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Estimating abundance of Antarctic minke whales is central to the International Whaling Commission’s
conservation and management work and understanding impacts of climate change on polar marine
ecosystems. Detecting abundance trends is problematic, in part because minke whales are frequently sighted
within Antarctic sea ice where navigational safety concerns prevent ships from surveying. Using
icebreaker-supported helicopters, we conducted aerial surveys across a gradient of ice conditions to estimate
minke whale density in the Weddell Sea. The surveys revealed substantial numbers of whales inside the sea
ice. The Antarctic summer sea ice is undergoing rapid regional change in annual extent, distribution, and
length of ice-covered season. These trends, along with substantial interannual variability in ice conditions,
affect the proportion of whales available to be counted by traditional shipboard surveys. The strong
association between whales and the dynamic, changing sea ice requires reexamination of the power to detect
trends in whale abundance or predict ecosystem responses to climate change.

I
n summer, Antarctica is surrounded by a sea ice cover comprising ,3–4 million km2 of generally low
concentration sea ice that forms productive and dynamic habitats for many species1,2. This ecosystem is
characterized by dynamic coupling among sea ice, krill, and higher trophic level predators, including

Antarctic minke whales (Balaenoptera bonaerensis)3,4. Antarctic minke whales have a circumpolar distribution
in the Southern Ocean, and in the austral summer have been routinely observed in both waters adjacent to and
inside the sea ice edge, where they feed predominantly on krill5. Deriving precise and unbiased estimates of
abundance of cetacean species in the Antarctic region is central for understanding impacts of climate change on
polar marine ecosystems, as well as for Southern Ocean ecosystem management including, specifically, the
conservation and management mandate of the International Whaling Commission (IWC)6,7, particularly as this
species is subject to a contentious scientific (‘‘Special Permit’’) whaling by Japan8.

Under the auspices of the IWC, cetacean sightings survey data, with the primary purpose of estimating
Antarctic minke whale abundance, have been collected over more than three decades in the Southern Ocean,
in the open water between 60uS and the summer ice edge (namely, IWC’s International Decades of Cetacean
Research and Southern Ocean Whale and Ecosystem Research Programmes, IDCR/SOWER surveys). Each
summer, vessels surveyed 30–60u of longitude, completing a circumpolar survey in six or 12 years; three of such
complete circumpolar surveys have been completed. These surveys represent a globally unique dataset with which
to explore impact of climate change, and effects of past and present human harvest, on these marine predators.
Estimates of circumpolar abundance of Antarctic minke whales in open waters between 60uS and the ice edge
were recently derived from IDCR/SOWER sightings data9. These surveys have, however, been limited in their
ability to rigorously survey areas poleward from the ice edge, because survey ships are typically insufficiently ice-
strengthened to survey within sea ice. The fact of minke whale presence within the marginal ice zone (MIZ) and
interior sea ice pack has been known for decades10 and, therefore, IDCR/SOWER estimates from 60uS to the ice
edge have long been recognized to be minimum estimates (i.e., negatively biased to some degree6). However,
protocols for management decisions such as those outlined in the IWC’s management schedule – which would
also include judging whether the take by the contentious Japanese ‘‘scientific’’ whaling continues to remain at very
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small fractions of population size – work under the assumption that
changes in estimates of minimum abundance over time will serve as a
good proxy from which to infer population trends. However, chan-
ging ice conditions might invalidate this assumption.

Point estimates of circumpolar minimum abundance suggest a
decline of ,30% (95% CI -13, 57) from the late 1980s and through-
out the following decade and a half9, but the trend is not statistically
significant and large variance around these estimates makes it dif-
ficult to draw strong conclusions. At a more regional scale, statist-
ically significant decreases in abundance have been observed around
the Antarctic Peninsula and large embayments, such as the Ross and
Weddell Seas, between the respective years each area was surveyed9.
(Given genetic evidence for some circumpolar population structure9,
there is no reason to suppose that any changes in regional abundance
would occur uniformly throughout the circumpolar area.) For
example, in the Weddell Sea (IWC’s Management Area II; 60uW–
0u), the local abundance of minke whales early within the years of
1997, 1998 and 2000 (overall abundance estimate for the area derived
from those years) dropped to a proportion of 0.48 (95% CI 0.3, 0.76)
of the abundance estimated in early 1987 (confidence interval does
not consider process error)9.

A number of theories, none mutually exclusive, have been
advanced to explain the difference in minke whale abundance esti-
mates between the late 1980s and 1990s in various Southern Ocean
sectors9. Perhaps in some years, in some locations, surveys either
encountered or missed, by chance, higher densities of animals that
were moving longitudinally. Equally, it may be that ice conditions
differed from year to year and differing proportions of the total
number of animals were available to be counted. Or, perhaps, the
change in estimates reflects a real decline in the overall population.
There is little chance to test these hypotheses retrospectively, but
exploring present relationships between minke whales and sea ice

can highlight potential reasons for shifts in abundance estimates and
help to build more robust survey methods for the future.

To extend survey coverage further than the scope of the IDCR/
SOWER surveys, we conducted the first wide-scale surveys for ceta-
ceans from icebreaker-supported helicopters, encompassing over
26,000 km of aerial survey effort, over two summers, from the
German icebreaker, RV Polarstern11. Here we present the first quant-
itative comparison of minke whale densities in ice-covered and adja-
cent ice-free waters along the entire longitudinal extent of the
Weddell Sea (see Methods).

Results
According to a simple model of relative abundance (i.e., not cor-
rected for perception or availability bias) as a function of distance
from the ice edge, most minke whales were found at the ice edge
boundary (defined here as the 15% ice concentration contour
observed in satellite data), Fig. 1. This new information on minke
whale distribution is consistent with previous reports in the Weddell
Sea of larger-density patches of Antarctic krill extending 13 km
inside the ice boundary12 that likely influence baleen whale
distribution5.

A generalized additive model with a three-variable (longitude,
satellite sea ice concentration and distance to the sea ice edge) tensor
product smooth was selected to describe the distribution of minke
whale densities across the Weddell Sea region. Our results suggest
that ,20% (95% CI 4, 57) of the minke whales in the Weddell Sea
region could be located in the ice-covered and difficult-to-survey
MIZ and further into the ice pack (based on the assumption that
all animals on the trackline are seen, in both open water and inside
sea ice regions; spatial distribution of predicted densities are shown
in Fig. 2). There is substantial uncertainty around this point estimate,
but as a starting point for discussion, our results suggest that the
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Figure 1 | Relative abundance of Antarctic minke whales in 25 km distance bins (negative distances indicate areas inside sea ice edge) for the areas both
east and west of 306W. Dotted and solid lines indicate the combined areas of sea ice and open water in each 25 km distance bin.
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proportion of whales inside the ice could be roughly half of the ,50%
decline in abundance between IDCR/SOWER surveys in
the Weddell Sea region during the late-1980s and late 1990s9.

Discussion
The results presented in this study may inform research on summer
habitat preferences and ecology of Antarctic minke whales, but here
we are primarily concerned with the operational implications of their
distribution and abundance on open-water surveys and any sub-
sequent biases that might be introduced. Our icebreaker-supported
helicopter surveys revealed that the proportion of Antarctic minke
whales found in the difficult-to-survey sea ice zone is large, relative to
the observed decline in whales between the last two circumpolar
IDCR/SOWER ship surveys9. To be clear, this is certainly not to
suggest that the proportion of animals estimated to be in ice alone
explains the decrease in abundance in the Weddell Sea region
between 1987 and a combined estimate from 1997, 1998 and 2000.
There is no evidence to suggest that this species has not occupied sea
ice habitats over evolutionary timescales, only to have changed that
preference over the last thirty or so years. We are simply noting that
the minimum number and proportion of whales in the sea ice zone
are large relative to the observed decline, and cannot be considered a
negligible fraction.

Using historical satellite images of the Antarctic sea ice extent, we
found that the width of the MIZ (along the gradient from open water
through to fast ice) might vary by as much as 50% from one year to
the next in a given region (Fig. 3). Therefore, one would expect the
peak in densities of minke whales near the ice edge (Fig. 1–2),
inferred from aerial survey data, could be inconsistently accessible
to IDCR/SOWER surveys due to intra- and inter-annual heterogen-
eity in sea ice conditions, and the vagaries of ice conditions could

make this potential peak available or unavailable to survey. IDCR/
SOWER protocols involved stopping sighting surveys when ships
slow down to navigate around ice6. Here we show that the surveys’
operational threshold for navigational safety occurred precisely
where whales were most likely to be found (Fig. 2).

IWC management tools only require a minimum abundance
estimate and are therefore robust to surveying only a fraction of
the population, but our discovery calls into question the reliability

Figure 2 | Density estimates of Antarctic minke whales throughout the Weddell Sea survey region (assuming certain trackline detection probability,
both inside and outside the ice). Each point estimate comprises a 400 km2 square cell. Figure was produced using package mgcv in R and plotted in

ArcGIS 9.3.1.

Figure 3 | The width of the, MIZ as defined by the region of very-open
pack ice (0–30% ice cover) in January for five sectors of the Southern
Ocean. The width of the MIZ has experienced no or little significant trends

over the past 30 years in any region. However, the variability in the width of

the MIZ has a high degree of variability, such that for year to year the size of

the MIZ may vary by as much as 50%. Amund/Bell refers to the Amundsen

and Bellingshausen Sea sector.
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of that relative abundance estimate for inferring long-term trends,
either for immediate management purposes or for predicting res-
ponses of whales to a changing climate. Our findings substantiate
previous anecdotal evidence of a strong affinity of minke whales
with sea ice10. The coupling among minke whales, sea ice, and krill
suggests that the whales are likely be sensitive to changes in ice
conditions over time2,5, which could have an impact on the future
of the species. Profound changes to the physical and biological
oceanography have been observed in the Antarctic7,13 and these have
led to complex changes to the duration and timing of sea ice season
throughout the circumpolar region14,15 (Fig. 4). Our surveys and
survey methodology provide a starting point for evaluating response
of minke whales to changes in sea ice conditions.

Our results serve as a cautionary tale about repurposing time series
data to make inferences about environmental or ecological trends in
response to climate change16. As analysts worldwide are tasked with
answering biodiversity and climate-related questions, repurposed
time series of data may not be sufficient to the task at hand, largely
because they assume, untenably, that the proportion of the popu-
lation surveyed has remained constant over time. To understand
climate-mediated ecological changes, we need either a series of rela-
tive abundances, in which the proportion of the population remains
constant through time–a way of quantifying change in proportion

sampled in relative abundance estimates–or a series of absolute
abundance estimates. Here we show that generating absolute abund-
ance estimates, i.e., that representing the entire population size,
would have to include surveying the sea ice zone using icebreaker-
supported helicopters or using fixed-wing aircraft operating from
airfields on the continent (with provision to estimate both perception
and availability bias). Our results imply that detecting trends in total
minke whale abundance and predicting species-level responses to
changes in sea ice or other environmental drivers will be far more
challenging and expensive than merely conducting circumpolar
ship-board surveys in open water.

Regional-level survey data are required to be collected multiple
times over the duration of a circumpolar survey to account for
region-level variances in animals (i.e., process error) in order to
properly interpret long-term patterns in Antarctic minke whale
abundance and distribution. Given the statistical noise inherent in
estimating whale abundance, it can take years or decades to detect a
declining population17. Here we show that changing bias and uncer-
tainty in existing whale population trend data could approach a
similar magnitude to the suspected decline, and that existing sighting
survey data may be inadequate to discriminate between true, smaller
declines and shifts in distribution over various geographical
and temporal scales. Our observations are timely, given that the
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Figure 4 | Trends in average December-February sea ice concentration for 1979–2007 from satellite passive microwave data using the Bootstrap
algorithm22. Large declines in summer sea ice concentration have occurred along the Antarctic Peninsula and in the Amundsen and Bellingshausen Seas,
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circumpolar level results of the IDCR/SOWER surveys are now more
than a decade out of date, the program has ended, and there is no plan
to fund follow-on work. A definitive answer to the trends in minke
whale abundance is unlikely to become available without a massive
increase in funding for simultaneous ship-board surveys in open
water and aerial surveys over sea ice-covered areas, while accounting
for biases introduced by various diving behaviors across different sea
ice habitats. Trend estimates inferred from time series of whale
abundance from open-water-only surveys are unlikely to be robust
to sampling non-constant proportions of the population due to cli-
mate-driven changes to sea ice. The changing physical environment
of the Southern Ocean needs to be better integrated into manage-
ment and conservation strategies for Antarctic minke whales, and
that will involve a candid conversation about the true cost of mon-
itoring throughout the species’ range.

Methods
Field methods. Surveys were conducted from a helicopter BO-105 deployed from RV
Polarstern from 1 December 2006 to 26 January 2007, and from 6 December 2008 to 3
January 2009, and covered 26,416 km of trackline11. Field protocols followed
standard line transect distance sampling methodology18. Generally, the survey
tracklines were planned in an ad hoc manner a few hours prior to departure, covering
a rectangular shape and lasting around 2 hours. The orientation and placement of the
survey design was independent of whale distribution, but was adapted depending on
available flight time, changing weather and ice conditions and the course of the vessel
through the ice. In some areas, the surveys were pre-designed as parallel track-lines
with a random starting point following depth gradients.

Surveys were conducted at an approximate altitude of 183 m at a speed of 80 km/h.
One or two observers were positioned in the left and right back seats of the helicopter
and an additional observer sat in the front left seat of the helicopter and observed the
area ahead, focusing on the transect line. The helicopter’s position was stored every 4
seconds. Information on sea state (Beaufort Sea state scale), cloud cover (in octaves),
glare (strength and area affected), ice coverage (in percent) and overall sighting
conditions (good, moderate, poor) was recorded at the beginning of each survey and
whenever conditions changed. Ice coverage was averaged for a search area 1 km in
front of the helicopter, assessed by the front observer. For each cetacean sighting the
following data was recorded: location, distance to trackline, species, group size, group
composition, behavior, cue, swimming direction and reaction to the helicopter.

Ice covariate data. Ice concentration observed along the trackline was recorded by
the observers aboard the helicopter. Distance (in km) to the marginal ice edge was
derived post hoc from the data using satellite remote sensing from daily, 6.25 km
resolution ice concentration images collected by the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) satellite sensor and published by the Institute of
Environmental Physics, University of Bremen19. The observer-derived estimate for
ice concentration was tested in subsequent distance analyses.

The ice edge was defined for each day that transects were flown by the smooth line
inscribing the 15% ice concentration margin, which is a standard definition in studies
of sea ice20. The position of the ice edge was then estimated in each satellite image
using ArcGIS 9.3.1 Spatial Analyst functions (Environmental Systems Research
Institute, Inc, Redlands, California, 2009) by selecting the largest polygon of con-
tiguous water pixels having at least 15% ice concentration (i.e. the polygon encom-
passing the land-fast ice), extracting the outermost edge, and smoothing it using the
Spatial Analyst ‘‘Boundary Clean’’ operator with the default parameters. Finally, the
Marine Geospatial Ecology Tools software21 was used to match whale sightings and
survey segments to satellite images and calculate the distance to the closest ice edge for
each sighting and survey segment midpoint (see below for a description of the survey
segments).

Changes in sea ice concentration over last 40 years. We examined spatio-temporal
variability of sea ice since 1979 in two ways. First, we plotted the size of the MIZ
throughout the Antarctic since 1979 from satellite passive microwave sea ice
concentration estimates22. We examined the data for evidence of decadal-scale
changes in the region between 5 and 30% ice concentration (i.e., in the vicinity of the
ice edge, where minke whales are found but that are difficult to survey using
conventional ship-board surveys). We acknowledge that such a definition is arbitrary,
but for our purposes, it provides a useful measure of the variability of the MIZ.
Determining the size of the MIZ is problematic with passive microwave data as ice
concentration is often underestimated in summer and low concentrations near the ice
edge are not deemed particularly reliable23. Hence, the ice edge is most often defined
as the 15% concentration contour. We used February monthly average ice
concentration data determined using the bootstrap algorithm available from the
National Snow and Ice Data Center24. The second way we considered changes in sea
ice patterns was to plot changes in ice concentration, using methods described in
previous assessments15, but restricting inference to the season (Dec 15–Feb 15) in
which IWC whale surveys take place.

Statistical analysis of minke whale and sea ice data. The distribution of different
densities of Antarctic minke whales around the sea ice edge in the study area was
estimated from line transect data following conventional distance sampling
approaches18. Due to small sample sizes, line transect data from both survey years
were pooled for distance analysis (n 5 62 in 2006/07, n 5 32 in 2008/09). Sightings
that were judged to be either minke (n 5 82) or ‘like’ minke whale (n 5 2) were
included in the analysis. Although there may be differences in both the ability of
observers to see minke whales on the trackline across various concentrations and
types of sea ice (i.e., perception bias) or the diving behaviour of whales in various ice
habitats (i.e., availability bias), such information is currently unavailable. (It is hoped
recent advances in satellite and depth-recording tags deployed on Antarctic minke
whales may help inform on availability bias for future analyses25. Therefore, as the
survey was single-platform, the probability of detection on the trackline, i.e., g(0), was
assumed to be 1 for the entire survey region, with a half-normal detection function.
Environmental covariates (i.e., multiple covariate distance sampling, MCDS18), such
as sighting conditions and observer judged sea ice concentrations, were tested and
found not to contribute to the distance analysis (judged using AIC).

Each transect was split into segments of approximately 30 nautical miles in length
to minimise spatial autocorrelation (assumption tested by checking residuals)26. An
effective strip half width (assumed to be doubled when observers were present on both
sides of the aircraft) was estimated from the detection function for each transect
segment; whale densities were calculated based on the number of animals counted in
each segment and the effective strip area (i.e., segment length 3 the effect strip width).

A simple estimate of the relative abundance of minke whales, as a function of
distance from the ice edge, up to 500 km, was derived from segment-level density
estimates and the position of the sea ice boundary on the day each segment was flown.
The distance from the centre of each transect segment to the sea ice boundary was
allocated to 25 km bins. Negative distances refer to areas inside of ice boundary. A
mean relative density was estimated from segments in each 25 km bin, weighted by
the summed effective strip area. The total area of ice and water within each binned
distance range was estimated using AMSR-E sea ice data for January 1 2007 (nomi-
nated as a representative day for the two years of surveys). The relative abundance of
animals in each distance bin was then estimated by multiplying area in each bin by
mean relative density. Given the error involved in locating that actual sea ice
boundary using satellite data, we tested the sensitivity of this result to differing dis-
tances to the putative sea ice boundary; the ‘peak’ in density of minke whales near the
supposed sea ice boundary was robust to up to 100 km of random noise added to the
distances to this feature (larger amounts of noise were not tested).

A model-based approach27 was used to predict for the densities of minke whales
across the Weddell Sea region, up to 500 km on either side of the ice edge. This is a
common approach to estimate densities and abundances when track designs deviate
substantially from ideal design-based principles. Densities were modelled using a
generalized additive model (GAM) using the mgcv library28 in R (R Core
Development Team, R Foundation for Statistical Computing, Vienna), in particular, a
tensor product smooth with three variables, namely longitude, the great circle dis-
tance to the ice edge and a satellite-derived estimate of ice concentration, with sea ice
data from each day the effort was undertaken. Model selection was via REML, and
overdispersion in sighting counts was accounted for with the Tweedie distribution26.
Density predictions were made at the scale of the sea ice data (6.25 km grid); variance
of abundance generated using the spatial model was estimated using methods
described previously26. Given whale densities predicted by the GAM for each grid
point, and the size of the study area (i.e., the prediction grid shown in Fig. 2), we
estimate abundance of 2500 minkes (CV 5 0.90) inside the sea ice zone and 8500
minkes (CV 5 0.56) in adjacent, ice-free waters, given no additional information on
availability or perception bias in either region. Assuming no difference in either
perception or availability bias with sea ice concentration (or any other unmodelled
covariate), this implies that ,20% (95% CI 4, 57; interval derived using bootstrap) of
the Antarctic minke whales we estimated to be found in our study area were dis-
tributed inside of the sea ice zone in the Weddell Sea region.
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