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Abstract

Credit risk is crucial to understanding banks’ production technology and should be explicitly
accounted for when modeling the latter. The banking literature has largely accounted for risk by
using ex-post realizations of banks’ uncertain outputs and the variables intended to capture risk.
This is equivalent to estimating an ex-post realization of bank’s production technology which,
however, may not reflect optimality conditions that banks seek to satisfy under uncertainty. The
ex-post estimates of technology are likely to be biased and inconsistent, and one thus may call
into question the reliability of the results regarding banks’ technological characteristics broadly
reported in the literature. However, the extent to which these concerns are relevant for policy
analysis is an empirical question. In this paper, we offer an alternative methodology to estimate
banks’ production technology based on the ex-ante cost function. We model credit uncertainty
explicitly by recognizing that bank managers minimize costs subject to given expected outputs
and credit risk. We estimate unobservable expected outputs and associated credit risk levels
from banks’ supply functions via nonparametric kernel methods. We apply this framework to
estimate production technology of U.S. commercial banks during the period from 2001 to 2010
and contrast the new estimates with those based on the ex-post models widely employed in the
literature.
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1 Introduction

Commercial banking is a risky business. Banks are subject to risks of many kinds among which
credit risk and liquidity risk are the two most commonly referenced (e.g., Freixas and Rochet, 2008).
Credit risk is associated with the likelihood that a borrower will default on the debt by failing to
make payments as obligated contractually. Liquidity risk arises from financing long-term illiquid
assets with short-term liquid liabilities. These risks shape banks’ production technology by requiring
them to spend substantial resources on risk management. Therefore, researchers should explicitly
account for these intrinsic risks when modeling banks’ production technology (Hughes and Mester,
1998).

A handful of empirical studies on microeconomics of banking account for risk-taking behavior
of banks. With a few exceptions (Hughes et al., 1996, 2000, 2001; Hughes and Mester, 2013),
researchers customarily estimate banks’ scale and scope economies, productivity or efficiency by
assuming away uncertainty in banks’ production (e.g., Berger et al., 1987; Clark, 1996; Berger and
Mester, 1997, 2003; Wheelock and Wilson, 2001, 2012; Feng and Serletis, 2009, 2010). Credit risk is
often (if at all) modeled by using its ex-post “proxies” such as non-performing loans or the volatility
of net income in prior years (Hughes and Mester, 1993), while liquidity risk is seldom accounted
for.1

The use of ex-post realizations of risk and uncertain outputs (to which all above-cited papers
resort to) is equivalent to estimating an ex-post realization of banks’ production technology which,
however, may not reflect actual optimality conditions that banks seek to satisfy under production
(credit) uncertainty (Pope and Just, 1996). Thus, one may call into question the reliability of the
results regarding banks’ technological characteristics broadly reported in the literature, since the
ex-post estimates of banking technology are likely to be biased and inconsistent (Pope and Chavas,
1994). However, the extent to which these concerns are relevant for policy analysis is an empirical
question.

In this paper, we shed light on this issue by highlighting the fundamental differences between
the estimation of banks’ production technology under uncertainty and that under the assumption
of a deterministic production process. We first discuss why the underlying production process
in banking — namely, the production of (income-generating) credit — is inherently uncertain.2

Then, we review the ex-post modeling approach commonly undertaken in the literature which either
assumes uncertainty away or models it in a somewhat ad hoc fashion. We contrast this approach
with its ex-ante counterpart which recognizes the uncertain nature of the production process in
banking in the first stages of modeling. We show that the ex-post estimates of banking technology
are likely to be biased and inconsistent and offer an alternative methodology to estimate banks’
production technology based on the ex-ante (dual) cost function (Pope and Chavas, 1994; Pope and
Just, 1996, 1998).3 The latter acknowledges credit uncertainty explicitly by recognizing that bank
managers minimize costs subject to given expected outputs and credit risk levels. We note that
the estimation of the ex-ante cost function is advantageous over the primal approach to uncertain

1Some studies investigating banks’ profitability account for liquidity risk using ex-post liquidity ratios (e.g., long-term
loans to liquid liabilities, liquid assets to total assets or liquid assets to deposits). See Shen et al. (2009) and references
therein.

2Clearly, the fundamental principle of the production process in banking itself is quite certain, i.e., to borrow funds
from one group of customers in the form of deposits and lend these funds to another group in the form of loans.
However, the amount of loans that will ultimately generate income for a bank is uncertain because not all issued
loans are paid back duly. Since the fraction of the nonperforming loans is unknown to banks in advance, the latter
makes the production of performing (earnings) loans uncertain.

3The terms “ex-ante cost function” and “ex-post cost function” were first coined by Pope and Chavas (1994).
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production processes (i.e., the expected utility maximization) because it is free of risk preference
parameters and avoids the specification of the utility function. In order to make the model feasible
to estimate, we estimate unobservable expected outputs and their associated credit risk levels from
banks’ supply functions (Moschini, 2001) via nonparametric kernel methods.

We apply this ex-ante framework to data on U.S. commercial banks operating during the period
from 2001 to 2010. The reported results on cost elasticities, scale economies and productivity growth
are contrasted with those obtained from the ex-post models of banking technology. We find that
output elasticities of cost computed using the ex-post estimates of production technology tend to
be biased upwards which in turn leads to downward biases in the returns to scale estimates. The
results, however, do not differ qualitatively across the ex-ante and ex-post models if one controls
for unobserved bank-specific effects. In the latter case, we find that virtually all U.S. commercial
banks (regardless of the size) operate under increasing returns to scale, which is consistent with
findings recently reported in the literature despite the differences in methodology (e.g., Feng and
Serletis, 2010; Wheelock and Wilson, 2012; Hughes and Mester, 2013). Interestingly, if we leave
bank-specific effects uncontrolled (as, for instance, the three above-cited studies do), the results
change dramatically: the ex-ante models then indicate that 23-35% and 33-34% of large banks
exhibit decreasing and constant returns to scale, respectively.4

When analyzing the growth in total factor productivity (TFP) and its components, we find that,
for medium and large banks, the TFP growth estimates from the ex-ante models tend to be higher
than those from the ex-post models. The opposite is true for small banks. In fact, results from the
ex-ante models indicate that the average annual TFP growth is negative among small banks. All
models suggest that the bulk of the positive productivity growth in the industry comes from the
scale economies component. According to the ex-ante models, the asset-weighted average annual
TFP growth due to increasing returns to scale is around 2.1-2.2% per annum across all banks.
Despite that small banks exhibit higher economies of scale, we find that, on average, the TFP scale
component is larger in magnitude for medium and large banks. Except for large banks, we find
little evidence of economically significant technical progress. The level of expected credit risk, as
measured by the volatility of earning assets, does not seem to impact productivity much either. For
small and medium banks, we find no effect of expected risk levels on TFP growth; little negative
effect is found for large banks.

The rest of the paper unfolds as follows. Section 2 discusses why the nature of banks’ production
process is inherently uncertain (stochastic) and describes the framework suitable to address this
uncertainty in the estimation of banking technology. Section 3 provides a description of the data.
The details of the estimation and the results are presented in Section 4. Section 5 concludes.

2 Stochastic Banking Technology

To avoid confusion, we note that, throughout the paper, we use the word “stochasticity” in its
economic rather than econometric meaning, i.e., when saying “stochasticity” we mean “uncertainty”
of the production process.

2.1 Credit Uncertainty

We start by examining how the “production” is conceptually formalized in the case of banks. The
framework broadly employed in the literature is the so-called “intermediation approach” of Sealey

4Restrepo-Tobón et al. (2013) similarly document that one is more likely to find the evidence of non-increasing returns
to scale among commercial banks if unobserved effects are ignored.
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and Lindley (1977), according to which a bank’s balance sheet is assumed to capture the essential
structure of a bank’s core business. Liabilities, together with physical capital and labor, are taken
as inputs to the banks’ production process, whereas assets (other than physical) are considered as
outputs. Liabilities include core deposits and purchased funds; assets include loans and trading
securities. Thus, this framework suggests the following mapping{

x ∈ RJ
+; z ∈ RK

+

}
→

{
y ∈ RM

+

}
, (2.1)

where x is a J × 1 vector of variable inputs that include a bank’s liabilities; z is a K × 1 vector of
(quasi-)fixed inputs5 (if any); and y is an M × 1 vector of outputs (assets and securities).

Numerous studies such as Berger and Mester (1997, 2003), Hughes and Mester (1998), Wheelock
and Wilson (2001, 2012), Feng and Zhang (2012) among many others have used the above framework
in their analysis of banking technologies. However, two points are worth mentioning here. First,
most studies commonly specify total issued loans and securities as banks’ outputs, whereas Sealey
and Lindley (1977) argue at length that “only earning assets as outputs are consistent with rational
profit maximizing behavior” (p.1260; emphasis added). Normally, not all issued loans are paid back
duly. One may argue that it is more appropriate to consider only “performing” loans as earning
assets and thus as banks’ output. We recognize that Sealey and Lindley (1977) made the above
argument largely to justify the inappropriateness of treating deposits as banks’ outputs: loans, not
deposits, earn banks income. In this paper, we however take Sealey and Lindley’s (1977) argument
a step further by tightening the definition of earning assets as those that actually earn income (i.e.,
performing loans) as opposed to merely have the potential to.6 In fact, most existing studies do
acknowledge the difference between the issued and performing loans (called non-performing loans),
as we will see below. Note that no such difference exists in Sealey and Lindley (1977) who explicitly
assume that all assets are payable in full at maturity and that neither loans nor securities are subject
to default (credit) risk (p.1255). This brings us to the second point.

The original framework of Sealey and Lindley (1977) implies that the mapping in (2.1) is deter-
ministic, since no assets are subject to credit risk. However, the latter assumption is rather strong
and unrealistic. A desired alternative is to relax this assumption by allowing the bank’s production
process (2.1) to be stochastic (uncertain). By doing so, one would acknowledge that bank managers
do not have perfect foresight and understand that some fraction of the issued loans may not be
repaid. Note that this is consistent with the fact that banks actively engage in risk management
which includes pre-screening of applicants, monitoring, collateralizing loans and hedging. These
risk mitigating activities are based on a bank’s expected risk as opposed to realized risk. Formally,
we define performing (y+) and non-performing (y−) loans and securities such that y = y+ + y−,
where y is a vector of total issued loans. The bank’s production process under credit uncertainty
may then be represented as{

x ∈ RJ
+; z ∈ RK

+ ; ε ∈ RM
}
→

{
y+ ∈ RM

+

}
, (2.2)

where y+ is an M × 1 vector of earning assets (i.e., performing loans and securities); and ε is an
M × 1 vector of corresponding mean-zero stochastic disturbances that represent the credit risk.

5Some studies of banks’ production technologies also incorporate financial (equity) capital and income from off-
balance-sheet activities as quasi-fixed netputs (e.g., Berger and Mester, 1997, 2003). We address this issue in detail
later in the paper.

6This narrowed definition is consistent with a more realistic banks’ objective, i.e., to maximize expected profits as
opposed to maximize the potential for profits. It is also consistent with the proposition that bank managers (or
banks themselves) maximize expected utility drawn from actual profits, not from the potential for profits.
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To clearly see the difference between the two formulations of the production process — deter-
ministic (2.1) and stochastic (2.2) — we consider the banking technology represented by the primal
production function. For the ease of discussion and notational simplicity, we use a simplified single-
output representation of the bank’s technology throughout this section. Then, the deterministic
production function corresponding to the input-output mapping (2.1) takes the following form

y = f(x, z) , (2.3)

where y is an output scalar, say, corresponding to total assets; x and z are as defined above; and
f(·) is the production function.

Explicit modeling of credit risk leads to a stochastic production function, corresponding to (2.2),
which can take the form

y+ = F (x, z, ε) ≡ f(x, z) exp(ε) , (2.4)

where y+ is an output scalar corresponding to a total of earning assets; ε is an i.i.d. random
disturbance with E [ε |x, z ] = 0 and E

[
ε2 |x, z

]
= σ2. Equation (2.4) tells that output is not

deterministically determined by a bank’s inputs and may deviate from f (·) in the presence of a
non-zero exogenous shock ε. The latter is more consistent with the reality that banks face than the
assumption of no credit uncertainty implied by (2.3).

Modeling production as a stochastic (uncertain) process is not novel in economics (e.g., Feldstein,
1971; Antle, 1983); the approach is a common practice among agricultural economists [see Just
and Pope (2002) and references therein]. Note that, while production function (2.4) allows for
uncertainty in credit production by banks, it however assumes that the credit risk, as measured by
the standard deviation of the output (a common measure of risk), is bank-invariant and cannot be
influenced by banks. These two implications are too restrictive: (i) banks differ from one another
in their riskiness and (ii) they actively engage in risk management thus (at least partly) influencing
the magnitude of risk that they are exposed to. We can adopt the above factors into the production
function as follows (Just and Pope, 1978)

y+ = F (x, z, ε) ≡ f(x, z) + εh(x, z) , (2.5)

where ε is an i.i.d. mean-zero, unit-variance random disturbance. However according to equation
(2.5), the volatility of output is no longer the same across banks and can now be affected by a
bank’s efforts as captured by the risk-management function h(·) ≥ 0. In other words, the standard
deviation S [y+ |x, z ] = σh(x, z) 6= σ.

One might think that, econometrically, the difference between the deterministic and stochastic
formulations of the bank’s production process [(2.1) and (2.2), respectively] is minuscule if one
estimates the bank’s production technology directly. The only difference between (2.3) and (2.5)
is that the latter has the output defined as performing loans as opposed to total issued loans and
that it has a heteroskedastic error. However, the difference will become more pronounced when one
introduces the bank manager’s behavior into the analysis (optimization and risk preferences), as
we will see below. In what follows, we explicitly distinguish between deterministic and stochastic
formulations of banking technology as well as between the issued, performing and non-performing
loans (y, y+ and y−, respectively).

2.2 The En-Ante Cost Function

When estimating banking technology in an attempt to obtain some metric of production technology
such as economies of scale or scope, technical change, productivity or efficiency, most studies in the
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literature use the dual approach (e.g., Hughes and Mester, 1993, 1998, 2013; Hughes et al., 1996,
2001; Wheelock and Wilson, 2001, 2012; Feng and Serletis, 2009, 2010; Restrepo-Tobón et al., 2013).
By assuming that banks minimize costs, these studies are able to quantify banks’ technology by
estimating the dual cost function.7 This is advantageous over the estimation of a primal specification
of the production process mainly because it avoids the use of input quantities on the right-hand
side of the regression equation which can lead to simultaneity (endogeneity) problems given that
the input allocation is endogenous to a bank’s decisions.

However, the majority of these studies appeal to a standard dual theory based on a deterministic
production process like the one in (2.3), according to which the bank’s dual cost function is defined
as (in a single-output case)

C (y,w, z) = min
x

{
x′w | y ≤ f(x, z); z = z0

}
, (2.6)

where C is the variable cost (cost of variable inputs); w is a vector of the competitive variable input
prices; z is a vector of (quasi)-fixed inputs or “control variables” with the corresponding vector of
observed (fixed) values z0; and the remaining arguments are as defined before.

Since the above method takes the risky nature of banking operations for granted, several at-
tempts have been made to incorporate risk into the estimation of the banking technology. Hughes
and Mester (1993, 1998) propose to condition the bank’s cost function on financial (equity) capital
and output quality (inverse of credit risk). By doing so, they allow (directly or indirectly) the price
of uninsured deposits and the level of equity capital to be endogenous to a bank’s decisions. The
inclusion of the above variables into the cost function is motivated by a bank manager’s utility
maximization problem, according to which utility is a function not only of profits but also of out-
put quality and equity capital. According to Hughes and Mester (1993, 1998), inclusion of output
quality into a manager’s utility function reflects the trade-off between profits and the credit risk
associated with them. Equity capital may be a source of loanable funds and thus can be used as
a cushion against liquidity risk; it can also be a means of signaling the degree of a bank’s credit
riskiness to its depositors.

There may, however, be some concerns about implementing this method in practice. First, since
the risk is not observed ex ante, researchers often resort to using its ex-post realizations. Output
quality and risk are usually proxied by the ex-post ratio of non-performing loans to total issued
loans and by the average standard deviation of the bank’s yearly net income during five prior years,
respectively. Second, the underlying utility-maximization framework, based on which the dual cost
function is ultimately defined in Hughes and Mester (1998), is still deterministic in its core. The
latter amounts to an implicit assumption that risk and profits are known to bank managers ex ante,
which might be rather strong.

A more general treatment of the banks’ risky technology is offered by Hughes et al. (1996, 2000,
2001) who propose a model in which bank managers rank production plans (i.e., the set of input
mix, output level and quality, and the level of equity capital) and profits according to their risk
preferences and subjective conditional probability distribution of states of the world. The model is
then estimated using Deaton and Muellbauer’s (1980) almost ideal demand system which produces
the “most-preferred” cost-function. However, the concerns we express above are still likely to apply.
While conditioning the bank managers’ utility-maximization problem on their subjective probability
distributions does free the model from stochasticity, it however comes at a cost. The model would
then include expected values (and possibly higher moments) of all inherently stochastic arguments

7An alternative approach is to estimate the dual profit function under the premise of profit maximization. This is
mostly popular amid the studies of inefficiency in the banking industry in the stochastic frontier framework (e.g.,
Berger and Humphrey, 1997).
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of the utility function which are unobserved at the time of decision-making. That is, managers
would rank production plans based on the expected outputs, risk and profits. Given that the latter
variables are unobserved, one may instead use their ex-post realizations in the estimation.8 Doing
the latter would be equivalent to estimating banks’ ex-post cost function which, however, may
not reflect the actual optimality condition that bank managers seek to satisfy under production
uncertainty (Pope and Just, 1996).

An alternative approach to modeling banks’ risky technology would be to recognize the uncer-
tainty associated with the credit production by letting bank managers maximize expected utility
subject to appropriate economic constraints. The principal drawback of this approach, however, is
the need to either specify managers’ utility function or, under certain conditions, its mean-variance
representation in order to quantify banking technology (e.g., Chavas, 2004). To avoid this, we in-
stead suggest invoking the duality (under uncertainty) and recovering a bank’s technology from its
ex-ante cost function which is free of bank managers’ risk preference parameters (Pope and Chavas,
1994; Pope and Just, 1996; Moschini, 2001).

We rely on results by Pope and Chavas (1994) who show that an ex-ante cost function of the
following form (in our notation)

C (G,w, z) = min
x

{
x′w | G ≤ g(x, z); z = z0

}
(2.7)

is consistent with (the bank managers’) expected utility maximization if and only if the revenue
function takes the form R (g(x, z), ε, ·), where ε is a stochastic error in the production process
F (x, z, ε), and g(·) is an S × 1 vector of non-random constraints with the corresponding vector
of levels G. This implies that the cost minimization is interpreted as the first stage in a two-step
decomposition of expected utility maximization (where the expected utility is set to be a function of
uncertain profits). Intuitively, the above proposition says that the constraints g(·) need to hold both
expected revenue (i.e., expected output, given there is no price uncertainty) and the risk premium
constant (Pope and Chavas, 1994, p.200).

In particular, under the assumption that the banking production technology takes the form in
(2.5), where a bank’s risk-management efforts are explicitly accounted for, the ex-ante cost function
consistent with the bank managers’ expected utility maximization is

C (G1, G2,w, z) = min
x

{
x′w | G1 ≤ f(x, z); G2 ≤ h(x, z); z = z0

}
, (2.8)

which is equivalent to

C
(
y+, σy+ ,w, z

)
= min

x

{
x′w

∣∣∣∣ y+ ≤ E [F (x, z, ε)] ; σy+ ≤
(
E [F (·)− E[F (·)]]2

)1/2
; z = z0

}
,

(2.9)

The above equivalence holds because E [F (x, z, ε)] = f(x, z) and
(
E [F (·)− E[F (·)]]2

)1/2
= σh(x, z),

where the latter is proportional to h(x, z) [for details, see Pope and Chavas (1994)].

Equation (2.9) says that under credit uncertainty banks minimize cost holding expected output
and expected standard deviation of output (that is, risk) constant. We note that the ex-ante cost
minimization would be constrained by expected output only [regardless of the functional form of
the production function F (x, z, ε)], if one is willing to assume a risk-neutral behavior by bank
managers. This means that one should not justify the estimation of an ex-post cost function such
as (2.6) or any modifications of it, which uses realized (ex-post) values of outputs and risk, by the

8As, for instance, Hughes et al. (1996, 2000, 2001) do.
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assumption of risk-neutrality. We also emphasize that the cost C in (2.9) by no means excludes
banks’ expenses associated with actual nonperforming loans. The latter is consistent with bank
managers optimally allocating inputs x ex ante based on their expected quantity of performing
loans y+ (and the expected volatility in this quantity σy+), because one may not know in advance
which loans that banks issue would eventually become nonperforming ex post.

To demonstrate the implication of estimating the ex-post as opposed to ex-ante cost function,
we consider a simple example of a stochastic production function taking the form in (2.4). If we
assume a single-input production (i.e., x is a scalar and z = 0) and let the dual cost function take
the translog form, the corresponding ex-ante cost function is

lnC = β0 + β1 ln y+ +
1

2
β2

(
ln y+

)2
+ γ1 lnw +

1

2
γ2 (lnw)2 + δ ln y+ lnw , (2.10)

where y+ is the expected output.9 However, as argued above, researchers traditionally estimate the
ex-post cost function using the realized output. Thus, substituting y+ = f(x) = y+ exp(−ε) from
(2.4) into (2.10) yields

lnC = β0 + β1 ln y+ +
1

2
β2

(
ln y+

)2
+ γ1 lnw +

1

2
γ2 (lnw)2 + δ ln y+ lnw + ξ , (2.11)

where ξ =
{
−β1ε+ 1

2β2ε
2 − β2ε ln y+ − δε lnw

}
is the “error” that clearly is not mean-zero and is

correlated with covariates through ln y+ and lnw. Therefore, the estimates of banking technology
produced by the ex-post cost function are likely to be biased and inconsistent.10 Moreover, Pope
and Just (1996) show that the ex-post cost function may not necessarily have all standard properties
of cost functions such as concavity in input prices; however, all properties apply to the ex-ante cost
function.

3 Data

The data we use come from Call Reports publically available from the Federal Reserve Bank of
Chicago. We include all FDIC insured commercial banks with reported data for 2001:I-2010:IV.
We exclude internet banks, commercial banks conducting primarily credit card activities and banks
chartered outside the continental U.S. We also omit observations for which negative values for assets,
equity, outputs, off-balance-sheet income and prices are reported. The resulting data sample is an
unbalanced panel with 64,581 bank-year observations for 7,535 banks. All nominal stock variables
are deflated to 2005 U.S. dollars using the Consumer Price Index (for all urban consumers).

We follow the abovementioned “intermediation approach” and define the following earning out-
puts for the ex-ante cost function: performing consumer loans (y+

1 ), performing real estate loans
(y+

2 ), performing commercial and industrial loans (y+
3 ) and earning securities (y+

4 ).11 These output
categories are essentially the same as those in Berger and Mester (1997, 2003). The variable inputs
are labor, i.e., the number of full-time equivalent employees (x1), physical capital (x2), purchased
funds (x3), interest-bearing transaction accounts (x4) and non-transaction accounts (x5). We also
specify two quasi-fixed netputs: off-balance-sheet income (inc) and equity capital (k) (e.g., Berger

9Here we use the narrow definition of earning assets as discussed above: performing loans (y+), rather than total
issued loans (y), are treated as the output.

10Here we abstract from other potential sources of biases across both the ex-post and ex-ante cost functions, such as
biases due to the misspecification of the model, etc.

11These earning outputs are computed by subtracting the value of nonperforming loans and securities from the
corresponding reported total values, i.e., y+

m = ym − y−m ∀ m = 1, . . . , 4.
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and Mester, 1997, 2003; Feng and Serletis, 2009). We thus concur with Hughes and Mester’s (1993,
1998) argument that banks may use equity capital as a source of loanable funds and thus as a
cushion against losses. We compute the price of inputs (w = {wj}5j=1) by dividing total expenses

on each input by the corresponding input quantity. Similarly, the price of outputs (p = {pm}4m=1)
is computed by dividing total revenues from each output by the corresponding output quantity. We
discuss the use for output prices in Section 4. Lastly, total variable cost (C) equals the sum of
expenses on each of the five variable inputs.12 Table 1 presents summary statistics of the data used
in the analysis. For details on the construction of the variables, see the Appendix.

[insert Table 1 here]

4 Estimation and Results

Under the assumption of risk-aversion and a bank’s production process that explicitly accounts for
bank-varying credit uncertainty and risk-management efforts as represented by (2.5), the estimation
of the ex-ante cost function (2.9) requires the knowledge of bank managers’ expectations of the levels
of earning outputs (y+) and associated credit risk levels as captured by the standard deviations
(σy+). These expected outputs and volatility are not observed but can be estimated. For instance,
Pope and Just (1996, 1998) suggest letting the ex-ante cost function take a self-dual functional
form so that one can recover the underlying production function in its closed form. One can then
use the recovered production function to estimate the expected value of outputs (i.e., conditional
mean) by regressing their ex-post realizations on inputs.13 Flexible functional forms such as the
translog or Fourier clearly do not belong to the family of such self-dual cost functions. Further, this
approach is subject to criticism since it introduces endogeneity into the estimation because inputs
are endogenous to banks’ cost-minimizing decisions (for details, see Moschini, 2001).

We do not wish to restrict our analysis to an inflexible self-dual specification of the ex-ante
cost function and therefore follow an alternative approach. We opt to recover bank managers’
expectations of outputs and risk levels (as measured by volatility) via kernel methods as suggested
by Pope and Chavas (1994). This allows us to let the cost function take any desired form, particularly
the translog which is widely used in the banking literature. Thus, the estimation of the ex-ante cost
function consists of two stages: (i) the estimation of the unobserved expected outputs and associated
credit risk levels and (ii) the estimation of banks’ production technology via cost function.

In the first stage, we estimate the expectations of banks’ outputs and their associated credit
risk levels via nonparametric kernel methods. In order to avoid the introduction of endogeneity
by estimating the production function as described above, here we follow Moschini’s (2001) advice
and instead estimate the corresponding (nonparametric) supply functions that are functions of
exogenous output and input prices, and quasi-fixed inputs: y+

m = sm (p,w, k) ∀ m = 1, . . . , 4,
where the subscript m designates one of the four outputs. We use the local-constant least squares

12As previously discussed, note that the total variable cost (C) includes expenses associated with total issued loans
and securities (both those which turn out being performing and nonperforming) because the bank managers allocate
inputs ex ante, i.e., before they know which loans would eventually become nonperforming.

13Note that one does not need to regress outputs on inputs in order to obtain expected output levels per se: they can
rather be recovered indirectly inside the numerical optimization algorithm (see Pope and Just, 1996, for details).
This approach, however, is still subject to Moschini’s (2001) criticism.

9



estimator14 to estimate the bank-year-specific expected outputs (y+
m), i.e.,

y+
m,it(d) =

[
N∑
i=1

T∑
t=1

K

(
Dit − d

hm

)]−1 [ N∑
i=1

T∑
t=1

y+
m,itK

(
Dit − d

hm

)]
, (4.1)

where Dit ≡ (pit,wit, kit) is a vector of arguments of the supply function15; K(·) is a product kernel
function (Racine and Li, 2004);16 and hm is a vector of optimal bandwidths which we select via the
data-driven least squares cross-validation (LSCV) method (Li and Racine, 2004).17 We divide the
output and input prices by the price of one of the outputs in order to impose the homogeneity of
degree zero onto the supply function.

We obtain the estimates of expected credit risk level (σy+
m

corresponding to each of the four
outputs, as standardly measured by their volatility, by nonparametrically regressing the squares
of residuals from (4.1) on Dit. The latter produces the bank-year-specific estimates of conditional
variances of the four outputs (under the mean-zero assumption for the error terms).18 Similarly, here
we use the LSCV to select optimal bandwidths. Note that the use of the local-constant estimator
automatically ensures that no negative fitted values of the variance are produced. Figure 1 presents
histograms of these expected credit risk estimates tabulated by the bank-size category. We classify a
bank as “small” if its total assets are below $100 million, “medium” if total assets are between $100
million and $1 billion, and “large” if total assets exceed $1 billion. Here, we plot an output-weighted
expected risk (scaled down by its standard deviation) in order to avoid plotting four different risk
measures associated with each of the four outputs that we consider. As expected, the distributions
are positively skewed with mean (median) risk increasing with the size of the bank. The fit in both
the estimation of y+ and σy+ , measured by the square of the correlation coefficient between the
actual and predicted values, is as high as 0.99.19

[insert Figure 1 here]

In the second stage, we estimate the multi-output generalization of the ex-ante cost function

14We opt for the local-constant estimator as opposed to the local-polynomial estimator (which has the same asymptotic
variance but smaller bias) because the selection of optimal bandwidths for the former is less computationally
demanding than it is for the alternative. The latter is a non-negligible issue given a large sample size of the dataset
we use as well as the number of estimations we need to perform.

15In order to control for year and fixed effects, we also include the time trend as well as an unordered bank-index
variable. This is similar in nature to the least squares dummy variable approach in parametric panel data models
with fixed effects.

16We use a second-order Gaussian kernel for continuous covariates and Racine and Li‘s (2004) kernels for ordered and
unordered covariates (i.e., the time trend and the bank index, respectively).

17Given that the cross-validation (CV) function is often not smooth in practice, we use multiple starting values
for bandwidths when optimizing the function in order to ensure a successful convergence. Also, although we use
constant bandwidths in our analysis, we acknowledge that one may instead prefer the use of adaptive bandwidths
which adjust to the local sparseness of the data (if there is any). The selection of the adaptive bandwidths would
however be more computationally demanding, especially given a relatively large number of dimensions in which the
CV function needs to be optimized.

18McAllister and McManus (1993) use a similar nonparametric procedure to estimate the expected rate of return and
associated expected risk for U.S. banks.

19To conserve space, we do not report the detailed results from the first stage (they are available upon request) and
directly proceed to the discussion of the main results from the second stage.
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under risk-aversion (2.9) which takes the following form (under the translog specification)20

lnCit = α0 +
4∑

m=1

αm ln y+
m,it +

1

2

4∑
m=1

4∑
h=1

αmh ln y+
m,it ln y+

h,it+

4∑
m=1

βm lnσy+
m,it +

1

2

4∑
m=1

4∑
h=1

βmh lnσy+
m,it lnσy+

h ,it +
4∑

m=1

4∑
h=1

γmh ln y+
m,it lnσy+

h ,it+

5∑
j=1

δj lnwj,it +
1

2

5∑
j=1

5∑
s=1

δjs lnwj,it lnws,it+

4∑
m=1

5∑
j=1

ηmj ln y+
m,it lnwj,it +

4∑
m=1

5∑
j=1

µmj lnσy+
m,it lnwj,it+

2∑
l=1

θl ln zl,it +
1

2

2∑
l=1

2∑
r=1

θlr ln zl,it ln zr,it + ω1t+
1

2
ω11t

2+

4∑
m=1

2∑
l=1

ϕml ln y+
m,it ln zl,it +

4∑
m=1

2∑
l=1

φml lnσy+
m,it ln zl,it +

5∑
j=1

2∑
l=1

ψjl lnwj,it ln zl,it+

4∑
m=1

πm1 ln y+
m,it t+

4∑
m=1

πm2 lnσy+
m,it t+

5∑
j=1

πj3 lnwj,it t+
2∑

l=1

πl4 ln zl,it t+ λi , (4.2)

where z = (inc, k)′; t is the time trend; λi is the bank-specific (unobserved) fixed effect; and the
remaining variables are as defined before. To account for unobserved heterogeneity, we include
bank-specific fixed effects (λi) in the above cost function. The latter is broadly overlooked in the
literature which might lead to biased and misleading results (see the discussion in Restrepo-Tobón
et al., 2013). We also include the time trend to capture time effects/technical change.

In order to analyze how the use of (i) different approaches to accommodate credit uncertainty
in the analysis of banks’ cost technologies and (ii) different definitions of banks’ earning outputs
(total issued loans and securities versus performing loans and securities) affects the conclusions
that researchers draw about the banking technology, we estimate a number of auxiliary models in
addition to the ex-ante cost function under risk-aversion in (4.2). For the ease of discussion, below
we define all second-stage models we estimate.

Model I. The model of banking technology under credit uncertainty and risk-aversion in the
form of the ex-ante cost function (4.2).

Model II. The model of banking technology under credit uncertainty and risk-neutrality in
the form of the ex-ante cost function. Here, we estimate (4.2) with the expected risk measures
omitted from the equation (see the discussion in Section 2.2).

Model III. The model of banking technology estimated via the ex-post cost function. Here,
we estimate (4.2) with realized values of performing loans and securities (y+) used as earning
outputs (as opposed to expected values y+) and the expected risk measures omitted from the
equation.

20Note that, like in the first stage, the ex-ante cost function could have been alternatively estimated via nonparametric
kernel methods. In this paper, we however opt for (admittedly more restrictive) translog specification. We acknowl-
edge that several papers have documented that the translog form may sometimes be a poor approximation of banks’
cost function (e.g., Wheelock and Wilson, 2001, 2012). We nevertheless opt for this parametric specification in order
to facilitate the comparison of our findings with the results in the existing banking literature that overwhelmingly
favors the translog specification.
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Model IV. The model of banking technology estimated via the ex-post cost function with total
issued loans and securities (y) used as earning outputs. No risk measures are included. This is
the most commonly estimated model in the banking literature.

Model V. The model of banking technology estimated via the ex-post cost function with total
issued loans and securities (y) used as earning outputs. Here, we add an ex-post measure of
credit risk as proxied by the ratio of total nonperforming loans to issued loans, widely used in
the literature to “control” for risk in an ad hoc manner.

The fixed-effect adjustment is done via the within transformation. For all model specifications, we
estimate the SUR system consisting of the cost function and the corresponding input cost share
equations, onto which we impose the symmetry, linear homogeneity (in input prices) and cross-
equation restrictions.

4.1 Elasticities

We first examine the differences between the models in terms of implied elasticities of banks’ costs.
Table 2 reports average elasticity estimates for outputs, input prices, quasi-fixed netputs and the
time trend from all five models, based on which we can make several observations.

[insert Table 2 here]

As expected, estimates of input price elasticities do not differ across the models since they are
constrained by the same input cost share equations. However, when examining output elasticities,
we find that, while there are little differences within the groups of ex-ante (I and II) and ex-post
(III through V) models, there are dramatic changes across the two groups. In the case of all four
outputs, the ex-ante Models I and II report average elasticities that are significantly smaller than
those from the ex-post Models III, IV and V. For instance, the estimated elasticity of cost with
respect to consumer loans (output 1) from Models I and II is, on average, 2.9 times smaller than
its counterpart obtained from Models III through V. The difference is of similar magnitude in the
case of securities (output 4). Notably, all five models show that banks’ cost is the most sensitive to
changes in the level of real estate loans (output 2). However, the two groups differ in the second
most “cost-influential” output: commercial loans (output 3) according to Models I and II versus
securities (output 4) as predicted by Models III through V.

For equity capital (k), the differences in mean elasticities are minuscule. We consistently find
it to be positive across the models, which leads us to conclude that banks do not rely on financial
capital as a source of loanable funds but rather consider it as an “output”. This is in line with
Hughes and Mester’s (1998) argument that banks might use equity capital as a means of signaling
their overall riskiness to customers.21

[insert Table 3 here]

4.2 Scale Economies

Table 3 presents the summary statistics of the point estimates of returns to scale based on all five
models over the entire sample period.22 We break down the results by the asset size of banks.

21This result may also stem from the fact that financial regulations require equity (financial) capital to expand in
proportion to loans.

22When computing these summary statistics, we omit the first and the last percentiles of the distribution of the
returns to scale estimates, in order to minimize the influence of outliers. However, the omitted estimates correspond
to the same observations across all five models, in order to keep the results comparable. We therefore can still
cross-reference results from different models at the bank level.
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Overall, we find the returns to scale estimates from the ex-ante Models I and II to be larger than
those from Models III, IV and V. This result was expected given our findings that the output
elasticities, based on the results from ex-ante models, are consistently smaller than those from ex-
post models. Recall that returns to scale estimates are the inverse of the sum of cost elasticities with
respect to outputs. These downward biases in returns to scale estimates produced by the ex-post
Models III through V are more apparent in Figure 2 which plots kernel densities of these estimates.

[insert Figure 2 here]

The right pane of Table 3 also reports the groupings of banks by the returns to scale categories:
decreasing returns to scale (DRS), constant returns to scale (CRS) and increasing returns to scale
(IRS). We classify a bank as exhibiting DRS/CRS/IRS if the point estimate of its returns to scale
is found to be statistically less than/equal to/greater than one at the 95% significance level.23 The
empirical evidence suggests that there is little (if any at all) qualitative difference in scale economies
across the models: virtually all banks are found to exhibit IRS regardless whether the ex-ante or
ex-post cost function is being estimated. These findings of IRS are consistent with those recently
reported in the literature despite the differences in methodology (e.g., Feng and Serletis, 2010;
Hughes and Mester, 2013; Wheelock and Wilson, 2012). However, examining the Spearman’s rank
correlation coefficients of the scale economies estimates across the models (see Table 4) suggests
striking differences in rankings of the banks. The rank correlation coefficient between the ex-ante
models and ex-post models is around 0.3 for small banks, 0.45 for medium size banks and 0.6 for
large banks.24

[insert Table 4 here]

Notably, the results on economies of scale change dramatically if we do not account for unob-
served bank-specific heterogeneity when estimating the models, as commonly done in the literature
(e.g., Hughes et al., 2001; Wheelock and Wilson, 2012). We find that biases in returns to scale esti-
mates from the ex-post Models III through V are no longer uniformly negative across all bank-size
categories. In particular, these models tend to over -estimate the scale economies for large banks.
The ex-post Models III, IV and V estimate that 88-89% of large U.S. banks exhibit IRS, whereas
the results from the ex-ante Models I and II indicate that 23-35% and 33-34% of large banks exhibit
DRS and CRS, respectively.25

4.3 Productivity

The estimation of the cost function allows the econometric decomposition of the total factor pro-
ductivity (TFP) growth (defined as ˙TFP = ẏ −

∑J
j=1 sj ẋj in a single-output case26) into several

components (e.g., Denny et al., 1981). However, the latter procedure is designed for production
processes under certainty, which is clearly not the case in our study. For instance, Solow (1957)
derives this Divisia index assuming that the production process is deterministic. In order to be
able to follow his derivation in the presence of uncertainty, one first needs to take the expected
values of both sides of the production function. It is easy to show that in this case, the Divisia
index of the TFP growth (with a single output) will be defined as ˙TFP = ẏ −

∑J
j=1 sj ẋj , where

the growth in expected output (y) rather than actual output is used. Naturally, one can claim that
asymptotically the two measures will be the same since the average of errors approaches zero as

23Standard errors are constructed using the delta method.
24We note that one ought to be careful here when comparing rankings using the Spearman’s rank correlation coefficient

because the latter does not account for the estimation error associated with the estimation of scale economies.
25To conserve space, we do not report detailed results from these models; they are available upon request.
26Here, the “dot” designates the growth rate and sj is the cost share of the jth input.
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N →∞. However, the latter will not hold true if the variance of the error conditional on inputs is
not constant over time, as we have in our case where banks are explicitly allowed to manage risk
through the time-dependent h(·) function in (2.5). Further, as we have discussed in Section 2, the
choice of outputs is ambiguous in the case of banks. Researchers have customarily used total issued
loans and securities as banks’ earning outputs, whereas we employ a more narrow definition in this
paper by considering performing loans and securities only as banks’ outputs. We therefore compute
three different Divisia indices of the TFP growth.27

Divisia 1. The Divisia index of the TFP growth computed using expected earning outputs
(y+). This index is comparable to the TFP estimates from the ex-ante Models I and II.

Divisia 2. The Divisia index of the TFP growth computed using realized values of earning
outputs (y+). This index is comparable to the results from the ex-post Model III.

Divisia 3. The Divisia index of the TFP growth computed using realized values of outputs that
include nonperforming loans and securities (y). This index is comparable to the results from
the ex-post Models IV and V.

[insert Figure 3 here]

Figure 3 plots these indices normalized to a hundred in 2001.28 The three indices are virtually
indistinguishable up until 2005, when the divergence between the Divisia index 1 and the remaining
two indices starts. The Divisia 1 indicates that banks had higher expectations of productivity
growth up until the onset of the financial crisis in 2007. In 2008, however, the expectation-based
productivity growth plunges down. Notably, there has been a growing gap between index 2 and 3
since 2007. We attribute this to the inability of the Divisia index 3 to account for a large share
of nonperforming loans that banks have been handling after the crisis. Overall, we estimate the
productivity in the industry to have grown by 9% over the 2001-2010 period.

As noted before, we can decompose the TFP growth by estimating its components econometri-
cally from the dual cost function. By adding and subtracting the Divisia index 1 from the ex-ante
cost function (4.2) of Model I and then totally differentiating the latter with respect to time, it is
easy to show that the TFP growth can be decomposed into

˙TFP =
∑
m

(
rm −

∂lnC
(
y+,σy+ ,w, z

)
∂ln y+

m

)
ẏ

+
m +

∑
j

(
sj −

∂lnC(·)
∂lnwj

)
ẇj−

∑
l

∂lnC(·)
∂ln zl

żl −
∑
m

∂lnC(·)
∂lnσ+

m

σ̇
+
m −

∂lnC(·)
∂ln t

, (4.3)

where rm is the revenue share of the mth output; sj is the cost share of the jth input; and the
remaining variables are as defined before. The “dot” designates the growth rate.

The components in (4.3) are defined as follows [in order of appearance]: (i) “scale component”
which can be shown to consist of two subcomponents which depend on returns to scale and the mark-
up (departure of output prices from their respective marginal costs); (ii) “allocative component”
which captures the effects of non-optimal input allocation; (iii) “exogenous component” which
captures effects of quasi-fixed netputs (here, off-balance-sheet income and equity capital); (iv) “risk
component” which accounts for the effect of the risk levels; and (v) “technical change” that captures

27Since we have four outputs, we follow the literature and use the revenue-shared weighted output growth when
computing the TFP growth, i.e., ˙TFP =

∑4
m=1 rmẏm −

∑5
j=1 sj ẋj , where rm is the revenue share of the mth

output.
28Since the Divisia index is bank-specific, in order to construct the plot we use the asset-weighted average annual

TFP growth rates.
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temporal shifts in the estimated cost function.29 Clearly, the definition of the outputs will be
changing with the model: y+ vs. y+ vs. y. Further, we will have the risk component only when
estimating Models I and V (recall they are the only ones that control for risk).30

[insert Table 5 here]

We report the TFP growth components across the models in Table 5. For medium and large
banks, the TFP growth estimates from the ex-ante Models I and II are higher than those from the
ex-post Models III through V. The opposite is true for small banks. In fact, we find that the average
annual TFP growth is negative for small banks, based on Models I and II.

We consistently find the exogenous component to negatively contribute (about –1%) to the TFP
growth across all five models and all bank-size categories. There is also some evidence of negative
effects of input misallocation on TFP in the case of large banks. All models suggest that the bulk of
the positive productivity growth comes from the scale economies component. The ex-ante Models
I and II estimate the asset-weighted average annual TFP growth due to IRS to be around 2.1-2.2%
per annum across all banks. The estimate is about 1.5 times smaller based on the ex-post Models
III through V (around 1.5-1.6% per annum for all banks). Notably, despite that small banks exhibit
the largest economies of scale in our sample (see Table 3), the results from Models I and II indicate
that the scale component is larger in magnitude for medium and large banks instead.

We find little evidence of economically significant technical progress, except for large banks
according to the ex-ante Models I and II (about 1.6-1.7% per annum, on average). Risk level does
not seem to impact productivity much either. Based on Model I, we find no effect of expected
risk levels on small and medium banks’ productivity growth; little negative effect is found for large
banks (average annual rate of –0.8%).

[insert Figure 4 here]

We use the estimated TFP growth rates to construct the TFP indices (normalized to a hundred
in 2001) which we plot in Figure 4 with the corresponding Divisia indices. The TFP indices from
all five models are compared to Divisia 1 and 2, which we believe are more reliable measures of
productivity change since they are based on performing loans and securities. We find that the
Divisia indices generally lay in between the indices based on the estimates from the group of ex-
ante and the group of ex-post models. Note that we do not seek to compare the indices obtained
based on econometric models with the data-based (nonparametric) Divisia indices. Had our goal
been to (econometrically) estimate the TFP index that is equal to the Divisia index, we could have
imposed this equality in the estimation as, for instance, done by Kumbhakar and Lozano-Vivas
(2005).

5 Conclusion

Risk is crucial to banks’ production. Banks actively engage in risk assessment, risk monitoring and
other risk management activities. Therefore, researchers should explicitly incorporate banks’ risk-
taking behavior when estimating their production technology. The banking literature has largely
focused on the estimation of the ex-post realization of banking technology with credit risk being
either completely overlooked or controlled for in a somewhat ad hoc manner. Most studies use ex-
post realizations of risk related variables and uncertain outputs. These methods, however, may not

29For more on the decomposition of the TFP growth, see Kumbhakar and Lovell (2000).
30In the case of the ex-post Model V, it is easy to show that the risk component of the TFP growth is defined as the

negative of ∂lnC(·)
∂lnnpl

˙npl, where ˙npl is the growth rate of the ratio of total nonperforming loans to issued loans (an
ex-post measure of credit risk).
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reflect the optimality conditions that bank managers seek to satisfy ex ante under credit uncertainty.
One thus may call into question the reliability of the results from such studies.

In this paper, we argue that the underlying production process in banking — namely, the pro-
duction of (income-generating) credit — is inherently uncertain and show that the ex-post estimates
of the banking technology (that assume uncertainty away) are likely to be biased and inconsistent.
We offer an alternative methodology to recover banks’ technologies based on the ex-ante cost func-
tion, which models credit uncertainty explicitly by recognizing that bank managers minimize costs
subject to given expected outputs and credit risks. In order to make this model feasible to es-
timate, we estimate unobservable expected outputs and associated credit risk levels from banks’
supply functions via nonparametric kernel methods. We apply this ex-ante framework to data on
commercial banks operating in the U.S. during the period from 2001 to 2010.

We find that methods estimating the ex-post realization of banking technology tend to over-
estimate output elasticities of cost which, in turn, leads to downward biases in the returns to scale
estimates. The results, however, do not differ qualitatively across ex-ante and ex-post models if one
controls for unobserved bank-specific effects. In this case, we find that virtually all U.S. commercial
banks (regardless of the size) operate under increasing returns to scale, which is consistent with
findings recently reported in the literature despite the differences in methodology (e.g., Feng and
Serletis, 2010; Hughes and Mester, 2013; Wheelock and Wilson, 2012). Interestingly, when we leave
bank-specific effects uncontrolled (as, for instance, the three above-cited studies do), the results
change dramatically: the ex-ante models then indicate that 23-35% and 33-34% of large banks
exhibit decreasing and constant returns to scale, respectively.

Our empirical results show that the ex-post models tend to underestimate banks’ TFP growth.
For medium and large banks, the TFP growth estimates from ex-ante models tend to be higher than
those from ex-post models. The opposite is true for small banks. In fact, based on ex-ante models,
we find that the average annual TFP growth is negative among small banks. All models suggest
that the bulk of the positive productivity growth in the industry comes from the scale economies
component. The ex-ante models estimate the asset-weighted average annual TFP growth due to
increasing returns to scale to be around 2.1-2.2% per annum for banks of all sizes. Despite that
small banks exhibit higher economies of scale, on average, the scale component in TFP is larger
for medium and large banks. We find little evidence of economically significant technical progress,
except for large banks. Risk level does not seem to impact productivity much either. We find no
effect of expected risk levels on small and medium banks’ productivity growth; little negative effect
is found for large banks.
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Appendix

Table A.1: Call Report Definitions of the Variables

Variable Call Report Definition Description

y1 rcfd1975 (Total issued) loans to individuals

y+
1 y1 – rcfd1979 – rcfd1981 y1, less nonperforming loans to individuals

y2 rcfd1410 (Total issued) real estate loans

y+
2 y2 – rcfd1422 – rcfd1423 y2, less nonperforming real estate loans

y3 rcfd1766 + rcfd1590 + rcfd3484 +
rcfd3381 + rcfd2081 + rcfd1288 +
rcfd2107 + rcfd1563

(Total issued) commercial & industrial loans, loans to finance agricul-
tural production & other loans to farmers, lease financing receivables,
interest-bearing balances due from depository institutions, loans to for-
eign governments & official institutions, loans to depository institu-
tions, obligations (other than securities and leases) of states & political
subdivisions in the U.S., other loans

y+
3 y3 – rcfd1583 – rcfd1607 –

rcfd1608 – rcfd1227 – rcfd1228 –
rcfd5381 – rcfd5382 – rcfd5390 –
rcfd5391 – rcfd5460 – rcfd5461

y3, less nonperforming categories that enter y3

y4 rcfd3365 + rcfd3545 + rcfd1754 +
rcfd1773

(Total issued) federal funds sold & securities purchased under agree-
ments to resell, trading assets, held-to-maturity securities total,
available-for-sale securities

y+
4 y4 – rcfd3506 – rcfd3507 y4, less nonperforming categories that enter y4

x1 riad4150 Number of full time equivalent employees on payroll at end of current
period

x2 rcfd2145 Premises & fixed assets
x3 rcfd3353 + rcfd3548 + rcfd3190 +

rcfd3200 + rcon2604
All borrowed money

x4 rcon3485 Interest-bearing transaction accounts
x5 rcfd2200 – rcon3485 – rcon2604 Non-transaction accounts: total deposits, less interest-bearing transac-

tion accounts, less time deposits of $100,000 or more
w1 riad4135/x1 Salaries & employee benefits, divided by x1
w2 riad4217/x2 Expenses on premises & fixed assets, divided by x2
w3 (riad4180 + riad4185 + riad4200 +

riada517)/x3

Expense of federal funds purchased & securities sold under agreements
to repurchase, interest on trading liabilities & other borrowed money,
interest on notes & debentures subordinated to deposits, interest on
time deposits of $100,000 or more, divided by x3

w4 riad4508/x4 Interest on transaction accounts (now accounts, ats accounts, and tele-
phone & preauthorized transfer accounts) , divided by x4

w5 (riad4170 – riad4508 – riada517)
/x5

Interest on deposits, less interest on transaction accounts, less interest
on time deposits of $100,000 or more, divided by x5

p1 riad4013/y+
1 Interest & fee income on loans to individuals for household, family and

other personal expenditures, divided by y+
1

p2 riad4011/y+
2 Interest & fee income on loans secured by real estate, divided by y+

2
p3 (riad4012 + riad4024 + riad4065 +

riad4115 + riad4056 + riad4058)

/y+
3

Interest & fee income on commercial and industrial loans, interest &
fee income on loans to finance agricultural production & other loans
to farmers in domestic offices, interest income on balances due from
depository institutions, income from lease financing receivables, interest
income on balances due from depository institutions, interest & fee

income on all other loans in domestic offices, divided by y+
3

p4 (riad4020 + riad4069 + riada220 +
riad4218 + riad3521 + riad3196)

/y+
4

Interest income on federal funds sold & securities purchased under
agreements to resell, interest income from trading assets, trading rev-
enue, interest & dividend income on securities, realized gains (losses) on
held-to-maturity securities, realized gains (losses) on held-to-maturity
securities, realized gains (losses) on available-for-sale securities, divided

by y+
4

C
∑5

j=1 xjwj Total Variable Cost

inc riad4079 – riad4080 Net noninterest income, less service charges on deposits
k quarterly average of riad3210 Quarterly average of equity
Assets quarterly average of rcfd2170 Quarterly average of total assets
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Tables and Figures

Table 1: Summary Statistics

Variable Mean
Percentiles

5th 25th Median 75th 95th

C 43,464.41 886.20 2,307.05 4,589.50 9,972.00 44,823.99
y1 79,372.97 550.08 1,976.37 4,371.84 9,894.39 47,035.32
y+

1 78,605.61 546.24 1,963.25 4,347.32 9,846.48 46,899.32
y2 393,148.62 5,001.36 19,583.04 48,586.56 120,325.87 556,182.82
y+

2 381,885.68 4,938.08 19,349.13 47,944.53 118,409.87 543,611.25
y3 250,842.81 2,650.06 8,063.20 16,817.83 37,114.16 172,501.73
y+

3 247,633.80 2,615.50 7,953.38 16,595.01 36,723.73 170,489.53
y4 345,821.85 4,126.95 12,813.31 26,365.19 57,121.30 256,123.06
y+

4 345,627.16 4,126.95 12,812.85 26,351.50 57,098.80 256,123.05
w1 52.99 35.93 43.67 50.12 58.99 79.90
w2 0.3963 0.1012 0.1660 0.2427 0.3950 1.0462
w3 0.0344 0.0164 0.0257 0.0336 0.0429 0.0534
w4 0.0104 0.0019 0.0047 0.0082 0.0138 0.0259
w5 0.0261 0.0104 0.0181 0.0247 0.0332 0.0462
p1 0.0927 0.0546 0.0756 0.0871 0.0997 0.1296
p2 0.0708 0.0536 0.0633 0.0699 0.0778 0.0910
p3 0.0856 0.0391 0.0626 0.0801 0.1041 0.1433
p4 0.0403 0.0194 0.0329 0.0404 0.0470 0.0574
inc 17,613.76 19.00 92.00 284.00 969.00 7,784.00
k 116,088.34 2,557.5 6,101.5 11,611.75 24,281.00 107,893.75
Assets 1,197,667.50 23,324.75 57,255.75 112,795.52 245,347.16 1,115,980.10

NOTES: The variables are defined as follows. C – total variable cost; y1 and y+
1 – total issued and

performing consumer loans, respectively; y2 and y+
2 – total issued and performing real estate loans,

respectively; y3 and y+
3 – total issued and performing commercial and industrial loans, respectively;

y4 and y+
4 – total and earning securities, respectively; w1 – price of labor; w2 – price of physical

capital; w3 – price of purchased funds; w4 – price of interest-bearing transaction accounts; w5 – price
of non-transaction accounts; p1, p2, p3 and p4 – prices of y+

1 , y+
2 , y+

3 and y+
4 , respectively; inc –

off-balance-sheet income; k – equity capital; Assets – total assets. All variables but input and output
prices are in thousands of real 2005 US dollars. All input and output prices but w1 are interest rates
and thus are unit-free.
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Table 2: Mean Elasticity Estimates

Variable I II III IV V

output 1 0.023 0.022 0.064 0.064 0.064
output 2 0.397 0.386 0.407 0.408 0.407
output 3 0.097 0.098 0.142 0.141 0.141
output 4 0.060 0.061 0.170 0.169 0.169
w1 0.413 0.413 0.412 0.412 0.412
w2 0.102 0.102 0.101 0.101 0.101
w3 0.167 0.167 0.168 0.168 0.168
w4 0.026 0.026 0.026 0.026 0.026
w5 0.292 0.292 0.294 0.294 0.294
k 0.071 0.081 0.075 0.079 0.079
inc 0.076 0.077 0.033 0.033 0.033
t 0.000 0.000 0.000 -0.001 -0.002

NOTES: While the output categories are the same across
five models, the values used in the estimation are differ-
ent. Models I and II use estimates of the expected per-
forming loans and securities; Model III uses the realized
values of performing loans and securities; and Models IV
and V use the realized values of issued loans and secu-
rities (performing + nonperforming). See the text, for
details.
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Table 3: Summary of Returns to Scale Estimates

Model
Point Estimates of RS Categories of RS

Mean St. Dev. Min 1st Qu. Median 3rd Qu. Max DRS CRS IRS

Small Banks

I 2.004 0.278 1.292 1.793 1.979 2.188 2.911 0 0 28,700
II 2.044 0.266 1.366 1.839 2.024 2.223 2.758 0 0 28,700
III 1.333 0.091 0.973 1.271 1.320 1.380 2.324 0 4 28,696
IV 1.337 0.091 0.967 1.276 1.325 1.385 2.311 1 3 28,696
V 1.332 0.091 0.944 1.269 1.318 1.380 2.094 2 4 28,694

Medium Banks

I 1.633 0.208 1.072 1.482 1.610 1.765 2.908 0 0 31,656
II 1.656 0.199 1.152 1.512 1.636 1.787 2.656 0 0 31,656
III 1.246 0.072 0.901 1.198 1.238 1.285 2.714 4 5 31,647
IV 1.250 0.072 0.903 1.202 1.242 1.289 2.677 4 5 31,647
V 1.254 0.073 0.901 1.206 1.245 1.292 2.252 4 7 31,645

Large Banks

I 1.313 0.150 1.084 1.203 1.284 1.394 2.613 0 0 2,935
II 1.332 0.147 1.134 1.227 1.305 1.410 2.617 0 0 2,935
III 1.180 0.100 1.021 1.127 1.166 1.210 2.934 0 0 2,935
IV 1.182 0.098 1.017 1.129 1.168 1.213 2.904 0 0 2,935
V 1.197 0.084 1.016 1.146 1.185 1.229 2.271 0 0 2,935

All Banks

I 1.787 0.318 1.072 1.554 1.750 1.988 2.911 0 0 63,291
II 1.817 0.316 1.134 1.584 1.782 2.022 2.758 0 0 63,291
III 1.283 0.095 0.901 1.218 1.271 1.333 2.934 4 9 63,278
IV 1.287 0.096 0.903 1.222 1.275 1.337 2.904 5 8 63,278
V 1.287 0.093 0.901 1.224 1.274 1.335 2.271 6 11 63,274
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Table 4: Rank Correlation Coefficients of Returns to Scale Estimates

Small Banks Large Banks

Model I II III IV V I II III IV V
I 1.00 1.00
II 0.99 1.00 0.99 1.00
III 0.31 0.34 1.00 0.57 0.58 1.00
IV 0.33 0.36 0.99 1.00 0.60 0.61 0.99 1.00
V 0.30 0.34 0.91 0.91 1.00 0.60 0.61 0.96 0.97 1.00

Medium Banks All Banks

Model I II III IV V I II III IV V
I 1.00 1.00
II 0.99 1.00 0.99 1.00
III 0.42 0.44 1.00 0.59 0.61 1.00
IV 0.45 0.47 0.99 1.00 0.61 0.63 0.99 1.00
V 0.44 0.45 0.94 0.95 1.00 0.57 0.59 0.95 0.95 1.00

24



Table 5: Weighted Average Annual Growth in
TFP and its Components

Model TC Scale Allocative Exogenous Risk Total

Small Banks

I 0.0000 0.0080 0.0021 -0.0112 0.0000 -0.0012
II 0.0001 0.0084 0.0021 -0.0117 — -0.0012
III 0.0005 0.0140 0.0021 -0.0090 — 0.0076
IV 0.0017 0.0144 0.0021 -0.0092 — 0.0091
V 0.0022 0.0149 0.0020 -0.0093 -0.0021 0.0078

Medium Banks

I -0.0024 0.0238 0.0009 -0.0108 0.0000 0.0115
II -0.0022 0.0247 0.0009 -0.0118 — 0.0115
III -0.0022 0.0149 0.0010 -0.0116 — 0.0021
IV 0.0000 0.0156 0.0010 -0.0118 — 0.0048
V 0.0012 0.0162 0.0010 -0.0122 -0.0020 0.0042

Large Banks

I 0.0166 0.0218 -0.0040 -0.0134 -0.0079 0.0131
II 0.0153 0.0196 -0.0041 -0.0143 — 0.0165
III 0.0058 0.0143 -0.0021 -0.0111 — 0.0070
IV 0.0075 0.0141 -0.0021 -0.0110 — 0.0086
V 0.0084 0.0153 -0.0021 -0.0120 0.0002 0.0098

All Banks

I 0.0071 0.0216 -0.0014 -0.0121 -0.0039 0.0113
II 0.0066 0.0209 -0.0015 -0.0130 — 0.0130
III 0.0020 0.0145 -0.0004 -0.0112 — 0.0049
IV 0.0039 0.0148 -0.0004 -0.0112 — 0.0070
V 0.0048 0.0157 -0.0005 -0.0119 -0.0009 0.0072

NOTES: The estimates are obtained by averaging the bank-year specific annual
TFP growth rates over the entire sample period using the total assets as weights.
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Figure 1: Histograms of Output-Weighted Credit Risk Estimates
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Figure 2: Kernel Densities of Returns to Scale Estimates

27



Figure 3: TFP Dividia Indices
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Figure 4: TFP Indices based on Models I through V
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