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Abstract

The increasing popularity of the Spatial Theory of Voting has given rise to the

frequent usage of multinomial logit/probit models with alternative-specific covari-

ates. The flexibility of these models comes along with one severe drawback: the

proliferation of coefficients, resulting in high-dimensional and difficult-to-interpret

models. In particular, choice models in a party system with J parties result in

maximally J − 1 parameters for chooser-specific attributes (e.g., sex, age). For the

specification of alternative-specific attributes (e.g., issue distances), maximally J

parameters can be estimated. Thus, a model of party choice with five parties based

on three issues and ten voter attributes already produces 59 possible coefficients.

As soon as we allow for interaction effects to detect segment-specific reactions to

issues, the situation is even aggravated. In order to systematically identify relevant

predictors in spatial voting models, we derive and use for the first time Lasso-type

regularized parameter selection techniques that take into account both individual-

and alternative-specific variables. Most importantly, our new algorithm can handle

the alternative-wise specification of issue distances. Applying the Lasso method

to the 2009 German Parliamentary Election, we demonstrate that our approach

massively reduces the model’s complexity and simplifies its interpretation. Lasso-

penalization clearly outperforms the simple ML estimator.
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1 Introduction

The Spatial Theory of Voting has become increasingly important and influential both for

our understanding of the mechanisms of party competition and individual choice behavior

(e.g., Alvarez and Nagler, 1998; Thurner, 2000; Dow and Endersby, 2004; Adams, Merrill,

and Grofman, 2005; Schofield et al., 1998). Since Downs’ seminal work on democracy

as a political market (Downs, 1957), a growing number of scholars theoretically as well

as technically developed this approach. A central point in this regard has been the

appropriate translation of the spatial voting theory into a statistical model. Alvarez and

Nagler (1998) have shown that the Spatial Theory of Voting can be adequately applied

by utilizing multinomial logit or probit models which allow us to consider both attributes

of voters (i.e., individual- or chooser-specific variables such as age, sex, etc.) as well

as characteristics of the parties/candidates (i.e., alternative- or choice-specific variables

such as issue positions/distances).1 In addition, Dow and Endersby (2004) provide a

comparison of multinomial logit and probit models, and King, Tomz, and Wittenberg

(2000) offer a series of helpful tools for the substantial interpretation of such complex

models. Finally, Adams, Merrill, and Grofman (2005) theoretically combine policy and

non-policy factors in an integrated model of party competition.

The increased popularity of these discrete choice models in the analysis of multiparty

elections is due to their flexibility. For example, it is possible to specify choice-specific

attributes in an alternative-specific way. That is, instead of assuming that voters are

equally sensitive with regard to all parties when they evaluate issue distances towards all

parties (an assumption generally implied by estimating only one issue distance parameter

for all J considered parties), the specification of alternative-specific coefficients allows

estimating as many issue distance parameters as parties are competing.2 By removing

this statistical “restriction of equality”, the electoral researcher is able to identify for

which specific party choice issues are relevant predictors. Consider, for instance, voters’

choice among multiple parties and suppose that these parties offer stances on the issue

of environment. Due to their attributed competence or “ownership” on environmental

issues (Budge and Farlie, 1983; Petrocik, 1996), we would suppose that the choice of

Green Parties is more strongly determined by this issue as compared to other parties.

As a result, we would expect that the issue distance coefficients vary considerably across

parties, and that only subsets of these coefficients prove to be relevant determinants of

party choice in spatial models of voting.3

1In the following we use the general term “multinomial logit model” to refer to multinomial logit models
including both alternative- and individual-specific variables. In addition, we use the terms “alternative-
specific”, “choice-specific” and “party-specific” covariates interchangeably to refer to attributes of alter-
natives (i.e., parties/candidates). The same applies to the terms “chooser-specific”, “voter-specific” or
“individual-specific” variables to refer to voter characteristics.

2This specification, which has received little attention and is greatly unexamined in the empirical study
of spatial issue voting (see as an exception Thurner, 2000), is widely used and applied in transportation
economics and econometrics. See Ben-Akiva and Lerman (1985); Train (1978), or Louviere, Hensher, and
Swait (2000).

3Using the suggested models and the alternative-wise specification, Thurner (2000) showed in his
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This flexibility gives also rise to new research questions and hypotheses, which will

improve our understanding of multiparty competition and individual vote choice con-

siderably. For instance, in a recent contribution, Mauerer, Thurner, and Debus (2014)

explicitly questioned why we should expect that not every party is equally successful in

attracting voters based on their position-taking, and therefore observe so-called “party-

specific issue reactions” with quite different spatial equilibria.4

These recent developments demonstrate not only the theoretically promising advantage

of multinomial logit and probit models, but also highlight one challenging drawback:

the proliferation of possible coefficients, and hence the need for sophisticated parameter

selection techniques. To be precise, party choice in a party system with J parties results

in maximally J − 1 parameters in the case of chooser-specific attributes (e.g., sex, age).

For the specification of alternative-specific attributes (e.g., issue distances), maximally J

parameters can be estimated. Consequently, the amount of possible individual- and party-

specific coefficients increases rapidly, resulting in highly complex and difficult-to-interpret

models. Moreover, as soon as we allow for (theoretically derived) interaction effects (e.g.,

to test for segment-specific reactions to issue distances and to identify so-called issue

publics), the situation is even aggravated. For these reasons, the following question needs

to be addressed: How can electoral researchers systematically identify relevant predictors

and parameters in models for which very many predictors are available? A solution to

this problem would enormously reduce model complexity and facilitate the interpretation.

We propose the Lasso approach which is a regularized parameter selection technique that

guarantees – in contrast to classical subset selection approaches – continuous, stable and

computationally efficient variable selection.

Our objective in this paper is to illustrate the benefits of regularization methods in the

statistical analysis of the Spatial Theory of Voting. In particular, we introduce and derive

for the first time a Lasso-type regularization technique in the estimation of multinomial

logit models (MNLs) which takes into account both individual- and alternative-specific

variables. Most importantly, it allows us to handle the alternative-wise specification of

choice-specific covariates (e.g., issue distances). These Lasso-type regularization methods

penalize the L1-norm of the coefficients, which enforces parameter selection and reduction

of the predictor space. Actually, we demonstrate that our proposed approach massively

reduces the complexity of spatial voting models and facilitates their interpretation by

selecting the most important effects. We show that Lasso-penalization clearly outperforms

analysis of the 1990 German Parliamentary Election why we should split up the issue distance coefficients
and how this specification strategy provides more detailed insights into the dynamics of multiparty
competition. His results suggest that only several party-specific issue distance parameters turn out to be
statistically significant. For example, with regard to the issue of German unification, the author found
that on this particular dimension only the Christian Democratic Party proved to be a significant objective
of issue voting.

4Applying the alternative-wise specification to position issues included in German Parliamentary Elec-
tions from 1987 to 2009, the authors discovered that issue reactions at the level of the voters vary sub-
stantially across parties and that in particular with regard to niche parties offering polar stances issue
effects are much more likely.
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the simple ML estimator.

The paper is structured as follows: To assess the advantage of regularized parameter

selection within the spatial modeling of voter choices in multiparty systems with high-

dimensional data, we first provide a short formal outline of the Spatial Theory of Voting.

Second, we briefly examine classical variable selection procedures and their limitations and

demonstrate why and how the usage of regularization methods in the study of multiparty

elections enables us to efficiently identify important predictors, and therefore to improve

spatial models of voting, and to facilitate their interpretation. For the illustration of the

usefulness of the proposed approach, we provide a regularized analysis of party choice in

the 2009 German Parliamentary Election.

2 The Formal Set-Up of the Spatial Theory of Voting

The Spatial Theory of Voting is based on the following theoretical assumptions:

a) The policy proposals of parties and the policy preferences of voters can be arrayed

on K policy dimensions, which are assumed to be continuous and separable. These

dimensions constitute the K-dimensional political space (Davis, Hinich, and Or-

deshook, 1970, p. 430).

b) The voter’s most preferred policy position on each k dimension, denoted by xik and

called ideal point, is defined as a finite point of maximum utility.

c) Each party j takes policy positions on K policy dimensions, denoted by pjk.

d) According to the principle of utility maximization, voter i compares the parties’

policy proposals pijk and identifies each party’s supplied amount of utility, denoted

by Uij, j = 1, . . . , J . The voter chooses the alternative (i.e., party/candidate) that

provides the highest level of utility, which is the party whose policy positions are

closest to the voter’s ideal points:

Uij > Uih ∀j 6= h,

where5

Uij = −
(

K∑

k=1

αk |xik − pijk|
)
. (1)

αk presents the weight or saliency of each kth policy dimension. These coefficients

are the utility parameters indicating the value attached to the dimensions.

e) Random Utility Maximization (Manski, 1973, 1977): The level of utility provided

by each alternative is known with certainty by the voter, but not all determinants

of the decision can be observed. This limitation at the level of the researcher is

5For a legitimation of the disaggregate City-Block metric, see Singh (2014).
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captured by dividing the overall utility Uij into two parts. The first part, denoted

by Vij, represents the contributions that are measured by the analyst. The second

part defines the sources of utility that the researcher cannot observe, denoted by εij:

Uij = Vij + εij.

As a result, the choice is probabilistic and cannot be predicted exactly.

f) The observed part of utility Vij consists of two components that are connected

additively: individual-specific and alternative-specific variables. Individual-specific

or chooser-specific variables si refer to voter characteristics that vary over individuals

i, but are constant over alternatives. Alternative-specific or choice-specific variables

zij represent attributes of the alternatives (e.g., issue distances) and vary across

both alternatives and individuals:

Vij = zij + si.

Based on these assumptions, the Spatial Theory of Voting is translated into a statistical

model by the following steps:

a) Data: A sample of n voters is available in which, for each voter i, a set of individual-

specific variables sil, l = 1, . . . , p, as well as alternative-specific variables zijk, k =

1, . . . , K, are observed. Variable zijk represents the distance between voter i and

party j on policy dimension k and is defined by zijk = −|xik − pijk|.

b) Parameterization: Individual-specific variables sil are always used with alternative-

specific coefficients βjl, j = 1, . . . , J. By contrast, the effect of alternative-specific

variables can be specified in two different ways: constant (also called generic) and

alternative-specific. Equation (1) is based on the constant specification which results

in estimating one coefficient for all alternatives. Therefore, it assumes that the

variable has an equal/constant effect on all alternatives. In contrast to the restrictive

set-up with constant coefficients, we apply the alternative-wise specification which

allows estimating J different parameters αjk in the case of J alternatives, so that

different effects on alternatives are possible (Ben-Akiva and Lerman, 1985; Train,

2009; Louviere, Hensher, and Swait, 2000; Thurner, 2000). Hence, we explicitly relax

the assumption that all voters react identically to the position-taking of all parties.

c) Linear predictors: For each alternative j, a so-called linear predictor ηij accumu-

lates the observable determinants of the vote decision process in a scalar quan-

tity, formalizing the deterministic part of utility.6 Based on the discussion from

b), alternative-specific predictors are equipped with alternative-specific parameters.

6In fact, Vij and ηij denote the same quantity. Since “linear predictor” is the common denomination
in the statistical literature, we prefer this term in discussions about formal model-setup.
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Thus, for i = 1, . . . , n and j = 1, . . . , J , these linear predictors take the following

form:

ηij = βj0 +

p∑

l=1

silβjl +
K∑

k=1

zijkαjk = βj0 + sTi βj + zTijαj.

The parameters β10, . . . , βJ0 denote alternative-specific constants (ASCs). Each

β1, . . . ,βJ is a p-dimensional coefficient vector related to the p-dimensional individual-

specific covariate vector si. The coefficient vectors α1, . . . ,αJ contain the utility pa-

rameters that indicate the value attached to the K policies/issues in the alternative-

specific covariate vector zij.

d) Link function and model: Given all the previous assumptions and considering both

individual-specific predictors and the alternative-wise specification of choice-specific

variables, the multinomial logit model (MNL) in its generic form can be stated as

follows (see Tutz, 2012):7

πij = P (Y = j|si, zij) =
exp(ηij)
J∑
r=1

exp(ηir)

=
exp(βj0 + sTi βj + zTijαj)
J∑
r=1

exp(βr0 + sTi βr + zTijαr)

, (2)

where Y ∈ {1, ..., J} denotes the j-categorical, probabilistic response variable, i.e.

Y = j indicates that party j is chosen.8

Note that (2) refers to the MNL in its generic form, which means that the parameters

β10, ..., βJ0 and β1, ....,βJ are not identifiable. In order to identify the model, a side

constraint, such as defining a reference category or using a symmetric side constraint, has

to be introduced.9

At this point it is important to emphasize the inherent complexity of the MNL from (2).

As the following example indicates, the number of possible individual- and party-specific

coefficients increases rapidly, resulting in highly complex and difficult-to-interpret models.

Consider a model of party choice in a system with five major parties based on three

choice-specific variables and ten chooser-specific attributes. This specification already

produces 59 possible parameters (ASCs included).10 The following section introduces the

Lasso method, a parameter selection strategy that systematically and efficiently reduces

7Logit models assume that the random part of utility, εij , follows an iid maximum extreme value
distribution. See also McFadden (1973, 1984).

8For later use, we define J-dimensional response vectors yi = (0, ..., 0, 1, 0, ..., 0)T with 1 on jth position
indicating the chosen alternative (i.e. Y = j). Additionally, let πi denote the J-dimensional vector of
choice probabilities. Conditional on the covariates si and zij , yi can be considered as independent
realizations of drawing from a multinomial distribution: yi | si, zij ∼M(1,πi), i = 1, . . . , n.

9However, in Section 3.2.3, we will show an interdependency between the particular choice of an
identifiability constraint and the Lasso method. Therefore, the discussion of identifiability is delayed to
Section 3.2.3, that is, until the Lasso method has been formally introduced.

10If a reference category as side constraint is used, we obtain 4 ASCs + 4*10 coefficients for individual-
specific variables + 3*5 parameters for party-specific variables, resulting in a total of 59 parameters.
In the case of a symmetric side constraint, 70 nominal parameters result, while still obtaining only 59
degrees of freedom. See Section 3.2.3.
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this high-dimensional predictor space, and thus ensures more parsimonious spatial voting

models.

3 The Lasso Approach: Parameter Selection and Reg-

ularization of MNLs with alternative-specific Co-

variates

The previous section highlighted the inherent complexity of MNLs, and therefore the

practical need for sophisticated parameter selection procedures in the statistical analysis

of the Spatial Theory of Voting. In this section, we introduce and derive for the first time

a Lasso-type regularization technique for the estimation of MNLs that considers both

individual- and alternative-specific variables. Additionally, this new algorithm allows us

to handle the alternative-wise specification of issue distances. Based on a brief review

of classical subset selection procedures and their weaknesses and limitations, we outline

the general idea of regularization and penalty approaches. Then, the Lasso approach is

presented, including a technical discussion of its computation, its interdependency with

the choice of identifiability constraint in MNLs, and how its variable selection properties

can be improved.

3.1 Classical Subset Selection Techniques

How can electoral researchers select the most parsimonious model out of a large set of

possible models (based on a large number of potential predictor variables) while simulta-

neously reducing the model’s complexity? Since choosing a model that maximizes some

goodness-of-fit measure (e.g., pseudo R2 or loglikelihood) causes overfitting and low pre-

dictive accuracy, the task of variable selection is typically tackled by introducing optimal-

ity criteria that approximate a given model’s expected performance on future observations.

Two of the most popular optimality criteria are the Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC).11 Classical subset selection techniques,

such as best-subset12 or stepwise selection techniques13, investigate the influence of the

inclusion or exclusion of individual predictors on minimizing these optimality criteria. As

11For the specified MNL considering the alternative-wise specification of issue distances, these optimal-
ity criteria are given by

AIC(θ̂) = −2l(θ̂) + 2df(θ̂); BIC = −2l(θ̂) + log(n)df(θ̂), (3)

where θ̂
T

= (β̂10, . . . , β̂J0, β̂1, . . . , β̂J , α̂1, . . . , α̂J) denotes the estimator of the model’s overall parameter
vector θ, l(θ) the loglikelihood, and df(θ̂) the degrees of freedom, equalling here the number of parameters.

12Best-subset refers to the choice of the, in terms of optimality criteria, best possible subset of variables
out of all possible variable combinations.

13Stepwise selection approaches include forward selection, backward selection, or a combination thereof.
Stepwise approaches can be seen as an attempt to approximate best-subset selection with lower compu-
tational burden. For an overview of variable selection based on subset techniques, see Hastie, Tibshirani,
and Friedman (2009) and references therein.
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a result, the combination of covariates yielding the smallest value of the optimality criteria

is chosen.

However, these frequently used classical subset selection approaches exhibit several

weaknesses. With regard to best-subset selection procedures, it is rarely possible to com-

pute exactly the optimal set of variables due to the associated computational burden.

Take, for example, a model of party choice consisting of five parties, three issues and ten

chooser-specific attributes (see Section 4). Applying the best-subset selection technique

to this model, 55 parameters could be set to zero14, resulting in a total of 255 ≈ 3.6×1016

possible models. This example demonstrates a side-effect of the flexibility of the MNL

framework: Since the number of parameters is the product of the number of alterna-

tives and predictors, it is impracticable to fit all possible models, unless the number of

alternatives and predictors is extremely small.

In order to obtain a satisfying subset of important predictors in reasonable time, one

typically applies stepwise approaches in which variables are added or removed from the

current state/model until the optimality criteria cannot be improved any more. However,

since subset selection is a discrete process and all optimality criteria have multiple local

optima, these stepwise approaches suffer from considerable instability (Hastie, Tibshi-

rani, and Friedman, 2009). Thus, starting stepwise variable selection either from a full

model or starting it from an ASCs-only model can lead to completely different results.

Consequently, even the slightest change in the data or in the starting point can pro-

duce significantly different outcomes of subset selection. Due to this instability, stepwise

approaches cannot be recommended, but also an exhaustive all-subset search is usually

impossible for the considered model class. In the next section, we present the Lasso

approach. In contrast to classical subset selection techniques, the Lasso is a parameter

selection method guaranteeing continuous, stable and computationally efficient variable

selection.

3.2 The Lasso

In order to motivate the Lasso method that efficiently identifies relevant predictors, we

briefly outline the general idea of regularization techniques, of which the Lasso is a spe-

cial case. Regularization implies, inter alia, introducing penalty terms that restrict the

estimated coefficients (see Tutz, 2010). Therefore, penalization refers to the formulation

of side constraints on the values of the parameters which are taken into account in the

estimation. Penalty approaches based on Lp-norm of the parameter vector aim to penalize

the size or the length of these parameters. Their goal is to shrink the coefficients and to

set, ideally, coefficients of weak predictors exactly to zero, yielding continuous, stable and

computationally efficient variable selection.

In the following, we first introduce the Lasso approach, including its definition and

basic properties. Second, we outline how the Lasso’s variable selection properties can

14This number of parameters implies that ASCs always remain in the model.

8



be improved by using adaptive weights. Then, we demonstrate its interdependency with

the choice of identifiability constraint in MNLs, followed by a technical discussion on the

computation of the Lasso estimator and the choice of the tuning parameters λ.

3.2.1 Definition and Basic Properties

The Lasso (Least Absolute Shrinkage and Selection Operator), introduced by Tibshirani

(1996), is a penalty approach to variable selection in regression models. For a general

model with loglikelihood l(·) and parameter vector θ15, penalty approaches introduce a

penalty term P (θ) that is subtracted from the loglikelihood, resulting in the penalized

loglikelihood lpen(θ) = l(θ)−P (θ). That is, instead of maximizing the loglikelihood in the

estimation process, we maximize the penalized loglikelihood. If the penalty term is chosen

appropriately, the penalized parameter estimator can have superior properties compared

to the unpenalized maximum likelihood (ML) estimator, such as a reduced variance or a

lower dimensionality. The p-norm penalized parameter estimator is, in its most general

form, defined by

θ̂
pen

(λ, p) = argmax
θ

l(θ)− λ||θ||p = argmin
θ

− l(θ) + λ||θ||p, p ≥ 0, (4)

where λ ≥ 0 denotes the tuning parameter controlling the degree of penalization. The

Lasso estimator is obtained by penalizing the L1-norm of the parameter vector: PLasso(θ) =

λ||θ||1 = λ
∑

i |θi|.16
In the following, we explicitly derive for the first time the Lasso for the MNL based

on the predictor structure given in (2) and discuss its properties. The Lasso has pre-

viously been extended to MNLs by Friedman, Hastie, and Tibshirani (2010). However,

their work mainly focuses on algorithms and only briefly mentions the MNL as a possible

application for their algorithm. Additionally, Friedman, Hastie, and Tibshirani (2010) ex-

clusively consider individual-specific predictors si, whereas we explicitly derive the Lasso

for a MNL containing both individual- and choice-specific predictors. Therefore, and in

contrast to previous work, which only briefly mentions the MNL as a possible application

and exclusively considers individual-specific predictors, we explicitly derive the Lasso for

a MNL based on both individual- and alternative-specific predictors and in which the

alternative-specific variables are specified as alternative-specific effects.

15For the specified model including issue distances with alternative-specific effects, θ = (β,α), where
β = (β10, . . . , βJ0,β1, . . . ,βJ) is the vector of all β-parameters and, accordingly, α = (α1, . . . ,αJ).

16Penalizing the squared L2-norm results in ridge regression (Hoerl and Kennard, 1970). Note that
best subset selection based on AIC or BIC is also contained in (4) by using the L0-pseudo-norm and
particular values of λ.
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Applying the general form of the Lasso to our model yields17

(β̂, α̂) = argmax
β,α

l(β,α)− λ
J∑

j=1

(
p∑

l=1

|βjl|+
K∑

k=1

|αjk|
)
. (5)

The Lasso solutions may contain exact zeros, so that the corresponding effects are effec-

tively removed from the model. Thus, the Lasso implicitly performs variable selection as

a by-product of the estimation process. The larger λ, the stronger is the penalization,

and therefore the sparser is the estimated coefficient vector. Setting λ = 0 leads to the

ML estimator. A maximal value λmax can be derived so that all penalized parameters

are estimated to be zero whenever λ ≥ λmax. Since the Lasso estimator is the maximizer

of a continuous and concave objective, it is continuous itself, unique for any fixed λ18

and less sensitive to noise in the data than the discrete best subset method. In fact, the

choice p = 1 in (4), which defines the Lasso, is the only choice for which the Lp-norm

penalized log-likelihood is concave and, at the same time, yields a sparse estimator; i.e.,

is able to contain exact zeros.19 Consequently, the Lasso can perform variable selection

just like subset selection, but avoids its drawbacks by being continuous in the data and

computationally efficient.

More insights into the Lasso can be gained by considering the following alternative

representation. Based on standard results from optimization theory (cf. Boyd and Van-

denberghe, 2004), the Lasso can equivalently be defined by a constrained optimization:20

(β̂, α̂) = argmax
β,α

l(β,α) subject to
J∑

j=1

(
p∑

l=1

|βjl|+
K∑

k=1

|αjk|
)
≤ t. (6)

The tuning parameter t ≥ 0 of the Lasso’s constrained definition is connected to λ in its

penalized form by a one-to-one mapping, but deriving a closed form for their relationship

is difficult. By defining tmax =
∑J

j=1

(∑p
l=1 |β̂ML

jl |+
∑K

k=1 |α̂ML
jk |
)

, the Lasso estimator is

equal to the ML estimator for any t ≥ tmax. For t < tmax, the constraint in (6) induces

shrinkage of the parameters. As this constrained definition of the Lasso is highly useful to

illustrate why the Lasso is able to shrink coefficients to exactly zero, consider the geometric

illustration in Figure 1. The figure shows the contour lines of the log-likelihood function

17Note that if alternative J is chosen as reference to achieve identifiability of the MNL, we set βJ0 = 0,
βJ = 0. Hence, summing up over all J alternatives in (5) is equivalent to penalizing only J−1 β-vectors
that actually have to be estimated. Therefore, formula (5) is applicable to all MNLs, regardless of the
chosen identifiability constraint. Also note that we do not penalize the ASCs. To keep the notation
readable, we omit the dependence of Lasso estimates on a particular choice of the tuning parameter λ.

18The objective function is concave, and thus has a unique maximum. Assuming a sensible design, i.e.
no avoidable multicollinearity, uniqueness of the parameter vector that attains this maximum is ensured
if n > J(1 + p+K). This is virtually always the case for applications in political and social sciences.

19Formally, this follows from two facts: 1.) The Lp-norm is nonconvex for p < 1, leading to local
maxima of the penalized log-likelihood, and thus to a discrete variable selection method. 2.) For p > 1,
the Lp-norm is differentiable at zero, and hence cannot yield solutions containing exact zeros.

20More specifically, equivalence between the constrained and penalized definition of the Lasso follows
from the so-called Karush-Kuhn-Tucker conditions, which extend the well-known Langrange multiplier
method to optimization under inequality constraints.
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Note: Lasso estimates are given by the points of contact between log-likelihood contour
lines and Lasso constraint regions.

Figure 1: Lasso geometry: constraint regions for the Lasso with log-likelihood contour
lines for two predictors in a simple logistic regression model.

and the Lasso constraint regions for different values of t in a two-dimensional predictor

space; i.e., based on a simple logistic regression model with two predictors and without

an intercept. The Lasso solutions must necessarily lie at the contact points of the contour

lines with the constraint regions, indicated by the black line. The ML estimator is at the

center of the log-likelihood contour lines. As the inspection of Figure 1 demonstrates, the

diamond-shape of the Lasso constraint causes the corresponding Lasso solutions to move

in a straight line towards the axis when t is successively reduced, eventually shrinking β̂2

to zero.

The tendency of the Lasso to produce sparse solutions can also be demonstrated

by considering the special case of a linear model with orthonormal design: Let y =

Xβ + ε, ε ∼ N(0, σ2I). By assuming that y and all predictors xl (l = 1, . . . , p) are

mean-centered, no intercept is used, and that XTX = I, the Lasso has an analytical

solution: β̂Lassol = sign(β̂ML
l ) ·max

(
|β̂ML
l | − λ, 0

)
, l = 1, . . . , p. Hence, the lasso solution

for each predictor in this particular setting is obtained by shrinking the respective ML

estimator towards zero by a value of λ. Since the MNL is a nonlinear model, even an

orthonormal design matrix does not allow us to derive a similar result (or any analytical

solution), but the functioning of the Lasso in MNLs is very similar.

Additionally to yielding sparse solutions and due to the fact that the Lasso is a shrink-

age estimator, the Lasso estimates have reduced size and variability. These aspects, as

well as the computation of the effective degrees of freedom are discussed and summarized

in Appendix A.
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3.2.2 Improving the Lasso using adaptive Weights

In an n→∞ setting (i.e., with arbitrarily large sample size), a variable selection method

should guarantee the selection of the correct model, that is to assign nonzero estimates

to truly nonzero effects and to set the coefficients of irrelevant predictors to zero. In

addition, it is desirable that the method asymptotically performs as well as the ML

estimator, applied to the correct set of variables. If an estimator possesses these two

properties, it is said to be as good as an “oracle” that knows the correct set of variables

ahead of time. As shown by Zou (2006), the ordinary Lasso from (5) does not possess

this oracle property because it applies the same degree of penalization / shrinkage to all

parameters, regardless of their specific size. Choosing λ as large as it is necessary to

remove all irrelevant predictors implies too much bias on the estimated coefficients of the

selected variables. How can we avoid that the same degree of penalization is applied to

all parameters, regardless of their specific size, and therefore improve the Lasso solutions?

The remedy proposed by Zou (2006) is the so-called adaptive Lasso, which is defined as

follows:

(β̂, α̂) = argmax
β,α

l(β,α)− λ
J∑

j=1

(
p∑

l=1

wbjl |βjl|+
K∑

k=1

wajk |αjk|
)
,

wbjl =
1

|β̂ML
jl |

, wajk =
1

|α̂ML
jk |

, l = 1, . . . , p; k = 1, . . . , K; j = 1, . . . , J.

(7)

As formula (7) shows, the adaptive Lasso incorporates an individual weight for the penalty

of each coefficient. Note that each weight (wbjl and wajk) consists of the inverse of the size

of the corresponding ML estimate. By using these weights, the adaptive Lasso is able

to adapt more adequately to the varying importance of different variables for different

alternatives / parties. Since the ML estimator is consistent, the ML estimates of irrelevant

effects asymptotically turn to zero, yielding an infinite (or at least very large) penalization.

In the case of nonzero effects, the adaptive weights converge to a finite, constant value.

In general, the larger the ML estimate of a particular parameter, the less penalization is

applied to this parameter by the adaptive Lasso, and vice versa. This logic also holds

in non-asymptotic settings as long as the ML estimator is stable. Indeed, our experience

has shown that the use of adaptive weights provides a considerable improvement of the

Lasso’s performance, both in terms of variable selection and prediction accuracy – even

for datasets with a moderate number of observations. For these reasons and even though

the adaptive Lasso was originally motivated by theoretical, asymptotic considerations, we

strongly recommend its usage in virtually all practical applications.
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3.2.3 Lasso and its Interdependency with the Choice of Identifiability Con-

straint

As we noted in Section 2, not all individual-specific variables (and ASCs) in (2), giving the

MNL in its generic form, are identifiable. In order to identify the model, a side constraint

has to be introduced. In this section we point out how the choice of the identifiability

constraint in MNLs and the result of the Lasso interdepend. In particular, we show that

the use of a symmetric identifiability constraint prevents that the arbitrary choice of a

reference category influences the results of the Lasso method.

The non-identifiability of all individual-specific covariates in MNLs can be expressed

in the following way: for l = 0, 1, . . . , p, let δl ∈ R denote a shift which is applied to all

coefficients belonging to the same individual-specific predictor, so that the new coefficients

β̃jl = βjl + δl result. By gathering this shift across all p individual-specific predictors into

a shift vector δT = (δ1, . . . , δp), the model based on β̃-parameters, for j = 1, . . . , J , can

be expressed as follows:21

P (Y = j|s, z) =
exp(β̃j0 + sT β̃j + zTj αj)
J∑
r=1

exp(β̃r0 + sT β̃r + zTr αr)

=
exp(βj0 + δ0 + sT (βj + δ) + zTj αj)
J∑
r=1

exp(βr0 + δ0 + sT (βr + δ) + zTr αr)

=
exp(δ0 + sTδ) · exp(βj0 + sTβj + zTj αj)

exp(δ0 + sTδ) ·
J∑
r=1

exp(βr0 + sTβr + zTr αr)

.

(8)

Equation (8) shows that the absolute level of the β-parameters is not relevant for the

MNL, only the differences βjl−βql, j 6= q, l = 0, 1, . . . , p are meaningful. Since the Lasso

penalty is based on this absolute value of the coefficients, the choice of the identifiability

constraint in MNLs influences the results of the Lasso method, and therefore the selection

of the most promising model.

In general, scholars choose as identifiability constraint a particular reference category.

By using J = 1 as reference/baseline category, β10 and β1 are set to zero. This ensures

identifiability, and the effects of individual-specific covariates are interpreted relative to the

first alternative/party. In order to highlight the interplay between the choice of a particu-

lar reference category as identifiability constraint and the Lasso, consider an unpenalized

model with five parties, in which the first party is chosen as reference. Assume that the

ML-coefficients of variable sl for this model are given by βl = (0, 3, 0.2,−0.5, 2.5)T , so

that ||βl||1 = 6.2. By defining the second party as reference instead, it follows from (8)

that βl changes to (−3, 0,−2.8,−3.5, 0.5), and thus ||βl||1 = 9.8. As this simple example

demonstrates, the arbitrary change of the reference category causes to increase both the

21Note that this kind of parameter shifting does not change the model.
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overall L1-norm and the number of coefficients that are relatively far away from zero.

Consequently, the sparsity of the Lasso solutions also decreases – at least for some val-

ues of λ. Using real data, we illustrate in Section 4.3 that the sparsity and predictive

performance of the Lasso indeed vary considerably across different reference categories.

Hence, how can we prevent that the arbitrary choice of a reference category influences

the results of the Lasso method? We propose to use a symmetric identifiability constraint,

which results from imposing that

J∑

j=1

βjl = 0, l = 0, 1, . . . , p. (9)

Using this symmetric side constraint yields J ASCs and J∗p parameters in the case of

individual-specific predictors. However, only J − 1 and (J − 1)∗p of these parameters

can be estimated freely. As Zou, Hastie, and Tibshirani (2007) showed, the effective

degrees of freedom of the Lasso estimator are generically given by the number of nonzero

parameters. By combining this general template with the symmetric side constraint (i.e.,

for the estimator from (5) coupled with (9)), the following formula for the Lasso’s effective

degrees of freedom results:22

d̂f(β̂, α̂) =

p∑

l=0

max

(( J∑

j=1

I(|β̂jl| > 0)
)
−1, 0

)
+

K∑

k=1

J∑

j=1

I(|α̂jk| > 0). (10)

Finally, in the next section we discuss the computation of the Lasso estimator and the

choice of the tuning parameter λ.

3.2.4 Estimation and Choice of Tuning Parameters

In order to compute the Lasso estimator for any given λ, we use the Fast Iterative Shrink-

age Thresholding Algorithm (FISTA) introduced by Beck and Teboulle (2009). After

adjusting the formulas for the loglikelihood and its derivatives, the FISTA algorithm can

be directly applied to our Lasso specification ((5) or (7)). For the specified MNL including

issue distances with alternative-specific effects, the loglikelihood is computed as

l(β,α) =
n∑

i=1

J∑

j=1

yij log
(
πij(β,α)

)
, (11)

where πij is given in formula (2) and is written here as a function of β and α. For

j = 1, . . . , J , the derivatives of the loglikelihood with respect to the parameters are

22I(·) denotes an indicator function.

14



obtained as follows:

∂l(β,α)

∂βjl
=

n∑

i=1

sil(yij − πij) = sTl (yj − πj), l = 0, 1, . . . , p,

∂l(β,α)

∂αjk
=

n∑

i=1

zijk(yij − πij) = zTjk(yj − πj), k = 1, . . . , K,

(12)

where sTl = (s1l, . . . , snl), z
T
jk = (z1jk, . . . , znjk), y

T
j = (y1j, . . . , ynj), and πTj = (π1j, . . . , πnj)

denote vectors pooling the corresponding quantities across n observations. To sum up,

we offer the Lasso specification as well as the computation of the loglikelihood and its

derivatives for a MNL including alternative-specific variables with alternative-specific ef-

fects.

Since the Lasso penalty is not invariant to the scale and the variance of the covari-

ate vectors sl and zjk, we ensure that all variables have the identical chance of being

selected by standardizing these to zero mean and unit variance before applying the Lasso.

This leads to Lasso-penalized regression coefficients for the standardized covariates from

which the corresponding coefficients belonging to the original covariates can easily be

reconstructed.

In the following, we outline the choice of the tuning parameter λ, the parameter

controlling the degree of penalization. To choose an appropriate λ, the Lasso solutions

are computed over a grid of different λ-values. By m denoting the number of possible

λs, this grid is given by a sequence λ1 > λ2 > . . . > λm. For practical reasons, the

lower endpoint λm of this grid usually consists of a very small, but positive value (e.g.,

λm = 0.01.) The corresponding upper endpoint is chosen as λ1 = λmax, which is the

smallest value of the tuning parameter for which all penalized coefficients are set to zero.

Using standard results from convex optimization theory, it is easy to show that λmax can

be computed as

λmax = max

(
max
j,l

∣∣sTl
(
yj − π̂0

j

)∣∣ , max
j,k

∣∣zTjk
(
yj − π̂0

j

)∣∣
)
,

where π̂0
j presents the estimated choice probabilities of a model containing only unpenal-

ized predictors. Note that in our case this is an ASCs-only model. In order to select a

concrete λ and thus a concrete estimator / model, the Lasso solutions for different values

of the tuning parameter are evaluated by model selection criteria. Usually, these optimal-

ity criteria are either crossvalidation (CV), AIC or BIC (which can be computed applying

(10)). According to our experience, the selection of λ based on BIC leads to the most

sparse and CV to the least sparse model. Since the AIC presents a desirable compromise,

we strongly prefer to use this optimality criterion for the choice of λ.

Here it is important to note that variable selection using the Lasso solely requires a

one-dimensional search over a grid of λ-values, whereas the complexity of variable selection

based on best subset techniques or test-based procedures increases exponentially with the
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number of covariates and alternatives.

4 Application: Regularized Analysis of Party Choice

in the 2009 German Parliamentary Election

This section illustrates the advantages of the Lasso-type regularization method in the

analysis of multiparty competition using individual survey data from the 2009 German

Parliamentary Election.23 Party choice is operationalized via the stated vote intention.

The set of alternatives includes parties having a vote share total of at least 5% in the

2009 election. The respective parties are: the Christian-Democratic Party (CDU), the

Social-Democratic Party (SPD), the Liberal Party (FPD), the Green Party (Greens), and

the Leftist Party (Leftists). The MNL of party choice is based on the following explana-

tory variables: As alternative-specific predictors we include three issues, measured as the

absolute distance between the individually perceived party positions and the self-reported

positions of voters (ideal points) on 11-point scales.24 In order to fully exploit the Lasso’s

potential to effectively reduce the predictor space, we consider 10 individual-specific co-

variates, including sex, age, West/East Germany, union membership, high school degree,

unemployment, political interest, satisfaction with democracy, and religious denomina-

tion.25

The presentation of the regularized analysis is divided into three parts: We begin

by fitting a Lasso-penalized MNL based on solely main effects. In the second part we

additionally include interaction effects. Finally, we provide a systematic comparison of

the penalized and unpenalized models.

4.1 Main Effects Model

As a first step of our analysis, we estimated a Lasso-penalized MNL of party choice

containing the main effects of all variables introduced above. As we argued in Section

3.2.3, we applied a symmetric side constraint to ensure identifiability of the model and to

avoid that the arbitrary choice of a reference category influences the results of the Lasso

23German Longitudinal Election Study (GLES) 2009, Pre-election Cross-Section. The data set is avail-
able under http://www.gesis.org/wahlen/gles/daten-und-dokumente/daten/. Identification Num-
ber: ZA5300, Version 5.0.0.

24These issues are: Taxes: “1” = Lower taxes, even if that means less government spending on health,
education and social benefits, “11” = More government spending on health, education and social benefits,
even if that means higher taxes; Immigration: “1” = Laws on immigration should be relaxed, “11” =
Laws on immigration should be tougher; Nuclear Energy: “1” = More nuclear power stations, “11” =
Close down all nuclear power stations immediately.

25These variables are coded as follows: sex: 1 (male), 0 (female); age: centered around the sample
mean of 50.5 years, measured in decades; West/East Germany: 1 (former West Germany), 0 (former
East Germany); union membership: 1 (union members) , 0 (otherwise); high school degree: 1 (yes), 0
(no); unemployment: 1 (currently unemployed), 0 (otherwise); political interest: 1 (less interested), 0
(very interested); satisfaction with democracy: 1 (not satisfied), 0 (satisfied); religious denomination:
(Protestant, Roman-Catholic, otherwise).
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method.26 We fit this model over a grid of 100 λ-values and chose the best one according

to the AIC-criterion. Following the discussion from Section 3.2.2, adaptive weights are

included in the Lasso penalty. Since there exists no analytical formula for standard

errors of Lasso estimates, we computed them via bootstrap.27 Parameter estimates as

well as approximate p-values (based on the bootstrapped standard errors) of this main

effects model are summarized in Table 1.28 As can be seen immediately from Table 1, a

CDU SPD FDP Greens Leftist
ASC 1.08*** (0.000) -0.11 (0.666) -0.39 (0.093) -0.14 (0.635) -0.44 (0.154)

Sex 0 0 0 0 0
West Germany -0.10 (0.506) 0.42* (0.035) 0 0.22 (0.307) -0.53** (0.005)

Age 0.20*** (0.000) 0 0 -0.20*** (0.000) 0
Union Membership -0.62 (0.067) 0.03 (0.882) 0 0 0.59* (0.020)

High School 0 0 0 0.31 (0.164) -0.31 (0.179)

Unemployment 0 0 0 0 0
Pol. Interest 0 0.32* (0.042) 0 0 -0.32 (0.066)

Democracy -0.73*** (0.000) -0.21 (0.207) 0 0 0.94*** (0.000)

ReligionCatholic 0.16 (0.204) -0.16 (0.192) 0 0 0
ReligionOther 0 0 0 0 0
Taxes 0.17** (0.006) 0.24*** (0.000) 0.20** (0.004) 0.24** (0.002) 0.33*** (0.000)

Immigration 0.26*** (0.000) 0.07 (0.198) 0.10 (0.147) 0.20*** (0.000) 0.16** (0.002)

Nuclear Energy 0.17*** (0.000) 0.30*** (0.000) 0.29*** (0.000) 0.27*** (0.000) 0.11 (0.073)

Numbers in parentheses show approximate p-values based on simple, two-sided t-tests using bootstrapped standard
errors.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 1: Lasso-regularized coefficient estimates of the main effects model, German Par-
liamentary Election 2009.

considerable amount of effects is set to zero by the Lasso, yielding an enormous reduction

of the complexity of the estimated model. In particular, 32 out of 70 nominal parameters

are set to zero, and thus only 38 coefficients are selected; i.e., remain in the model.29 Note

that all issue effects are selected by the Lasso and most of them are also highly significant.30

On the contrary, the variables sex, unemployment status and having a religious affiliation

other than Protestant or Catholic are entirely removed from the model. In addition, most

of these individual-specific effects have the expected sign. Notice, e.g., the strength of the

Leftist Party among voters in former East Germany, or the highly significant age effect on

the vote for the Christian-Democratic Party CDU and the Greens. As to be expected, the

Leftist Party still finds its main support in former East Germany, and the CDU is strong

26More details on how the Lasso’s sparsity and predictive performance vary across different reference
categories will be given below in Section 4.3.

27Our bootstrapped standard error estimates are based on B = 500 bootstrap samples.
28Note that the p-values of coefficients which are set to zero by the Lasso are necessarily 1. Therefore,

we do not display these p-values.
29These 70 nominal parameters result from the symmetric side constraint, but still only 59 degrees of

freedom are obtained.
30Also note that all issue effects are positive. Therefore, since the issue distance covariates zijk are

defined as zijk := −|xik−pijk|, a larger difference between the individually perceived party positions and
the voter’s ideal points on these issues indicates that this party is less likely to be chosen by this voter.
That is, if the perceived distance increases by one unit, the corresponding issue variable decreases by one
unit due to the negative sign.
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among older voters, whereas the Greens seem to be attractive among younger voters

(see, e.g., Jun, 2011; Elff and Rossteutscher, 2011). A series of further interesting effects

have been selected by the Lasso, including the strength of both the Leftist Party and

the Social-Democratic Party SPD among voters being members of a labor union, or the

positive effect of having a Catholic affiliation on supporting the CDU. These two findings

are particularly relevant for researchers focusing on the impact of traditional cleavages on

party choice. In line with recent work (see, e.g., Elff, 2009, 2007), these selected effects

support their claim that social and class divisions continue to be relevant determinates of

electoral behavior in Germany. However, note that only the selected effect of the variable

union membership on the Leftist vote proves to be statistically significant, whereas the

one on the SPD vote is not. This result may indicate that the SPD has become less

effective in attracting and mobilizing its traditional target and that the class cleavage

is more effectively represented by the Leftist Party. The reason why the social cleavage

seems to find less expression in the SPD can be seen as the result of unpopular labor

market reforms (Hartz IV) initiated by Chancellor Schröder in 1998 (see, e.g., Elff and

Rossteutscher, 2011; Anderson and Hecht, 2012; Lees, 2012). Also note that our results

suggest that the persistent relevance of traditional cleavages does not as strongly apply to

religious versus secular divisions. Although the Lasso selected a positive effect of having

a Catholic affiliation on supporting the CDU, and a negative effect on the SPD vote,

they do not prove to be significant, indicating an increasing secularisation of the German

society.31 Since Christian affiliation constituted for a long time a major cleavage in the

German party system, this is an important result. Finally, also note the interesting and

highly significant effect of voter’s satisfaction with democracy. Voters who are unsatisfied

with the democracy in Germany are much less likely to vote for the CDU, while they are

much more likely to vote for the Leftists. Thus, out of the five parties considered here,

the Leftist Party seems to be the strongest attractor for “protest voters”.

Also note the following two points emerging from the results in Table 1. Even though

the coefficients of the covariate political interest have the same absolute value for both the

Social-Democratic Party SPD and the Leftist Party (due to the symmetric side constraint),

the effect on the SPD vote is significant while the effect on the Leftists vote is not. This is

no contradiction because the variance of the effect of a dummy-coded binary predictor on

a particular party depends on the percentage of observations having chosen this party, and

the corresponding predictor simultaneously took the value coded with 1. Consequently,

these two estimated effects can differ in variance. In general, it should be noted that the

p-values and significance levels shown in Table 1 are based on simple t-tests, and thus

ignore the correlation between predictors. Therefore, a selected parameter not gaining

significance according to this test should not cause concern.

The coefficients from Table 1 can be interpreted as usual. For example, for voters from

former West Germany relative to those living in former East Germany, the odds of voting

31However, note here that we operationalize the religious-secular cleavage by religious denomination
without additionally considering the frequency of church attendance.
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for the CDU relative to voting for the SPD change by a factor of exp(−0.10 − 0.42) =

0.594, if everything else remains fixed. Thus, the odds of voting for CDU instead of

SPD are roughly 40% lower in former West Germany, ceteris paribus. In contrast to the

individual-specific variables and as the following example demonstrates, the alternative-

specific issue distance coefficients have to be interpreted slightly differently. If the per-

ceived distance between a voter and the Green Party on the issue of immigration increases

by x units, the odds of voting for the Green Party relative to voting for any other party

change by a factor of exp(−0.2 · x) = 0.81x, given the other variables in the model are

held constant.32 Hence, ceteris paribus, a one-unit increase in the distance on the issue

of immigration decreases the odds of voting for the Greens by 19%, a two-unit increase

decreases the odds by 33% etc.33

To summarize the main effects model from Table 1 in a concise and easy-to-read

fashion, we suggest the use of so-called effect stars (Tutz and Schauberger, 2013). Figure 2

Intercept 
 

CDU 
 (0.000)

SPD 
 (0.666)FDP 

 (0.093)
Greens 
 (0.635)Leftist 

 (0.154)

● CDU 
 (0.000)

SPD 
 (0.666)FDP 

 (0.093)

Greens 
 (0.635) Leftist 

 (0.154)

Sex 
 

CDU 
 (1.000)

SPD 
 (1.000)FDP 

 (1.000)

Greens
Leftist 
 (1.000)

CDU 
 (1.000)

SPD 
 (1.000)

FDP 
 (1.000)

Greens

Leftist 
 (1.000)

West Germany 
 

CDU 
 (0.506)

SPD 
 (0.034)

FDP

Greens 
 (0.307)

Leftist 
 (0.005)

CDU 
 (0.506)

SPD 
 (0.034)

FDP

Greens 
 (0.307) Leftist 

 (0.005)

Age 
 

CDU 
 (0.000)

SPD 
 (1.000)FDP 

 (1.000)

Greens 
 (0.000)

Leftist

CDU 
 (0.000)

SPD 
 (1.000)

FDP 
 (1.000)

Greens 
 (0.000)

Leftist

Union Membership 
 

CDU 
 (0.067)

SPD 
 (0.882)FDP 

 (1.000)

Greens 
 (1.000)

Leftist 
 (0.020)

CDU 
 (0.067)

SPD 
 (0.882)

FDP 
 (1.000)

Greens 
 (1.000)

Leftist 
 (0.020)

High School 
 

CDU 
 (1.000)

SPD 
 (1.000)FDP 

 (1.000)

Greens 
 (0.163)

Leftist 
 (0.178)

CDU 
 (1.000)

SPD 
 (1.000)

FDP 
 (1.000)

Greens 
 (0.163) Leftist 

 (0.178)

Pol. Interest 
 

CDU 
 (1.000)

SPD 
 (0.041)

FDP 
 (1.000)

Greens Leftist 
 (0.066)

CDU 
 (1.000)

SPD 
 (0.041)

FDP 
 (1.000)

Greens
Leftist 
 (0.066)

Democracy 
 

CDU 
 (0.000)

SPD 
 (0.206)FDP 

 (1.000)

Greens

Leftist 
 (0.000)

● CDU 
 (0.000)

SPD 
 (0.206)FDP 

 (1.000)

Greens

Leftist 
 (0.000)

ReligionCatholic 
 

CDU 
 (0.203)

SPD 
 (0.192)FDP 

 (1.000)

Greens 
 (1.000) Leftist 

 (1.000)

CDU 
 (0.203)

SPD 
 (0.192)

FDP 
 (1.000)

Greens 
 (1.000)

Leftist 
 (1.000)

Taxes 
 

CDU 
 (0.006)

SPD 
 (0.000)FDP 

 (0.004)

Greens 
 (0.002) Leftist 

 (0.000)

CDU 
 (0.006)

SPD 
 (0.000)

FDP 
 (0.004)

Greens 
 (0.002)

Leftist 
 (0.000)

Immigration 
 

CDU 
 (0.000)

SPD 
 (0.198)FDP 

 (0.147)

Greens 
 (0.000) Leftist 

 (0.002)

CDU 
 (0.000)

SPD 
 (0.198)

FDP 
 (0.147)

Greens 
 (0.000)

Leftist 
 (0.002)

Nuclear Energy 
 

CDU 
 (0.000)

SPD 
 (0.000)FDP 

 (0.000)

Greens 
 (0.000) Leftist 

 (0.072)

CDU 
 (0.000)

SPD 
 (0.000)

FDP 
 (0.000)

Greens 
 (0.000)

Leftist 
 (0.072)

Note: The effect stars are based on the main effects model in Table 1.

Figure 2: Effect stars, German Parliamentary Election 2009.

depicts these effect stars for each covariate. Each ray of a particular effect star corresponds

to one party and has length proportional to exp(β̂jl) or exp(α̂jk), respectively. The dashed

32Note again that due to the negative sign of the issue distances, an increase in the perceived distance
corresponds to a decrease in the issue variable.

33exp(−0.2 · 2) = 0.67; 1− 0.67 = 0.33 = 33%.
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circles correspond to a null effect, and therefore indicate a length of exp(0) = 1. If the ray

of an effect star lies outside of this circle, the corresponding variable exhibits a positive

effect on the respective party; if the ray lies inside, the effect is negative. The numbers in

parentheses show approximate p-values.34 Since the overall size of all effect stars is the

same, small circles correspond to predictors whose maximal effect is large, whereas large

circles indicate a small maximal effect. For instance, visual inspection shows that the

covariate sex does not affect party choice, all rays of its effect star lie on the null circle.

Also note the striking large effect of dissatisfaction with democracy on the Leftist Party,

or the strong negative effect of union membership on the CDU vote.35

Next, let us turn to the visualization of the Lasso’s shrinkage property as outlined

in Section 3.2.1. This shrinkage effect can be illustrated by so-called coefficient paths.

Figure 3 depicts these coefficient paths for the variable West Germany and the issue of
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Note: The coefficient paths are based on the main effects model in Table 1.

Figure 3: Coefficient paths for the variables West Germany and the issue immigration,
German Parliamentary Election 2009.

immigration. Each path indicates the Lasso estimates over the chosen grid of the tuning

parameter λ. In particular, the paths illustrate how the estimated coefficients move

towards zero when the penalization is increased. Therefore, they show for which specific

party these two variables have the most persistent effect. With regard to the covariate

West Germany, these parties are the SPD and the Leftist Party: Only by applying a

strong penalization, the corresponding coefficients turn to zero. The horizontal black line

indicates a zero effect, the dashed vertical line visualizes the λ chosen via AIC. Hence,

the height of the intersection between coefficient paths and the dashed line is equal to

the estimators from Table 1. Take, for instance, the path of the SPD for the variable

West Germany. This path intersects the dashed line at about .4, visualizing the Lasso-

regularized coefficient estimate for the SPD vote. In order to facilitate the readability of

the coefficient paths, we use a log-scale for the x-axis. By applying the transformation

34Note again that the p-values of coefficients which are set to zero by the Lasso are necessarily 1.
Therefore, we do not display these p-values. For instance, see the effect of sex on the Greens vote.

35Due to space restrictions, we do not display the irrelevant variables unemployment and having a
religious affiliation other than Protestant or Catholic in Figure 2.
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“log(1 + λ)”, the paths begin at λ = 0, which corresponds to the ML estimator. Note

that the left panel of Figure 3 does not contain a yellow path representing the Liberal

Party (FPD). This means that the effect of the variable West Germany on the FDP vote

was removed by the Lasso even for λ = 0.01, reflecting the smallest λ in our grid. The

complete presentation of coefficient paths can be found in Figure 4 in Appendix B.

4.2 Including Interactions between Issues and Voter Attributes

Next, we consider a model allowing for interaction effects between issues and voter at-

tributes to test segment-specific reactions to issue distances. In particular, by using

this much more complex specification we are able to determine the issue effects for spe-

cific voter demographics. Note that each issue distance parameter of the main effects

model estimated in the previous section shows the effect of an issue on a party for all

kinds of voters; i.e., the marginal issue effect across the whole population. Although the

alternative-specific specification of the issue variables already allows us to detect which

particular issue proves to affect which particular party choice, the main effects model does

not allow us to infer which specific voter segments place a differential emphasis on the

issues when casting their ballots. By segmenting the population into subgroups, we are

also able to identify so-called issue publics (Converse, 1964). According to the issue pub-

lic hypothesis, the population can be divided into issue publics, each consisting of voters

who intensively care about particular issues. Instead of assuming that voters are homoge-

nously sensitive to the whole spectrum of issues, the issue public hypothesis suggests that

specific voter segments can be distinguished by their differing sensitivities towards issues

based on, e.g., their personal interests or demographic characteristics (see, e.g., Krosnick,

1990; Thurner, 2000; Mebane, Jackson, and Wall, 2014).

While the use of interactions is attractive from both a theoretical and practical per-

spective, it massively increases the model’s complexity and aggravates its interpretation.

For instance, our application case consists of three issue variables, ten voter attributes and

five parties, resulting in a total of 150 possible interaction terms. This high-dimensional

interaction model cannot be properly handled by unpenalized ML estimation. In particu-

lar, fitting a model of this size without penalization yields highly unstable estimates with

poor predictive performance.36 Thus, the main challenge is once again continuous, stable

and computationally efficient variable selection. In addition, variable selection should en-

sure that only those interaction effects are kept in the model that yield an improvement

over the more simple main effects model from Section 4.1.

Using the same methodology and steps as in the previous section, we fit a Lasso-

penalized model that additionally includes all possible interactions between the issues

and voter characteristics. Table 2 contains the Lasso-penalized parameter estimates of

this interaction model.

The shrinkage and regularization effect of the Lasso stabilizes this extremely large

36See Section 4.3 for a more detailed discussion on estimate stability and prediction accuracy.
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CDU SPD FDP Greens Leftist
ASC 1.26*** (0.000) 0.34 (0.187) -1.12*** (0.000) 0.29 (0.338) -0.77* (0.017)

Sex 0 0 0 0 0
West Germany -0.19 (0.296) 0.19 (0.313) 0 0 0
Age 0 0 0 0 0
Union Membership -0.56 (0.140) 0 0 -0.29 (0.428) 0.84* (0.023)

High School 0 -0.04 (0.831) 0 0 0.04 (0.795)

Unemployment 0 0 -0.43 (0.215) 0 0.43 (0.208)

Pol. Interest 0 0 0 0 0
Democracy -0.50 (0.114) 0 0.04 (0.874) 0 0.46 (0.163)

ReligionCatholic -0.68* (0.022) 0 0.68* (0.026) 0 0
ReligionOther -0.80* (0.017) 0 0.80* (0.017) 0 0
Taxes 0.18 (0.089) 0.38** (0.002) 0 0.36* (0.038) 0.38* (0.023)

Immigration 0.28 (0.051) 0 0 0.31** (0.001) 0.07 (0.419)

Nuclear Energy 0.28** (0.004) 0.34** (0.005) 0.21* (0.011) 0.14 (0.102) 0
Taxes X Sex 0 0 0.08 (0.331) 0 0
Taxes X West Germany 0 0 0 0 0.18 (0.099)

Taxes X Age 0 0 0 0.04 (0.223) -0.05 (0.129)

Taxes X Union Membership -0.12 (0.375) 0 0 0 0
Taxes X High School 0 0 0 0 0
Taxes X Unemployment 0.24 (0.160) 0 -0.52 (0.051) 0 0
Taxes X Pol. Interest 0 0 0 0.09 (0.418) 0
Taxes X Democracy 0 0 0.12 (0.150) 0 -0.18 (0.266)

Taxes X ReligionCatholic 0 -0.06 (0.544) 0.32* (0.020) -0.13 (0.396) 0
Taxes X ReligionOther 0 -0.25 (0.070) 0.11 (0.282) -0.23 (0.142) 0
Immigration X Sex 0 0.04 (0.443) -0.06 (0.364) 0 0
Immigration X West Germany 0.06 (0.467) 0 0 -0.13 (0.139) 0
Immigration X Age 0 0 0 0.06* (0.026) 0
Immigration X Union Membership 0 0 0 0.06 (0.665) 0
Immigration X High School 0 0 0 0 0.09 (0.346)

Immigration X Unemployment 0 0 0 0 0
Immigration X Pol. Interest 0.14 (0.152) 0 0 0 0.14* (0.048)

Immigration X Democracy 0 0 0 0 0
Immigration X ReligionCatholic -0.32* (0.011) 0 0.14 (0.183) 0 0.05 (0.386)

Immigration X ReligionOther -0.14 (0.279) 0.21* (0.016) 0.15 (0.164) 0 -0.05 (0.359)

Nuclear Energy X Sex 0 0 0 0 -0.12 (0.122)

Nuclear Energy X West Germany 0 0 0 0 0.16 (0.135)

Nuclear Energy X Age -0.04 (0.061) -0.02 (0.449) 0 0 0.01 (0.545)

Nuclear Energy X Union Membership 0 0 0.48 (0.111) 0 0
Nuclear Energy X High School 0 0 0 0 0
Nuclear Energy X Unemployment 0 0 1.18*** (0.000) 0 0
Nuclear Energy X Pol. Interest -0.12 (0.126) -0.09 (0.405) 0 0 0
Nuclear Energy X Democracy 0.12 (0.102) 0 0 0 0.07 (0.375)

Nuclear Energy X ReligionCatholic -0.09 (0.318) 0 0 0.16 (0.177) 0
Nuclear Energy X ReligionOther -0.08 (0.342) 0 0 0.13 (0.205) 0

Numbers in parentheses show approximate p-values based on simple, two-sided t-tests using bootstrapped standard
errors.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 2: Lasso-regularized coefficient estimates of the interaction model, German Parlia-
mentary Election 2009.

model and greatly reduces the number of parameters that have to be interpreted. There-

fore, the Lasso overcomes the two major drawbacks of this interaction model – instability

and exuberant complexity. In particular, 107 out of 150 possible interaction terms are

efficiently removed from the model, and thus only 43 relevant interactions remain. In-

deed, several interesting, large and highly significant interaction terms have been selected

by the Lasso, including the interaction effect between unemployment and the issue of

nuclear energy on FDP vote, the interaction effect between political interest and the issue

of immigration on Leftist vote, the interaction effect between religion and the issue of

immigration on both CDU and SPD vote, as well as the interaction effect between being

Catholic and the issue of taxes on FDP vote. For instance, the issue of immigration
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seems to influence the vote decision in favor of the Greens only in the case of older voter

segments, whereas for young voters this particular issue plays no central role.

Also note that the tax issue exhibits a zero main effect for the Liberal Party FDP.

Since the FDP is known to be very successful in promoting the reduction of taxes and

efficiently politicizing this issue, this result may seem surprising at first glance. However,

when interpreting this finding and the particular meaning of the estimates in interaction

models, we have to take into account that main and interaction effects cannot be inter-

preted separately.37 Consider a voter for whom all individual-specific variables take the

value of zero and let us call a voter with these attributes the “reference voter”. In the

present application, this reference voter is defined by the following characteristics: 50.5

years old, female, Protestant, based in former East Germany, no union member, no high

school degree, currently not unemployed, very interested in politics, and satisfied with

the democracy. With z1 denoting the tax issue, z2 the immigration issue, and z3 nuclear

energy issue, it follows from (2) that the linear predictor for this particular reference voter

is given by η̂ij = β̂0j +zij1α̂j1 +zij2α̂j2 +zij3α̂j3. Therefore, the estimated zero main effect

of the issue taxes on the FDP vote indicates that the issue of taxes does not influence FPD

voters having this specific combination of demographic characteristics. If we take instead

a Catholic voter being otherwise identical to the reference voter, the linear predictor of

the FDP (j = 3) increases by 0.68 + zi31 · 0.32 + zi32 · 0.14. To give a second example,

each unit-increase in the distance between the reference voter and the CDU on the issue

of nuclear energy decreases the linear predictor of the CDU by 0.28. If the voter is 70.5

years old instead, it only decreases by 0.20.38

4.3 Comparison of Models

In this section, we demonstrate how the Lasso outperforms the ML estimator with regard

to all considered performance measures. For this purpose, we compare the Lasso-penalized

main effects and interaction models as well as the corresponding unpenalized models.

Additionally, we show how the sparsity and predictive performance of the Lasso vary

across different reference categories.

The models’ predictive performance is measured by the cross-validated deviance (CV),

the AIC, and the BIC. The models’ complexity is determined by the effective degrees of

freedom.39 The results of this comparison are presented in Table 3. Parameter tables for

the ML models are given in Tables 5 and 6 in Appendix B.

As Table 3 shows, Lasso-penalization clearly outperforms the simple ML estimator.

For both the main effects and the interaction model, the Lasso considerably improves

37See, e.g., Brambor, Clark, and Golder (2006); Kam and Franzese (2007); Berry, Golder, and Mil-
ton (2012); Berry, DeMeritt, and Esarey (2010); Ai and Norton (2003); Norton, Wang, and Ai (2004);
Braumoeller (2004).

38The translation of changes in the linear predictors to changes in odds or odds ratios is unaffected by
the presence of interactions and works as usual.

39For an unpenalized MNL with symmetric side constraint, effective degrees of freedom equal the
number of nominal parameters minus the number of individual-specific variables.
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Model CV AIC BIC d̂f
ML main effects 203.44 2013.44 2291.00 59
Lasso main effects 195.28 1982.19 2127.06 31
ML interaction 223.74 2115.66 3098.88 209
Lasso interaction 187.42 1935.71 2237.37 72

Table 3: Comparison of models based on predictive performance and complexity.

all four considered predictive performance and complexity measures compared to the ML

estimator. Using ML estimation, the inclusion of interactions leads to a remarkable de-

terioration of the model. This finding again demonstrates that, within the ML context,

one would have to select important interactions manually or via elaborate testing proce-

dures. By contrast, the Lasso approach easily allows including all possible interactions.

The Lasso-penalized interaction model exhibits by far the best crossvalidation score and

AIC. Since the ML interaction model includes 209 potential effects, compared to the 59 of

the corresponding main effects model, it comes as no surprise that the former uses more

parameters than the latter, even after the Lasso has culled irrelevant effects. Therefore,

the Lasso main effects model outperforms the Lasso interaction model in terms of the

BIC, which assigns a heavy penalty to each parameter. In the end, the choice between

these two models will depend on the researcher’s preference and the study’s objective:

the interaction model offers more detailed insights into the importance of political issues

for specific voter segments, but at the same time it is much more complex and difficult to

interpret than the main effects model whose strength lies in its simplicity.

To support our arguments from Section 3.2.3, Table 4 summarizes the performance

measures for the Lasso-penalized main effects model based on the six possible identifia-

bility contraints (i.e., five choices of reference category and symmetric side constraint).

It is immediately seen that the sparsity of the models varies substantially across different

choices of the reference category, indicated by the amount of nonzero parameters. There-

fore, the Lasso’s predictive performance – as CV, AIC and BIC illustrate – also varies

considerably across reference categories. Applying the symmetric side constraint provides

in this application the most parsimonious model that also performs best in terms of AIC

and BIC. This observed pattern, however, cannot be generalized – the relative perfor-

mance of a model applying a symmetric side constraint compared to one using a reference

category depends on the dataset at hand. Nonetheless, the symmetric side constraint

provides a universal solution to the identifiability issue in MNLs while the choice of a

specific reference category is always arbitrary.

5 Conclusion

Multinomial logit models (MNLs) are a powerful tool to translate the Spatial Theory of

Voting into statistical models. Although offering the possibility to address new aspects of
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Identifiability Contraint CV AIC BIC d̂f
CDU 189.77 1999.40 2238.64 51
SPD 189.96 2002.38 2244.19 52
FDP 190.30 1988.09 2188.89 43
Greens 189.74 1990.99 2211.16 47
Leftist 190.37 2002.56 2237.27 50
Symmetric 195.28 1982.19 2127.06 31

Table 4: Comparison of performance measures for Lasso main effects model based on
different choices of the identifiability constraint.

issue voting, such as party-specific issue reactions, the flexibility of these models implies

at the same time an enormous proliferation of coefficients, highlighting the practical need

for sophisticated parameter selection techniques.

In this paper, we outline the benefits of regularization methods in the statistical anal-

ysis of the Spatial Theory of Voting. In particular, we explicitly derive for the first time

Lasso-type regularization techniques of MNLs that take into account both individual-

and alternative-specific variables, and that are able to incorporate the alternative-wise

specification of choice-specific covariates (e.g., issue distances). Since the Lasso is able

to set parameters of irrelevant predictors to exactly zero, the corresponding effects are

effectively removed from the model. Thus, the Lasso implicitly performs variable selection

as a by-product of the estimation process, and therefore enforces parameter selection and

reduction of the predictor space. Hence and in contrast to classical selection techniques,

the Lasso guarantees continuous, stable and computationally efficient variable selection.

We also illustrate that the usage of adaptive weights yields a considerable improvement

of the Lasso’s performance, both in terms of variable selection and prediction accuracy.

By applying the Lasso method to the 2009 German Parliamentary Election, we demon-

strate that our proposed approach massively reduces the model’s complexity and simpli-

fies its interpretation by selecting highly interesting and theoretically promising effects.

In addition, it improves the model’s predictive performance. More specifically, Lasso-

penalization clearly outperforms the simple ML estimator, for both the main effects and

the interaction model. Finally, we show that using a symmetric identifiability constraint

prevents that the arbitrary choice of a reference category influences the selection of the

most promising model. In particular, we demonstrate that the models’ sparsity and com-

plexity substantially vary across different choices of the reference category. Therefore, we

strongly recommend the usage of symmetric side constraints as identifiability constraint

in MNLs. Naturally, other interpretation techniques as well as the derivation of equilibria

can build on these results.
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A Properties of Lasso Estimates

Let θ̂λ denote the Lasso estimator of the model’s overall parameter vector θ for tuning

parameter λ. Let λmax > λ2 > λ1 > 0 and let || · ||1 denote the L1-norm.

Then, it follows from the constraint definition of the Lasso that the L1 norm of the

Lasso is smaller than that of the ML estimator and that it decreases with increasing

penalty level: ||θ̂ML||1 = ||θ̂0||1 > ||θ̂λ1||1 > ||θ̂λ2||1. Note, however, that not every single

coefficient is shrunk compared to its ML counterpart. For groups of highly correlated

predictors, the Lasso typically only selects one of them while the others are set to zero. In

such cases, the coefficient for the selected predictor partially subsumes the effects of the

removed correlated predictors. Thus, in the presence of correlation among the predictors,

single coefficients can get larger when λ is increased.

Due to its shrinkage property, the Lasso is a biased estimator. Its variance, by contrast,

becomes smaller for a larger degree of penalization. It can be shown that Var(θ̂
ML

) >

Var(θ̂λ1) > Var(θ̂λ2).
40

The last property of the Lasso that we consider is its effective degrees of freedom.

Since the Lasso is a shrinkage estimator, its effective degrees of freedom will intuitively

be smaller than the number of estimated parameters. In Zou, Hastie, and Tibshirani

(2007), it was shown that its effective degrees of freedom can be estimated by the number

of nonzero parameters and that this df-estimator is unbiased and consistent: d̂f(θ̂λ) =∑
i I(|θ̂i,λ| > 0). However, this general formula has to be handled with care due to the

identifiability constraints used in MNLs. We will give an explicit formula for the df of the

Lasso for our model in Section 3.2.3

40Here, Var(θ̂) is a covariance matrix, so that the notation “Var(θ̂λ1
) > Var(θ̂λ2

)” means that the
difference of these matrices positive definite.
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Note: The coefficient paths are based on the main effects model in Table 1.

Figure 4: Coefficient paths for all predictors, German Parliamentary Election 2009.
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CDU SPD FDP Greens Leftist
ASC 1.22*** (0.000) 0.17 (0.597) -0.65 (0.080) -0.32 (0.504) -0.42 (0.267)

Sex -0.21 (0.194) -0.17 (0.279) 0.13 (0.547) 0.08 (0.698) 0.17 (0.394)

West Germany -0.33 (0.056) 0.42* (0.029) 0.07 (0.786) 0.45 (0.114) -0.61** (0.004)

Age 0.19*** (0.000) 0.06 (0.204) -0.05 (0.476) -0.24*** (0.000) 0.03 (0.580)

Union Membership -0.48 (0.073) 0.43* (0.029) -0.34 (0.303) -0.57 (0.084) 0.96*** (0.000)

High School 0.30 (0.140) -0.16 (0.488) 0.22 (0.385) 0.34 (0.189) -0.69* (0.015)

Unemployment -0.48 (0.289) 0.04 (0.916) -0.29 (0.678) -0.07 (0.906) 0.79* (0.022)

Pol. Interest 0.22 (0.266) 0.38* (0.033) -0.20 (0.340) 0.07 (0.780) -0.46* (0.033)

Democracy -0.74*** (0.000) -0.35* (0.037) 0.15 (0.490) -0.14 (0.530) 1.08*** (0.000)

ReligionCatholic 0.39* (0.037) -0.08 (0.653) 0.14 (0.609) -0.22 (0.418) -0.22 (0.371)

ReligionOther -0.34 (0.076) -0.33 (0.099) 0.43 (0.088) 0.06 (0.801) 0.18 (0.410)

Taxes 0.17** (0.004) 0.25*** (0.000) 0.22** (0.001) 0.26** (0.001) 0.34*** (0.000)

Immigration 0.28*** (0.000) 0.10 (0.064) 0.12 (0.075) 0.21*** (0.000) 0.17** (0.001)

Nuclear Energy 0.18*** (0.000) 0.29*** (0.000) 0.29*** (0.000) 0.27*** (0.000) 0.14* (0.031)

Numbers in parentheses show approximate p-values based on simple, two-sided t-tests using bootstrapped standard errors.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5: ML coefficient estimates of the main effects model, German Parliamentary Elec-
tion 2009.

28



CDU SPD FDP Greens Leftist
ASC 2.34** (0.004) 0.51 (0.521) -2.13* (0.014) -0.43 (0.645) -0.28 (0.747)

Sex -0.41 (0.340) 0.31 (0.471) 0.28 (0.595) 0.21 (0.677) -0.39 (0.432)

West Germany -0.49 (0.335) 0.82 (0.158) 0.33 (0.567) -0.10 (0.886) -0.56 (0.337)

Age 0.20 (0.146) -0.07 (0.585) -0.10 (0.551) -0.03 (0.856) 0.01 (0.958)

Union Membership -1.22 (0.168) 0.23 (0.734) 0.76 (0.574) -1.33 (0.077) 1.55* (0.031)

High School 0.37 (0.530) -1.00 (0.119) 0.63 (0.317) 0.62 (0.347) -0.63 (0.363)

Unemployment 0.49 (0.735) 1.13 (0.379) -4.18* (0.011) 1.09 (0.448) 1.48 (0.254)

Pol. Interest 0.24 (0.613) -0.09 (0.853) -0.89 (0.087) 0.86 (0.139) -0.13 (0.802)

Democracy -0.70 (0.130) -0.69 (0.106) 1.09 (0.051) -0.65 (0.261) 0.95 (0.147)

ReligionCatholic -0.98 (0.105) -0.51 (0.284) 1.63* (0.019) 0.17 (0.802) -0.30 (0.647)

ReligionOther -1.53** (0.007) -0.50 (0.346) 1.37* (0.031) 0.69 (0.284) -0.03 (0.960)

Taxes 0.54* (0.037) 0.67* (0.027) -0.06 (0.809) 0.52 (0.159) 0.44 (0.178)

Immigration 0.37 (0.180) 0.06 (0.797) 0.04 (0.882) 0.26 (0.356) 0.34 (0.195)

Nuclear Energy 0.42 (0.056) 0.37 (0.212) 0.16 (0.598) 0.15 (0.576) 0.19 (0.533)

Taxes X Sex -0.18 (0.252) -0.06 (0.697) 0.32 (0.086) -0.18 (0.475) 0.04 (0.836)

Taxes X West Germany -0.21 (0.224) 0.20 (0.310) -0.13 (0.463) 0.11 (0.652) 0.19 (0.344)

Taxes X Age 0.02 (0.765) 0.01 (0.770) -0.05 (0.360) 0.09 (0.208) -0.08 (0.248)

Taxes X Union Membership -0.37 (0.140) -0.22 (0.371) 0.40 (0.482) -0.36 (0.274) 0.24 (0.424)

Taxes X High School 0.16 (0.462) -0.14 (0.573) 0.13 (0.568) 0.11 (0.681) -0.04 (0.896)

Taxes X Unemployment 0.47 (0.455) -0.40 (0.548) -1.53** (0.007) 0.41 (0.547) -0.12 (0.826)

Taxes X Pol. Interest -0.14 (0.462) -0.11 (0.538) -0.09 (0.644) 0.28 (0.284) -0.03 (0.869)

Taxes X Democracy 0.12 (0.434) -0.24 (0.156) 0.22 (0.212) -0.14 (0.612) -0.25 (0.443)

Taxes X ReligionCatholic -0.04 (0.860) -0.26 (0.205) 0.51 (0.057) -0.28 (0.351) 0.04 (0.882)

Taxes X ReligionOther -0.27 (0.187) -0.39 (0.100) 0.02 (0.903) -0.36 (0.216) -0.03 (0.887)

Immigration X Sex 0.07 (0.667) 0.12 (0.363) -0.15 (0.405) 0.16 (0.299) 0.02 (0.971)

Immigration X West Germany 0.10 (0.557) -0.11 (0.513) 0.19 (0.332) -0.29 (0.112) -0.24 (0.177)

Immigration X Age 0.05 (0.219) -0.01 (0.862) 0.03 (0.598) 0.07 (0.178) -0.03 (0.550)

Immigration X Union Membership -0.02 (0.930) 0.27 (0.224) -0.26 (0.541) 0.32 (0.196) -0.02 (0.949)

Immigration X High School -0.17 (0.334) -0.07 (0.754) -0.22 (0.349) -0.10 (0.654) 0.12 (0.623)

Immigration X Unemployment -0.08 (0.911) 0.35 (0.549) 0.06 (0.901) -0.14 (0.856) 0.26 (0.582)

Immigration X Pol. Interest 0.27 (0.115) -0.01 (0.926) -0.19 (0.342) 0.07 (0.698) 0.12 (0.448)

Immigration X Democracy -0.22 (0.106) -0.01 (0.944) 0.10 (0.585) -0.01 (0.954) -0.12 (0.557)

Immigration X ReligionCatholic -0.46* (0.023) 0.01 (0.957) 0.10 (0.666) 0.11 (0.572) 0.18 (0.403)

Immigration X ReligionOther -0.19 (0.403) 0.19 (0.303) 0.27 (0.194) 0.18 (0.343) -0.12 (0.532)

Nuclear Energy X Sex -0.03 (0.805) 0.12 (0.521) -0.07 (0.627) -0.01 (0.976) -0.38 (0.053)

Nuclear Energy X West Germany 0.02 (0.896) 0.14 (0.510) -0.05 (0.783) 0.01 (0.996) 0.20 (0.389)

Nuclear Energy X Age -0.05 (0.227) -0.05 (0.317) 0.02 (0.734) -0.03 (0.597) 0.07 (0.179)

Nuclear Energy X Union Membership 0.17 (0.550) -0.01 (0.984) 1.08 (0.164) -0.22 (0.449) 0.29 (0.367)

Nuclear Energy X High School 0.05 (0.765) -0.23 (0.349) 0.28 (0.268) 0.11 (0.568) -0.12 (0.629)

Nuclear Energy X Unemployment 0.14 (0.870) 0.53 (0.495) 2.05** (0.010) 0.34 (0.727) -0.08 (0.903)

Nuclear Energy X Pol. Interest -0.19 (0.175) -0.25 (0.232) -0.02 (0.926) -0.08 (0.674) -0.04 (0.825)

Nuclear Energy X Democracy 0.15 (0.261) 0.09 (0.642) 0.14 (0.502) -0.09 (0.593) 0.27 (0.218)

Nuclear Energy X ReligionCatholic -0.20 (0.224) -0.04 (0.843) 0.13 (0.610) 0.26 (0.249) -0.28 (0.355)

Nuclear Energy X ReligionOther -0.22 (0.186) -0.10 (0.645) -0.06 (0.749) 0.27 (0.155) -0.10 (0.699)

Numbers in parentheses show approximate p-values based on simple, two-sided t-tests using bootstrapped standard errors.
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 6: ML coefficient estimates of the interaction model, German Parliamentary Elec-
tion 2009.
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