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Abstract

The Bradley-Terry-Luce (BTL) model for paired comparison data is able to obtain a ranking of
the objects that are compared pairwise by subjects. The task of each subject is to make preference
decisions in favor of one of the objects. This decision is binary when subjects prefer either the first
object or the second object, but can also be ordinal when subjects make their decisions on a Likert
scale. Since subject-specific covariates, which reflect characteristics of the subject, may affect
the preference decision, it is essential to incorporate subject-specific covariates into the model.
However, the inclusion of subject-specific covariates yields a model that contains many parameters
and thus estimation becomes challenging. To overcome this problem, we propose a procedure that
is able to select and estimate only relevant variables.
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1. Introduction

In paired comparisons, several objects are compared pairwise to obtain an overall preference ranking
of the objects. In many application fields, such as marketing research or psychometric experiments,
objects are presented in a pairwise manner to judges, or, as they are called here, subjects. Their task for
each comparison is to make a preference decision in favor of one of the presented objects according to
specific subjective criteria, for example the fragrance of perfumes when two perfumes are the objects
being compared. Subjects can typically choose to prefer either the first or the second object, so that
the response is represented by a binary variable. Alternatively, the subjects can make their preference
decisions on a symmetric Likert scale with more than two categories, such as preferring the first object
strongly or weakly, preferring neither of the objects, or preferring the second object strongly or weakly.
This procedure yields an ordinal response that allows for a more precise preference ranking of the
objects because it uses additional information about how strongly an object is preferred.

One of the most widely used models for paired comparisons with a binary response is the model
suggested by Bradley & Terry (1952). It is closely related to the choice axiom of Luce (1959) with
the restriction to choices being between two objects. Thus, the model is also known as Bradley-Terry-
Luce (BTL) model. Several extensions have been proposed in the literature to allow for responses with
more than two categories. The first approaches allowed only a third category and were proposed by
Rao & Kupper (1967) and Davidson (1970). Later, ordinal BTL models that allow for any number of
ordered response categories have been considered by Tutz (1986), Agresti (1992), Dittrich et al. (2004)
and Dittrich et al. (2007). Ordinal regression models, in particular the cumulative logit model and the
adjacent categories logit model, are in common use when an ordinal response is present.

The main objective of this paper is to develop a method that allows for variable selection in a model
that also contains subject-specific covariates. These covariates are characteristics of the subject and
are assumed to affect the decision of a subject. Selection of relevant subject-specific covariates is very
important because subject-specific BTL models contain a large number of parameters and model esti-
mation becomes challenging. Therefore, we focus on detecting important characteristics that determine
the preference of objects.

2. Paired Comparison Models

2.1. The Binary BTL Model

Let M be the number of objects that are compared and let the pair (r, s) refer to the comparison of object
r and object s. The response connected to this comparison is denoted by Yrs, where Yrs = 1 indicates the
preference for object r and Yrs = 2 indicates the preference for object s. Let π(r,s)

k := P(Yrs = k|(r, s)),
with k = 1, 2 and π(r,s)

1 + π(r,s)
2 = 1 denote the probability of whether object r (for k = 1) or object s (for
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k = 2) is preferred. The binary BTL model can then be written as a logistic model

log
(
π(r,s)

1

/(
1 − π(r,s)

1

))
= γr − γs

= x(r,s)
1 γ1 + . . . + x(r,s)

M−1γM−1

=
(
x(r,s)

)>
γγγ,

(1)

where the components of the vector
(
x(r,s)

)>
=

(
x(r,s)

1 , . . . , x(r,s)
M−1

)
are defined as

x(r,s)
m =



+1 if m = r

−1 if m = s

0 otherwise.

(2)

Given the pair (r, s), the vector
(
x(r,s)

)>
= (0, . . . , 1, 0, . . . ,−1, 0 . . . , 0) has a 1 on the r-th position and

a −1 on the s-th position. The vector γγγ = (γ1, . . . , γM−1)> contains all object parameters we want
to estimate, where γm reflects the worth of object m. For model identifiability, we use the restriction
γM = 0, that is, object M is considered as reference object.

The ranking of objects is based on estimated object parameters, where estimation is carried out by
maximum likelihood estimation for ordinary logistic models as used by Turner & Firth (2012).

2.2. Ordinal BTL Models

In the binary BTL model, the subjects can prefer the first object or the second object of a comparison. In
more general settings, the subjects can make their preference decisions on a (symmetric) Likert scale
with more than two categories. In this case, the binary response is extended to an ordinal response
Yrs ∈ {1, . . . ,K}, where K denotes an arbitrary number of response categories. In our notation, lower
response categories indicate the preference for object r. Thus, Yrs = 1 is the most favorable response
category for object r and Yrs = K is the most favorable response category for object s, or, equivalently,
the least favorable response category for object r. To ensure that the comparison of the pair (r, s) yields
the same result as the comparison of the pair (s, r), the ordinal response is assumed to be symmetric,
that is, Yrs = k ⇔ Ysr = K − k + 1 and therefore π(r,s)

k = π(s,r)
K−k+1 (Agresti, 1992).

The Cumulative Model

The cumulative BTL model for ordinal responses uses the cumulative probabilities P(Yrs ≤ k|(r, s)) =

π(r,s)
1 + . . . + π(r,s)

k and P(Yrs > k|(r, s)) = π(r,s)
k+1 + . . . + π(r,s)

K , with P(Yrs ≤ k|(r, s)) + P(Yrs > k|(r, s)) =

π(r,s)
1 + . . . + π(r,s)

K = 1. The model can be formulated as a cumulative logit model (McCullagh, 1980)
with the link function g = (g1, . . . , gK−1)>, where

gk
(
π(r,s)

1 , . . . , π(r,s)
K

)
= log


π(r,s)

1 + . . . + π(r,s)
k

1 −
(
π(r,s)

1 + . . . + π(r,s)
k

)
 = log

(
P(Yrs ≤ k|(r, s))
P(Yrs > k|(r, s))

)
(3)
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links the considered probabilities to the linear predictor η(r,s)
k , so that

gk
(
π(r,s)

1 , . . . , π(r,s)
K

)
= η(r,s)

k = θk + (γr − γs)

= θk + (x(r,s)
1 γ1 + . . . + x(r,s)

m−1γm−1)

= θk +
(
x(r,s)

)>
γγγ,

(4)

for all k = 1, . . . ,K − 1 and with the threshold parameters −∞ = θ0 < θ1 < . . . < θK−1 < θK = ∞.
Because of the symmetric response, the thresholds need to be restricted as follows (see Tutz, 1986):

(1) If K is odd
θk = −θK−k for k = 1, . . . , K−1

2 =
⌊

K−1
2

⌋
. (5)

(2) If K is even

θK/2 = 0 and θK/2−k = −θK/2+k for k = 1, . . . , K
2 − 1 =

⌊
K−1

2

⌋
. (6)

It can be seen that only q :=
⌊

K−1
2

⌋
threshold parameters need to be estimated, the other ones are

determined by the symmetry constraints (5) and (6).

The Adjacent Categories Model

Another model that also allows for ordinal responses is the adjacent categories BTL model. It is based
on the adjacent categories logit model using the link function g = (g1, . . . , gK−1)>, with

gk
(
π(r,s)

1 , . . . , π(r,s)
K

)
= log


π(r,s)

k

π(r,s)
k+1

 = log
(
P(Yrs = k|(r, s))
P(Yrs = k + 1|(r, s))

)
.

The model is then defined by

gk
(
π(r,s)

1 , . . . , π(r,s)
K

)
= η(r,s)

k = θk +
(
x(r,s)

)>
γγγ, k = 1, . . . ,K − 1. (7)

Here, the same restrictions (5) and (6) are valid and allow for symmetric thresholds (see Agresti, 1992).
The adjacent categories BTL model can also be represented as a log-linear model, which has been
extensively discussed in the literature (see Agresti, 1992; Dittrich et al., 1998; Dittrich et al., 2004;
Dittrich et al., 2007). When the response consists of K = 2 categories, the binary BTL model (1) is a
special case of the cumulative BTL model (4) and the adjacent categories BTL model (7). In this case,
the cumulative BTL model and the adjacent categories BTL model are equivalent.

It should be noted that the cumulative and the adjacent-categories model for ordinal responses use
the same set of linear predictors

η(r,s)
k = θk +

(
x(r,s)

)>
γγγ, k = 1, . . . , q. (8)
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Therefore, the inclusion of subject-specific covariates for both models is obtained by modifying the
same linear predictors.

3. Including Subject-Specific Covariates

A very restrictive assumption for the models considered in Section 2.2 is that the worth of an object is
the same for all subjects. Therefore, the ranking of the objects is the same for all subjects. However, in
most applications it is to be expected that the preference for an object and thus the ranking of all objects
depends on characteristics of the subject that makes the preference decision (Dittrich et al., 1998;
Francis et al., 2002). To explicitly model this heterogeneity, we introduce subject-specific covariates
xi,1, . . . , xi,P, where P reflects the number of characteristics and i refers to a single subject. The object
parameters are now assumed to be determined by these characteristics, such that the object parameters
vary across subjects. A simple way to incorporate subject-specific covariates into the model is to let
the object parameters of a subject be determined by a linear combination of the P subject-specific
covariates. The resulting object parameter for subject i is then specified by

γi,m = γm +
P∑

p=1
xi,pγm,p, (9)

where γm is a parameter for object m that is independent of the characteristics of the subject, and
γm,p is a modifying effect for object m depending on the p-th subject-specific covariate. This means,
that γm,p is a subject-object interaction parameter. To ensure model identifiability, we constraint the
subject-object interaction parameters by setting λM,p = 0, for all p = 1, . . . , P (Francis et al., 2002).

Assuming that there are i = 1, . . . , I subjects, the linear predictor η(r,s)
k from equation (8) can be

replaced by a more flexible linear predictor η(r,s),i
k that also considers subject-specific covariates and has

the form

η(r,s),i
k = θk + (γi,r − γi,s) = θk + (γr − γs) +

P∑
p=1

xi,p(γr,p − γs,p)

= θk +
M−1∑
m=1

x(r,s)
m γm +

P∑
p=1

M−1∑
m=1

xi,px(r,s)
m γm,p

= θk +
(
x(r,s)

)>
γγγ +

P∑
p=1

(
x(r,s),i

p

)>
γγγp.

(10)

Here, the vector
(
x(r,s),i

p

)>
=

(
xi,px(r,s)

1 , . . . , xi,px(r,s)
M−1

)
contains all subject-object interactions that belong

to the p-th subject-specific covariate and γγγ>p = (γ1,p, . . . , γM−1,p) is the corresponding vector of subject-
object (interaction) parameters, such that γm,p refers to the m-th object and the p-th subject-specific
covariate.

In the absence of subject-specific covariates, that is xi,p = 0, for all i, p, one obtains an ordinal BTL
model as described previously. The model that considers subject-specific covariates is more flexible
and accounts for heterogeneity between subjects but suffers from the large number of parameters, since
we have to estimate M − 1 subject-object parameters for each additional subject-specific covariate. To
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overcome this problem, we present a component-wise boosting algorithm that implicitly selects the
influential variables.

4. Boosting

4.1. Basic Concept of Boosting

Before introducing the boosting algorithm for ordinal BTL models, we will first illustrate the concept
of boosting on a linear regression model and then proceed to boosting for ordinal BTL models.

Assume the linear regression model with C covariates and J observations. In matrix representation,
the model can be described as

y = Xβββ + εεε,

with the vectors y = (y1, . . . , yJ)>, εεε = (ε1, . . . , εJ)>, βββ = (β0, . . . , βC)> and the design matrix X =

[x0, x1, . . . , xC] that contains the components xc = (x1,c, . . . , xJ,c)> for c = 0, 1, . . . ,C.
The structure of a generalized linear model (GLM) is determined by µ j = E(y j|x j) = h(η j), where

h is a known response function and g = h−1 is the link function that links the conditional expec-
tation E(y j|x j) to the linear predictor η j =

∑C
c=0 x j,cβc. Using the vectors µµµ = (µ1, . . . , µJ)> and

ηηη = (η1, . . . , ηJ)>, we can also write µµµ = h(ηηη) and g(µµµ) = ηηη.
The linear model above can be incorporated within the framework of generalized linear models by

using the identity function as the link function, that is µ j = g(µ j) = η j = h(η j). For a large number of
covariates C, it is of interest to estimate the model using only influential variables. There are several
methods that perform well in such high dimensional settings while offering a sparse model, one of these
methods is boosting (see Bühlmann, 2006). Boosting has its origin in the machine learning community
(see Schapire, 1990; Freund, 1995; Freund, 1997) and can be formulated within the framework of
statistical modeling as iteratively fitting parts of the model using the residuals of the previous iteration
as the response of the current iteration (Friedman et al., 2000; Friedman, 2001). The basic concept of
boosting is to use a set of so-called base learners f (·) and combine them to gain a strong learner. A
base learner can be a function of a set of covariates or even of a single covariate. In this paper, we will
consider only linear base learners that are able to express a linear effect of the considered covariate(s).
In the linear model, a single linear base learner for the c-th component is, for example, f (xc, βc) = xcβc.

Tutz & Binder (2006) introduced likelihood-based boosting for generalized linear models (GLM).
Instead of the iteratively refitting of residuals, they use the linear predictor ηηη(b−1) of the previous itera-
tion (b − 1) as an offset that adds up to the linear predictor ηηη(b) of the current iteration b. We describe a
component-wise boosting algorithm, where component-wise means that in each iteration only a single
component is considered at a time.
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Component-Wise Boosting

Step 1: Initialization

Fit the intercept model µµµ(0) = h(ηηη(0)) = h(x0β0), with x0 = (x1,0, . . . , xJ,0)> = (1, . . . , 1)> by
maximizing the likelihood to obtain the estimated intercept β̂0. Initialize

β̂ββ
(0)

= (β̂0, β̂1, . . . , β̂C)> = (β̂0, 0, . . . , 0)> and η̂ηη(0) = x0β̂0.

Step 2: For each boosting iteration b = 1, 2, . . . , bstop

(a) Estimation: Fit the models
µµµ = h(η̂ηη(b−1) + f (xc, βc))

for all components c = 0, . . . ,C by one-step Fisher scoring, where η̂ηη(b−1) is used as an offset. This
yields the one-step Fisher scoring estimates β̂c for the corresponding c-th component. In general,
the Fisher scoring algorithm is an iterative estimation procedure and uses the Fisher-matrix and
the score function (for more details, see Tutz & Binder, 2006).

(b) Selection: From the models fitted in (a), choose the component c∗ that yields the best fit with
respect to some criteria (e.g. the model with the lowest deviance, AIC or BIC) and set

β̂ββc∗ = (0, . . . , 0, β̂c∗ , 0, . . . , 0)>.

(c) Update:

η̂ηη(b) = η̂ηη(b−1) + Xβ̂ββc∗ , with X = [x0, x1, . . . , xC]

β̂ββ
(b)

= β̂ββ
(b−1)

+ β̂ββc∗

4.2. Boosting Ordinal BTL Models

The boosting algorithm described in this section is a component-wise boosting procedure based on the
pomBoost algorithm (Zahid & Tutz, 2013), which has been developed for the cumulative logit model.
It allows for ordinal responses and can be extended to the adjacent categories logit model by modifying
the link function g = (g1, . . . , gK−1)> to obtain the adjacent categories logit model (see Section 2.2).
We will use a specific feature of the pomBoost algorithm. It allows to split the covariates into two
groups to distinguish between obligatory covariates that have to be included in the model and optional
covariates that might be of relevance and to which the variable selection should be applied. In our
context, the object parameters γγγ> = (γ1, . . . , γM−1) are considered as obligatory covariates and the
subject-specific covariates γγγ>p = (γ1,p, . . . , γM−1,p), for all p = 1, . . . , P are considered as optional
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covariates. To be more flexible, one can divide the P subject-specific covariates into two exclusive sets
Vgrouped and Vsingle, with Vgrouped ∪ Vsingle = {1, . . . , P}. This will allow for selecting two different types
of covariates, namely

1. Vgrouped: subject-specific covariates, for which all the associated subject-object interactions should
be selected simultaneously and

2. Vsingle: subject-specific covariates, for which all associated subject-object interactions should be
selected separately.

The reason for distinguishing these two groups is that the interaction between the p-th subject-
specific covariate and the objects is given by the set of parameters γγγ1,p, . . . , γγγM−1,p. If the subject-
specific covariate is considered as being from Vgrouped, the parameters are included as a set or left out,
which yields variable selection. However, if the subject-specific covariate is considered as being form
Vsingle, single parameters from the set are included or left out, which yields selection of subject-object
interactions.

The boosting algorithm below uses the design matrix for paired comparisons X = [Q,X0,X1, . . . ,XP],
where Q contains the components for the thresholds, X0 contains the components the object parameters,
and X1, . . . ,XP contain the components for the subject-specific covariates (for more details on the mul-
tivariate structure see appendix A). Specifically, all matrices Xp, with p = 1, . . . , P, have M−1 columns,
where each column is denoted by xp,m and reflects a single subject-object interaction between the p-th
subject-specific covariate and object m. Thus, these matrices have the form Xp =

[
xp,1, . . . , xp,M−1

]
.

The algorithm proposed is the following

BTLboost

Step 1: Initialization

Fit the intercept model µµµ(0) = h(ηηη(0)) = h(Qθθθ) by maximizing the likelihood in order to obtain
estimates for the threshold parameters θθθ = (θ1, . . . , θq)>. Initialize

β̂ββ
(0)

= (θ̂θθ
>
, γ̂γγ>, γ̂γγ>1 , . . . , γ̂γγ

>
P ) = (θ̂1, . . . , θ̂q, 0, . . . , 0)> and η̂ηη(0) = Xβ̂ββ(0)

.

Step 2: For each boosting iteration b = 1, 2, . . . , bstop

Step 2.1: Update of threshold and object parameters

(a) Estimation: Fit the model µµµ = h
(
η̂ηη(b−1) + Qθθθ + X0γγγ

)
by one-step Fisher scoring, where

η̂ηη(b−1) is used as an offset. One obtains the estimates θ̂θθ
>

= (θ̂1, . . . , θ̂q), γ̂γγ> = (γ̂1, . . . , γ̂M−1)
and defines

β̂ββ
>
0 = (θ̂θθ

>
, γ̂γγ>, γ̂γγ>1 , . . . , γ̂γγ

>
P ) = (θ̂1, . . . , θ̂q, γ̂1, . . . , γ̂M−1, 0, . . . , 0).
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(b) Update:

η̂ηη(b) = η̂ηη(b−1) + Xβ̂ββ0

β̂ββ
(b)

= β̂ββ
(b−1)

+ β̂ββ0

Step 2.2: Update of parameters for the optional covariates

(a) Estimation: For each subject-specific covariate p = 1, . . . , P, fit the models

µµµ =


h(η̂ηη(b) + Xpγγγp) if p ∈ Vgrouped

h(η̂ηη(b) + xp,mγm,p), ∀m ∈ {1, . . . ,M − 1} if p ∈ Vsingle

,

where η̂ηη(b) is used as offset. The estimated parameters γ̂γγp and γ̂m,p are obtained by one-step
Fisher scoring.

(b) Selection: From the models fitted in (a), choose the model that maximally improves the
fit with respect to some criteria (e.g. deviance, AIC or BIC) and set Xbest = xp∗,m∗ if the
(p∗,m∗)-th subject-object interaction yields the best fit or Xbest = Xp∗ if the set of subject-
object interactions associated with the p∗-th subject-specific covariate yields the best fit.
This yields the estimated parameter vector

β̂ββ
>
best = (θ̂θθ

>
, γ̂γγ>, γ̂γγ>1 , . . . , γ̂γγ

>
P ) =


(0, . . . , 0, γ̂p∗,m∗ , 0, . . . , 0) if Xbest = xp∗,m∗

(0, . . . , 0, γ̂γγ>p∗ , 0, . . . , 0) if Xbest = Xp∗
.

(c) Update:

η̂ηη(b) = η̂ηη(b) + Xβ̂ββbest

β̂ββ
(b)

= β̂ββ
(b)

+ β̂ββbest

Within each boosting iteration, the algorithm switches between two stages. The first stage (Step
2.1) considers only the object parameters along with the threshold parameters for an update, so that
these parameters will always be part of the paired comparison model. In the second stage (Step 2.2),
we consider the subject-specific covariates that might enter into the paired comparison model. If the
associated subject-object interactions is to be selected simultaneously (p ∈ Vgrouped), the full subject-
specific parameter vector γγγp is updated. If it is to be selected separately (p ∈ Vsingle), only a or a single
subject-object interaction parameter γp,m is updated. This procedure is repeated until a predefined
number of boosting iterations bstop is reached. In the next section, we discuss how the optimal number
of boosting iterations can be obtained.
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4.3. Stopping Criteria

The number of boosting iterations bstop is the main tuning parameter in boosting. Typically, a suffi-
ciently high number of iterations is chosen, the optimal number of iterations b∗stop is then determined
afterwards. Common choices for determining b∗stop are either information criteria, such as the AIC or
BIC, or cross-validation. In this paper, we consider only the two information criteria mentioned above,
which are known measures for the trade-off between goodness-of-fit and model complexity. The com-
putation of both criteria is based on the deviance Dev(η̂ηη(b)) and the degrees of freedom df(b) after b
boosting iterations.

The AIC and BIC after b iterations are given by

AIC(b) = Dev(η̂ηη(b)) + 2 · df(b) (11)

and
BIC(b) = Dev(η̂ηη(b)) + log(n) · df(b), (12)

where n is the number of observations, or, in our case, the number of comparisons that are made by all
subjects, namely n =

(
M
2

)
· I. The penalty term, which is 2 for the AIC and log(n) for the BIC, controls

the model complexity, so that, in general, higher values for the penalty term result in sparser models.
Since the boosting algorithm is an iterative procedure, the true degrees of freedom df(b) after b

boosting iterations are unknown and need to be approximated. In the literature, it is often suggested to
use the trace of the hat matrix after b boosting iterations as an approximation for the degrees of freedom
(Tutz & Binder, 2006; Bühlmann & Hothorn, 2007a). Thus, a possible approximation of the degrees
of freedom is given by

df(b) ≈ dftrace(b) = trace(Hb),

where Hb is the approximate hat matrix after b iterations. A detailed derivation of the formula for this
hat matrix can be found in Zahid & Tutz (2013).

An alternative, computationally simpler method proposed by Bühlmann & Hothorn (2007b) uses the
number of parameters that have been selected until the b-th boosting iteration. That is, one uses

df(b) ≈ dfactset(b) = q + (M − 1) +
∑

m,p

I(γ̂(b)
m,p , 0), (13)

where γ̂(b)
m,p are all non-zero subject-object parameters of the b-th iteration, and I(·) is the indicator

function, such that I(·) = 1 if the expression (·) is true and I(·) = 0 else. To limit the computational
burden, we use this more convenient method to approximate the degrees of freedom in the simulation
and application section.

The optimal stopping iteration b∗stop is chosen among the iterations b = 1, . . . , bstop as the one yielding
the best (=lowest) AIC or BIC, respectively. Thus, one has to compute the AIC or BIC for all iterations.
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The optimal stopping iteration is then determined afterwards using

b∗stop = b ⇔ AIC(b∗stop) = min
b=1,...,bstop

AIC(b),

when the AIC is chosen as stopping criterion or

b∗stop = b ⇔ BIC(b∗stop) = min
b=1,...,bstop

BIC(b),

when the BIC is chosen as stopping criterion, respectively.

5. Simulation

5.1. Simulation Setup

We investigate the performance of the boosting algorithm for two simulation settings with 50 simu-
lations for each setting. For the simulated data, we generate 20 subject-specific covariates from the
following distributions X1 . . . , X5 ∼ B(1, 0.3), X6, . . . , X10 ∼ B(1, 0.5) and X11, . . . , X20 ∼ N(0, 1) and
use M = 6 objects that have to be compared by I = 200 subjects. We use K = 3 response categories,
so that each simulated subject has the possibility to prefer the first object, neither of the objects, or the
second object. In both settings, the response is computed by assuming an underlying cumulative BTL
model

logit(P(Yrs ≤ k|(r, s), i)) = θk +

M−1∑

m=1

x(r,s)
m γm +

P∑

p=1

M−1∑

m=1

xi,px(r,s)
m γm,p, k = 1, 2,

with the threshold parameters θ1 = −θ2 = −0.8 and the object parameters γγγ = (γ1, . . . , γM−1)> =

(1.5, 1.1, 0.7,−0.7,−1)>. The subject-specific parameter vectors for the two settings can be found in
Table 1. For each subject-specific covariate from setting 1, the associated subject-object interaction
parameters are selected simultaneously, that is Vgrouped = {1, . . . , 20} and Vsingle = ∅. In setting 2,
the subject-object interaction parameters are selected separately, so that Vgrouped = ∅ and Vsingle =

{1, . . . , 20}.

Setting 1 (grouped) Setting 2 (single)
γγγ1 (0.56,−0.66,−0.58,−0.68, 0.69)> (0,−0.66,−0.58,−0.68, 0)>

γγγ2 (−0.29, 0.19, 0.24, 0.21,−0.12)> (0, 0, 0.24, 0.21,−0.12)>

γγγ6 (−0.48,−0.44,−0.43, 0.5, 0.43)> (0,−0.44,−0.43, 0, 0.43)>

γγγ11 (0.49,−0.48, 0.44, 0.46, 0.3)> (0, 0, 0.44, 0.46, 0.3)>

Table 1: Influential subject-specific parameter vectors γγγp for both simulation settings.

Therefore, only X1, X2, X6 and X11 are the influential variables that should be identified by the BTL-
boost algorithm. As variable selection criterion in each boosting iteration, we use the deviance, which
often yields the fully saturated model when the stopping iteration is sufficiently high, e.g. bstop → ∞
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(see Bühlmann & Yu, 2003). Therefore, there is a need for determining the optimal number of iterations
b∗stop using a stopping criterion that chooses the best model among all iterations. In the next section, we
compare the results when the AIC and BIC are used as stopping criteria. The degrees of freedoms for
the computation of the AIC and BIC are approximated as in equation (13).

5.2. Results

To investigate the performance of the algorithm, we compute the hit rate

HR =

P∑
p=1

M−1∑
m=1

I(γm,p , 0) · I(γ̂m,p , 0)

P∑
p=1

M−1∑
m=1

I(γm,p , 0)
, (14)

which represents the percentage of correctly identified influential subject-object interactions, and the
false alarm rate

FAR =

P∑
p=1

M−1∑
m=1

I(γm,p = 0) · I(γ̂m,p , 0)

P∑
p=1

M−1∑
m=1

I(γm,p = 0)
, (15)

which represents the percentage of non-influential subject-object interactions that are mistakenly iden-
tified as influential subject-object interactions. The closer the hit rate to 1 and the closer the false alarm
rate to 0, the better, because then the model contains many influential subject-object interactions and
few non-influential subject-object interactions at the same time.

The averaged hit rates and false alarm rates for the 50 simulations are summarized in Table 2. In
setting 1, the hit rate is 1 for the AIC and almost 1 for the BIC, however, at the same time, the BIC has
much lower false alarm rate and therefore using the BIC seems more appropriate. In setting 2, the hit
rate for the AIC is 0.0584 higher than for the BIC, however, the false alarm rate is more then tree times
higher for the AIC than for the BIC. Thus, the question of whether the AIC or BIC should be used,
depends on whether one is interested in identifying most of the influential subject-object interactions
(then the AIC seems appropriate) or in identifying many influential subject-object interactions and few
non-influential subject-object interactions at the same time (then the BIC seems appropriate). In both
settings, the false alarm rate is much higher when the AIC is used instead of the BIC. This suggests that
more non-influential subject-object interactions are included in the final model determined by the AIC.

Figure 1 illustrates an exemplary coefficient build-up of the estimated parameters for one out of the
50 simulations. As can be seen the non-influential subject-object interaction parameters (dashed gray
lines) enter the model in higher boosting iterations and their parameter estimates are small because they
are either selected and updated in higher boosting iterations, or they are updated only a few number of
times. Since the AIC determines a higher optimal boosting iteration than the BIC, the figure confirms
that the final model based on the AIC criterion contains more non-influential subject-object interactions
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than the final model based on the BIC criterion.
To measure the discrepancy of the estimates with the true parameter values, we use the MSE. Before

computing the MSE for the final model, a final refitting step using the selected subject-object interaction
parameters is done. Figure 2 displays the MSE for all 50 simulations and suggests that the BIC performs
better than the AIC because of smaller MSEs in all settings.

Setting 1 (grouped) Setting 2 (single)

stopping criterion HR FAR HR FAR

AIC 1.0000 0.1475 0.9867 0.3202

BIC 0.9950 0.0025 0.9283 0.0991

Table 2: Averaged hit rate and false alarm rate for different stopping criteria in both settings.
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Figure 2: Box plots of MSEs for object parameters and subject-object interaction parameters in both
settings. The stars denote the averaged MSE over all 50 simulations.

6. CEMS Data

To illustrate that our variable selection method works, we use the Community of European management
schools (CEMS) data from Dittrich et al. (1998), which was collected in a survey of 303 students of the
Vienna University of Economics. The aim of the study was to investigate the preferences of students for
studying at least one semester abroad in one of 6 different universities (London, Paris, Barcelona,
St.Gallen, Milan and Stockholm) and to establish an overall ranking of these universities. For each
of the

(
M
2

)
=

(
6
2

)
= 15 comparisons of universities, the students could either prefer the first university,

none of both universities, or the second university. Additionally, the data contains P = 8 subject-
specific different characteristics of the students (subject-specific covariates). An overview is given in
Table 3.
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Covariate Description Coding

STUD Main discipline of study 0 = other, 1 = commerce

ENG Knowledge of English 0 = good, 1 = poor

FRA Knowledge of French 0 = good, 1 = poor

SPA Knowledge of Spanish 0 = good, 1 = poor

ITA Knowledge of Italian 0 = good, 1 = poor

WOR Full-time employment while studying 0 = no, 1 = yes

DEG Intention to take an international degree 0 = no, 1 = yes

SEX Gender 0 = female, 1 = male

Table 3: Description of subject-specific covariates.

A model that includes all these subject-specific covariates has a total number of 40 subject-object
interaction parameters. To identify only influential subject-specific covariates, we apply the BTLboost
algorithm with two different settings.

In the first setting, we use Vgrouped = {STUD, WOR, DEG, SEX} and Vsingle = {ENG, FRA, SPA, ITA}.
Therefore, subject-specific covariates containing information about the knowledge of a specific lan-
guage are included in the set Vsingle and are selected interaction-wise, so that the final model does not
necessarily contain all subject-object interactions that are associated to a specific language. In contrast
to this, the set Vgrouped contains subject-specific covariates that are selected along with all associated
subject-object interactions. This distinction was chosen because language specific covariates may in-
teract stronger with one university. For example, students with poor knowledge of Italian may have a
lower tendency to preferring the university of Milan.

In the second setting, we use Vsingle = {STUD, WOR, DEG, SEX, ENG, FRA, SPA, ITA} and Vgrouped = ∅.
Thus, for each subject-specific covariate only the associated subject-object interactions are considered.
For both settings, we apply the BTLboost algorithm to the cumulative BTL model using the AIC and
BIC as stopping criteria. The estimated parameters after a final refitting step can be found in Table
4 and Table 5. Because the BIC performed better in the simulation study, both tables show only the
estimated parameters when using the BIC as stopping criterion.

The results show that the ranking of objects (here universities), which is based on ordering the
estimates for γ̂γγ, is the same for both settings. Milan has the greatest estimate (e.g. γ̂Milan = 1.9781
from Table 4) and thus the most preferred university is Milan, followed by London, Barcelona, Paris,
St.Gallen and the reference university Stockholm, for which γStockholm = 0. However, the ranking
changes for different values of the subject-specific covariates. For example, if we consider students
who are employed full-time while studying (WOR = 1), the ranking is based on γ̂γγ + γ̂γγWOR yielding a
different university ranking for those students.

The estimates γ̂London,ENG, γ̂Paris,FRA, γ̂Milan,ITA and γ̂Barcelona,SPA are all negative valued, and there-
fore they indicate that students with poor knowledge of English, French, Italian and Spanish have a
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lower tendency to prefer the universities in London, Paris, Milan and Barcelona, respectively.
The main difference between setting 1 and setting 2 is that the subject-object interactions associated

with the subject-specific covariates STUD, WOR, DEG and SEX were selected simultaneously in setting 1
and separately in setting 2. Nevertheless, all subject-object interactions that are highlighted in boldface
in Table 4 were also identified in setting 2. These subject-object interactions are the ones with the
largest absolute value within the associated subject-specific parameter. Thus, the model from setting 2
was able to identify the subject-object interactions from setting 1 with the strongest effect.

Setting 1 (grouped)

γ̂γγDEG γ̂γγSEX γ̂γγSTUD γ̂γγWOR γ̂γγENG γ̂γγFRA γ̂γγITA γ̂γγSPA γ̂γγ

London -0.2589 -0.3438 0.2852 0.4469 -0.2579 0 0 0 1.9585

Paris -0.0358 -0.3229 0.8240 1.5443 0 -1.1920 0 0 1.2459

Milan -0.0756 -0.4467 0.0330 1.1407 0 0 -1.6126 0 1.9781

Barcelona -0.1100 -0.3149 0.1048 1.2047 -0.3655 0.2479 0 -1.4211 1.9380

St.Gallen 0.3990 -0.0579 -0.2931 0.0019 0.1779 0 0 0 0.4935

θ̂1 = −θ̂2 = −0.2762

Table 4: Estimated parameters and selected subject-object interactions after a final refitting step for
setting 1. For the subject-specific covariates DEG, SEX, STUD and WOR, the associated subject-
object interactions with the largest absolute value are highlighted in boldface.

Setting 2 (single)

γ̂γγDEG γ̂γγSEX γ̂γγSTUD γ̂γγWOR γ̂γγENG γ̂γγFRA γ̂γγITA γ̂γγSPA γ̂γγ

London 0 0 0 0 -0.2828 0 0 0 1.8104

Paris 0 0 0.7418 1.3561 0 -1.2347 0 0 1.1137

Milan 0 -0.2556 0 0.9994 0 0 -1.5755 0 1.8323

Barcelona 0 0 0 1.0412 -0.3659 0.2044 0 -1.4243 1.7942

St.Gallen 0.4933 0 -0.3907 0 0.1754 0 0 0 0.4628

θ̂1 = −θ̂2 = −0.2754

Table 5: Estimated parameters and selected subject-object interactions after a final refitting step for
setting 2.

7. Concluding Remarks

Boosting is a technique that addresses the estimation problems in high dimensional settings and pro-
vides variable selection when using component-wise boosting. In this paper, we proposed a new es-
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timation procedure for ordinal BTL models based on this technique. The simulation results showed
that the method performs well concerning the identification of influential covariates. In the application
section, the selected subject-object interactions are similar to those from the final model of Dittrich
et al. (1998), although they used a different model and a variable selection approach based on forward
selection and backward elimination. In the algorithm proposed here, the variable selection is carried out
during the fitting process. Thus, it can also be applied in cases, where the maximum likelihood estimate
does not exist, for example, when the data contains more subject-specific covariates than observations.

The model estimation for ordinal BTL models were computed with the ordBTL package (Casalic-
chio, 2013), which is implemented in the statistical software R (R Core Team, 2013) and is able to
fit models with any number of response categories. Other packages for model estimation, which can
handle responses up to 3 categories but have no built-in variable selection procedure, are prefmod
(Hatzinger & Dittrich, 2012) and BradleyTerry2 (Turner & Firth, 2012).

A. Matrix Representation

The representation used here is that of a multivariate generalized linear model, which has, in terms of
paired comparisons, the following basic form

g
(
πππ(r,s),i

)
= ηηη(r,s),i = X(r,s),iβββ, (16)

where g is a (K−1)-dimensional link function, βββ is the vector of coefficients, πππ(r,s),i =
(
π(r,s),i

1 , . . . , π(r,s),i
K

)>

is the vector of response probabilities, ηηη(r,s),i =
(
η(r,s),i

1 , . . . , η(r,s),i
K−1

)>
is the subject-specific linear predic-

tor, and X(r,s),i is the design matrix for the pair (r, s) and subject i. If the design matrix and the link
function g is specified, the Fisher scoring algorithm for multivariate maximum likelihood estimation
can be used to obtain the parameter estimates (see Fahrmeir & Tutz, 2001; Tutz, 2012).

Before describing the design matrix into more detail, we first let θθθ> = (θ1, . . . , θq), with q =
⌊

K−1
2

⌋
,

denote a vector containing all threshold parameters we want to estimate and θ̃̃θ̃θ> = (θ1, . . . , θK−1) denote
a vector containing all threshold parameters in the model, including those that are restricted by the
symmetry constraints from equation (5) and (6). For each pair (r, s) and each subject i, we define the
matrix Q(r,s),i of dimension (K − 1) × q, such that

Q(r,s),iθθθ = θ̃̃θ̃θ (17)

satisfies the symmetry constraints and ensures that the thresholds will be symmetric. Thus, the matrix
can be seen as a so-called constraint matrix (for more details see Yee, 2010).

To obtain the general structure of Q(r,s),i, we use the null vector 0>q = (0, . . . , 0) of length q and the
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matrices

Iq×q =



1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1



and Jq×q =



0 · · · 0 −1
... . .

. −1 0

0 . .
.

. .
. ...

−1 0 · · · 0



.

The matrix Q(r,s),i satisfying equation (17) is a block matrix that has the same form for each pair (r, s)
and each subject i, namely

Q(r,s),i =



Iq×q

0q
>

Jq×q


if K is even and Q(r,s),i =


Iq×q

Jq×q

 if K is odd.

The subject-specific design matrix used in equation (16) is given by

X(r,s),i =
[
Q(r,s),i, 1K−1 ⊗

(
x(r,s)

)>
︸             ︷︷             ︸

X(r,s),i
0

, 1K−1 ⊗
(
x(r,s),i

1

)>
︸              ︷︷              ︸

X(r,s),i
1

, . . . , 1K−1 ⊗
(
x(r,s),i

P

)>
︸              ︷︷              ︸

X(r,s),i
P

]
,

where the vector 1K−1 = (1, . . . , 1)> has the length K − 1.
In a complete paired comparison experiment, we have

(
M
2

)
comparisons for each subject, where

(
M
2

)
=

M!
2!(M−2)! denotes the binomial coefficient representing the number of all distinct pairs when comparing
M different objects, namely (1, 2), (1, 3), . . . , (r, s), . . . , (M − 1,M), for all r < s. The complete design
matrix X contains information about all possible comparisons made by any subject and has therefore
I ·

(
M
2

)
rows. It can be written as a block matrix of the form

X =



X(1,2),1

...

X(M−1,M),1

...

X(1,2),I

...

X(M−1,M),I



=



Q(1,2),1 X(1,2),1
0 X(1,2),1

1 . . . X(1,2),1
P

...
...

...
...

Q(M−1,M),1 X(M−1,M),1
0 X(M−1,M)

1 . . . X(M−1,M),1
P

...
...

...

Q(1,2),I X(1,2),I
0 X(1,2),I

1 . . . X(1,2),I
P

...
...

...
...

︸      ︷︷      ︸
Q

Q(M−1,M),I

︸      ︷︷      ︸
X0

X(M−1,M),I
0 ︸      ︷︷      ︸

X1

X(M−1,M),I
1 . . .

︸      ︷︷      ︸
XP

X(M−1,M),I
P



,

where Q is the matrix for the thresholds θθθ, X0 is the matrix for the object parameters γγγ, and X1, . . . ,XP

are matrices for the subject-specific parameters γγγ1, . . . , γγγP.
The linear predictor ηηη =

(
ηηη(1,2),1>, . . . , ηηη(M−1,M),1>, . . . , ηηη(1,2),I>, . . . , ηηη(M−1,M),I>)> contains all com-
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parisons made by any subject and has the form ηηη = Xβββ, with the vector βββ = (θθθ>, γγγ>, γγγ>1 , . . . , γγγ
>
P )

containing all parameters we want to estimate, that is, all q threshold parameters, all M − 1 object
parameters and all M − 1 subject-object interaction parameters for each of the P subject-specific co-
variates.
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