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For British grey seals, as with many pinniped species, population monitoring is implemented by aerial surveys of pups at breeding
colonies. Scaling pup counts up to population estimates requires assumptions about population structure; this is straightforward
when populations are growing exponentially but not when growth slows, since it is unclear whether density dependence affects pup
survival or fecundity. We present an approximate Bayesian method for fitting pup trajectories, estimating adult population size and
investigating alternative biological models. The method is equivalent to fitting a density-dependent Leslie matrix model, within
a Bayesian framework, but with the forms of the density-dependent effects as outputs rather than assumptions. It requires fewer
assumptions than the state space models currently used and produces similar estimates. We discuss the potential and limitations
of the method and suggest that this approach provides a useful tool for at least the preliminary analysis of similar datasets.

1. Introduction

Complete censuses are not practical for most animal pop-
ulations. Instead, abundances usually have to be estimated
by scaling up from partial counts. This process is com-
plicated when the components of a population differ in
their detectability. Pinnipeds such as grey seals (Halichoerus
grypus), where young pups remain ashore and the rest of
the population spends the majority of its time at sea, are an
extreme example of this problem. In these cases, population
estimation can effectively come down to scaling up from
observations of pups. This process needs to be done effi-
ciently, and also evaluate the population estimates’ precision.
This paper presents a way of simplifying the computations
and reducing the assumptions underlying such models. It
produces similar results to the, more complicated, methods
currently used to produce the estimates on which decisions
about the conservation and management of British grey
seal populations are based. These simplifications can release
resources and data for the examination of environmental and

other effects on the populations. In this particular study, they
have removed the need for maximum fecundity and survival
to be considered equal everywhere.

Grey seals are colonial breeders. Females mature at
around six years of age and give birth to a single pup in
the autumn. The pups are born on land and remain ashore
for several weeks. This behaviour, along with their neonatal
white coats, makes them relatively easy to observe. Counting
the other components of these populations is much less
straightforward, since while they do haul out on land, the
animals spend most of their time at sea and submerged.

The species is abundant around Britain and also on
the eastern seaboard of North America. There are smaller
numbers of animals in the Baltic Sea and around the
northern European coastline. They were heavily hunted and
more recently have been seen as a serious competitor to
commercial fisheries. In 1914, a pessimistic estimate that the
British population of grey seals was down to 500 individuals
led to the Grey Seal (Protection) Act. This gave some legal
protection to the species [1]. From there, exponential growth

CORE Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

https://core.ac.uk/display/20342117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Journal of Marine Biology

at around 6-7% brought the population to around 70,000 in
the 1970s [2]. Similar exponential growth has been recorded
in the grey seal population breeding on Sable Island off Nova
Scotia [3, 4].

While the population was growing exponentially, scaling
up from pup production estimates to total population size
was relatively straightforward, requiring only estimates of the
proportion of females breeding and the sex ratio. However,
around 1995, the previously steady growth started to slow in
some regions (Figure 1). More recent estimates of population
size depend critically on the assumptions made about where
in the species’ lifecycle density-dependent effects occur. A
set of Bayesian state space models has been used to model
the population and advise government agencies involved
in its management [5, 6]. State space modelling involves
specifying two linked submodels: the first, the “process
model,” represents the evolution of the true, but unknown,
state of the system (i.e., the number of seals of different
ages in each region in each year), while the second, the
“observation model,” represents the relationship between
observations (pup production estimates) and states (true
numbers of pups) [7]. The process submodel can be viewed
as a type of stochastic, age-structured matrix model of the
population dynamics of the species. For grey seals, various
sub-models have been investigated containing different
assumptions about the component of the population subject
to density-dependent regulation and about the movement
of animals between regions [5]. Each model was fitted to
the pup production data, with prior distributions specified
for population numbers in the initial year and for all model
parameters (fecundity, the survival of pups and adults,
carrying capacity, animal movement, and observation error).
More details of the approach are given in Newman et al. [8,
9]. Their analysis of this dataset assumed that environmental
carrying capacity was the only parameter to vary between
regions. Fitting those models is computationally intensive
and requires both statistical expertise and customised soft-
ware [9].

The state space models contain observation and process
components but fit them together. Instead, we use the pup
production data to estimate maximum growth rates for the
start of the time series, and we apply this with an assumption
of the location of density dependence in the species’ lifecycle
to derive the adult population sizes. Our approach separates
the estimation process into three parts: first smoothing the
pup production estimates to give a distribution of estimated
pup production trajectories, then associating each trajectory
with a set of demographic parameters, and finally applying
the relevant demographic parameters to each pup produc-
tion trajectory to estimate the numbers of individuals in each
of the other age classes. The method presented here can be
seen as a form of approximate Bayesian computation [10–
12].

2. Data

Since 1984, pup production at the main Scottish grey seal
colonies has been monitored by series of aerial surveys
carried out throughout the breeding season. Each year,

between 3 and 6 flights are made over each colony, using
a fixed-wing aircraft with a vertically fitted large format
camera [13]. The numbers of animals in each photograph
are counted and used to estimate the total numbers of pups
at each colony. Some pups that die soon after birth may be
missed or confused with stillbirths and excluded from the
counts. This study, along with previous ones, ignores this
detail and defines fecundity as the ratio of estimated pup
numbers to adult females. Pup survival is then considered
as the proportion of the counted pups that survive another
year.

Equivalent counts are made directly by observers on
the ground at the colonies in England and Shetland. A
consistent methodology has been used to estimate the total
numbers of pups in each colony and, where sufficient surveys
have been completed, calculate the estimates’ precision [6].
Previous analyses have summed the data within each of four
regions: the North Sea (effectively defined as the eastern
coastline of the UK from the Thames to Rattray Head, north
of Aberdeen), Orkney, the Inner Hebrides, and the Outer
Hebrides. We follow this and use the total pup production
estimates from each area (Figure 1) as inputs to our models.

We use the same prior distributions for grey seal dem-
ographic parameters as the previously published state space
models [9]. They gave separate prior distributions for max-
imum (low population density) fecundity and adult and pup
survival. The values were based on previous studies of the
species and are shown in Table 1.

3. Analysis

The population estimation was carried out in three stages:
first smoothing the pup production estimates to give a
distribution of estimated pup production trajectories, then
associating each trajectory with a set of demographic pa-
rameters, and finally applying the relevant demographic pa-
rameters to each pup production trajectory to estimate the
numbers of individuals in each of the other age classes.

3.1. Smoothing of the Pup Production Trajectory. We fitted
generalised additive models (GAMs), with log link functions
and a quasi-Poisson error structure [14], separately to each
of the four regional pup production time series. These were
simple empirical models that used a cubic spline to smooth
the observed data. The mgcv library [15] within the R
statistical environment [16] was used for this. Generalised
cross-validation was used to set the smoothing parameter
within the models, with gamma (a parameter that reduces
the tendency of these model to overfit data) set to 1.4 [14].

Pup production in each region showed a period of ap-
proximately exponential growth (Figure 1) though with
different annual growth rates. The growth of the populations
in each region was, therefore, investigated separately. A pa-
rametric bootstrap was used to derive the distribution of
maximum growth rate from the fitted models. 10,000 rep-
licate pup production trajectories were simulated for each
region, using the Bayesian covariance matrices for the pa-
rameters of the gam models [14] to allow for the depen-
dencies between the parameters of their smooth terms, and



Journal of Marine Biology 3

1985 1990 1995 2000 2005

2000

4000

Year

P
u

p
n

u
m

be
rs

North Sea

1985 1990 1995 2000 2005

Year

P
u

p
n

u
m

be
rs

5000

10000

15000

Orkney

1985 1990 1995 2000 2005

Year

P
u

p
n

u
m

be
rs

1500

2500

3500
Inner Hebrides

1985 1990 1995 2000 2005

Year

P
u

p
n

u
m

be
rs

8000

10000

12000

Outer Hebrides

Figure 1: Grey seal pup production estimates (points) and smoothed estimates (with 95% credibility intervals) for each of the four regions.

Table 1: Distributions of parameter values. The priors are taken from Newman et al. [9], the posterior values are those from the replicate
model runs in each region.

Symbol
Prior Posterior

North Sea Orkney Inner Hebrides Outer Hebrides

distribution mean sd mean sd mean sd mean sd mean sd

max pup survival sp Beta(14.53,6.23) 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1

adult survival sa Beta(22.05,1.15) 0.95 0.04 0.92 0.01 0.96 0.01 0.95 0.02 0.91 0.01

max fecundity b Beta(22.05,1.15) 0.95 0.04 0.95 0.05 0.95 0.05 0.95 0.05 0.95 0.05

each trajectory’s maximum annual growth rate was then
calculated.

3.2. Demographic Parameter Estimation. Scaling the replicate
pup production trajectories up into population trajectories
requires them to be combined with suitable sets of demo-
graphic parameter values. Any combination of demographic
parameter values will produce a particular stable age-struc-
ture and exponential growth rate at low population densities.
Given that the animals are assumed to breed first at age 6

and have fecundity and mortality rates are constant among
adults, and using the notation in Table 1, this growth rate, g,
satisfies

g6 − sa · g5 = b · sp · sa5

2
, (1)

(the derivation of this equation is given in the Supplemen-
tary Material which is available online at doi:10.1155/2011/
597424).
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The maximum growth rate within each estimated pup
production trajectory was taken as an estimate of the low-
density growth rate for that replicate population. The dem-
ographic parameter values then need to be drawn from
their joint conditional probability distribution given the ap-
propriate exponential growth rates. Explicitly calculating this
distribution is not straightforward, but it can be approxi-
mated numerically by drawing from an unconditional joint
probability distribution for the demographic parameters
and discarding those results whose maximum growth rate
falls outside a small neighbourhood of the required value.
This approach is slow, because small neighbourhoods will
produce high parameter rejection rates [10], so we simplified
it further. We drew 10,000 sets of candidate parameter values
from Newman’s priors and calculated the rates of stable
exponential growth that each would produce for low-density
populations. Each of the replicate pup trajectories was then
associated with the set of demographic parameter values that
produced the exponential growth rate most similar to the
observed maximum, and the sets of deterministic matrix
models were populated using these values.

3.3. Population Models. Two sets of incomplete deterministic
age-structured matrix models of the females within each
population were then constructed, with one assuming that
all the density dependence was in fecundity and the other
putting it all into pup survival. These differed from those
in Newman et al. [9] by not defining the functional form of
the density dependence. If there were no density-dependent
effects, a deterministic age-structured matrix model with
known survival rates could be used to project forwards from
a single pup count to give the number of one-year olds the
next year, then two-year olds the following year, and so on.
Similarly, fecundity could be used to estimate adult female
numbers from pup numbers, then survival rates used to
project back to younger animals in earlier years. If there was
actually stochastic variation in the population growth, such
an approach could produce inconsistencies when based on a
series of pup counts. It was assumed that density dependence
only affected one transition, either fecundity or pup survival,
in the model and that stochastic effects, such as fluctuations
in environmental conditions, only acted at this point in the
lifecycle. This formulation effectively meant that there was
a single pup count that could be used to estimate each age
class in each year, and the density-dependent relationship
was implicitly determined by the relative sizes of the age
classes either side of that transition.

Five annual age classes were used in the model, along with
a sixth that contained all the older animals. Only animals
within the oldest category were considered to breed [17]. For
the variable fecundity model, the numbers of one-year-old
females, f1,t , in each replicate were calculated by multiplying
half the previous year’s pup production pt−1, (so assuming an
equal sex ratio at birth) by the pup survival parameter, sp

f1,t =
sp · pt−1

2
. (2)

A similar process was used to fill in the subsequent 2-, 3-,
4-, and 5-year-old classes but using an “adult” survival
parameter, sa

fi,t = fi−1,t−1 · sa, i = 2, 3, 4, 5. (3)

The numbers of individuals in the older age groups during
the early years of the study were estimated by using the
stable age structure for an exponentially growing population,
described above, to scale the estimated numbers of pups in
the first year of the dataset. The numbers of adult, six-plus,
females were then projected forwards throughout the dataset

f6,t =
(
f5,t−1 + f6,t−1

) · sa. (4)

Each year’s effective fecundity was then calculated by divid-
ing the estimates for pups by those for female adults.

Equivalent calculations were made for the model with
density-dependent pup survival though these used fecundity,
b, to calculate numbers of adults from the pup production
estimates

f6,t = pt
b
. (5)

They then worked back down in age

f5,t = f6,t+1

sa
− f6,t,

fi,t = fi+1,t+1

sa
i = 1, 2, 3, 4.

(6)

Within this second model, the recent younger age classes
were filled in using pup survival estimates generated from
the data from the years with most similar estimated adult
numbers. Further details and code for these calculations are
contained in the Supplementary Material.

Two different methods were used to combine the results
of the two models of each region. The first assumed that
one of the two models was correct and, in the absence of
information to choose between them, simply superimposed
the two posterior distributions of population estimates to
effectively give a single, model-averaged, overall distribution
of population estimates. The second approach assumed that
the truth lay somewhere between the two explicit models
and placed an additional uniform prior on where the result
lay between them. Two uniform random variables were,
therefore, drawn to produce each of a set of estimates:
one variable to identify a pair of bootstrap replicates, and
the other to determine the weighting of the results of the
two population models for that replicate. The result was a
distribution that effectively smeared across the two directly
modelled extremes. Total, rather than female only, popula-
tion estimate distributions were then calculated by multiply-
ing each replicate by a draw from a normal distribution with
mean 1.73, the value used in previous analyses of this data [6]
and standard deviation of 0.1, to allow for the uncertainty in
the sex ratio within these populations.
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Table 2: Estimates (mean and 95% credibility intervals) of the total size of the grey seal populations in each region before breeding in 2007.
The results for the two models are given along with those from simple (equally weighted) model averaging and applying the uniform prior
across the two models. The numbers in italics are the equivalent estimates calculated from the best fitting state space models contained in
the 2008 report of the UK Standing committee on Seals [18].

Model
2007 Regional Population (in thousands, mean value, and 95% CIs1)

North Sea Orkney Inner Hebrides Outer Hebrides Total2

Density dependent
pup survival

20.9 (16.4–25.7) 46.1 (35.6–58.0) 8.0 (5.9–10.7) 34.3 (27.0–42.0) 109.4 (84.8–136.4)

17.1 (10.6–25.9) 60.9 (40.9–93.5) 8.3 (6.5–10.5) 31.3 (24.0–39.1) 117.6 (89.1–168.9)

Density dependent
fecundity

24.1 (19.7–29.0) 124.6 (102.2–151.1) 24.7 (18.3–34.2) 69.6 (57.0–86.0) 243.3 (190.8–277.9)

27.2 (20.7–38.2) 103.0 (79.5–142.9) 21.4 (16.5–32.1) 88.1 (67.0–143.0) 239.7 (188.8–356.2)

Model averaged
22.5 (17.1–28.3) 85.4 (37.2–146.2) 16.4 (6.2–32.3) 52.1 (28.1–82.5) 177.3 (88.5–289.2)

20.5 (11.1–33.6) 75.4(40.4–130.0) 12.9 (6.5–27.2) 51.2 (23.8–111.5) 160.1 (84.5–304.5)

Uniform prior 22.5 (18.0–27.3) 85.78 (45.8–131.3) 16.3 (8.0–27.7) 52.1 (33.1–74.3) 176.8 (104.6–260.8)
1
All the CIs include uncertainty in the population sex-ratio.

2The CIs are estimated conservatively by summing those of the individual models.

4. Results

Figure 1 shows the smoothed pup production trajectories for
each of the regions. Populations’ trajectories clearly differ
between regions. In the North Sea, pup production still
appears to be growing almost exponentially. In all other
regions the growth rates have at least slowed substantially
(see Figure S2 in Supplementary Materials). This occurred
during the mid 1990s in the Inner and Outer Hebrides and
in the early 2000s in Orkney. In the Outer Hebrides, the
highest pup production estimate occurred before 2007 in
all but 64 out of the 10,000 replicate trajectories, implying
that a significant decline has occurred in that region. For
95% of these replicates, the highest values occurred within
the period 1995–2002. Everywhere except the North Sea, the
density-dependent effects cause the pairs of matrix models
to diverge (Figure 2). Estimates of the 2007 population are
given for each region in Table 2 and have a slightly higher
precision than those produced by the state space models
[18]. Adult survival is the only demographic parameter
substantially altered by the model fitting (Table 1; Supple-
mentary Material Figure S3). Plots of the effective patterns
of density dependence (Supplementary Material: Figures S4,
S5) show much more clearly defined patterns for the models
containing variable fecundity than those with variable pup
survival.

5. Discussion

The two models agree that there are probably slightly more
than 20,000 grey seals that breed on the eastern coasts of
England and Scotland (our North Sea region) and that this
population is continuing to grow in a near exponential fash-
ion. In all the other areas, the predictions diverge rapidly
with the models containing density-dependent fecundity
producing estimates for 2007 that are 2-3 times as large as
the equivalent figures for density-dependent survival. The
confidence intervals of these pairs of models do not overlap.
Outside the North Sea, the precision of the population
estimates would be greatly improved if it were possible to

distinguish where in the grey seal life-cycle density depen-
dence impacts most strongly. Because they do not specify
the functional form of the density dependence, the models
presented here can give little information on this. It is also
difficult to extract this information from the more complex
state space models of this system even though these do
explicitly assume the form of the density dependence [5, 9],
probably because the connection between the data (pup
counts) and the required information (location of density
dependence in the lifecycle) is through the, initially un-
known, population size. Additional information, indepen-
dent of that used here, is, therefore, required.

The approach presented here is Bayesian in the sense
that it uses prior distributions on the density-independent
demographic parameters (adult survival, and maximum
pup survival, maximum female fecundity). However, it is
approximate in its use of the priors on the demographic
parameters and because there are no formal priors on the
density-dependent components of the model or the popula-
tion sizes, there are no complete likelihoods for the results.
The result is a semiparametric approach to model fitting,
rather than a fully parametric model. The pup production
data are used to derive a maximum growth rate for the
early part of the time series, and this is used, with an
assumption of the location of density-dependence in the
species’ lifecycle, to derive the adult population sizes together
with approximate graphical representations of the density
dependent effects. This strategy has some similarities to that
adopted in approximate Bayesian computation (e.g., [19]),
where explicit calculation of the likelihood is avoided by
the use of easier-to-compute summary statistics. The process
of sampling parameter values from prior distributions is
stochastic, and Monte Carlo error can, therefore, influence
the outcome. Repeating the model fitting produced pop-
ulation estimates and confidence intervals within 1% of
the values reported here suggesting that this effect is small.
It could be further reduced by increasing the number of
replicates used. The calculations reported in this paper took
around 10 minutes to run on a laptop with a 2.33 Ghz Intel
Core 2 Duo processor and 2 Gb of RAM.
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Figure 2: Population trajectories (mean values and 95% credibility intervals) for each region. In each case, the lower (blue) set of lines show
the total population estimates from the density-dependent pup survival models and the upper (black) set of lines those from the models
with density-dependent fecundity.

This methodology effectively pushes most of the uncer-
tainty in the system into the error terms of the GAMs. These
models, therefore, have lower precision than the colony-
based pup production estimates and estimate each year’s
expected, rather than actual, pup production. The uncer-
tainty then passes through into the population estimates and
could be expected to reduce their precision.

The age-structured population models are largely deter-
ministic. They effectively assume that varying environmental
conditions will mainly affect transitions where density
dependence occurs. That is likely to be a simplification of
the actual situation but not an unreasonable one given that
the other processes are assumed to be relatively insensi-
tive to the size of the population relative to its carrying
capacity. Because these models do not contain a predefined
form for their density-dependent components, they also
avoid prescribing a distribution or pattern for the effects
of environmental variation on the populations’ dynamics.

Instead, such variability can be expected to simply reduce the
precision of their results.

The similarity of the credibility interval widths presented
here to those from the more detailed state space models
suggests that the additional effects, such as demographic
stochasticity and movement between areas, which are explic-
itly represented in those models, may have limited impact on
the precision of their results in this case. This is not entirely
unexpected, since demographic stochasticity should be small
for such large populations, and the estimated amount of
movement between colonies is also small (inspection of
posterior movement parameter estimates reported in [18]).
Another way of interpreting this is that the extra parameters,
along with the requirement to satisfying constraints imposed
by the functional forms of the density dependence and
movement, within the state space models may absorb a
sufficiently large proportion of the information within this
small dataset to negate the benefits of their more accurate
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representation of the system. It is also possible that the use
of different demographic parameter values in each region,
made possible by the other simplifications in model struc-
ture, is the key to the performance of these scaled GAM
models. Additionally, the process of matching each replicate’s
maximum growth rate to that of a set of demographic
parameter values, rather than simply drawing directly from
the priors, may actually extract most of the information
available to the more complete Bayesian analysis.

The uniform prior on the relative impact of density de-
pendence on fecundity and pup survival is clear and unam-
biguous. It is much easier to calculate than a set of intermedi-
ate models, and this reflects the current state of ignorance as
to the true balance between these factors. While it is straight-
forward to apply here, it might be harder to justify its com-
bination with formal likelihood-based model selection tech-
niques, such as Akaike’s information criterion [20], which
penalise models for including additional parameters. Such
formal model selection techniques are not directly applicable
to the approach described here, because it does not estimate
an explicit likelihood though model selection techniques are
starting to be proposed for similar situations within the
framework of approximate Bayesian computation [19].

Our approach could be seen as a retrograde step, since it
does not attempt as complete a description of the system or
utilisation of the data, as the state space models. It could also
be criticised for its limited predictive and explanatory power.
However, any projection of models requires extrapolation,
and needs to be done cautiously. For these populations,
the most obvious danger would be in the projection of
density-dependent effects beyond the range of existing data,
which requires a belief that their functional forms have been
adequately described. It is also possible that if the state
space models were modified in the light of these results,
for example, by modifying them to allow adult survival to
vary between areas, the precision of their estimates would
improve. However, as the most appropriate analysis of
datasets will always depend on their size and the availability
of resources, this sort of less demanding methodology may
also be appropriate for other small datasets.
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