
Roman Hornung, Christoph Bernau, Caroline Truntzer, Thomas Stadler,
Anne-Laure Boulesteix

Full versus incomplete cross-validation:
measuring the impact of imperfect separation between
training and test sets in prediction error estimation

Technical Report Number 159, 2014
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


Full versus incomplete cross-validation:
measuring the impact of imperfect

separation between training and test sets
in prediction error estimation

Roman Hornung1‡ Christoph Bernau1 Caroline Truntzer2

Thomas Stadler3 Anne-Laure Boulesteix1

April 17, 2014
1 Department of Medical Informatics, Biometry and Epidemiology,
University of Munich, D-81377, Munich

2 Clinical Innovation Proteomic Platform,
Centre Hospitalo-Universitaire de Dijon, F-21000, Dijon

3 Department of Urology, University of Munich, D-81377, Munich

Abstract
In practical applications of supervised statistical learning the separa-
tion of the training and test data is often violated through performing
one or several analysis steps prior to estimating the prediction error by
cross-validation (CV) procedures. We refer to such practices as incom-
plete CV. For the special case of preliminary variable selection in high-
dimensional microarray data the corresponding error estimate is well
known to be strongly downwardly biased, resulting in over-optimistic
conclusions regarding prediction accuracy of the fitted models. How-
ever, while other data preparation steps may also be affected by these
types of problems, their impact on error estimation is far less acknowl-
edged in the literature. In this paper we shed light on these issues. We
present a new measure quantifying the impact of incomplete CV that is
based on the ratio between the errors estimated by incomplete CV and
by a formally correct “full CV.” The new measure is illustrated through
applications to several low- and high-dimensional biomedical data sets
and various data preparation steps including preliminary variable se-
lection, choice of tuning parameters, normalization of gene expression
microarray data, and imputation of missing values. It may be used in
biometrical applications to determine whether specific data prepara-
tion steps can be safely performed as preliminary steps before running
the CV procedure, or if they should be repeatedly trained in each CV
iteration.

‡Corresponding author. Email: hornung@ibe.med.uni-muenchen.de.
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1 Introduction

In supervised statistical learning, it is widely recognized that prediction
models should not be constructed and evaluated using the same data set.
While the training data set is used for all steps towards obtaining the pre-
diction rule, the test data set is used to evaluate its prediction error and
should ideally not be opened during the training phase. In practice, how-
ever, the data set is often too small to be split into a training set and a
test set. For example, many microarray studies include no more than 50
or 100 patients. It is then standard practice to estimate prediction error
using cross-validation (CV) or a related procedure – these roughly consist
of considering several splittings into training and test data successively and
averaging the estimated prediction errors resulting from the different iter-
ations. From this point let CV denote such procedures, but all ideas and
procedures can be directly extended to other resampling techniques used for
prediction error estimation, such as repeated subsampling or bootstrapping.

By “incomplete CV” (Simon et al., 2003), we mean a CV procedure in
which the excluded folds are somehow taken into account in the construction
of the prediction rules. The analyses are thereby only partially repeated in
each CV iteration: some analysis steps are performed beforehand using the
whole data set, i.e. for these steps no distinction is made between train-
ing and test data. In contrast, if all steps leading to the prediction rules
are trained in each CV iteration on the corresponding training set, the CV
procedure is denoted by “full CV.” Incomplete CV is well known to yield
strongly biased error estimates resulting in over-optimistic conclusions if su-
pervised variable selection is not repeated in each CV iteration (Ambroise
and McLachlan, 2002). However, it is far less acknowledged that also other
cases in which analysis steps are performed on the whole data set beforehand
are potentially dangerous with respect to over-optimistic error estimation.

In fact, beyond variable selection in the context of high-dimensional pre-
diction models, many data preparation procedures are commonly conducted
as preliminary steps before the main analyses are performed. For example,
raw data from high-throughput biological experiments such as microarrays
have to be properly background-corrected, normalized and summarized be-
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fore so-called high-level analyses such as predictive modeling can be con-
ducted. In the context of large-scale biological data, it is also common
practice to exclude from further analyses those features that show poor
variability across the observations — irrespective of their effect on the re-
sponse variable. Another important step to be performed before the anal-
ysis of experimental data from high-throughput technologies is the removal
of potential batch effects arising when data are measured, say, by different
machines or in different labs (Leek et al., 2010). With any type of data,
missing values are a common issue that is often addressed by imputation
techniques. Dichotomization, i.e. categorization of (some of) the features
into binary features, is often performed according to thresholds determined
from the data — for instance the median value (or another quantile). More
generally, data-driven transformations of the features are commonly applied
to better take non-linear effects on the response into account, for example
fractional polynomials with powers determined from the data. Data prepa-
ration techniques are by far not limited to these few examples. In particular,
data with complex structures, like for example imaging data, often require
sophisticated preprocessing steps for making raw data generated by instru-
ments analysable by standard statistical tools. We do not intend to provide
an exhaustive list at this stage, but stress that such preliminary data prepa-
ration steps are extremely diverse and common in most biomedical data
analysis fields.

Let us now come back to the problem of prediction error estimation
through CV. Both in methodological studies (dealing with the development
or comparison of methods) or applications (dealing with concrete data sets
of current substantive interest), such preprocessing procedures are almost
always performed using the whole data set, i.e. not repeated in each CV
iteration. This is rarely mentioned in the description of the CV method, in
contrast to the level of detail of information usually provided on the meth-
ods used for deriving prediction rules or the parameters of the CV procedure
such as the number of folds or number of replications of CV. A possible rea-
son for this lack of attention might be that this problem is less relevant
in traditional, low-dimensional statistical applications, since the steps con-
ducted to obtain final results are typically fewer than in modern biomedical
applications and more directly related to the main analysis method.
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It is not clear whether it is necessary to perform data preparation steps
for each training data set successively, i.e. in each iteration anew. Since
CV aims to mimic the prediction error that would be observed for future
independent data, it is in principle required to fully ignore the test data
in each iteration until the prediction rule for this iteration has been com-
pletely derived. Theoretically, the test data should also not be taken into
account also in any data preparation step either. Otherwise it would imply
a violation of the principle of separation between training and test data and
possibly introduce an optimistic bias in the error estimation.

However, it is not obvious whether such a violation of the separation
between training and test data has a significant impact on error estimation
in the case of data preparation. The answer to this question is expected
to essentially depend on the considered specific data preparation procedure.
Note that it is not always straightforward to set up the right procedure for
preparing the test data after training the data preparation on the training
data. The procedure must perform the data preparation step for an ob-
servation in the test data in exactly the same way as for a corresponding
observation in the training data. Here it is important that the trained data
preparation step is unaffected by the test observation — this would for exam-
ple not be the case when re-training the step including the test observation.
Hence we use the term “addon procedure”, which was originally introduced
in the specific case of normalization procedures for microarray data (Kostka
and Spang, 2008) but is employed in a more general sense here for all types
of data preparation steps. Note at this point that by “performing” a data
preparation step we mean the following procedure: 1) Conduct the data
preparation procedure on the considered data; 2) Store all information nec-
essary for addon preparation of new observations. Addon procedures are
trivial in some cases, for instance in the case of dichotomization according
to a cutpoint determined from the training data. In other cases like normal-
ization of microarray data, however, this task can be more complex. A naive
and straightforward procedure would be to prepare the test data completely
independently without using any information from the preparation of the
training data. But this has the disadvantage of increasing the prediction
error or, for example in the case of variable selection, might make training
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and test data incomparable when the result of the data preparation has a
different structure in the test data than in the training data. Moreover, it
requires a “large enough” test data set, a condition which is not fulfilled in
CV for small sample data.

To our knowledge, the potential impact on error estimation of including
the test data for specific steps has not been given any attention in the liter-
ature, except for the special case of variable selection as already mentioned
above. Our paper aims at filling this gap.

We present a new measure quantifying the impact of incomplete CV,
denoted as CVIIM, — standing for “CV Incompleteness Impact Measure.”
It is based on the ratio between the CV prediction errors resulting when
specific steps are trained only once using the whole data set and when these
procedures are trained in each CV iteration, i.e. for each considered train-
ing data set anew and subsequently applied to the excluded fold via addon
procedures. The new measure is intended to be used by methodological
researchers or statisticians working on statistical learning applications to
determine whether a particular preparation step should be considered as
part of the prediction rule fitting process and trained in each CV iteration
successively - at the price of a (substantially) higher computational effort -
or whether it can be safely performed as a preliminary step on the whole
data set without generating an important optimistic bias. Using several
real-life low- or high-dimensional data sets from the biomedical field, we in-
vestigate CVIIM’s behavior for various data preparation steps: preliminary
variable selection, choice of tuning parameters, normalization and batch ef-
fect removal (in the case of high-throughput omics data), and imputation of
missing values.

2 Methods

2.1 Notations and settings

The predictor space is denoted as X ⊂ Rp and the space of the response
variable as Y = {1, 2}. Let S = {(X1, Y1), . . . , (Xn, Yn)} be an i.i.d. ran-
dom sample following the distribution P n. Most importantly, in our paper
x ∈ X denotes the “raw” data, meaning that these predictors may be sub-
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ject to data preparation steps (possibly modifying their number or scale of
measurement) before being used as predictors in classification.

We consider a classification function g : X 7→ Y, x 7→ g(x) that takes
the vector x as an argument and returns a prediction of the value of the
target variable y. For example, consider a classification task where, based
on microarray samples, patients are classified as having cancer or not using
the Nearest Shrunken Centroids approach (Tibshirani et al., 2002). Then
the corresponding function g would take the pre-normalized expression val-
ues as an argument, perform normalization and classify the sample using a
certain value of the shrinkage parameter. These steps are assumed to be
performed in an ideal way, where all occurring parameters are estimated or
optimized using a hypothetical data set with sample size tending to infinity.

In practice g is estimated from the available data. We therefore denote
the classification function estimated from S as ĝS : X 7→ Y, x 7→ ĝS(x).
In the example outlined above, this means that the parameters involved in
the normalization procedure as well as the averages and variances involved
in the Nearest Shrunken Centroids classifier are estimated from S and that
the shrinkage parameter is also chosen based on S. The estimated classifi-
cation function ĝS can then be used to predict y for a new observation.

Note that — as already outlined in the introduction — depending on
the procedures involved in the estimation, it is not always straightforward
to construct such a function ĝS that can be applied to predict independent
data. For example, while normalization of microarray data is done eas-
ily on the training sets, it is not straightforward how to normalize a new
observation using the same scheme in order to make it comparable to obser-
vations in the training set. See for instance the addon procedure described
by Kostka and Spang (2008) that uses the quantiles from the training data
for quantile normalization in the special case of the normalization procedure
’RMA’ (Irizarry et al., 2003). From now on, we will however assume that
such methods are available and that we can thus construct the function ĝS .
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It is important to assess the prediction error of ĝS that is defined as

ε[ĝS ] := E(X,Y )∼P [L(ĝS(X), Y )] =
∫

X×Y
L(ĝS(x), y) dP (x, y), (1)

whereby L(·, ·) is an adequate loss function, for example the indicator loss
yielding the misclassification error rate used in the present paper. This error
is commonly termed “conditional” because it refers to the specific sample
S. The average error over all samples following P n is referred to as the
unconditional error and denoted as ε(n) := ES∼P n [ ε[ĝS ] ].

Let from now on s = {(x1, y1), . . . , (xn, yn)} denote a realization of the
random sample S. If we had a large independent sample at hand we could
estimate ε[ĝs] directly by comparing the true values of the target variable
in this data to the predictions made by ĝs. Having only s at hand a naive
approach would be to estimate ε[ĝs] using s itself as test data. This ap-
proach yields the so-called “apparent error” or “resubstitution error” that
is well known to be downwardly biased (i.e., too optimistic) as an estimator
of ε[ĝs], since estimation of the classification function and error estimation
are conducted on the same data. As already noted in the introduction,
resampling-based error estimation can be performed to address this issue.
The sample s is iteratively split into non-overlapping training and test data
sets. In each iteration the function g is estimated based on the training set
and the error of this estimated function is assessed based on the test set.
In this paper we consider cross-validation—the most widely used of these
resampling-based approaches.

Given a random partition of the data set s into K approximately equally
sized folds s1, . . . , sK , the K-fold cross-validation error estimate is given as

1
K

K∑

k=1

1
#sk

∑

j ∈ {i : (xi,yi) ∈ sk}
L(ĝs\sk

(xj), yj), (2)

whereby # represents the cardinality, s \sk is the training set in iteration k

and sk is the test set. Since this estimate (highly) depends on the considered
random partition of the sample s into K folds, it is recommended to repeat
this procedure B > 1 times and average the error estimates over the B

repetitions. With sb1, . . . , sbK denoting the folds considered in the b-th
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repetition, the repeated K-fold cross-validation error estimate is given as

eK(s) = 1
B

B∑

b=1

1
K

K∑

k=1

1
#sbk

∑

j ∈ {i : (xi,yi) ∈ sbk}
L(ĝs\sbk

(xj), yj). (3)

If, for simplicity, we assume that the sb1, . . . , sbK (b = 1, . . . , B) are equally
sized and denote ntrain,K := #s\sbk with b ∈ {1, . . . , B} and k ∈ {1, . . . , K},
it can be easily seen that eK(s) is an unbiased estimator for ε(ntrain,K) and
therefore an upwardly biased estimator for ε(n). This bias is called the
“inherent bias” of CV in Varma and Simon (2006). Note that the notation
eK(s) does not reflect the fact that the repeated K-fold cross-validation
error estimate depends on the random partitions in the B iterations. For
our purpose we assume B to be chosen large enough so that this dependency
can be ignored.

2.2 Incomplete versus full cross-validation

As outlined in the previous section error estimation should not be performed
based on the data that were used to estimate the classification function.
However, a common practice already described in the introduction is to
perform specific data analysis steps as “preliminary steps,” using the whole
sample s, i.e., before splitting it into training and test data sets. With this
issue in mind, we introduce the notation

ĝa2
a1 : X 7→ Y x 7→ ĝa2

a1 (x) a1 ⊆ a2 ⊆ s (4)

to denote an estimated classification function that is estimated partly based
on a sample a2 and partly based on a possibly smaller subsample a1 (i.e.,
some steps may be performed on a bigger sample). Let us come back to
our example of the microarray-based classification. It is common practice
to run the normalization procedure and often also the parameter tuning
based on the whole data set s, whereas the training of the classifier is per-
formed within cross-validation, i.e., based only on the training set s \ sbk

in each iteration k of each repetition b. In this scenario a2 would be the
whole data set s and in each CV iteration a1 would be the training set s\sbk.

With a1 = s \ sbk and a2 = s for b = 1, . . . , B and k = 1, . . . , K, we
obtain an incomplete CV error estimate that is downwardly biased as an
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estimator of ε(ntrain,K):

eincompl,K(s) := 1
B

B∑

b=1

1
K

K∑

k=1

1
#sbk

∑

j ∈ {i : (xi,yi) ∈ sbk}
L(ĝss\sbk

(xj), yj) (5)

where the index “incompl” indicates that the whole sample s is used
for at least part of the data analysis steps required for the estimation of
g, and that the resulting CV procedure can thus be seen as incomplete
according to our definition given in the introduction. The extent of
the downward bias of eincompl,K(s) depends on how strongly the spe-
cific analysis step(s) conducted on the whole data set increase(s) the
apparent homogeneity of the predictors across observations and/or the
apparent association between response and predictors. The estimator
eincompl,K(s) is unbiased as an estimator of the average incomplete error
εincompl(ntrain,K ; n) := ES∼P n [L(ĝSStrain,K

(Xntrain,K+1), Yntrain,K+1)], with
Strain,K = {(X1, Y1), . . . , (Xntrain,K , Yntrain,K )} and Xntrain,K+1 playing the
role of an arbitrary test set observation. We assume exchangeability of
the random observations in S. The quantity εincompl(ntrain,K ; n) will be
important, when we define the true value of our measure in the next section.

Furthermore, since by definition ĝ
s\sbk

s\sbk
= ĝs\sbk

, we obtain the usual
repeated K-fold error estimate from Eq. (3) if we set a1 = a2 = s \ sbk for
k = 1, . . . , K, and b = 1, . . . , B. This estimator is denoted as efull,K(s):

efull,K(s) := eK(s) = 1
B

B∑

b=1

1
K

K∑

k=1

1
#sbk

∑

j ∈ {i : (xi,yi) ∈ sbk}
L(ĝs\sbk

s\sbk
(xj), yj),

(6)
where the index “full” underlines that all steps are conducted within the
CV procedure, i.e., using the training sets only. Given the equivalence of
efull,K(s) and eK(s), we will from now on also add the index “full” to the
true error ε(ntrain,K), that is write εfull(ntrain,K), to better distinguish it
from εincompl(ntrain,K ; n) in the notation. In the next section we present our
simple measure based on εfull(ntrain,K) and εincompl(ntrain,K ; n) to assess
the impact of CV incompleteness.
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2.3 A new measure of the impact of CV incompleteness
(CVIIM)

Our new measure CVIIM (standing for “Cross-Validation Incompleteness
Impact Measure”) is defined as

CVIIMP,n,K =





1 − εincompl(ntrain,K ; n)
εfull(ntrain,K)

if εincompl(ntrain,K ; n) <

εfull(ntrain,K)

and εfull(ntrain,K) > 0

0 otherwise
.

(7)
∈ [0, 1]. It is based on the ratio εincompl(ntrain,K ; n)/εfull(ntrain,K)

of the two errors, which is more appropriate than using the difference
εfull(ntrain,K) − εincompl(ntrain,K ; n) as a measure of the impact of CV
incompleteness, since the latter would strongly depend on the value of
εfull(ntrain,K) (large values of εfull(ntrain,K) leading to large differences).
Truncation of 1 − εincompl(ntrain,K ; n)/εfull(ntrain,K) at 0 prevents CVIIM
from being negative in the case where εincompl(ntrain,K ; n) > εfull(ntrain,K),
finally leading to a measure in [0,1]. A large value of CVIIM indicates that
CV incompleteness implies a large underestimation of prediction error.

Since, as we have seen in the last section, eincompl,K(s) is an unbiased
estimator for εincompl(ntrain,K ; n) and efull,K(s) is an unbiased estimator for
εfull(ntrain,K), we suggest replacing the true errors by their estimators in
equation (7) to obtain an estimator for CVIIMP,n,K , denoted as CVIIMs,n,K .

3 Illustration: study design

3.1 General procedure

Using various real-life data sets, we investigate the impact of incomplete CV
with respect to the following analysis steps: supervised variable selection,
variable filtering by variance, choice of tuning parameters for various classifi-
cation methods, imputation using a variant of k-Nearest-Neighbors (Ripley,

10



1996; Troyanskaya et al., 2001), normalization with the RMA method, and
batch effect removal using ComBat (Johnson et al., 2007).

CVIIMs,n,K is calculated as described in Section 2.3. Since CV er-
ror estimates are highly variable, we perform B = 300 repetitions of
CV. We use the same random partitions to estimate εfull(ntrain,K) and
εincompl(ntrain,K ; n). Since the procedures of parameter tuning and impu-
tation integrate a CV procedure in the estimation (see Section 3.3) they
are not completely deterministic and give differing results when repeated.
Therefore if we trained them just once using the whole data set in the
process of estimating εincompl(ntrain,K ; n), the result would be volatile and
would noticeably change when repeating the estimation procedure. As a
solution to this problem in the cases of parameter tuning and imputation,
the whole data set is used for training these steps anew before each of the
300 repetitions of the CV. For all other data preparation steps, the result
is deterministic, wherefore these are trained just once using the whole data
set and have to be repeated only in the process of estimating ĝ

s\sbk

s\sbk
. We

consider the following established splitting ratios between the sizes of the
training and test sets: 2:1 (3-fold CV), 4:1 (5-fold CV) and 9:1 (10-fold CV).

3.2 Data sets

Table 1 gives an overview of the data sets considered in our illustrative
study. The references for the individual data sets are found in Web Ap-
pendix A. The data sets GenitInfCoww0, ..., GenitInfCoww4 contain data
on major genital infection in cows in different weeks post-partum. The data
sets BreastCancerConcatenation, HCCProteom and SarcoidosisTranscr
contain batches; the sizes of the individual batches are given below the total
number of samples in Table 1. BreastCancerConcatenation is thereby a
concatenation of four independent transcriptomic data sets from studies of
breast cancer. All data sets involve a binary response variable, which indi-
cates whether the specific disease is present or not in the individual patients.
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3.3 Exact (training) data preparation procedures performed
in the individual analyses

In this section we outline the exact proceedings for the individual analysis
procedures performed for each of the investigated data preparation steps.

Supervised variable selection For every variable a two-sample t-test is
conducted with respect to the two classes. The variables with the small-
est p-values are selected. Since it is expected that the result substantially
depends on the number of selected variables, the analysis is repeated for
different numbers of variables: 5, 10, 20 and half of the total number p of
variables. When selecting 5, 10 and 20 variables we use Linear Discrim-
inant Analysis as a classifier and when selecting half of the variables we
use Diagonal Linear Discriminant Analysis, which is very similar to apply-
ing the Nearest Shrunken Centroids method with a shrinkage parameter of
zero; see Hastie et al. (2009). We use the data sets ProstatecTranscr,
HeadNeckcTranscr, LungcTranscr and SLETranscr for this procedure.

Variable filtering by variance For every variable the empirical variance
is calculated and the p/2 variables with the largest variances are selected.
Diagonal Linear Discriminant Analysis is again used here as a classifier. The
same data sets as in the case of supervised variable selection are considered.

Optimization of tuning parameters We optimize tuning parameters
on a grid for seven different classification methods: number of iterations
mstop in componentwise boosting with logistic loss function (grid: 50, 100,
200, 500, 1000) (Bühlmann and Yu, 2003), number of neighbors in the k-
Nearest-Neighbors algorithm (grid: 1, 2, . . . , 10), L1 shrinkage intensity in
Lasso expressed as the fraction of the coefficient L1-norm compared to the
maximum possible L1-norm (grid: 0.1, 0.2, . . . , 0.9) (Young-Park and Hastie,
2007), shrinkage intensity for the class centroids in Nearest Shrunken Cen-
troids (grid: 0.1, 0.25, 0.5, 1, 2, 5), number of components in Linear Dis-
criminant Analysis on Partial Least Squares components (grid: 1, 2, . . . , 10)
(Boulesteix and Strimmer, 2007), number mtry of variables randomly sam-
pled as candidates at each split in Random Forests (grid: 1, 5, 10, 50, 100,
500) (Breiman, 2001) and cost of constraints violation in Support Vector
Machines with linear kernel (grid: {10−5 · 40k/7 : k = 0, . . . , 7}) (Schölkopf
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and Smola, 2002).

The optimization is done in the following way. For each candidate value
of the tuning parameter on its respective grid, we perform a 3-fold CV of
the classifier using this value of the tuning parameter. The value yielding
the smallest 3-fold CV error is selected. Again the same data sets are used
for this procedure.

Bernau et al. (2013) provide an estimation procedure for the error of
wrapper algorithms which can be employed as an interesting, computation-
ally much cheaper alternative to full CV in the case of grid-based tuning.

Imputation of missing values We perform k-Nearest-Neighbors impu-
tation (Wong, 2013), a procedure that is commonly used for the analysis
of high-dimensional microarray data. Prior to imputation the variables are
centered and scaled and the estimated means and standard deviations are
stored. After imputing the values, they are rescaled using the stored stan-
dard deviations and the stored means are added to retransform the data to
the original level. The result of the imputation can be assumed to depend
critically on the number k of nearest neighbors considered. Therefore to
optimize this parameter on the grid 1, 2, 3, 5, 10, 15 we employ 3-fold CV
in an analogous way as described for tuning above. For a correct addon-
imputation, besides using the means and standard deviations estimated from
the training data, we also have to consider only the training data when
searching for the k nearest neighbors. We use Nearest Shrunken Centroids
as a classifier for the high-dimensional data set and Random Forests for the
other data sets. Here for optimizing the shrinkage intensity and mtry re-
spectively we again employ 3-fold CV in the described way. We consider the
GenitInfCow data sets and ProstatecMethyl.

Normalization Microarray data preparation is performed via the RMA
algorithm (standing for Robust Multi-array Average) including the addon
procedure provided by Kostka and Spang (2008). Here the quantiles from
the training data sets are used for the quantile normalization of the test
data. Since background correction and summarization are performed on an
array-by-array basis, no addon strategies are necessary for these procedures.
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For classification, Nearest Shrunken Centroids optimizing the shrinkage in-
tensity is employed. For this procedure we use the following data sets:
ColoncTranscr and WilmsTumorTranscr.

Removal of batch effects We use the parametric version of the Com-
Bat method (Johnson et al., 2007; Leek et al., 2012). Here a batch-specific
location and scale adjustment is done on the variables, with the peculiarity
that the estimation of the corresponding parameters is stabilized by fitting
prior distributions in an empirical Bayes framework. An obvious restric-
tion to the partitions into the K folds generated in the repeated CV is that
batches present in a test data set have to be represented in the correspond-
ing training data set as well. This is needed to perform addon batch effect
removal, since the ComBat-model involves batch-specific parameters. More
precisely it is required that there are two observations per batch present
in the training data. This is because for estimating the parameters of the
prior distribution for the scale-shift parameters the batch-specific variances
of the variables have to be estimated. Therefore if a partition into K folds
does not meet this restriction, further are drawn until an admissible parti-
tion is generated. However for our data sets non-admissible partitions occur
only rarely. Nearest Shrunken Centroids optimizing the shrinkage inten-
sity is again used as classification method. The considered data sets were
HCCProteom, BreastCancerConcatenation and SarcoidosisTranscr.

4 Results

The results of the analyses are displayed in Figure 1 (supervised variable
selection and filtering by variance), Figure 2 (optimization of tuning param-
eters) and Figure 3 (imputation of missing values, normalization, batch effect
removal) and listed in the Web Tables 1, 2 and 3 found in Web Appendix B.
In the plots the error bars represent the 25%- and 75%- quartiles (computed
over the B = 300 iterations) of the iterationwise non-truncated incomplete-
ness measure estimates CVIIMs,n,K,b = 1−eincompl,K(s)b/efull,K(s)b, where
the index b indicates that these errors are obtained for iteration b (with
b = 1, . . . , B). While these error bars reflect the variability of the incom-
pleteness measure over the B = 300 iterations we are actually interested in
the variability of the CVIIMs,n,K-values themselves, which is hard to esti-
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mate. However, we assume that the variability of the CVIIMs,n,K-values
is also expressed in the observed variability of the CVIIMs,n,K,b-values. It
is important to note that the error bars should be used for comparisons
between each other only, since their absolute lengths have no relevant inter-
pretation.

The measure CVIIMP,n,K can be interpreted in terms of the relative
reduction in the estimated error resulting from CV incompleteness with re-
spect to the considered data preparation step(s). With this interpretation in
mind and based on the results of our analyses compared to our expectations
regarding the impact of the considered data preparation steps, we define
the following tentative rules of thumb for categorizing the computed values:
[0, 0.02] ∼ no influence, ]0.02, 0.1] ∼ weak, ]0.1, 0.2] ∼ medium, ]0.2, 0.4] ∼
strong, ]0.4, 1] ∼ very strong.

In three out of four data sets the errors were not smaller when perform-
ing filtering by variance on the whole data set, leading to zero values of
CVIIMs,n,K and in the fourth data set it was almost zero (see Figure 1 and
Web Table 1). According to our examples filtering by variance thus seems
to be an analysis step that can be safely conducted using the whole data
set. The results are very different when performing supervised variable se-
lection. While CVIIMs,n,K is especially large for small numbers of selected
variables, relatively large values are also observed when half of the variables
are selected (with the exception of the data set with the least number of
variables). Therefore, given the results for filtering by variance it seems to
make a big difference whether the variables are selected in a supervised or
unsupervised fashion, even when the number of selected variables is large.
The differences in CVIIMs,n,K for the selection of 5, 10 and 20 variables are
not large. Nevertheless the means over the data sets given in Web Table 1
indicate that CVIIMP,n,K tends to decrease with an increasing number of
selected variables. The data set SLETranscr stands out through its notice-
ably larger CVIIMs,n,K-values in all plots referring to supervised variable
selection. This data set comprises only 36 observations but 47,231 variables
(see Table 1), which may at least partly explain the larger values. Extreme
values above 0.9, however, are surprising. This example nicely illustrates
the utility of our measure as a quantitative tool to investigate the effect of
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CV incompleteness.

In the case of optimization of tuning parameters none of the methods ex-
hibit large CVIIMs,n,K-values (see Figure 2 and Web Table 2). According to
our rule of thumb only one result is classified as a medium effect—tuning of
the number of components in PLS-LDA for data set HeadNeckcTranscr—
and the rest are classified as weak effects. Although the effects are weak
in most cases, small differences between the methods can be identified by
considering the means over the data sets in Web Table 2. PLS-LDA ex-
hibits the biggest means, which is however mainly due to the high values
for data set HeadNeckcTranscr. With the exception of LungcTranscr the
training of mstop in boosting has a relatively high impact on the consid-
ered data sets compared to other methods. The same holds for training
the shrinkage intensity in Nearest Shrunken Centroids, with the exception
of the data set HeadNeckcTranscr which yields zero-values for CVIIMs,n,K .
HeadNeckcTranscr is also an exception in the case of tuning mtry in Ran-
dom Forests, where it yields low values, while we observe near-zero or exactly
zero-values for all other data sets. Note, however, that the above results may
depend highly on the considered parameter grids, although we made an ef-
fort to choose reasonable grids.

In the case of imputation of missing values the results are encouraging
overall (upper left panel of Figure 3 and Web Table 3) in the sense that it
does not seem to make a big difference whether the considered imputation
procedure is trained on the whole data set or based on the training data
sets only. The GenitInfCow data sets contain proportions of missing values
between ∼ 8 % and ∼ 19 % with tendentially lower proportions for more ad-
vanced weeks. This pattern is also reflected by the CVIIMs,n,K-values, where
we observe decreasing values for more advanced weeks, with the highest val-
ues being observed for data set GenitInfCoww0, the one with the highest
amount of missing values. The high-dimensional data set ProstatecMethyl
yields CVIIMs,n,K-values of zero for all K-values. In this data set only
∼ 3% of values were missing, which is—although small compared to the
GenitInfCow data sets—a proportion within the range of proportions likely
to occur in practice.
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For quantile normalization, with the exception of K = 3, we observe
zero-values for CVIIMs,n,K on both considered data sets (upper right panel
of Figure 3 and Web Table 3). In view of the high computational bur-
den associated with quantile normalization this is an important result. The
slightly positive values for K = 3 may well be explained by the smaller train-
ing sets leading to a higher variance in the normalization procedure, which
is related to the “inherent bias” of CV outlined in the methods section; see
the discussion.

The picture is almost the same with batch effect removal using Com-
Bat (bottom left panel of Figure 3 and Web Table 3). We observe val-
ues of almost or exactly zero in all cases except for K = 3 and data set
BreastCancerConcatenation. The small positive value in the latter case
should not be overinterpreted, since it might also be related to the inherent
bias.

5 Discussion

In this paper we addressed a ubiquitous topic that had surprisingly not
been examined in a systematic way, to our knowledge: the consequence of
the violation of the separation between training and test sets during data
preparation prior to the training of prediction methods. On one hand the
necessary separation of training and test data is a widely acknowledged ne-
cessity for the assessment of prediction rules in the context of supervised
learning. On the other hand almost all predictive modeling analyses involve
some kind of data preparation. But poor attention is given in the literature
to the inter-connection between these issues.

We suggested a systematic examination of this problem from a quantita-
tive perspective through estimations of our novel measure of CV incomplete-
ness. In our analyses of real data sets we observed that the impact of such
an incomplete CV can be very different depending on the considered step.
For data preparation steps that take the response variable into account—
supervised variable selection and tuning—we observed distinctively higher
CVIIMs,n,K-values than for those steps where it is not explicitly used—
unsupervised variable selection, imputation, normalization and batch effect
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removal. For the latter data preparation steps the values were exactly or
almost zero. On one hand, it is not surprising that incomplete CV has a
large impact on the estimated error for data preparation steps taking the
response variable into account. While aiming to increase the association
between predictors and response variable, these steps also catch spurious
associations – a mechanism known as overfitting –, thereby bringing the es-
timated model too close to the values of the response variable in the test
sample when performed using both training and test data sets. On the other
hand, data preparation steps that do not take the response variable into
account nevertheless make the values of the predictors overly homogeneous
across the observations. If performed using both training and test sets, these
steps might thus also result in a seemingly better prediction performance
on the test set than if performed using the training set only. However, it
was not the case in our examples, where this effect is either nonexistent or
small enough to be neutralized by the additional inherent upward bias of
efull,K(s) compared to eincompl,K(s); see below for more details.

Note, however, that we do not claim that a high CVIIMP,n,K-value nec-
essarily corresponds to a step that takes the response variable into account.
Some steps involving the response variable might have a negligible impact
on error estimation. Likewise, steps that do not involve the response vari-
able may have a higher impact than those investigated in our paper. The
aim of this paper was neither to provide an answer for all possible steps nor
to make general statements. Instead, we point out that the answer highly
depends on the considered step and we recommend using our new general
measure to investigate this issue in various settings.

In practice data preparation most often consists of a combination of
several analysis steps. In many cases there is a natural ordering of the in-
dividual analysis steps towards obtaining a prediction rule. For example,
normalization of microarray data has to be performed before variable selec-
tion. There are, however, also cases with no clear-cut ordering: for example,
dichotomization might be conducted before or after variable selection. Given
a specific ordering of the steps, if we include one step in the CV, for obvi-
ous technical reasons we also have to include all following steps in the CV.
Of course it is also possible to compute CVIIMs,n,K globally for the whole
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combination of steps. In Web Appendix C we consider two examples of
combinations. In both cases a single analysis step was mainly responsible
for the difference between efull,K(s) and eincompl,K(s).

As outlined in Section 2.1, the training sets are by definition smaller than
the whole data set and the CV error estimate is thus an upwardly biased
estimator of the error of the prediction rule fitted on the whole data set.
This type of bias also affects the relationship between εfull(ntrain,K) and
εincompl(ntrain,K ; n). Since in εincompl(ntrain,K ; n) the considered analysis
step(s) is/are performed on the whole data set, the corresponding parame-
ters are estimated more accurately than in εfull(ntrain,K) due to the differ-
ence in sample sizes. This leads to an additional upward bias of efull,K(s)
compared to eincompl,K(s) with respect to the unconditional error when
training using n samples, ε(n). It may misleadingly result in slightly in-
creased CVIIMs,n,K-values in cases where incompleteness has in fact a poor
impact on error estimation. Here the additional upward inherent bias of
efull,K(s) might even be bigger in absolute terms than the downward in-
completeness bias of eincompl,K(s).

If this issue had a substantial impact in our analyses, CVIIMs,n,K would
tend to decrease with an increasing number K of CV folds—because for
increasing K the size of the training sets gets closer to the full sample size,
thereby diminishing the additional upward inherent bias of efull,K(s). This
was not the case in our study: K had no clear-cut influence on the results,
indicating that this problem does not play a major role in the investigated
context.

In this paper our interest was strongly focused on illustrative real-data
analyses: the goal of CVIIM is the study of the impact of incomplete CV
with respect to specific steps when applied to biomedical data sets. The
behavior of the estimator CVIIMs,n,K in practice will highly depend on the
considered analysis step and on the specific properties of the data type(s)
the step is commonly applied to. Nevertheless to investigate some of its
general basic properties we conducted a simulation study for the case of su-
pervised variable selection—that yielded the largest CVIIMs,n,K-values in
the real-data analyses. The simulation design and detailed results are pre-
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sented in Web Appendix D. The data-driven simulation design is based on
the ProstatecTranscr data set and involves 2000 correlated normally dis-
tributed predictors. In these simulations the variance of CVIIMs,n,K as an
estimator of CVIIMP,n,K was relatively high and decreased with decreasing
CVIIMP,n,K-values. The bias was negligible. Note that, independently of
this variance, we recommend estimating CVIIM for several data sets anyway
before formulating general statements on the impact of a specific analysis
step. CVIIM cannot be expected to have the same value for all data sets.
In the same way as meta-analysts assume that the investigated effects vary
over the considered studies, we have to assume that CVIIM will vary depend-
ing on the distribution underlying each individual data set. By computing
CVIIM for a couple of data sets, we address both the variability of CVIIM
within a given distribution (that is observed in our simulation study) and
the variability over the data sets.

When displaying the CVIIMs,n,K-values graphically in Section 4 we
added error bars representing the variability of the (untruncated) CVIIMP,n,K-
estimates from individual repetitions of CV. Our underlying assumption that
this variability measure also reflects the actual variance of CVIIMs,n,K was
confirmed by the simulation, whereby this similarity in behavior was most
pronounced for K = 3. Considering that the true measure CVIIMP,n,K was
almost equal for different K-values and that the variance of CVIIMs,n,K

was as expected smallest for K = 3, the simulation indicates that the choice
K = 3 may be appropriate.

Since our analyses were restricted to binary classification problems, CVIIM
was defined based on the misclassification errors corresponding to the indi-
cator loss function. However, the concept of the ratio of the errors is directly
transferable to the use of any other loss function with positive range. Most
common loss functions fulfill this requirement, for example the quadratic
or absolute loss for linear regression, the integrated Brier score for survival
data, the check function in the case of quantile regression or the negative
log-likelihood as an alternative to the error rate when the response variable
is discrete.

In high-dimensional settings, prediction models are often assessed by CV
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or related methods, in contrast to low-dimensional settings where paramet-
ric models and likelihood-based methods offer the analyst a variety of model
checking instruments. Such instruments are usually not applicable to pre-
diction rules trained on complex high-dimensional data, since—as demon-
strated in this paper—the derivation of such prediction rules usually involves
a succession of potentially complex data preparation steps. The importance
of CV in this context makes it especially important to have reliable guide-
lines for applying these methods in practice. With the example of high-
dimensional gene expression data in mind, we concentrated on a selection
of important analysis steps for this data type, but such issues essentially
arise as soon as CV is applied in any context, as also demonstrated in our
paper through applications to other types of data. Most importantly, it is
to be expected that ever-changing biotechnologies will constantly produce
new types of data requiring special data preparation steps. Our new simple
measure will be useful in determining the impact of CV incompleteness for
these procedures.
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