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Abstract

Penalized splines have become a popular tool to model the trend component in economic
time series. The outcome of the spline predominantly depends on the choice of a penaliza-
tion parameter that controls the smoothness of the trend. This paper derives the penal-
ization of splines by frequency domain aspects and points out their link to rational square
wave filters. As a novel contribution this paper focuses on the so called excess variability
at the margins that describes the undesired increasing variability of the trend estimation
to the ends of the series. It will be shown that the too high volatility at the margins can be
reduced considerably by a time varying penalization, which yields more reliable estimations

for the most recent periods.
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1 Introduction

An important and fundamental challenge in economics, especially in business cycle re-
search, is a reasonable decomposition of time series into trend and cycle. Meanwhile a wide
range of instruments in order to estimate these components exists, where penalized splines
(O’Sullivan, 1986; Eilers/Marx, 1996) are among the most popular tools. There are strong
similarities between penalized splines and the Hodrick-Prescott filter (Hodrick/Prescott,
1997), which might be the most widespread instrument for trend estimation in economics
and Paige (2010) shows that the Hodrick-Prescott filter indeed is a special case of a penalized
spline. The decisive feature of these instruments is that the estimated trend predominantly
depends on the choice of a single penalization parameter A that determines the smoothness
of the trend.

In most applications of the Hodrick-Prescott filter A is set to 1600 for quarterly data. This
traces back to Hodrick/Prescott (1997), who derived this value by interpreting the filter
as an optimal Wiener-Kolmogorov filter (Whittle, 1983; Bell, 1984). As this derivation
is based on rather unrealistic assumptions the choice of A = 1600 is often criticized as
dubious (Danthine/Giradin, 1989). Furthermore, it is criticized as too low (McCallum,
2000; Flaig, 2012) and not data driven (e.g. Schlicht, 2005; Kauermann et al., 2011). To
this point data driven methods like generalized cross validation (Hastie/Tibshirani, 1990)
and the incorporation of the Hodrick-Prescott filter or penalized splines into a linear mixed
model help to overcome this problem. Generalized cross validation induces a too wiggly
trend estimation for most series with correlated errors (Diggle/Hutchinson, 1989; Altman,
1990; Hart, 1991), but it can be extended to account for a correlated residual structure
(Kohn et al., 1992; Wang, 1998). Nevertheless, Oppsomer et al. (2001), Proietti (2005)
and also Dagum/Giannerini (2006) demonstrated that this technique is very sensitive to
the assumptions about the residual correlation structure. To this point the mixed model
approach is advantageous, as it is relatively robust with regard to a misspecification of the

residual correlation structure (Krivobokova/Kauermann, 2007).

In economics the separation of trend and cycle is often motivated by the conception that
these components are characterized by distinguishable spectral properties. In this sense
the trend as the long run development of the series is described by fluctuations with high
periodicities and the cyclical component by medium and low periodicities. This allows
defining trend and cycle by bandwidths of frequencies. A very common definition traces
back to Burns/Mitchell (1946), who describe the cycle by periodicities between six and 32
quarters. From this point of view the penalization can be selected such that the filters
mainly extract the desired frequencies. Such a method was demonstrated by Todter (2002)
for the Hodrick-Prescott filter. This paper will show a related approach for penalized splines,
where splines based on a truncated polynomial basis are considered. This type of splines is
interesting, as it is closely related to the Hodrick-Prescott filter. Moreover, Proietti (2007)
describes the link between these splines and square wave filters (Pollock, 2000, 2003).
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The extraction of frequency bands by linear filters like penalized splines exhibits unsolved
problems. One massive problem is that linear filters loose the ability to suppress high
frequencies for estimations at the ends of the series. This is due to the increasing asymmetry
of the filter weights for estimations at the margins and leads to an undesirable increase of
the volatility of the estimations for the first and last periods. This increasing volatility at
the margins is often called excess variability. Especially as researchers are predominantly
interested in the trend of the most recent periods this excess variability turns out to be a
serious problem, since it heavily affects the reliability of the estimations at the ends of the
series. An existing method to overcome this problem is to attach forecasts to the end of
the series. However, as it is also shown in this paper, a high number of forecasts is required
so that this approach is of limited practicability. This paper describes another approach to
get a handle on the excess variability. It is shown that the excess variability can be reduced
considerably by a time varying penalization, where the penalization is allowed to increase to
the margins. A time varying penalization was already suggested by Razzak /Richard (1995)
and Pollock (2009) in order to account for structural breaks and also Crainiceanu et al.

(2005) introduced a time varying penalization for splines within a mixed model framework.

The paper is structured as follows: In the first section penalized splines based on a truncated
polynomial basis are discussed briefly. Then it is shown how to choose the penalization in
order to extract certain frequency bands. Afterwards it is explained how spectral analysis
and a time varying penalization can be used to tackle the problem of the excess variability
at the margins. The next section describes the effects of the time varying penalization and
also compares the properties of different splines in the frequency domain. Finally section 4

gives an empirical example.

2 Penalized splines

A meanwhile popular instrument to estimate the trend component of a series {yt}thl are
penalized splines with a truncated polynomial basis (Brumback et al., 1999; also Ruppert
et al., 2003), following denoted as tp-splines. In a first step the explanatory variable time ¢,
t=1,..,T, is divided into m — 1 intervals by setting m knots 1 = k1 < ka < ... < Kp—1 <
Kkm = T. The distance between the knots generally can vary, but in this paper always
equidistant knots will be used. After the knots are set a tp-spline of degree I, henceforth
denoted as tp(l), is defined as:

yr=f(t) +ee =P+ Bot + .+ Brat + Bra(t — w2)'y + o+ Balt — k1)’ +er, (1)

with (t — k), = =,
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where d = m+[—1. The first part is a polynomial of degree [, while the second part consists
of truncated polynomials that enable f(t) to become very flexible. In matrix notation the

tp-spline is defined to:

y=2B+e, (2)
11 ... 8 (1-r)b ... (I—kma)h
withZ =1: = : : ;
1 T ... T" (T—ro) ... (T—kma)

where 8 = (81, ..., 84)s € = (€1, ...,er) and y = (y1, ..., yr)’. tp-splines can be interpreted
as a continuous function of piecewise defined polynomials of degree . Due to the truncated
polynomials the coefficient of the highest polynomial changes at every knot, which allows
the spline to become very flexible. To regulate the flexibility of tp-splines and to receive a
smoother function the concept of penalization is used. As the coefficients §jyo, ..., g drive
the flexibility of the tp-spline, the volatility of the estimated function can be determined
by controlling the absolute values of these coefficients. For a given parameter A the vector

B()\) is estimated by minimizing the penalized least squares criterion.

T d
min PLS(A) = [ye — fO1P+ X > 57 (3)
p t=1 j=1+2
The solution of this minimization is:
BN =(Z'Z+ 1K) Z'y, (4)
where K 4,4 = diag(0,...,0,1,...,1).
S—— Y—
+1 m—2
The fitted values for a given X\ are defined by:
g\ =Z(Z'Z + ) \K) 'Z'y. (5)
H(\)

H ()\) is the hat matrix of the spline that contains the filter weights. The penalized least
squares criterion describes a tradeoff between a close fit of the trend to the original data and
a smooth trend function. The smoothness of the trend can be regulated by the penalization
parameter \, where high values of A induce a smooth trend. An interesting feature of tp-
splines is their link to the Wiener-Kolmogorov filter (see also Harvey, 1989; Kaiser /Maravall,
2001; McElroy, 2008) and square wave filters (Pollock, 2000, 2003). For T" equidistant knots
Proietti (2007) describes a tp-spline of degree [ as a time series model where the trend is
a [ + 1-fold integrated random walk and the cycle is white noise. Thus tp-splines are
closely related to square wave filters that arise from the model framework of the Wiener-
Kolmogorov filter. Moreover, Paige (2010) shows that for [ = 1 and knots at every point in
time £ = 1,2, ...,T, the spline is equal to the Hodrick-Prescott filter.



3 The optimal penalization 4

3 The optimal penalization

3.1 The penalization by frequency domain aspects

The conception that trend and cycle are characterized by their spectral properties can be
employed to derive the penalization of splines. For a detailed discussion of spectral analysis
see Granger/Hatanaka (1964), Harvey (1993), Hamilton (1994) or Mills (2003). In general
spectral analysis allows decomposing a series {yt}g;l into oscillations of different frequencies.
This is utilized to define trend and cycle by certain bandwidths of frequencies. The trend
represents the long run development of the time series and is supposed to be smooth so
that it is described by oscillations with low frequencies, i.e. high periodicities. The cycle
contains economic activity characterized by booms and recessions and is more volatile over
time, since it reflects the development on the medium and short run. Consequently it
is defined by medium and high frequencies. Extracting the trend by frequency domain
aspects implies that oscillations with higher frequencies are suppressed, while those with

lower frequencies are left unchanged.

To this point the gain function provides information about the impact of an instrument for
trend estimation on the original series in the frequency domain. Using the matrix notation
of a penalized tp-spline §(A\) = H(\)y, where h;; is the j*! element in the i*® row of H (),
it is obvious that the spline defines a linear filter §; = Z;‘-le hijyj (e.g. Harvey, 1993). The

gain function of a spline for estimation ; and a frequency w is given to (e.g. Mills, 2003):

2 2
T—t T—t

gr(w, ) = Z hijecos(wy)| + thJ.},.tSiﬂ(OJj) . (6)
j=1—t j=1—t

The gain can be interpreted as the factor by which an oscillation of frequency w is damped
or amplified, when a linear filter is applied. For an ideal instrument in order to extract the
trend component the gain function should be one for low frequencies up to a certain cut-
off frequency w®’, and zero for higher frequencies. This would imply that low frequencies
are not affected by the filter while higher frequencies are completely eliminated. Such an
instrument is called lowpass filter. The gain function of an ideal lowpass filter can be used
to define trend and cycle in the frequency domain and to construct a selection criterion for
the penalization parameter of splines. Such approaches were made by Baxter/King (1999)
or Tédter (2002), who aimed to minimize the deviation between the gain function of the

filter and the ideal gain function.

As an example Figure 1 shows an ideal gain function with a cut-off frequency of w® = 0.5.
It adopts a value of one for frequencies in the interval [0, 0.5]. For all higher frequencies the

ideal gain function has a value of zero.
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gain function of an ideal lowpass filter

1.0

0.8
1

—— gain function of an
ideal lowpass filter

gain
0.6

0.4

0.0

0.0 0.5 1.0 15 2.0 25 3.0

frequency

Figure 1: Example for an ideal gain function

The approach in this paper aims to minimize the square deviation between the gain func-
tion of a penalized spline form an ideal gain function by the selection of the penalization
parameter A\. Note that it is not possible to completely realize an ideal gain function, since
this would require an infinite number of filter weights (Oppenheim/Schafer, 1989). Let the
gain of the spline for estimation ¢, parameter A and frequency w be denoted as g;(w, \)

and the ideal gain as g*(w), then a so called loss l;(\) can be defined:

™

L) = / [0(@) — gu(w, A) 2. (7)

0

The loss is the squared deviation of the real gain function from the ideal one in the interval
[0,7]. Now A is selected such that /;(\) is minimized. Since the minimization of [;(\) is
numerically complicated for continuous values of w, it is approximated by a sufficient high
number of discrete frequencies. If w € R™”*! denotes a vector of frequencies from zero to 7
in very small steps, e.g. w = (0,0.001,0.002, ..., )", then l;(\) can be written for discrete

values:
n

(V) =) [g"(@i) = grlwis V)] -6, (8)

i=1
where n is the number of elements in w and ¢ is the distance between the elements in w, i.e.
0 = wj —wj—1. The minimization can be done by algorithms like Newton-Raphson, fisher
scoring or a grid search. If a grid search is used then a fast and stable implementation of

penalized splines is required, which is for example described in the appendix of Ruppert et
al. (2003).
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3.2 Accounting for a time varying gain function

Before the penalization is selected by defining an ideal gain function and minimizing the
loss, it has to be focused on the problem that the gain functions of estimations for different
periods might not be equal. This is due to a changing structure of the filter weights,
especially at the margins of the series. As an example Figure 2 displays the filter weights
for a tp(1) that is applied to a series with 100 observations with A = 1000 and 100 equidistant
knots. The left plot of Figure 2 shows the filter weights for estimations near the middle of
the data. Clearly they have a very similar and almost symmetric structure. In contrast the
right plot displays the weights for estimations close to the margin. The weight structure

increasingly changes for estimations closer to the end of the series.

filter weights filter weights
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I

0.20
L

* 50" estimation
+ 55" estimation e seadea s 90" estimation
4 60" estimation *+ 95" estimation
= 65" estimation| * * ¢ttt 4 98" estimation
= 100" estimation
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0.04
I
015
L

weight
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|
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0.02
I

0.01
I

0.00
I/
ORI
R
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weight nr. weight nr.

Figure 2: Filter weights for different estimations

This change of the filter weight structure affects the gain. Figure 3 shows the gain functions

of estimations for different periods, which refer to the tp(1) of the example above:

gain function for the 50" estimation gain function for the 60" estimation
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Figure 3: Gain functions of the ¢p(1) for estimations around the middle and at the margin
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The gain function for the 50" and 60™ estimation look very similar. Both are good ap-
proximations of an ideal gain function and effectively eliminate high frequencies. This is
different for estimations for periods at the margins. The gain functions for the 95" and
100" estimation adopt values greater that one for certain frequency bands and are not able
to eliminate high frequencies. This insufficient suppression of high frequencies induces a

too volatile trend estimation at the ends of the series.

Figures 2 and 3 motivate the reasons for the excess variability at the margins. However,
the gain function or the filter weigh structure are not appropriate in order to describe this
excess variability, as it is at least costly to consider the gain function or the filter weights
for the estimations of all periods. It is much more practicable to regard the loss over the
estimations for all periods, as this allows to represent the excess variability with one single
graph. This is following denoted as the loss function. As an example the left plot of Figure
4 shows the loss function for the tp(1) with A = 1000 and T' = m = 100. For the ideal
gain function a cut-off periodicity of w® = 0.196 was chosen, which implies a periodicity
of eight years in the case of quarterly data. Furthermore the right plot of Figure 4 displays

for every @, t = 1,...T, that value of A that minimizes the loss for this specific estimation.

loss function optimal A for each estimation
°
8 J S 4
S 3
]
g |
S
g
s | S 4
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El
5
osevesnang,,, asosnomoons® °
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
estimation nr. estimation nr.

Figure 4: loss function and optimal values for A

The left plot of Figure 4 shows that the loss is rather low and similar for most estimations
in the middle of the data. However, for the estimations for about the first and last ten
periods the loss starts to increase. This illustrates that the excess variability mainly affects
the margins of the series. Moreover, the right plot shows that except of the margins all
estimations would require almost the same penalization in order to minimize the loss. At
the margins the required penalization heavily increases and is up to 180 times higher than
in the middle.

In order to develop methods to reduce the volatility at the margins it is useful to be aware of
the factors that determine the excess variability. Beside the degree of the spline, which will

be examined in detail later, two remaining potential factors are the value of the penalization
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parameter and the length of the series. To examine the influence of the length of the time
series, Figure 5 shows the loss functions of a tp(1) with A = 1600 that is applied to series
with varying length. To avoid any influence of the number of knots m was set equal to the

number of observations T in every case.

50 observations 100 observations
{4
s g4
3
Bl o
s g
g g °
s
S I o g4
g 8
© (=]
8 4 Tteeiieeccecccccsassccosecsnnannce® 8 |
o T T T T T T ° T T T T T T
0 10 20 30 40 50 0 20 40 60 80 100
estimation nr. estimation nr.
150 observations 200 observations
o s
Q4 g
s S
9 9
o o o o
173 [0
S g | o g |
S S
8 8 |
3 ’ S
s — — s | — —
o T T T T ° T T T T T
0 50 100 150 0 50 100 150 200
estimation nr. estimation nr.

Figure 5: loss functions of a tp(1) for series of different length

Figure 5 shows that independent of the number of observations about the first and last ten
estimations are affected by the excess variability. Thus the length of the series seems to
have no effect on the excess variability. This is different for the value of \. Figure 6 displays
the loss functions of a tp(1) with different values of A that is applied to a series with 100

observations. In every case m was set equal to T

A=10 A =500
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Figure 6: loss function of a tp(1) for different values of A

Clearly the number of estimations that is affected by the excess variability depends on the

value of A\. For A = 10 only about the first and last three estimations show an increased
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loss. However, for A = 10000 about the first and last 20 estimations are affected by the
excess variability. The number of estimations that exhibit an increased loss to the margins
rises with higher values of the penalization. It follows from Figures 5 and 6 that the excess

variability depends on the penalization but not on the number of observations.

3.3 The time varying penalization and the number of knots

The previous section described the undesired increase of the volatility to the margins. This
and the next section show how the excess variability can be reduced by a time varying
penalization that is allowed to increase to the margins. Recall the matrix formula of a
penalized tp-spline from section 2, where the penalization was defined by the product of A
and the penalty matrix K = diag(0, ...,0,1,...,1). The product of A and the i*" diagonal
element of K gives the degree of penalization for the coefficient 8;. To achieve a flexible
penalization the scalar A\ has to be replaced by a vector A = (0,...,0, A1, A2, ..., A—2)” €
R and one defines the penalty matrix as K = diag(A). The penalized spline with a time

varying penalization can then be written in matrix notation as
yN) =2(Z2'Z+ K)'Z'y. (10)

As each coefficient of the truncated polynomials controls the change of the trend function
at a certain knot, the penalization is not fixed any more but can vary over time. Figure 4
showed the penalization needs to increase to the ends of the series, while all other estima-
tions require about the same degree of penalization. Consequently it seems appropriate to

let the values of \ rise to the ends of the series to reduce the excess variability.

The basic purpose of the time varying penalization is to set a higher penalization at the
margins of the series in order to reduce the excess variability. To this point it has to be
considered how the penalization shall rise to the margins. Figure 4 suggests that a linear
increase of the penalization might be appropriate so that the first and last j penalization
parameters increase to the margins by a linear function. Then the last j values of A can be
expressed as

)\m—2—j+i =ap+ay-t, 1=1,...,7. (11)

The first § A’s are defined just conversely, i.e.
)\1 = )\m,Q, )\2 = )\mfg, ceey )‘j = )\mflfj. (12)

« is the value for the \’s closer to the middle which do not need to rise. As seen in Figure
4 the majority of estimations around the middle require about the same penalization. Thus
it is sufficient to choose for a that value of A that minimizes the loss for the estimation in
the middle of the series. As a consequence the first and last j A’s are defined according to
(11) and (12) while all other \’s are set to ay.
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A further condition for the time varying penalization is that it shall reduce the excess
variability at the margins without increasing the loss of estimations for periods closer to
the middle. A criterion that is able to fulfil this condition is to minimize the cumulative

loss of the estimations for all periods (see also Blochl, 2014)

T
LA =) (N, (13)

by the time varying penalization. As it will turn out in the next section this criterion
is suitable to reduce the variability at the margins without strongly affecting all other
estimations. The minimization of the cumulative loss is reasonable, as one is usually not
interested in a single estimation, but in the trend of the whole time series. Given the
condition of a linear increase, the cumulative loss L(A) is minimized subject to (11) and
(12). This can be done by algorithms like Newton Raphson, fisher scoring or a grid search.
Because qy is fixed, the two remaining parameters are oy and j. One has to consider that
Jj is an integer, so L(A) is minimized over aq for different, fixed values of j. Finally this

value for j is chosen that yields to the lowest cumulative loss.

Besides the flexible penalization also a value for the number of knots m has to be selected.
In general a higher number of knots allows a greater flexibility for the trend function. As
Ruppert (2002) shows, there is a minimum number of knots that is necessary to achieve a
reasonable fit of the trend function, but there are hardly changes if the number is further
increased. Moreover, a higher number of knots can slightly increase the mean squared error
(Ruppert, 2002). However, in order to reduce the excess variability at the margins it is
preferable to choose a high number of knots, as it allows an accurate determination of the
flexible penalization at the margins. As seen in Figure 4, the estimations for the first and
last periods require different values of the penalization parameter. If the number of knots
is too low then it might be not possible to set appropriate values of the penalization for all
estimations at the margins. Thus the number of knots should generally be set as high as
possible. In this paper for the tp(1) m is always set equal to T'. As equidistant knots are
chosen this setting is identical to the Hodrick-Precott filter. Splines of higher degrees can
become numeric instable, when the number of knots is too high (e.g. Fahrmeir et al., 2009).
Hence for splines of higher degrees the number of knots should be set to a high value that

still allows a numeric stable estimation.

3.4 Effects of the time varying penalization

The previous sections showed methods how to select the penalization of splines by frequency
domain aspects and how to describe the increasing variability to the margins. It was argued
that a time varying penalization can help to reduce this undesired increase of the variability,
where the penalization shall rise to the margins. In order to show the effects of this time
varying penalization it is applied to a simulated time series. To this point a cut-off frequency

of w = 0.196 is selected. Assuming that the exemplary data are quarterly this implies a
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cut-off periodicity of eight years, which is in line with Burns/Mitchell (1946). The simulated
series contains 140 observations which might be not unrealistic for most quarterly economic
time series. Table 1 shows the resulting parameters for tp-splines of degrees one, two and
three.

Table 1: Optimal parameters for w® = 0.196

’spline‘ m ‘ o o ‘ 7 ‘
tp(1) | 140 821 654 21
tp(2) | 140 | 79678 112500 | 28
tp(3) | 140 | 18.7-10° | 40.6-10° | 35

For example, according to Table 1, the last j values of A for the tp(1) are defined by
Am—2—j4+i = 821 +654 -4, 4 =1,..., 7, where j = 21. The first 21 values of the penalization
A1, ..., A1 are defined analogously to (12). The remaining parameters Mg, ..., A\117 do not
require an increased penalization and are set to 821. Table 1 shows that tp-splines of higher
degrees require a larger increase of the penalization, where the increase also has to start
closer to the middle. For the tp(1) it is sufficient to increase the penalization for the first
and last 21 values while for the ¢p(3) the first and last 35 penalization parameters need
to increase. Table 2 shows the basic results of the different types of splines for fixed and
flexible penalization. For the fixed penalization the penalization parameter A is set to the

value of g and the spline is calculated according to formula (5):

Table 2: loss for a cut-off periodicity of w® = 0.196

’ spline ‘ penalization | 70" estimation ‘ 140" estimation ‘ L(\) ‘

tp(1) fixed 0.019 0.320 4.706
flexible 0.019 0.144 4.035
1p(2) ﬁx'ed 0.013 0.602 5.259
flexible 0.013 0.330 4.264
1p(3) fixed 0.009 0.886 6.232
flexible 0.010 0.552 4.911

Let’s just focus on the results for the fixed penalization at first. Splines of higher degrees
yield a lower [oss in the middle but a much higher loss at the margins. The loss of the tp(1)
in the middle is with 0.019 almost two times higher than the one of the ¢p(3). However, the
loss of the tp(3) at the margin is almost three times higher than the one of the ¢p(1). The
different results of the splines also become obvious when their gain functions are considered.
These are shown in Figure 7 that displays the gain functions for the splines in the middle

oth estimation). In the middle clearly tp-splines

(70*" estimation) and at the margin (14
with a higher degree can extract frequency bands more precisely. The frequency band for
the transition of the gain function from one to zero gets smaller when the degree of the

spline is increased.
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Figure 7: Gain functions in the middle and at the margin

This also shows the link of penalized tp-splines and rational square wave filters that is
already described in Proietti (2007). The degree of the spline controls the transition of the
gain function from one to zero while the penalization parameter determines the approximate
cut-off frequency. At the margin splines of higher degrees increasingly loose the ability to
suppress high frequencies inducing a much higher excess variability.

If the results for the flexible penalization in Table 2 are considered then one can see that
the loss at the margins was reduced strongly in every case by around 38-55 percent, while
the loss in the middle was hardly affected. Moreover the cumulative loss was decreased
for every spline. To show the effects of the flexible penalization for the whole time series,

Figure 8 displays the loss functions for both the fixed and the flexible penalization.
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Figure 8: loss functions for fixed and flexible penalization
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Clearly the tp(1) exhibits the lowest excess variability at the margins. Moreover, for the
tp(2) and tp(3) more estimations are affected by the excess variability than for the ¢p(1).
The most important result of Figure 8 is that in every case the loss at the margins could
be reduced considerably by the flexible penalization while it was increased only slightly for
some estimations closer to the middle. As the cumulative loss was decreased for every spline
the reduction of the loss at the margins clearly outweighs these slight increases. Especially
for the tp(2) and tp(3) the flexible penalization induced hardly any notable increases of the
loss and clearly improves the results at the margins. Consequently Figure 8 shows that
the flexible penalization is able to reduce the excess variability at the margins and to yield
more reliable estimations for the most recent periods. Another important result is that
there is clearly a tradeoff between a good approximation of an ideal gain function for most
estimations around the middle and a low excess variability at the margins. Splines of higher

degrees yield a better adaptation to an ideal gain function for the majority of estimations

but also exhibit a far higher excess variability at the margins.

An existing method to overcome the problem of the excess variability at the margins is to
attach forecasts to the end of the series. As Figure 8 shows in this case at least forecasts for
the next 15 periods are required. For quarterly data this implies that one hast to predict
data for the next four years. As the prediction errors are likely to be large for such a

distance, the approach to add forecasts seems to be of limited practicability.

Finally, to get a better understanding of the effects of this time varying penalization it is
worth considering the filter weights. Figure 9 plots the weights of the ¢p(1) with the fixed
and the flexible penalization of the example above in the middle (70*" estimation) and at

the margin (140" estimation).
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Figure 9: Filter weights for fixed and flexible penalization
The left plot of Figure 9 shows the weights for the estimation in the middle. There are

almost no differences between fixed and flexible penalization. The weights are symmetric

where the highest weight is about 0.07. This is different for the estimation at the margin.
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As seen in Figure 2 the weight structure at the margin is not symmetric and the weights
for the last few observations are very high. Consequently the estimation for the last period
is predominantly influenced by few observations at the end of the series, especially by the
last one. This causes the excess variability and deters the estimations for the periods at
the margin to the value of the last observation. The time varying penalization dampens
this behavior of the weights at the margin. The right plot shows that the time varying
penalization reduced the weights that are attached to the last five observations, while
others closer to the middle are increased in absolute values. Due to this declined influence
of the last few observations the distortion of the trend estimation for periods at the margin

to the value of the last observations is reduced.

4 Empirical application

In order to demonstrate the effect of the flexible penalization on real time series, the trend
component of the seasonally adjusted quarterly real GDP of Switzerland is estimated!.
The data start in the first quarter 1980 and end in the third quarter 2013 so that there
are 135 observations. The trend shall be defined by a cut-off periodicity of eight years and
is estimated with a ¢p(1). The resulting optimal values for the flexible penalization are
ap=821, oy = 845 and j = 21.
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Figure 10: Trend estimation of Swiss GDP and first differences for fixed and flexible penalization

The left plot of Figure 10 shows the Swiss GDP as well as the estimated trend resulting
from the fixed and flexible penalization. Especially at the end of the series are clear differ-

ences between the estimations. In both cases the trend growth rate declines after 2008, but

'The data are from the Swiss Secretariat of Economic Affairs, http://www.seco.admin.ch.



5 Conclusion 15

the decline is much larger for the fixed penalization. The trend according to the flexible
penalization exhibits much larger growth rates and lies clearly above the one of the fixed
penalization for the most recent periods. The right plot of Figure 10 shows the first differ-
ences of the trend for the estimations. Also the first differences only deviate at the margins
of the series. In both cases the first differences decrease since about 2008, but the growth

rate of the trend according to the time varying penalization has stabilized on a higher level.

It is also interesting to consider the effects of the time varying penalization on the business

cycle. This is shown in Figure 11 for both cases.

estimated business cycles

— fixed penalization
—— flexible penalization

business cycle

1980 1985 1990 1995 2000 2005 2010

time

Figure 11: Estimated business cycle for fixed and flexible penalization

Also here the flexible penalization affected the margins of the series while it had no effect
in the middle. It attributed the recession in the years 2008 and 2009 to a larger degree to
the business cycle. Furthermore the output gap at the end of the series is much larger for
the flexible penalization. As seen in Figures 2 and 9 for the estimations close to the end
of the series the last observation is the most influential, which causes the excess variability.
Thus in most cases the output gap is distorted to zero at the end of the series, as the last
estimations tend to the value of the last observation. The flexible penalization reduces this

distortion, which results in a much larger output gap at the margin in this example.

5 Conclusion

One of the unsolved problems of trend estimation is to get reliable results for the most
recent periods. Due to the increasing asymmetry of the filter weights the volatility of esti-
mations at the margins undesirably increases, which is known as the excess variability. The
approach in this paper used penalized splines in order to estimate the trend component.
The penalization was selected such that the gain function of the spline shows a minimal de-

viation from an ideal gain function. On the basis of this approach it was demonstrated that
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the deviation of the ideal gain function increases strongly for estimations at the margins.
This behavior was described and visualized by the loss function that shows the deviation

between real and ideal gain function over all periods.

The increasing variability of estimations at the margins was tackled by a time varying
penalization. In detail the penalization was increased linearly to the margins, where the
increase was such that the cumulative loss was minimized. It was shown that this criterion
is capable of reducing the excess variability without strongly affecting other estimations

closer to the middle of the series.

Moreover this paper showed that the degree of the spline strongly influences its properties
in the frequency domain and pointed out the link between penalized tp-splines and rational
square wave filters. The degree of the spline controls the transition of the gain function
from one to zero while the penalization parameter determines the approximate cut-off fre-
quency. Splines of higher degrees exhibit a more rapid transition so that they are better
approximations of an ideal gain function. However, splines of higher degrees also suffer
from a far higher excess variability at the margins. Thus there is clearly a tradeoff between
a precise gain function of the estimations for most periods and a low excess variability at

the margins.

Finally the paper demonstrated the effects of this time varying penalization for a real time
series. To this point the trend of the Swiss GDP was estimated. There were clear differences
between the trend according to the time varying penalization and the trend of the "standard
approach" with a fixed penalization. In detail the time varying penalization showed higher
trend growth rates over the last five years as well as a far higher output gap for the most

recent periods.

The approach of this paper to get a handle on the excess variability could not completely
eliminate the undesired volatility at the margins. Nevertheless, it could be shown that it
is capable of improving the reliability of the estimation to the ends of the series. Thus this
time varying penalization might be a useful instrument for researchers, especially when the

focus lies on the most recent periods.
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