζ2 are chosen by k-fold cross-validation (Hastie et al., 2009)

over a two-dimensional grid of possible values. However, a modification to standard

cross-validation is required due to the data blow up described in Section 2.2.

For folds s = 1, . . . , k, let Is denote the index set of observations that belong to fold

s and let λ̂
(−s)
r denote the estimate for λr that is based on all observations except for
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those in Is. As the criterion to be cross-validated, we use the (predictive) deviance.

With the introduced notation, the cross-validated deviance is defined by

DCV = 2
K∑

s=1

∑

i∈Is

ti∑

t=1

m∑

r=0

yitr log(
yitr

λ̂r(t|xi)(−s)
). (15)

Hence, all (m + 1) · ti data points yitr that belong to the same original observation i

are always assigned to the same cross-validation fold. The dependence of λ̂r (and thus

DCV ) on ζ1 and ζ2 has been suppressed in the notation to improve readability.

5 Applications

In this section, the proposed penalized competing risk model with discrete duration time

is applied to two real data problems. The first data set describes Congressional careers

in the United States. Unemployment data taken from the German socioeconomic panel

constitute the second data set.

Variable Description

Duration Time (in terms served) the incumbent has spent in Congress prior to the election
cycle

Age Incumbent’s age (in years) at each election cycle, centered around 51
Republican Member of the Republican party

0: no, 1: yes
PriorMargin The incumbent’s margin of victory in his or her previous election, centered around 35
Leadership Prestige position

0: otherwise, 1: member is in the House leadership and/or is a chair of a standing
House committee

OpenGub Open gubernatorial seat available in the incumbent’s state
0: no, 1: yes

OpenSen Open Senatorial seat available in the incumbent’s state
0: no, 1: yes

Scandal Incumbent was involved in an ethical or sexual misconduct scandal or when the
incumbent was under criminal investigation
0: no, 1: yes

Redistricting The incumbent’s district was substantially redistricted
0: no, 1: yes

Table 1: Description of the variables of the Congressional career data.
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Figure 1: Cross validation score subject to penalty parameter ζ2 for ζ1 = 6.0 for the

Congressional career data.

5.1 Congressional Careers

The first data example deals with careers of incumbent members of the U.S.

Congress. A detailed description can be found in the book of Box-Steffensmeier

and Jones (2004) and in Jones (1994). It can be downloaded from the website

http://psfaculty.ucdavis.edu/bsjjones/eventhistory.html. A congressman can

end his legislative career in four different ways. He might retire (retirement), he might

be ambitious and seek an alternative office (ambition), he might lose a primary election

(primary) or he might lose a general election (general). The dependent variable is

defined by the transition process of a Congressman from his first election up to one

of the competing events general, primary, retirement or ambition. The duration until

the occurrence of one of the competing events is measured as terms served, where

a maximum of 16 terms can be reached. Career path data were collected on every

member of the House of Representatives from each freshman class elected from 1950

to 1976. Each incumbent in the data set was tracked from the first reelection bid until

the last term served in office. A member initially elected in 1950 does not enter the

risk set until the election cycle of 1952 as the members of the House of Representatives

serve two-year terms. At each subsequent election, a terminating event or reelection

is observed. Once a terminating event is experienced, the incumbent is no longer

observed. The data set covers all election cycles from 1952 up to 1992.

Originally, up to 20 terms occurred, however, only for very few Congressmen. Hence,

due to stability reasons, durations that exceed 15 terms have been aggregated. Further-

more, only complete cases, that is, observations with no missing values for any covariate,

have been incorporated in the analysis. The used data set contains the career paths of

860 Congressmen. Several covariates are available as predictors for the end of careers.

The covariate age gives the incumbent’s age at each election cycle and, to improve inter-

pretability, is centered around 51 years (sample mean: 51.26). The incumbent’s margin

13



of victory in his or her previous election is collected in the variable priorMargin, which

is centered around a margin of 35 (sample mean: 35.21). The covariate redistricting in-

dicates if the incumbent’s district was substantially redistricted. The covariate scandal

captures if an incumbent was involved in an ethical or sexual misconduct scandal or if

the incumbent was under criminal investigation. The covariates openGub and openSen

indicate if there is an open gubernatorial and/or open Senatorial seat available in the in-

cumbent’s state. The data set considers members of the Republican and the Democratic

party. Whether the Congressman is a member of the Republican party is gathered in the

variable republican. Finally, leadership describes if a member is in the House leadership

and/or is a chair of a standing House committee. With the exception of the predictor

republican all covariates are time-varying, that is, the covariate values per object may

vary over the duration time. An overview of the used predictors is shown in Table 1.
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Figure 2: Parameter estimates of the cause-specific time-varying baseline effects for the

Congressional careers data. Dashed lines represent the 95% pointwise bootstrap interval.

We fitted a penalized multinomial logit model with risks defined by cause 1 (Gen-

eral), 2 (Primary), 3 (Retirement) and 4 (Ambition). The effect of covariates in the

model λr(t|x) = exp(ηitr)/(1 +
∑4

j=1 exp(ηitj)) is specified by the cause-specific linear

predictors ηitr = β0tr + xTitγr. All covariates described in Table 1 are incorporated in

the predictors. To be on comparable scales, all covariates were standardized to have

equal variance. Moreover, we included all pairwise interactions with the exception of

14



General Primary Retirement Ambition
ML pen. sd ML pen. sd ML pen. sd ML pen. sd

Age 0.069 0.046 0.008 0.071 0.046 0.011 0.070 0.068 0.008 -0.034 -0.037 0.007
Republican 0.255 0 0.005 -0.188 0 0.002 -0.201 0 0.009 0.343 0 0.018
PriorMargin -0.078 -0.060 0.005 0.006 0.001 0.005 -0.007 -0.005 0.003 -0.010 -0.004 0.002
Leadership -0.272 0 0.087 -2.779 0 0.081 -0.393 0 0.065 0.033 0 0.080
Open Gub. 0.815 0.205 0.116 0.598 0.181 0.097 0.227 0.109 0.077 0.528 0.208 0.121
Open Sen. -0.638 -0.243 0.125 -0.215 -0.193 0.134 -0.086 0.062 0.125 1.136 0.878 0.134
Scandal 3.750 2.689 0.370 3.215 3.272 0.428 1.921 1.611 0.441 -3.118 -1.532 0.073
Redistricting 2.548 1.617 0.447 1.465 1.149 0.499 -0.563 0.431 0.251 0.574 0.801 0.309

Age:Republican 0.007 0.011 0.007 -0.045 -0.010 0.007 0.041 0.030 0.009 -0.038 -0.029 0.009
Age:PriorMargin 0.001 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000
Age:Leadership 0.014 0 0.002 -0.117 0 0.002 0.018 0 0.002 -0.269 0 0.001
Age:OpenGub. -0.006 0 0 0.034 0 0 -0.016 0 0 -0.011 0 0
Age:OpenSen. -0.005 0 0.001 -0.074 0 0.001 -0.039 0 0.004 -0.015 0 0.002
Age:Scandal -0.106 0 0 0.022 0 0 0.090 0 0 0.009 0 0
Age:Redistricting -0.001 0.007 0.016 -0.066 -0.039 0.018 0.174 0.097 0.031 0.037 0.018 0.016
Republican:PriorMargin 0.016 0.005 0.004 -0.041 -0.016 0.005 -0.008 -0.004 0.004 0.015 0.012 0.004
Republican:OpenGub. -0.532 -0.342 0.200 -4.282 -1.337 0.147 -0.147 -0.233 0.201 -0.063 0.294 0.184
Republican:OpenSen. 0.323 0 0.001 -0.092 0 0.002 0.802 0 0.010 -0.260 0 0.011
Republican:Scandal 0.007 0 0.021 2.121 0 0.054 0.182 0 0.005 -1.418 0 0.001
Republican:Redistricting -1.833 0 0.076 0.447 0 0.059 1.247 0 0.050 -0.276 0 0.051
PriorMargin:Leadership 0.025 0 0 -0.009 0 0 -0.008 0 0.001 0.057 0 0
PriorMargin:OpenGub. 0.020 0 0 -0.001 0 0.001 0.008 0 0.001 0.009 0 0.001
PriorMargin:OpenSen. -0.016 0 0.001 -0.019 0 0.002 0.013 0 0.002 0.011 0 0.004
PriorMargin:Scandal 0.006 0.007 0.005 -0.017 -0.010 0.004 -0.071 -0.019 0.006 -0.028 -0.001 0
PriorMargin:Redistricting 0.066 0.037 0.019 0.000 -0.002 0.003 0.030 0.010 0.006 -0.013 -0.009 0.007
Leadership:OpenGub. -5.168 0 0.117 -1.693 0 0.087 1.054 0 0.359 -5.402 0 0.116
Leadership:OpenSen. -4.513 0 0 -0.941 0 0 1.001 0 0 -6.053 0 0
Leadership:Scandal -0.213 -0.029 0.594 -4.212 -1.803 0.733 -8.621 -1.925 0.756 -0.897 -0.108 0.047
OpenGub.:OpenSen. -0.436 0 0 0.124 0 0 -0.280 0 0 -0.429 0 0
OpenGub.:Redistricting -0.175 0.172 0.663 -4.274 -0.415 0.125 -5.297 -0.666 0.237 2.751 2.126 0.932
OpenSen.:Scandal -2.277 0 0.307 -1.482 0 0.206 -8.270 0 0.266 -3.311 0 0.058
OpenSen.:Redistricting 0.914 0 0.052 -4.560 0 0.006 -0.522 0 0.031 1.771 0 0.147

Table 2: Parameter estimates for the Congressional careers data. Ordinary maximum

likelihood estimates are denoted by “ML”, the penalized estimates are denoted by “pen.”.

Estimated standard errors for the penalized model obtained by a bootstrap approach are

given in the columns denoted by “sd”.

Republican:Leadership, Leadership:Redistricting, Opengub:Scandal, Scandal:Redistricting

because too few observations of the corresponding combinations are in the data. Such

a high-dimensional interaction model cannot be properly handled by unpenalized ML

estimation but stable estimation and efficient variable selection is obtained by using

penalization.

Since the adaptive version of the penalty yielded better cross-validation score, adap-

tive weights were used. Tuning parameters ζ1 and ζ2 were chosen on a 2-dimensional

grid by 5-fold cross validation with the predictive deviance as loss criterion. The

resulting tuning parameters were ζ1 = 6.0 and ζ2 = 2.64. For a fixed ζ1 = 6.0, the

corresponding cross validation score is shown in Figure 1, where the vertical black

dashed line marks the chosen tuning parameter.
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Figure 2 shows the parameter estimates for the cause-specific time-varying baseline

effects. The corresponding pointwise confidence intervals, marked by light-gray dashed

lines, have been estimated by a nonparametric bootstrap method as proposed by

Efron (1979) with 1000 bootstrap replications. It can be seen that cause-specific

baseline effects are necessary because the shapes are quite different. For retirement, the

parameters are increasing over early terms and then become stable while for ambition

there is an early peak at about five terms and then a decrease. Due to the penalization

of adjacent coefficients β0tr − β0,t−1,r, the estimated baseline effects are rather smooth.

Parameter estimates of the covariate effects are summarized in Table 2. It shows the

ordinary ML estimates and the estimates resulting from the penalized competing risk

model with their corresponding standard errors. The computation of the standard errors

is based on a nonparametric bootstrap approach with 1000 bootstrap replications. It is

immediately seen that the penalization removes a considerable number of effects, that

is, only 68 out of 128 parameters remain in the model, leading to a strong reduction of

the model complexity. The selection procedure suggests that the main effects Republican

and Leadership are not needed in the predictor. Moreover, a large number of interaction

effects were not selected. Concerning interpretation, for example, the absolute values of

the covariate Scandal indicates a strong effect. If a Congressman became embroiled in

a scandal it is more likely that he/she loses a primary or general election or that he/she

retires. In contrast, a scandal decreases the probability of seeking an alternative office

as compared to reelection.
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(a) Estimated rates for all predictors
at reference: Age=51, Prior Mar-
gin=35, no Republican, no Leader-
ship, no open Gubernatorial seat,
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(b) Estimated rates for Age=41, Prior
Margin=35, no Republican, no
Leadership, no open Gubernatorial
seat, no open Senatorial seat, no
Scandal and no Redistricting.
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(c) Estimated rates for Age=61, Prior
Margin=35, no Republican, no
Leadership, no open Gubernatorial
seat, no open Senatorial seat, no
Scandal and no Redistricting.

Figure 3: Estimated cause-specific hazard rates over time for the Congressional careers

data.
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Figure 4: Coefficients paths of the main effects for the Congressional career data.

In Figure 3 a selection of resulting hazard rates is depicted. It shows hazard functions

for the following covariate characteristics: Age=51, Prior Margin=35, no Republican,

no Leadership, no open Gubernatorial seat, no open Senatorial seat, no Scandal and no

Redistricting for the transitions to General, Primary, Retirement and Ambition. It can

be seen that the probability of retirement tends to increase over early terms and then

remains rather stable. The probability for seeking an alternative office as compared to

reelection increases for early terms and then decreases. The hazard rates for losing either

a primary or a general election are rather constant in the considered group. Figures 3b

and 3c show the hazard rates respectively for younger (Age=41) and older (Age=61)

Congressmen compared to the reference group (Age=51), while everything else remains

unchanged. Younger Congressmen prefer to seek an alternative office and they do not

intend to retire. For older Congressmen, the probability of retirement compared to

reelection strongly increases. Moreover, the probability of losing either a primary or a

general election is larger than in the reference group.

The selection effect is visualized by coefficient paths. In Figure 4 we show only the

paths for the main effects. Each path indicates the penalized estimates subject to tuning

parameter ζ2, where the abscissa is transformed by log(1 + ζ2). The paths illustrate how

the estimates changes towards zero for increasing ζ2. Hence, they show the effects of

covariates on the terminating events when penalization is increased. The dashed black

line indicates the value of ζ2 that was chosen via cross-validation.
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Variable Description

Time Time spent in the unemployment spell, measured in months.
The spells which lasted more than 36 months have been truncated on
36 months and denoted as censored

Nationality Nationality of the unemployed person
0: German, 1: Foreigners

Gender Gender of the unemployed person
0: Male, 1: Female
Age of the unemployed person at the beginning of the unemployment spell

Age young 0: no, 1: yes (≤ 25 years)
Age old 0: no, 1: yes (> 50 years)
Training Unemployed individual has successfully completed a professional training

0: yes, 1: no
University Unemployed individual has an university degree or equivalent qualification

0: no, 1: yes

Table 3: Description of the variables of the unemployment data.
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Figure 5: Plots corresponding to the unemployment data.

5.2 Unemployment Data

In this section, the proposed penalized competing risk model is applied to unemployment

data. The data set has originally been analyzed by Kauermann and Khomski (2009).

Based on the German socio economic panel (SOEP; see www.diw.de), individuals who

have been unemployed at least once during the years 1990 to 2000 are considered. If
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Part-time Full-time
ML pen. sd ML pen. sd

Nationality -1.569 -0.317 0.115 0.269 0.125 0.079
Gender 1.115 0.236 0.126 -1.207 -0.847 0.129
Age young 0.371 -0.274 0.133 -0.042 0.088 0.124
Age old -3.501 -0.879 0.156 -0.642 -0.746 0.179
Training 0.547 -0.023 0.069 -1.058 -0.389 0.142
University 3.043 1.360 0.380 0.757 0.483 0.189

Nationality:Gender 0.428 0 0.028 -0.251 0 0.047
Nationality:Age young -2.851 0 0.007 -0.029 0 0.033
Nationality:Age old -1.534 0 0.007 -5.104 0 0.021
Nationality:Training 0.414 0 0.015 0.299 0 0.016
Nationality:University -0.343 -0.350 0.230 -2.618 -0.898 0.393
Gender:Age young -1.135 -0.090 0.052 0.468 0.222 0.122
Gender:Age old -2.278 -0.188 0.080 -0.711 -0.166 0.091
Gender:Training -0.645 0 0.010 0.777 0 0.019
Gender:University -1.324 0 0.069 -1.020 0 0.093
Age young:Training -0.204 0 0.024 0.432 0 0.041
Age old:Training 0.977 0 0.040 -1.407 0 0.107
Age young:University -5.885 0 0.045 0.876 0 1.073
Age old:University 0.671 0 0.063 -0.959 0 0.125
Training:University -0.822 0 0.049 0.959 0 0.033

Table 4: Parameter estimates for the unemployment data. Ordinary maximum like-

lihood estimates are denoted by “ML”, the penalized estimates are denoted by “pen.”.

Estimated standard errors for the penalized model obtained by a bootstrap approach are

given in the columns denoted by “sd”.

more than one spell of unemployment occurred for an individual, only one spells was

chosen to guarantee independence of the observations. The events that terminate an

unemployment spell are part-time reemployment (r = 1) and full-time reemployment

(r = 2). All other reasons for terminating unemployment are considered as censored.

The dependent variable is defined by the transition process of an individual up to

one of the competing events part-time or full-time reemployment with the duration

until the occurrence of one of the competing events measured in months. The maximal

observation length in the data was 36 months. The available covariates, measured at

the beginning of the unemployment spell, are nationality, gender, age, education and

training. We use the publicly available version of the data that is part of the R add-on

package CompetingRiskFrailty, which can be obtained from the CRAN archive. The

explanatory variables that will be used for modeling are listed in Table 3.

The available data set consists of 500 unemployed persons. To be on comparable

scales, all covariates were standardized to have equal variance. We use all the covariates

described in Table 3 and included all pairwise interaction effects. The used penalty term

is a version of (7) and is given by

J(β0,γ) = ζ1

2∑

r=1

36∑

t=2

(β0tr − β0,t−1,r)
2 +
√

2ζ2

20∑

j=1

∥∥γ j

∥∥ . (16)
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In analogy to the previous example the penalty term enforces smooth cause-specific

baseline effects and variable selection of the covariate effects including the interactions.

Since the adaptive version of the penalty did not show better performance we used the

simpler version without weights. Tuning parameters ζ1 and ζ2 were chosen by 5-fold

cross validation based on the predictive deviance. The resulting tuning parameters were

ζ1 = 1.0 and ζ2 = 7.42. The cross validation score for fixed value ζ1 = 1.0 is shown in

Figure 5a, where the vertical black dashed line marks the chosen tuning parameter.
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Figure 6: Estimated cause-specific hazard rates over time for the transition to part-time

reemployment and full-time reemployment.

Parameter estimates for the cause-specific time-varying baseline effects are shown

in Figure 5b. The corresponding confidence intervals have again been estimated by

a nonparametric bootstrap method with 1000 bootstrap replications. Due to the small

value of ζ1 the baseline effects are less smooth than in the Congressional careers example.

Table 4 shows the ordinary ML estimates and the estimates resulting from the penal-

ized competing risk model with their corresponding standard errors. It is immediately

seen that the penalization method removes a considerable number of effects, that is, 22

out of 40 parameters leading to a enormous reduction of the model complexity. But all

main effects and three interaction effects remain in the model. One sees, for example,

that for women it is more likely to get a part-time job and less likely to get a full-time

job. For younger people, getting a full-time job is more likely to end unemployment

than getting a part-time job.

Figure 6 depicts a selection of resulting hazard rates. In particular, Figure 6a shows

the hazard functions for a middle-aged German men with a professional training and

no university degree for the transitions to Part-time reemployment and Full-time reem-

ployment. That means, that all characteristics are set at reference. For a transition to
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Figure 7: Coefficients paths of the main effects for the unemployment data.

full-time reemployment the hazard rate shows the typical pattern of unemployment data

with a short increase and slow decrease. The hazard rate for the transition to part-time

reemployment is rather constant at the beginning of the observation period but increases

after a duration time of 25 months. It can be seen from Figure 6b that fewer women

than men get a full-time job , whereas slightly more women get a part-time job, holding

everything else fixed. A transition to a university degree clearly increases the probability

of getting a full-time or part-time job.

For illustration Figure 7 shows the coefficient paths of the main effects. Each path

indicates the penalized estimates subject to tuning parameter ζ2 for ζ1 = 1.0. In partic-

ular, the paths illustrate how the estimates change towards zero for increasing ζ2. The

dashed black line indicates the ζ2 chosen via cross-validation and the resulting estimates.

6 Concluding Remarks

In competing risk models for discrete duration time, one is interested in the the cause-

specific hazard rates. When modeling these cause-specific hazard rates, each explanatory

variable is linked to a group of parameters. The proposed penalization method enforces
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the simultaneous shrinkage of parameters belonging to such a group. A parameter group

even can be completely removed from the model yielding variable selection instead of

parameter selection. Moreover, the proposed method allows that parameters represent-

ing the cause-specific baseline hazards vary over time. In order to avoid that adjacent

parameters of the baseline effects have completely different values, an additional penalty

term is incorporated that steers the smoothness of the baseline effects.
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