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SUMMARY

The objective of this Ph.D. research is to design and develop a framework for

automated assessment of surgical skills. Automated assessment can help expedite the

manual assessment process and provide unbiased evaluations with possible dexterity

feedback.

Evaluation of surgical skills is an important aspect in training of medical students.

Current practices rely on manual evaluations from faculty and residents and are time

consuming. Proposed solutions in literature involve retrospective evaluations such as

watching the offline videos. It requires precious time and attention of expert surgeons

and may vary from one surgeon to another. With recent advancements in computer

vision and machine learning techniques, the retrospective video evaluation can be

best delegated to the computer algorithms.

Skill assessment is a challenging task requiring expert domain knowledge that may

be difficult to translate into algorithms. To emulate this human observation process,

an appropriate data collection mechanism is required to track motion of the surgeon’s

hand in an unrestricted manner. In addition, it is essential to identify skill defining

motion dynamics and skill relevant hand locations.

This Ph.D. research aims to address the limitations of manual skill assessment

by developing an automated motion analysis framework. Specifically, we propose (1)

to design and implement quantitative features to capture fine motion details from

surgical video data, (2) to identify and test the efficacy of a core subset of features in

classifying the surgical students into different expertise levels, (3) to derive absolute

skill scores using regression methods and (4) to perform dexterity analysis using

motion data from different hand locations.

xiv



CHAPTER I

INTRODUCTION

Summary The motivation and goals for this research, along with the challenges

involved, lead us to the specific aims and organization of the thesis to address those

specific aims.

1.1 Surgical skill assessment

Surgical skill development, i.e., the process of gaining proficiency in procedures and

techniques required for professional surgery, represents an essential part of medical

training. Developing high quality surgical skills is a time-consuming process, which

requires expert supervision and evaluation throughout all stages of the training proce-

dure. This manual assessment of surgical skills poses a substantial resource problem

to medical schools and teaching hospitals.

There is a desire for streamlining the skill assessment routine at least in the

early stages of the medical training process. In addition to the substantial time

requirements of manual evaluations, the assessment criteria used are typically domain

specific and often subjective, where even domain experts do not always agree on

the assessment scores. In fact, poor correlations between subjective evaluations and

objective evaluations through standardized written and oral exams have been reported

in the literature [6].

Structured manual grading systems, such as the Objective Structured Assessment

of Technical Skills (OSATS) [37], have been proposed to alleviate the problem of sub-

jective assessments. OSATS covers a variety of evaluation criteria: respect for tissue

(RT), time and motion (TM), instrument handling (IH), suture handling (SH), flow of
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operation (FO), knowledge of procedure (KP) and overall performance (OP). Assess-

ments based on such objective criteria can alleviate the subjectivity problem but are

still challenging, as they require time-consuming and straining manual observations

and evaluations by expert surgeons.

As a response to the growing need of skill assessment for (prospective) surgeons,

we propose a framework for automated assessment of OSATS criteria using video

data. Such an automatic assessment system allows for direct and objective feedback

on the quality of standard surgical procedures, as they have to be mastered by every

medical student. By using video data, the system has minimal requirements of the

infrastructure, which is of benefit for realistic and large-scale deployments. Our au-

tomatic, vision-based approach to surgical skill assessment can be used for evaluating

medical students in their early training phases.

1.2 Challenges

The task of replicating an expert surgeon’s evaluations is challenging due to several

reasons. Some of the challenges are described below.

1. Diverse OSATS criteria : First, the OSATS criteria are diverse in nature.

For example, the “respect for tissue” criterion is based on the student’s capa-

bility in handling the tissue without injuring it while performing the procedure.

On the other hand, criteria such as “knowledge of procedure” and “time and

motion” depend on the sequential aspect of the motion. Thus, it is very chal-

lenging to encode diverse OSATS criteria within a common framework.

2. Expert disagreement : Secondly, expert surgeons do not agree on evaluations

and the OSATS score might vary from one expert to another. Thus, it becomes

difficult to define benchmarks for developing automated skill assessment system.

This is further complicated by the style variations among surgeons in performing

different tasks.

2



3. Capturing fine motion dynamics : Most of the OSATS criteria are eval-

uated based on motion quality. An expert’s motion lacks unnecessary moves

and is characterized by fluid movements as compared to unnecessary moves and

stiff motions of intermediate and novice surgeons [37]. Thus, there is a need to

analyze the motion dynamics in detail to extract skill relevant information.

4. Varying camera viewpoint : The orientation or the camera viewpoint may

vary in different data acquisitions. Thus, a data representation is required that

is invariant to view changes. In addition, the motion dynamics for the whole

duration of the procedure should be encoded.

Due to these challenges, it is difficult to design an automated surgical skill assess-

ment system. With the availability of cost effective cameras and memory, it is easy

to collect video data in a ubiquitous manner. If the automated system can utilize the

video data collected from student surgeons, then this will alleviate the need for hand

tracking equipment, which, if used, might interfere with surgeon’s hand motion.

1.3 Motion analysis for skill assessment

Due to the challenges mentioned above, the task of surgical skill assessment requires

motion analysis to capture fine details that encode the skill involved in performing a

particular procedure. Motion analysis is used for several purposes in computer vision

such as activity recognition, segmentation and object tracking. Typical motion analy-

sis techniques involve defining a motion or activity type or a gesture vocabulary. The

gestures might be obtained automatically using techniques such as spectral clustering

or by manually labeling the videos. Using predefined gesture vocabularies have some

disadvantages, such as manual bias involved in defining the gestures and style varia-

tions rendering some gestures unused by specific skill groups. This thesis addresses

some of these challenges by proposing an automated skill assessment system that does

not require segmentation of motion into surgical gestures. The proposed system is

3



based on holistic motion analysis and attempts to capture fine motion details using

frame kernel matrices.

The goal of this research is to develop a video based motion analysis system

to improve the consistency and speed in surgical skill evaluation. We

accomplish this goal in three phases corresponding to the following three specific

aims:

Specific aim 1: To encode the skill defining motion dynamics from videos into

quantitative feature descriptors.

Specific aim 2: To model a relative skill assessment system for classification of

videos into different expertise levels.

Specific aim 3: To model an absolute skill assessment system for prediction of

surgical skill scores and to perform dexterity analysis based on hand motion dynamics.

1.4 Organization of the thesis

This thesis is organized as follows (Figure 1). In Chapter 2, we summarize the pub-

lished works on surgical skill assessment that provided motivation and background

for this work. Chapter 3 provides the background on motion analysis using frame

kernel matrices and texture feature computation using different techniques. In Chap-

ter 4, we describe the data sets used in this research. In Chapter 5, we describe our

video based motion texture analysis system for classification of surgical students into

different skill levels. In Chapter 6, we demonstrate the capability of motion texture

analysis for OSATS skill score prediction using regression analysis. In Chapter 7, we

model the surgical dexterity using motion texture features derived from the motion

dynamics corresponding to dominant and non-dominant hands. Chapter 8 provides

a summary of our work with possible extensions and potential future applications.
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Input data  
(surgical videos) 

(Chapter 4) 

Frame kernel matrix 
(Chapter 3) 

Texture features 
(Chapter 3)  

 

Regression analysis 
(Chapter 6) 

Skill classification 
(Chapter 5) 

Skill scoring 
(Chapter 6) 

 

Specific Aim 3 

Skill relevant tools/
hand locations 

(Chapter 7) 

Dexterity 
feedback 
(Chapter 7) 

Specific Aims 1 and 2 

Background (literature review) 
(Chapter 2) 

 

Figure 1: Flow diagram of the thesis with three main contributions: skill classifica-
tion, skill scoring, and dexterity analysis.
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CHAPTER II

LITERATURE REVIEW

Summary Most of the published works pertain to recognition of manually defined

surgical gestures in robotic minimally invasive surgery. Automated assessment of

OSATS has not been explored much in the literature. Most works on video analysis

of surgery address gesture recognition.

2.1 State-of-the-art

There are two domains where assessment of surgical skills has been studied. The

first one pertains to skill assessment of surgeons performing robotic minimally inva-

sive surgery (RMIS). The second domain is assessment of skills in medical schools

and teaching hospitals [38]. Table 1 compares these two domains. The data used in

RMIS is mostly kinematic data collected from robotic arms and actuators. On the

other hand, in teaching domain, skill is evaluated manually. Most of the RMIS works

follow the language of surgery paradigm, where each surgical procedure is segmented

Table 1: Comparison of RMIS and surgical education domains.
Attributes Robotic Minimal Inva-

sive Surgery (RMIS)
Surgical education and
training

Data Kinematic data from
robotic surgery equipment
e.g. da-Vinci

Manual observations

Surgical gesture Manually defined and pro-
cedure specific

No procedure specific vo-
cabulary

Analysis Gesture recognition, exper-
tise modeling, classification

Manual scoring using meth-
ods such as Objective Stan-
dard Assessment of Techni-
cal Skills (OSATS)

Feedback on hand
motion quality

Not given Not given
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into specific gestures (also known as surgemes). These gestures are procedure specific

and they are obtained by manual demarcation of the motion trajectory. The analysis

goal in RMIS is mostly surgical gesture recognition with few works on surgical skill

classification. Figure 2 shows a general framework for RMIS skill assessment. How-

ever, none of the published RMIS works have reported OSATS based skill assessment.

The skill assessment in medical schools and teaching hospitals is done manually. The

manual scoring is time intensive and requires the expert to closely observe the student

surgeons. Medical literature also recognizes the need for objective surgical skill assess-

ment [49]. Structured grading systems such as the Objective Structured Assessment

of Technical Skills (OSATS) [37] have been proposed to reduce the subjectivity. The

OSATS criteria are challenging to evaluate since they require expert domain knowl-

edge and are prone to subjective assessment. Thus, if a single human observer grades

the trainee surgeon, then it may result in bias. Yu et al. [61] have suggested eval-

uations from residents and interns who frequently supervise the students instead of

the consultant surgeons who do not have the opportunity to directly observe medical

students. However, the subjectivity and time-consuming nature of these evaluations

Training 
data 

Kinematic 
data 

Gesture 
recognition 

Expertise Model 

Expert defined 
surgical gestures 

Testing data Skill 
classification 

Figure 2: A general skill assessment framework used in RMIS domain.
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still cannot be ruled out. Awad et al. [6] have reported poor correlation between

the subjective and the objective evaluations through standardized written and oral

exams. They also note that subjective evaluations may vary from faculty to faculty

and for different types of procedures.

A major drawback of manual OSATS assessment are the substantial requirements

on time and resources involved in getting several staff surgeons to observe the per-

formance of trainees. Surprisingly, only very few works have addressed automated

OSATS assessments for surgical teaching evaluations.

These two domains (RMIS and surgical education) can be further categorized

depending upon the approaches used for time series analysis of surgical motion data.

The local approaches (e.g. [23, 62]), model specific surgical tasks, and model the task

as a sequence of manually defined surgical gestures. On the other hand, the global

approaches involve the analysis of the whole motion trajectory without segmentation

into surgical gestures [25, 15]. The focus of this thesis is surgical skill assessment for

medical education and training using the global approach based on motion texture

analysis.

The state-of-the-art in computerized surgical skill evaluation is dominated by

RMIS using robots such as da-Vinci [35, 36, 47, 34, 46, 25]. Lin et al. [35] used

kinematic data (position and velocity) from the da-Vinci manipulators to map the

motion data into surgeme labels. They used Linear Discriminant Analysis (LDA)

to project the motion data into a feature space where the surgeme classes were well

separated.

The initial works did not address the skill assessment. Their analysis revealed

motion characteristics that might separate the experts from the non-experts. For ex-

ample, in [35], the authors noted that an expert surgeon’s motion gestures (surgemes)

are well separated in the three dimensional LDA feature space as compared to the

non-experts. Reiley et al. [46] reported varying surgeme recognition accuracy for
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expert and non-expert motion data. This occurs because the expert surgeons do not

frequently use some of the surgemes. Moreover, merging of some surgemes resulted

in improved recognition accuracy. These results indicate the limitation of surgeme

based motion analysis in accommodating the user variations. To address this issue,

additional surgemes were added in later works.

Statistical modeling approaches (such as Gaussian Mixture Models (GMM) and

Hidden Markov Model (HMM)) were also used to account for the variability in the

motion data. To further improve the surgeme recognition accuracy, video context

cues were used to create the context-based HMM models. Lin et al. [34] used eight

context cues for a four-throw suturing task. These cues were based on the interaction

of the four main objects in the RMIS working space: left tool, right tool, needle

with suture and the tissue. Each frame was annotated for the context cues such

as “left tool touching needle”, “right tool touching tissue” etc. With context cues,

the surgeme recognition accuracy improved despite the varying expertise level of the

users. However, this approach still required an expert surgeon to select the number

of surgemes and to annotate the videos with the context cues.

Reiley and Hager [46] developed twenty-four skill models (three expertise models:

novice, intermediate and expert for each of the eight surgemes). They calculated the

probability of a test sequence against each of the three HMMs trained for the three

expertise levels. For a given test sequence, the most likely skill model that produced

the sequence was designated as the skill level of the test sequence. Their results show

that all surgemes are not equally discriminating of the skill. Higher recognition rates

were observed for those surgemes where the experts performed more efficiently than

the novices. In addition, the experts do not use some of the surgemes. Reiley et

al. [48] have summarized the works on surgical skill evaluation. Most of the works in

their review also pertain to the robotic surgery based on the surgemes.

Surgical skills may also be assessed by the surgeon’s capability in handling the
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instruments. For example, Trejos et al. [56] designed a sensor equipped instrument

for Minimally Invasive Surgery (MIS). They measured the instrument’s position tra-

jectory using electromagnetic sensors along with the forces and the torques acting at

the instrument’s tip. They also observed that the position trajectories of experts were

clear and distinct as compared to the non-experts (similar findings as in [35]). Their

instrument was specifically designed for the MIS procedures and they did not report

the classification of expert versus non-expert surgeons. They used wired electromag-

netic sensors, which may interfere with surgeon’s hand motion. These sensors can

also suffer from magnetic distortions in the presence of metals within their working

volume.

King et al. [27] designed a sensor glove for the laparoscopic MIS procedure. The

battery operated sensor glove consisted of seven accelerometers and one fiber-optic

bend sensor. The accelerometers were attached to a battery by wires. However,

this work also involved segmentation of the surgical task into elementary gestures

corresponding to a specific procedure in the laparoscopic surgery. Five gestures were

used to determine the sensor position on the glove. The clustering results showed

reasonable separation between the experts and the novices; however, quantitative

classification results were not reported. Saggio et al. [50] used a wired hand motion

glove to obtain surgical motion, which was then replayed as an avatar on a screen.

The trainees used this system to evaluate themselves by superimposing their motion

on the expert avatars.

Recent works such as [63, 40] have reported skill assessment based on video anal-

ysis. Both these works have focused on the laparoscopic surgery. In [63], the authors

used colored based tracking to track the left and the right hand. The hand trajec-

tories were then segmented using Self Similarity Matrix (SSM) followed by tracking

the tool points and the objects in each segment. They noted that the motion trajec-

tories of experts resulted in fewer segments as compared to the novices. They used

10



average velocity and motion jitter histograms as the two distinguishing features for

the expert and the novice groups. However, their approach is specifically designed for

the laparoscopic surgery. Another work (also on robotic surgery) [40], used eighteen

basic motion elements for a laparoscopic surgery task. These basic motion elements

are specifically defined for the laparoscopic task and may not be applicable to the

general surgical procedures. Recent publications [11, 55] also focus on the robotic

surgery and the surgeme based techniques. However, the techniques developed for

robotic surgical skill assessment may not be applicable for general surgical trainee

assessment. In addition, there is not a standard set of surgemes to accommodate the

surgeons with varying skill levels.
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2.2 Video based surgical analysis

With advances in video data acquisition, the attention has shifted towards video based

analysis in both RMIS and teaching domains. Table 2 summarizes recent works on

surgical video data. Most of these classify different surgemes or surgical phases and

the data from different types of surgeries are used. Haro et al. [23] and Zapella et

al. [62], employed both kinematic and video data for RMIS surgery. They used linear

dynamical systems (LDS) and bag-of-features (BoF) for surgical gesture (surgeme)

classification in RMIS surgery.

Datta et al. [15] used the video snapshots of difficult surgical tasks. The expert

surgeons evaluated these videos using the OSATS method. They also used an electro-

magnetic hand tracking system to detect the number of hand movements. The hand

movement was detected as a change in the velocity. They defined surgical efficiency

score as the ratio of OSATS “end product quality score” and the number of detected

hand movements. This formulation is based on the fact that experts exhibit lower

number of hand motions as compared to the novices. Their results indicate significant

correlations between the overall OSATS rating and the surgical efficiency. However,

they did not correlate the hand movements to individual OSATS criteria. It is im-

portant to provide the feedback on individual OSATS criteria so that the trainee can

improve on those specific criteria.

BoF (Bag-of-Features), also known as Bag-of-Words (BoW), do not capture the

underlying structural information, neither of causal nor of sequential type, which is

inherent by the ordering of the words. In Augmenting-Bag-of-Words (A-BoW) [8],

the motion is modeled as short sequences of events and the underlying temporal and

structural information is automatically discovered and encoded into BoW models.

With A-BoW technique, higher classification accuracy is reported for all seven OSATS

criteria as compared to standard BoW technique.

In this thesis, we propose Motion Texture (MT) analysis and Sequential Motion
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Texture (SMT) analysis that can be effectively used for surgical skill assessment. We

also note that with appropriate feature and parameter selection, higher skill classi-

fication accuracy can be achieved with MT and SMT as compared to contemporary

approaches such as BoW and A-BoW. Our results on a diverse data collected in a

general surgical lab setting indicate the skill assessment potential of our framework

for medical schools and teaching hospitals.

2.3 Conclusions from literature

Below, we summarize the conclusions derived from the literature to guide our research

on surgical skill assessment.

1. Most published works pertain to robotic surgical skill assessment. However, the

medical literature clearly describes the need for an objective skill assessment in

a general surgical training.

2. A considerable portion of the published works attempts to model the motion

primitives (surgemes) for the surgical tasks. Table 3 provides a summary of

the surgical gestures (surgemes) used in the literature. However, there is no

standard method to determine the number and types of surgemes that would

accommodate surgeons of different expertise levels. For instance, [35, 36] use

eight surgemes, whereas [46] and [55] use six and twelve surgemes, respectively,

for the same suturing task. Additional surgemes (9, 10 and 11 marked with ∗ in

Table 3) were added to account for the variability of new users [47]. Moreover,

important motion dynamics might be missed in the surgeme approach especially

at the boundary of the surgemes.

3. Robotic surgical assessment techniques pool all kinematic data without carrying

out motion analysis of individual hand locations. Thus, it may not be possible

to provide the dexterity feedback.
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Table 3: Summary of surgical gestures (surgemes) used in the literature.
Gesture Lin (2005, 2006) [35,

36]
Lin (2009)[34] Tao (2012) [55]

0 - - Idle motion
1 Reach for needle

(gripper open)
Reach for needle
(gripper open)

Reach for needle

2 Position needle (hold-
ing needle)

Head towards sutur-
ing line (holding nee-
dle, right hand)

Position needle

3 Insert needle/push
needle through tissue

Insert or push needle
through tissue

Insert needle/push
needle through tissue

4 Move to middle with
needle (left hand)

Move to middle with
needle (left hand)

Move to middle with
needle (left hand)

5 Move to middle with
needle (right hand)

- Move to middle with
needle (right hand)

6 Pull suture with left
hand

Pull suture away
from suturing line
(left hand)

Pull suture with left
hand

7 Pull suture with right
hand

Pull suture away from
suturing line (right
hand)

Pull suture with right
hand

8 Orient needle with
two hands

- Orienting needle with
two hands

9 - - ∗ Right hand assist-
ing left while pulling
suture

10 - - ∗ Loosen more suture
11 - - ∗ End of trial

4. If the goal of skill assessment is to improve a trainee’s performance over time,

then skill assessment should be performed for the individual OSATS criteria.

This is not addressed in the published literature.

5. Wired electromagnetic sensors may not be appropriate since they might interfere

with the surgeon’s hand motion.

In summary, the automated OSATS assessment has not been addressed in litera-

ture. It is essential to represent the motion dynamics in a view invariant manner to

address the varying viewpoint in video data acquisition, to cater for style variations
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and to provide assessments for diverse OSATS criteria. To address style variations

and accommodate OSATS diversity, it is important to extract skill relevant motion

from the motion dynamics in a holistic manner. In RMIS approaches, high gesture

recognition accuracy is obtained, however, due to variations in skill and style, all

gestures are not used by the surgeons [46]. Thus, it may not be feasible to predict

OSATS with gesture based local approaches. In the next chapter we introduce our

framework for motion texture analysis and present a proof of concept study to test

the feasibility of the proposed framework.
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CHAPTER III

MOTION ANALYSIS FOR SKILL ASSESSMENT

Summary In pursuit of obtaining automatically segmented gestures, we explore the

activity recognition and time series segmentation techniques. Using time series seg-

mentation via spectral clustering and a simple hand motion toy data set, we observed

that skill information might get masked even though semantically correct segments are

obtained. This led us to encode motion dynamics into frame kernel matrices followed

by texture analysis to reveal skill relevant information.

In this chapter, we present our motivation and background for motion texture

analysis. First, we describe the key differences between activity recognition and skill

assessment and introduce our concept of skill specifically for the task of surgical skill

assessment (Section 3.1). From Chapter 2, it is clear that some manual bias may

be introduced in the surgeme-based approaches since a single surgeon usually defines

the surgical gestures and all surgeons do not use all gestures. This motivated us

to test whether automated gesture segmentation of time series data into surgical

gestures would capture skill relevant information. Spectral clustering and related

graph based approaches have gained widespread interest in recent years for time

series segmentation and activity recognition [65, 58]. In Section 3.2, we describe the

spectral clustering method and use it to demonstrate the differences between skill

assessment and activity recognition. In Section 3.3, we present results from our study

on a toy data set to demonstrate that time series segmentation techniques such as

spectral clustering might mask the skill information. In Section 3.4, we demonstrate

that texture analysis of affinity matrices (also known as frame kernel matrices, self-

similarity matrices, and recurrence matrices) can be used to extract skill relevant
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information.

3.1 Activity recognition versus skill assessment

Activity recognition methods utilize core technologies such as segmentation, feature

extraction and tracking to classify activities to support diverse application domains

(e.g. surveillance, entertainment etc.) [4]. The goal of activity recognition is to recog-

nize or classify a video (or segment of a video) into distinct activity types depending

on the application domain. Overall, computer vision based activity recognition la-

bels video (or time series data) for what (activity type) has happened and when it

happened.

The quality of how well an activity is done is of interest in several domains. For

instance, some tasks require training over long periods of time under the guidance of

expert professionals and skills are acquired and evaluated in a progressive manner. For

example, in manufacturing assembly, the person with specific training performs each

task. Such training requires frequent monitoring, evaluation, and intervention. In

most training programs, a supervisor evaluates the trainee manually and evaluations

become time consuming for several individuals and training tasks. An automated

proficiency evaluation system can help alleviate time and resource requirements of

manual skill assessment.

For proficiency evaluation, the activity type is known a priori. At the macro

level, all trainees will be performing one given task (same activity). An activity

recognition system would classify all instances of the given task into one activity

type. Beyond that and of more practical relevance, the goal of skill evaluation is

to score a task on a given scale from low proficiency to high proficiency. At the

micro-level, the instances of a given activity will differ based on the expertise of the

person performing the activity. Human experts can detect subtle differences within

an activity type. However, for an automated assessment, a representation is required
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that encodes low-level motion data into proficiency specific features.

To contextualize our work, we define skill as a measure of one’s effectiveness in

performing a given activity. Skill can be measured in absolute terms (giving a numeric

grade i.e. skill score prediction) or in relative terms (comparing among a group of

participants i.e. classification into different skill levels). Motion quality is embedded

in fine dynamics of motion that may require fine-grained analysis. Segmentation

of time series data into pre-defined motion primitives may not be sufficient for this

purpose since it might miss important dynamics within and at the boundary of the

segments, as we show later in Section 3.3. Automated assessment techniques thus

need to analyze activity data at a substantially more fine grained level in order to

unveil quality changes, which can be caused by only very subtle changes in motion

patterns.

3.2 Spectral clustering

We now describe a popular graph based technique called spectral clustering [58]. Spec-

tral clustering has been used for time series segmentation and activity recognition.

Our motivation to use spectral clustering is two-fold. First, automated segmentation

of time series data might alleviate the human bias in surgeme-based methods. Sec-

ondly, the affinity matrix used in spectral clustering encodes the motion dynamics

and we demonstrate that fine texture patterns in the affinity matrix encode the skill

relevant information, which might not be deciphered otherwise by segmentation tech-

niques such as spectral clustering. We select spectral clustering since it is based on

the affinity matrix, thus utilizing pairwise distance between data points and not being

affected by the high dimension of the time series data. It is especially beneficial when

using high dimensional RMIS data. In addition, for view invariant segmentation,

spectral clustering can be used with affinity (or self-similarity) matrix computed by

applying a feature mapping to time series data as we describe later.
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3.2.1 Graph based clustering

For a given set of data points x1, x2, ..., xn and a given measure of similarity sij

between pairs of data points xi and xj, clustering attempts to divide the data points

into groups such that points in the same group are similar and points in different

groups are dissimilar to each other. This data can be represented as a similarity

graph G = (V,E) with vertex set V and the edge set E. Each vertex vi in this

graph represents a data point xi. Two vertices are connected if the similarity sij

between corresponding data points xi and xj is positive and larger than a predefined

threshold, and the edge is weighted by sij. The problem of clustering now becomes

a graph-partitioning problem. That is, we want to find a partition of the graph such

that the edges between different groups have very low weights and the edges within

a group have high weights.

For an undirected weighted graph with vertex set V = v1, v2, ..., vn, assume that

each edge between two vertices vi and vj carries a non-negative weight wij ≥ 0. If

wij = 0, it implies that the vertices vi and vj are not connected by an edge. Since

G is an undirected graph, wij = wji. The degree of a vertex vi ∈ V is defined as

di =
n∑
j=1

wij. The degree matrix D is defined as the diagonal matrix with the degrees

d1, d2, ..., dn on the diagonal. Similarity graphs model the neighborhood relationships

between the data points. Below, we describe commonly used similarity graphs.

1. ε-neighborhood graph: All points whose pairwise distances are smaller than ε are

connected. As the distances between all connected points are approximately of

the same scale (at most ε), weighting the edges would not incorporate more

information about the data to the graph. These graphs are usually considered

as an unweighted graph.

2. k-nearest neighbor graph: Vertex vi is connected to vertex vj if vi is among the

k nearest neighbors of vj or if vj is among the k-nearest neighbors of vi.
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3. Fully connected graph: All points are connected with each other with positive

similarity. Since the graph should represent the local neighborhood relation-

ships, this construction is only useful if the similarity function itself models

local neighborhoods. For example, the parameter σ in the Gaussian similarity

function, s(xi, xj) = exp(−‖xi−xj‖
2

2σ2 ), defines the neighborhood size and plays

the same role as ε in the ε-neighborhood graph.

In kernel theory [52], self-similarity matrix is computed as Gram matrix after

applying a feature mapping to time series data. For a d-dimensional time series

X ∈ Rd×n of length n, the Gram matrix is defined as

Gij =< xi, xj > . (1)

If a feature mapping φ is applied to the data, then the resulting matrix is termed as

the kernel matrix K. Each entry in matrix K, κij, is given by κij =< φ(xi), φ(xj) >=

φ(xi)
Tφ(xj) and it defines the similarity between the two frames xi and xj using a

kernel function. For a given feature map φ, the normalized kernel corresponds to a

feature map given by

X 7→ φ(X) 7→ φ(X)

‖φ(X)‖
. (2)

A normalized Gaussian kernel function is given by κij = exp(−‖xi−xj‖
2

2σ2 ) where σ is

the standard deviation. The parameter σ controls the flexibility of the kernel. Small

values of σ tend to make the kernel matrix close to an identity matrix. Large values

of σ result in a constant kernel matrix. A frame kernel matrix defines the similarity

between two frames in a time series using a kernel function [52].

It is important to note that the orientation or the camera viewpoint may vary in

different data acquisitions. Thus, a data representation is required that is invariant

to view changes, and that encodes motion dynamics for the whole time-series. Frame

kernel matrices provide a suitable representation to encode skill relevant motion dy-

namics because mapping of data points to the kernel feature space ensures that the
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Algorithm 1 - Spectral clustering [42]

Input: Similarity matrix S ∈ Rn×n and k number of clusters to construct
Step 1: Construct a fully connected similarity graph using Gaussian kernel function as described
in Subsection 4.2.1. Let W be its weighted adjacency matrix.
Step 2: Compute the normalized Laplacian L as L = D−1/2SD−1/2.
Step 3: Compute the first k eigenvectors u1, u2, ...uk of L
Step 4: Let U ∈ Rn×k be the matrix containing the vectors u1, u2, ..., uk as columns.
Step 5: Form a matrix T ∈ Rn×k from U by normalizing the rows to norm 1 that is set

tij = uij/(
∑
k

uik
2)

1/2
.

Step 6: For i = 1, 2, ..., n, let yi ∈ Rk be the vector corresponding to the ith row of T .
Step 7: Cluster the points (yi)i=1,2,...,n with the k-means algorithm into clusters C1, C2, ...Ck.
Output: Clusters A1, A2, ..., Ak with Ai = {j|yj ∈ Ci}.

motion dynamics depend only on the relative locations of the data points with respect

to each other and not on the global origin.

Several segmentation based approaches are based on the frame kernel matrix such

as the spectral clustering, aligned clustering analysis and hierarchical clustering anal-

ysis [65, 26]. These techniques exploit the block-diagonal characteristic of the frame

kernel matrix [17]. A highly block diagonal frame kernel matrix indicates the activi-

ties with sharp transitions. After obtaining the fully connected graph representation,

we apply the spectral clustering method proposed by Ng, Jordan, and Weiss [42]

(Algorithm 1).

3.3 Time series segmentation using spectral clustering

For initial testing of the frame kernel matrix and its effect on spectral clustering, we

collected Motion Capture (MOCAP) data using three optical markers (one on the

left hand and two on the right hand as shown in Figure 3) from a subject performing

five activities.

The activities involved simple hand motions such as sewing, slicing bread, chop-

ping onions, mixing batter, and making dough. The right-handed subject performed

the activities in a predefined order with little or no motion from the left hand ex-

cept for making the dough. The motion trajectories collected from the right hand

optical markers mainly dictate the skill involved in these activities. The x, y, and z
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Figure 3: Optical markers (white spheres) used for collecting motion capture data
fastened to gloves worn by the subject while performing the activities.

coordinates of the right hand MOCAP trajectory are shown in Figure 4. The tex-

tured block diagonal matrix results in five clusters using spectral clustering (Figure 4,

bottom row).

The x, y, and z coordinates of the left hand MOCAP trajectory are shown in

Figure 5. Since only right hand is used most of the time, the left hand trajectory

remains mostly static except for the last activity (making dough), which requires

using both the hands. The frame kernel matrices for the right and the left hand

markers are shown in Figure 6. Note the homogeneous block diagonal pattern for the

left hand marker and the textured pattern for the right hand marker. Although, left

hand does not move much, the subject may re-position the left hand slightly while

switching from one activity to another. This results in a block diagonal matrix and

subsequent analysis with spectral clustering results in the segmentation as shown in

Figure 5 (bottom row).

The segmentation results for the left and the right hand are similar despite the clear
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Y 

Z 

             sewing                 chopping         slicing        mixing        kneading  

Figure 4: Top three rows: x, y, and z coordinates of the right hand optical marker.
Bottom row: Segmentation results using spectral clustering.

differences in the motion dynamics (Figure 6). Thus, automated segmentation might

yield motion primitives (or gestures/surgemes) that are not indicative of the skill.

Manual selection of motion primitives may be time consuming besides being biased

and subjective. For these reasons, we propose our technique based on holistic time

series analysis using motion texture technique.
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        sewing        chopping    slicing     mixing     kneading  

Figure 5: Top three rows: x, y, and z coordinates of the left hand optical marker.
Bottom row: Segmentation results using spectral clustering.
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Figure 6: Sample frame kernel matrices for the left hand marker (top row), right
hand marker without practice (middle row), and right hand marker with practice
(bottom row).
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3.4 Motion texture analysis for skill assessment

The frame kernel matrices obtained by using Gaussian kernel function have a dynamic

range of [0-1]. In addition, as seen in Figure 6, the distinct textural patterns in the

frame kernel matrices seem to vary corresponding to the skill relevant motions. These

observations led us to texture analysis of frame kernel matrices. A N×N frame kernel

matrix is equivalent to a N×N normalized gray scale image with [0-1] dynamic range,

where N is the length of the time series data. In this Section, we describe two texture

analysis methods that can be used to obtain skill relevant information from frame

kernel matrices.

3.4.1 Gray Level Co-occurrence Matrix (GLCM)

If the spatial domain of the frame kernel matrix K is considered as an intensity image

I, then, texture features can be extracted from this image to encode the motion

dynamics. This technique allows analysis of the motion information in the frame

kernel matrix by fine texture analysis. Textural statistics can be derived from the

frame kernel matrix using techniques such as the Gray-Level Co-occurrence Matrix

(GLCM). GLCM based texture analysis has been used widely in different domains [22,

54, 12]. GLCM is obtained by calculating how often a pixel with intensity level i occurs

in a specific spatial relationship to a pixel with intensity level j. Let (x, y) represent

the spatial domain of the kernel matrix K and I be its intensity domain. Then, the

spatial domain of two pixels a and b is given by (x1, y1) and (x2, y2) respectively. Let

the intensity of pixels be I(x1, y1) = i and I(x2, y2) = j. If the pixel pair satisfies the

relation (x2, y2) = (x1, y1) + (d cosα, d sinα), for an offset d and direction α, then, it

is termed as the pixel pair with spatial offset d and direction α.

The co-occurrence probability between two gray levels is given by,
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pd,α(i, j) =
Pd,α(i, j)

Ng−1∑
n=0

Ng−1∑
n=0

Pd,α(i, j)

, (3)

where Pd,α(i, j) is the number of occurrences of gray level i and j that are separated by

an offset d in the direction α, and where Ng is the quantized number of gray levels. A

sample image with four intensity levels is shown in Figure 7 (left). The corresponding

4 × 4 GLCM matrix using an offset of one in the horizontal direction, is shown in

Figure 7 (right). The GLCM matrix represents the spatial distribution of the gray

levels in the image. For instance, if the GLCM diagonal elements are large, then the

image consists of contiguous regions with coarse texture (or less motion dynamics for

a frame kernel matrix image). On the other hand, smaller diagonal entries correspond

to the fine motion dynamics.

The frame kernel matrix encodes the fine motion dynamics as textured patterns.

If the frame kernel matrix is treated as an intensity image, then the motion dynamics

are exhibited as textured patterns in the image domain. This enables quantification

of the motion dynamics using texture analysis.

Texture features are computed from the GLCM matrix to encode different textu-

ral characteristics (Table 4). For example, correlation measures the gray level linear

1	   6	   4	   1	  

3	   11	   7	  

4	  

5	   4	  

7	  

11	   11	   7	  

6	   2	  

0	  

0	  

1	  

2	  

3	  

1	   2	   3	  

Figure 7: Left: A sample 10×10 image with four intensity levels. Right: GLCM with
an offset of one in the horizontal direction with the highlighted ellipses illustrating
the horizontal spatial relationship in the image.
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dependency between two pixels at a specified position relative to each other. Con-

trast measures the local intensity variations while cluster shade and cluster promi-

nence measures the uniformity and proximity. Energy or angular second moment

measures the homogeneity in the image while dissimilarity is a measure of the to-

tal variation present in the image. Sum of squares variance assigns high weights

to the elements that differ from the mean value of the normalized GLCM matrix.

We use eight gray levels and compute the 8 × 8 GLCMs for eight directions (α =

0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦) with an offset of d = 1. We take the mean

GLCM over eight directions and normalize the mean GLCM matrix. The mean and

standard deviations for the rows and the columns of the normalized mean GLCM

matrix are given by,

µx =
∑
i

∑
j

ip(i, j), µy =
∑
i

∑
j

jp(i, j); (4)

and

σx =
∑
i

∑
j

(i− µx2)p(i, j), σy =
∑
i

∑
j

(j − µy2)p(i, j). (5)

For features f11 to f16 (Table 4), we use the following notations. If px(i) and py(i)

represent the ith entry in the marginal probability matrix obtained by summing the

rows and columns of p(i, j) respectively; that is,

px(i) =

Ng−1∑
j=0

p(i, j); py(i) =

Ng−1∑
i=0

p(i, j), (6)

then,

px+y(k) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j); i+ j = k, (7)

for k = 0, 1, ..., 2(Ng − 1), and

px−y(k) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j); |i− j| = k, (8)
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Table 4: Texture features derived from the gray level co-occurrence matrix (GLCM).
No. Name Formulation

f1 Autocorrelation [54]
∑
i

∑
j

(i, j)p(i, j)

f2 Contrast [22, 54]
Ng−1∑
n=0

n2{
Ng∑
i=1

Ng∑
j=1

p(i, j)|i− j| = n}

f3 Correlation [22, 54]

∑
i

∑
j
(i,j)p(i,j)−µxµy

σxσy

f4 Cluster prominence [54]
∑
i

∑
j

(i+ j − µx − µy)4p(i, j)

f5 Cluster shade [54]
∑
i

∑
j

(i+ j − µx − µy)3p(i, j)

f6 Dissimilarity [54]
∑
i

∑
j
|i− j| � p(i, j)

f7 Energy [22, 54]
∑
i

∑
j
p(i, j)2

f8 Entropy [54] −
∑
i

∑
j
p(i, j) log(p(i, j))

f9 Homogeneity [54]
∑
i

∑
j

1
1+i−j2 p(i, j)

f10 Maximum probability [54] max
i,j

p(i, j)

f11 Sum of squares variance [22]
∑
i

∑
j

(i− µ)2p(i, j)

f12 Sum average [22]
2Ng∑
i=2

ipx+y(i)

f13 Sum variance [22]
2Ng∑
i=2

(i− f14)2px+y(i)

f14 Sum entropy [22] −
2Ng∑
i=2

px+y(i) log{px+y(i)}

f15 Difference variance [16] −
Ng−1∑
i=0

i2px−y(i)

f16 Difference entropy [22] −
Ng−1∑
i=0

px−y(i) log{px−y(i)}

f17 Information measure of correlation
1 [22]

HXY−HXY 1
max{HX,HY }

f18 Information measure of correlation
2 [22]

(1− expd−2.0(HXY 2−HXY )e)2

f19 Inverse difference normalized [13]
∑
i

∑
j

p(i,j)

1+|i−j|2/Ng
2

f20 Inverse difference moment normal-
ized [13]

∑
i

∑
j

p(i,j)

1+(i−j)2/Ng
2

for k = 0, 1, ..., (Ng − 1). Features f17 and f18 were proposed in [22]. For f17, HX

and HY are the entropies of px and py respectively and HXY is given by,

HXY = −
∑
i

∑
j

p(i, j)log(p(i, j)) (9)
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The terms HXY 1 and HXY 2 in Table 4, are given by,

HXY 1 = −
∑
i

∑
j

p(i, j)log{px(i)py(j)} (10)

and

HXY 2 = −
∑
i

∑
j

px(i)py(j)log{px(i)py(j)} (11)

respectively.

3.4.2 Local Binary Pattern (LBP)

Besides GLCM, we can also use the local binary patterns [20]. LBPs are extracted by

comparing each image pixel with its neighborhood and the neighborhood is defined

in a circularly symmetric manner. It can be expressed by,

LBP (N,R) =
∑N−1∑

i=0

u(gi − gc)2i, (12)

where N is the number of neighboring samples and R is the radius of neighborhood,

gi is the intensity of neighboring pixel i (i = 0, 1, ..., N − 1), gc is the intensity of

center pixel and u(x) is a step function with u(x)=1 if x=0 and u(x)=0 otherwise.

Image representation by LBP based methods could increase the robustness against

illumination variation, however, the capability of encoding image configuration and

pixel wise relationships might be weakened since LBPs quantize gray-level differences

into two binary levels. To overcome this limitation, Guo et al. [20] proposed the Local

Configuration Pattern (LCP), which models the local microscopic configuration with

respect to each pattern. In this method, optimal weights are estimated for neighboring

pixels to linearly reconstruct the intensity of central pixel. This can be expressed as,

E(a0, a1, ...aN−1) = |gc −
N−1∑
i=0

aigi| (13)

Here gc and gi denote intensity values of the center pixel and neighboring pixels

of a particular pattern type respectively. The coefficients ai (i = 0, ..., N − 1) are the

weighing parameters associated with gi and E(a0, a1, ...aN−1) is the reconstruction
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error regarding model parameters ai (i = 0, ..., N − 1). Optimal parameters are

determined by least squares estimation to minimize the reconstruction error.

Suppose the occurrence of a particular pattern type L is nL for an image I, i.e.

there are nL pixels in I with the pattern type L. The intensities of these NL pixels

can be denoted as cL,i (i = 0, 1, ...nL − 1). Organizing these intensities into a vector,

we get,

CL =



cL,0

cL,1

.

.

.

cL,nL−1


(14)

The intensities of the neighboring pixels vi,0, vi,1, ..., vi,N−1 (i = 0, 1, ..., nL−1) can

be organized as

VL



v0,0 v0,1 . . . v0,N−1

v1,0 v1,1 . . . v1,N−1

.

.

.

vNL−1,0 vnL−1,1 . . . vnL−1,N−1


(15)

In order to minimize the reconstruction error, the unknown parameters ai (i =

0, 1, ..., N − 1) are constructed as a column vector:
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AL =



a0

a1

.

.

.

aP − 1


(16)

When the system is over determined, optimal parameter vector AL is determined

by:

(VL
TVL)

−1
VL

TCL (17)

To produce rotation invariant features, 1D Fourier transform is applied to the esti-

mated parameter vector AL and the transformed vector is given by:

HL(k) =
P−1∑
i=0

AL(i)e−j2πki/P (18)

where HL(k) is the kth element of HL and AL(i) is the ith element of AL. The

magnitude part of vector HL is taken as the microscopic configuration feature given

by:

|HL| = [|HL(0)|; |HL(1)|; ...; |HL(P − 1)|] (19)

The norm |HL| encodes the image configuration and pixel wise interaction relationship

of each specific pattern and it is combined together with pattern occurrences of local

binary patterns to obtain a complementary feature for both the discrimination of

microscopic configuration and local structures.

The final LBP-LC feature is thus given by

LCP = [[|H0|;O0]; [|H1|;O1]; ...; [|Hq−1|;Oq−1]] (20)

where |Hi| is calculated by Equation 19 with respect to the ith pattern of interest, Oi

is the occurrence of the ith local pattern (i.e., the LBP) of interest and q is the total
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number of patterns of interest. Multi-scale analysis can be achieved by combining

LCPs with different radii and neighboring samples.

3.5 Skill assessment

To test the efficacy of motion texture analysis in capturing the fine motion details,

MOCAP data was collected from two subjects performing six trials of simple hand

motions as described in Section 3.3. The sequential motion types were sewing, chop-

ping onions, slicing bread, mixing batter and making dough. Three optical markers

(one on the left hand and two on the right hand) were used for this purpose. This

resulted in thirty-six trajectories of the MOCAP data. Frame kernel matrix was

computed for each MOCAP trajectory and twenty textural features (Table 4) were

obtained. A separate cluster was observed for the left hand markers by applying

simple k-means clustering on two textural features. Clustering results are shown in

Figure 8. It is clear that the textural features for the left and the right hand markers

are different thus validating the hypothesis that texture analysis based on the frame

kernel matrix is a feasible approach for isolating the skill relevant information.

3.6 Summary

It is clear from the results presented in this Chapter that frame kernel matrix provides

a suitable representation to encode the motion dynamics and is especially effective

for encoding skill relevant information due to following reasons:

1. Mapping of data points to the kernel feature space ensures that the motion

dynamics depend only on the relative locations of the data points with respect

to each other and are not dependent on the global origin.

2. It is known that the expert motions are more organized, distinct and uncluttered

as compared to the non experts [35, 5]. Thus, expert motions are expected to

yield well-organized patterns in the frame kernel matrix.
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Figure 8: k-means clustering using two frame kernel texture features. Colors (red,
green, and blue) represent the k-means cluster membership. Circles represent the left
hand marker; squares and diamonds represent the two right hand markers respectively.

Frame kernel matrix based segmentation methods such as the spectral clustering,

aligned clustering analysis and hierarchical clustering analysis [65, 26] exploit the

block-diagonal characteristic of the frame kernel matrix [17]. A highly block diagonal

frame kernel matrix indicates the activities with sharp activity transitions. This

may not work well for general activities with smooth transitions since the motion

element boundaries may be fuzzy and hard to detect. User style variations might

also contribute to the block diagonal frame kernel matrix masking the actual skill

encoded in the fine motion dynamics. As shown in this Chapter, texture analysis of

frame kernel matrix has the potential of encoding skill relevant information.
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We have used the MOCAP data to demonstrate the motion texture analysis for

two reasons. First, we wanted clean data captured in controlled settings (5 activities

performed in sequence for almost equal duration) with only three markers so that we

can clearly understand the dynamics from the left and right hand motions. Secondly,

MOCAP acquisition directly provides the X, Y, and Z trajectory of the markers and

no object detection or tracking is required. This speeds up and simplifies the analysis

and helps understand the key concepts.

Besides MOCAP, the motion dynamics may also be learned indirectly using the

video features by tracking moving objects in the scene. The video data may not

be very clean (as MOCAP) due to possible noisy motions, occlusions and detection

errors. MOCAP, on the other hand requires an expensive setup with multiple cameras

and software to reconstruct the 3D motion trajectory, and optical markers. Thus,

there is trade-off in using MOCAP data versus video data in terms of motion accuracy

(2D versus 3D), ease of acquisition and portability. With video data, it is important

to note that the orientation or the camera viewpoint may vary in different data

acquisitions. However, with kernel mapping, the motion dynamics depend only on the

relative locations of the data points with respect to each other and are not dependent

on the global origin. In next chapter, we describe the video data sets used for surgical

skill assessment.
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CHAPTER IV

VIDEO DATA FOR SURGICAL SKILL ASSESSMENT

Summary To perform surgical motion analysis, we used two video data sets ac-

quired in different settings and scored by different experts. The characteristics of the

two data sets dictate the analytic approaches used for skill assessment and dexterity

analysis in the forthcoming chapters.

Motion trajectories can be obtained from different hand locations using the MO-

CAP technique. However, MOCAP data acquisition requires multiple cameras to de-

tect an optical marker from different viewpoints. Data from these cameras is then used

to reconstruct the three-dimensional motion trajectory of each optical marker. Alter-

natively, video data from a single camera can be collected faster and in a ubiquitous

manner. Current evaluation paradigms in medical schools require faculty surgeons to

evaluate the trainee surgeons either in-person or by watching their videos retrospec-

tively. This poses a substantial time and resource problem for medical schools and

teaching hospitals. We perceive that our system will help alleviate time and resource

requirements by providing automated skill evaluation using video data.

In this chapter, we describe two video data sets used in our work. We use these

two data sets for the following reasons. First, we anticipate that video data may

be collected in different settings. By using two data sets collected in different set-

tings i.e. different camera, frame rate, background, tasks etc., we test our technique

of extracting skill relevant information via motion texture analysis. This provides

validation to our framework. Secondly, we want to test different modalities such as

depth and acceleration data that might provide better discrimination between experts

and non-experts. Finally, for dexterity analysis, we also compute motion features for
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both right and left hands individually.

The first data set consists of video data collected using a standard high-resolution

video camera and three-dimensional acceleration data collected using wireless Axivity

sensors from sixteen participants with varying degree of expertise. We will call this

data set “Newcastle data” in this and subsequent chapters. We use videos from

Newcastle data for surgical skill classification and prediction based on OSATS crite-

ria. The second data set is collected using the Creative* interactive gesture camera

developer kit [2]. The Creative* interactive gesture camera is a small, lightweight,

USB-powered camera optimized for close-range interactivity. It is designed for ease

of setup and portability and includes a High Definition (HD) webcam, depth sensor

and built-in dual-array microphones for capturing and recognizing voice, gestures and

images. We will refer to the depth and video data collected from Creative* camera

as “GT-Emory Data-set”. We use this data set to analyze the individual hand

motions and to perform dexterity analysis of surgical movements.

Due to moral and ethical issues involved in the use of live animals, it is becoming

difficult to justify the use of animals if alternative methods and materials are avail-

able [37]. Thus, bench models are frequently used for teaching and testing technical

skills since they are lower in cost, have high portability, reuse the materials, and read-

ily available. For both Newcastle and GT-Emory data sets, we used bench models

enabling ubiquitous data collection.

4.1 Newcastle data

We recruited 16 participants (medical students) for our case study. Previous suturing

expertise and background of the participants varied. Every participant performed

suturing activities involving tasks such as stitching, knot tying, etc. thereby using

a needle-holder, forceps and the tissue suture pads. These training sessions were

recorded using a standard video camera (50fps, 1280x720 pixels), which was mounted

38



Table 5: Number of samples for different expertise levels
RT TM IH SH FO KP OP

Novice 2 9 8 10 3 8 6
Intermediate 14 15 16 15 16 9 17
Expert 15 7 7 6 12 14 8

on a tripod. Fifteen participants performed two sessions of a suturing task. Each

session was recorded in a separate video. An expert surgeon also performed three

sessions giving a total of thirty-three videos. The average duration of the videos is 18

minutes. The expert surgeon based on the OSATS scoring scheme provided ground

truth assessment. We group the participants into three categories according to their

expertise: low (OSATS score ≤ 2), intermediate (2 < OSATS score ≤ 3.5) and high

(3.5 < OSATS score ≤ 5) expertise levels to train our models with sufficient samples

per class. Table 5 shows the number of videos used in our study corresponding to

three expertise levels for each OSATS criteria.

Figure 9 shows the sample frames from Newcastle data. As compared to con-

temporary works [62, 23], this data set is acquired in natural settings with varying

camera viewpoint, clothing and background objects. The participants performed sur-

gical tasks in a lab setting with people moving in the background. Figure 10 shows

sample close-up images of running suturing task performed by a novice, intermediate,

and an expert surgeon.

The acceleration data is collected using a tiny wireless 3-axis accelerometer [1].

Three-dimensional acceleration data is collected at 50Hz (or every 20 milliseconds).

Three accelerometers are used – one on the dominant hand wrist, second on the

needle-holder, and a third on the forceps. Figure 11 shows the X, Y, and Z dimensions

of acceleration data collected from a novice, intermediate, and an expert surgeon.
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Figure 9: Sample frames from Newcastle data set.

Figure 10: Samples of a running suturing task performed by a novice (left), inter-
mediate (center), and an expert (right) surgeon.
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Figure 11: Sample X, Y, and Z dimensions of acceleration for running suturing task
performed by a novice(top), intermediate (middle), and an expert (bottom) surgeon.
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4.1.1 Key characteristics and challenges in Newcastle data set

It is clear from Figure 9 that Newcastle data was acquired from different camera

viewpoints. Also, from Figure 10, it is interesting to note that a novice surgeon

performed fewer stitches (Figure 10 (left)) as compared to the intermediate, and

expert surgeons. The amount of task performed (and thus the expertise levels) in

Newcastle data is highly variable. Also, note that the intermediate and expert stitches

are comparable visually, however, the motion characteristics during task performance

define the skill level.

Figure 11 demonstrates some important characteristics of Newcastle data set.

Note that the acceleration data for a novice surgeon (Figure 11, top) shows movement

in almost all the frames. In addition, novice surgeons generally take more time (more

frames) to accomplish the task. In next Chapter, we will show how frame kernel

matrices computed from video data can represent these characteristics.

4.2 GT-Emory Data-set

We recruited eighteen participants to collect data for dexterity analysis using Cre-

ative Intel Perceptual camera [2]. We used the camera, with the Intel Perceptual

Computing SDK Beta 2013. We used the Perceptual Computing SDK and the

Creative camera since it allows collection of both depth and video data simulta-

neously. We will use the depth dynamics at hand locations for dexterity analysis

(Chapter 7). The camera is mounted on a tripod and the participant performs

the surgical task wearing colored finger-less gloves. We use the colored gloves to

track the left and right hand locations using OpenCV blob detection library (avail-

able at http://code.google.com/p/cvblob/). Since some subjects in our study were

left-handed, we used the green glove for the dominant hand and red glove for the

non-dominant hand. In addition, we refer to the dominant hand as right hand and

non-dominant hand as the left hand. Both RGB and depth data were acquired at 30
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frames per second. The maximum spatial resolution obtainable from Creative camera

is 640× 480 pixels for RGB frames and 320× 240 pixels for the depth frames. Also,

the depth and RGB cameras are located at a spatial offset. To obtain the depth

values at corresponding RGB frame hand locations, we align the depth and RGB

frames. We used the Intel Perceptual Computing Software Development Kit (SDK)

for RGB and depth alignment. We map depth coordinates to color coordinates using

the PXCProjection interface and the function “MapDepthToColorCoordinates”. The

resulting depth frames (640 × 480) are written into a video file using open source

computer vision library (OpenCV).

We collected two instances for two tasks (suturing and knot tying) from each par-

ticipant. For suturing, we collected 4000 frames and for knot tying, we acquired 1000

frames per task instance. Figure 12 shows sample frames from RGB data collected

from the Creative camera. Note the varying acquisition conditions such as illumi-

nation, background, standing and sitting positions of the participants. Figure 13

shows the aligned depth frames corresponding to the RGB frames in Figure 12, and

Figure 14 shows the depth masks overlaid on the RGB frames.

We also collected the acceleration data using Axivity sensors. We acquired three-

dimensional acceleration data at 50Hz (or every 20 milliseconds) using two accelerom-

eters. For suturing task, one accelerometer was attached to the dominant hand

wrist and the second one to the needle-holder. For knot tying, one accelerometer

was attached to each of the left and right hand wrists. Figure 15 shows the X, Y,

and Z dimensions of acceleration data and the corresponding video file displayed in

ELAN software [53, 3]. We used ELAN to align the acceleration data with the video

frames. At the start of each instance, each participant was asked to rapidly shake

the hands/instruments with the accelerometers to get the synchronization waveform

that is used to align the acceleration data with the video using the ELAN software.
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Figure 12: Sample RGB frames from GT-Emory data. Note the changing camera
viewpoint, illumination, suturing pads.

4.2.1 Key characteristics and challenges in GT-Emory data set

We acquired GT-Emory data set for two reasons. First, to test our techniques on data

acquired in different settings and scored by different expert surgeons. Secondly, we
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Figure 13: Aligned depth frames corresponding to RGB frames.

also need to isolate individual hand motions for dexterity analysis. In this data-set,

we use the colored gloves to isolate left and right hand motions, which will be used

for dexterity analysis (Chapter 7). With motion texture analysis (Chapter 3), we

observed that skill information depends on fine textural details in the frame kernel
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Figure 14: Depth masks overlaid on RGB frames.

matrices. Different types of motion data (STIPs, geometric (blob) features, acceler-

ation etc. might capture different level of motion granularity. To test our technique

with different types of motion data, we use aligned depth images and extract the depth

information from the left and the right hand. We compare depth features along with
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Figure 15: Screen shot of a knot tying video from GT-Emory data along with X,
Y, and Z acceleration data displayed in ELAN software used for synchronization of
video and acceleration data.

STIPs, blob and acceleration data to test the relative significance of different motion

features in skill assessment. Besides comparing different types of motion features, we

also use this data set for dexterity analysis.
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CHAPTER V

SKILL CLASSIFICATION USING MOTION TEXTURE

ANALYSIS

Summary Motion texture (MT) analysis is used for relative skill assessment (clas-

sification). Sequential motion information is incorporated resulting in sequential mo-

tion texture (SMT) analysis. Comparison with state-of-the-art methods shows better

performance of MT and SMT for different OSATS criteria.

In this chapter, we extend our motion texture analysis technique for video based

skill assessment. We envision an automated skill assessment application as follows.

As part of their medical training, students will practice standard surgical procedure

such as suturing. They use standard surgical instruments and practice the procedure

on simulation equipment. A camera installation records these training sessions and

our automated procedure assesses the quality of the suturing activities according to

the OSATS criteria.

We perceive skill evaluation in two ways. For some applications or procedures, it

might be sufficient to just classify the trainees into different skill groups. We define

this process as relative skill assessment as participants are categorized into different

skill groups relative to each other. However, in some applications, calibrated skill

scoring may be required. We define the process of calibrated skill scoring as absolute

skill assessment. In this chapter, we demonstrate the effectiveness of our motion

texture analysis approach for relative skill assessment. In Chapter 6, we will present

our analysis for absolute skill assessment using motion texture analysis.

In Section 5.1, we describe our methodology to encode motion data from videos
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into frame kernel matrices. We observe that video motion dynamics appear as tex-

tured patterns in the frame kernel matrices as we demonstrated earlier for MOCAP

data in Chapter 3. In Section 5.2, we include temporal information in our analysis

to represent the sequential nature of surgical tasks resulting in Sequential Motion

Texture (SMT) analysis. In order to obtain motion texture features, we compute

GLCM texture features (Section 5.3) followed by feature selection to extract skill

relevant features (Section 5.4). We use the selected features for skill classification

using both simple motion texture features (no temporal information) and sequential

motion texture features (with temporal information) as shown in our experimental

evaluation (Section 5.5). We also analyze the effect of different parameters on the

performance of our system and compare our methodology to two techniques used in

activity recognition: Bag-of-Words (BoW) and Augmented Bag-of-Words (A-BoW).

Figure 16 gives an overview of the proposed procedure. The input to the system

is a video recording of someone performing suturing procedure and the output is an

automated skill assessment according to the seven OSATS criteria. In the following,

we will discuss the technical details of the developed framework.

5.1 Frame kernel matrices from videos

In Chapter 4, we observed that the textural characteristics of frame kernel matrices

can be used to extract skill relevant information. We used MOCAP data where the X,

Y, and Z motion trajectories were used and the three dimensional data were encoded

into N×N frame kernel matrices, where N is the number of frames. To obtain similar

motion characteristics from video data, we need to extract the motion features from

the videos. For MOCAP, we used the optical markers to acquire motion trajectories

from specific hand locations. To achieve similar effect for videos, we need to cluster

the motion features into distinct groups belonging to specific moving objects in the

videos. We used three dimensional X, Y, and Z trajectory data in MOCAP. For
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Figure 16: Motion texture analysis framework for OSATS skill classification.

videos, we need to condense the motion feature data to N × k dimensions, where N

is the number of frames in the video and k is an integer.

5.1.1 Motion features

Different types of motion features have been proposed in literature and are used for

various purposes such as for activity recognition [59]. For example, the spatiotemporal

version of the Harris corner detector [24] proposed by Laptev [31], known as the

Spatio-temporal Interest Point (STIP) detector, has been shown to work well in action

classification [51].

Laptev [31] proposed an extension of the Harris corner detector with the modified

Harris corner function as

H = det(µ)− ktrace3(µ), (21)

where

µ = g(.;σ2, τ 2) ∗


Lx

2 Lx LxLt

LxLy Ly
2 LyLt

LxLt LyLt Lt
2

 (22)
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and g(.;σ2, τ 2) is a 3D Gaussian smoothing kernel with a spatial scale σ and a tem-

poral scale τ . Lx,y ,z are the gradient functions along the x, y, and z directions.

We use Laptev’s STIP implementation1, with default parameters and sparse feature

detection mode and compute the STIPs with different values of σ2 and τ 2 from the

sets {4, 8, 16, 32, 64, 128} and {2, 4} respectively, with k set to be 0.005.

Histogram of Oriented Gradients (HOG) and Histogram of Optical Flow (HOF)

are computed on a three-dimensional video patch in the neighborhood of each detected

STIP. The patch is partitioned into a grid with 3× 3 spatio-temporal blocks. Then,

4-bin HOG descriptors and 5-bin HOF descriptors are obtained for all the blocks.

The 72-element HOG and the 90-element HOF descriptors are concatenated to get a

162-element HOG-HOF descriptor as described in [59]. We down-sampled the videos

by half in both spatial and temporal dimensions to reduce the STIP computation

time. Figure 17(left column) shows sample frames with detected STIPs.

5.1.2 Learning motion classes

For each video, we need to summarize the motion features into a N×k matrix, where

N is the number of frames and k is an integer depending on the number of moving

entities in the video. To obtain motion features for distinct moving entities in the

videos, we classify the STIPs into motion classes as follows. First, we collect all the

detected STIPs and their corresponding HOG-HOF descriptors from two videos of an

expert surgeon. The expert motions are more distinct and uncluttered as compared to

non-experts. Thus, clusters obtained from expert videos can be used to obtain motion

components for different moving entities in the videos. We cluster these expert STIPs

into k distinct clusters by applying k -means clustering to their HoG-HoF descriptors.

Each cluster of points thus obtained, represents a distribution for a particular

motion class in the data. We assign the STIPs from remaining videos to each of the

1http://www.di.ens.fr/%7Elaptev/download.html#stip
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Figure 17: Left column: Detected STIPS in different frames represent the moving
objects in the scene, Right column: STIPs classified into distinct motion classes.
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Figure 18: Motion class frequencies for a novice (left), an intermediate (center)
and an expert (right) surgeon. The five classes are plotted at an offset of 50 (on y
axis) for clarity. Note that the novice motions are more frequent and exist in almost
all frames for all motion classes as compared to fewer motions for intermediate and
expert surgeons. The plots correspond to a single suturing and knot tying task and
demonstrate that experts use fewer motions than novices as reported in [15].

learnt motion distribution based on minimum Mahalanobis distance of a given STIP

point from the cluster distribution. Figure 17(right column) shows sample frames

with the detected STIPs classified into three distinct motion classes.

5.1.3 Computing frame kernel matrices

To obtain the frame kernel matrices, we further process each video to compute class

frequency counts for each of the k classes at each frame. We represent these counts

in a k×N matrix X, where N is the number of frames in the video. Each element in

X, x(p, q), represents the number of STIP points in qth frame and belonging to the

pth cluster. Figure 18 shows sample class frequency counts for three subjects with

different skill levels for k = 5 motion classes. The time frequency matrix X is used

to obtain the N × N frame kernel matrix K given by K = φ(X)Tφ(X). Each entry

in K, κij = exp(−‖xi−xj‖
2

2σ2 ), defines similarity between two frames xi and xj using a

kernel function φ(xi)
Tφ(xj). The parameter σ (the standard deviation) controls the

flexibility of the kernel. Small values of σ tend to make the kernel matrix close to

an identity matrix. Large values result in a constant kernel matrix. In general, σ is

selected empirically to avoid these extremes. We select σ empirically and set it to be

the average distance from twenty percent of the closest neighbors as described in [65]

53



Figure 19: Frame kernel matrix corresponding to motion class frequency in Figure 18
for a novice (left), an intermediate (center) and an expert (right) surgeon.

to obtain textured frame kernel matrices. Figure 19 shows the frame kernel matrices

corresponding to the motion class time series in Figure 18.

In summary, the STIPs represent the moving entities in the videos. After learning

k motion classes from expert STIPs, the motion dynamics in a given video are repre-

sented by the k×N time frequency matrix X, where N is the number of frames in the

given video. The N×N frame kernel matrix thus encodes the motion dynamics of the

person who performed the surgical task in the video. The pixel intensity transitions

in the frame kernel matrix (Figure 19) correspond to motion dynamics (Figure 18),

and vary according to the skill level of the surgeon.

5.2 Sequential motion texture (SMT) analysis

The texture features derived from the frame kernel matrix capture the overall mo-

tion quality without temporal information. However, surgery is a procedural task

performed in a sequential manner with one step followed by another. We introduce

this information by dividing the k-dimensional time frequency matrix X into equally

sized temporal windows such that each window contains equal proportion of the STIPs

corresponding to largest motion class in a given video. For example, if the largest

motion class has 1000 STIPs in the whole video, then the time series can be divided

into W = 10 equally sized windows with approximately 100 points in each bin. Us-

ing equal sized bins, we intend to group the motion energy into equivalent segments
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that could replicate the repetitive and procedural behavior of surgical motion. We

summarize the sequential motion texture technique in Algorithm 2.

For each time window, we calculate the frame kernel matrix and concatenate the

20 GLCM texture features to obtain a 20 ×W feature vector for each video, where

W is the number of windows. We evaluate our framework with and without time

windowing to study the effect of including sequential information. We refer to the

time windowing setup as the Sequential Motion Texture (SMT) analysis and the one

without time windowing as simply the Motion Texture (MT) analysis. Figure 20

shows the motion classes grouped into time windows for SMT and Figure 21 shows

the frame kernel matrices for each of the ten time windows.

5.3 Feature extraction

We now have a matrix based representation of our videos i.e. STIP based time series

representation in terms of motion class frequency at each frame encoded into a frame

kernel matrix. This frame kernel matrix is now analyzed in order to infer about the

underlying skill of the surgeon who performed the recorded procedure. For relative

Algorithm 2 - Sequential motion texture features
Require: Surgical videos in set V

Step 1: ∀v ∈ V , compute STIPs (spatio-temporal interest points) and 162-element HoG-HoF
(histogram of oriented gradients-histogram of optical flow) descriptors [59].
Step 2: Cluster STIPs from two experts by applying k-means (k=5) to HoG-HoF features. We
select k=5 since we expect approximately five moving entities in the videos: surgeon’s two hands
and the three instruments (forceps, needle-holder, and scissors).
Step 3: Assign STIPs for remaining videos to the k clusters learnt in step 2 using minimum
Mahalanobis distance.
Step 4: Compute motion class counts, X, for each of the k clusters. Each entry in the N × k
motion class count matrix X, x(n, q) represents the number of STIPs belonging to the nth frame
and the qth cluster, where N is the number of frames in the video.
Step 5: Compute time windows (bins) as follows:

Find the motion cluster corresponding to maximum class membership i.e.
kmax = arg maxk X
Compute W time windows such that motion class counts for the kmax cluster are equally

distributed into W windows i.e.
Step 6: Compute W frame kernel matrices, Kw, where w = 1, 2, ...,W
Step 7: Compute 20 GLCM features for each of the W frame kernel matrices and concatenate
them to obtain a 20×W -element Sequential Motion Texture (SMT) feature vector.
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Figure 20: Motion class frequencies for SMT with W=10 time windows. The five
classes are plotted at an offset of 50 (on y axis) for clarity. Note that the time windows
are of varying duration depending on the motion counts.

skill assessment, we translate this into a classification task (seven classifiers, one for

each OSATS criteria and the three classes – novice, intermediate and experts).

As usual for classification tasks, we first extract feature vectors from the video

(encoded as frame kernel matrix). We extract the texture patterns in the frame kernel

matrix using Gray Level Co-occurrence Matrix (GLCM). As explained in Chapter 3

earlier, GLCM encodes the spatial relation of different intensity levels in an image and

the texture statistics from GLCM have been used as features for image classification

tasks [22, 54, 13, 16]. However, we use GLCMs here to derive feature vectors from

frame kernel matrices, which in turn, encode motion dynamics in our surgical videos.

56



Figure 21: Kernel matrices for W = 10 time windows corresponding to motion classes
in Figure 20
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We employ Ng × Ng dimensional Gray Level Co-occurrence Matrices (GLCM),

calculated for Ng gray levels and eight directions (0◦ − 360◦ in steps of 45◦) at a

spatial offset of 1 pixel. Averaging (and normalizing) over the GLCM provides the

final representation, which is used to compute twenty standard texture features as

proposed in literature. These features are [22, 54, 13, 16]:

1. Autocorrelation (f1)

2. Contrast (f2)

3. Correlation (f3)

4. Cluster prominence (f4)

5. Cluster shade (f5)

6. Dissimilarity (f6)

7. Energy (f7)

8. Entropy (f8)

9. Homogeneity (f9)

10. Maximum probability (f10)

11. Sum of squares variance (f11)

12. Sum average (f12)

13. Sum variance (f13)

14. Sum entropy (f14)

15. Difference variance (f15)

16. Difference entropy (f16)
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17. Information measure of correlation 1 (f17)

18. Information measure of correlation 2 (f18)

19. Inverse difference normalized (f19)

20. Inverse difference moment normalized (f20)

GLCM features encode various texture properties. For instance, correlation mea-

sures the grey level linear dependency between the pixels at a specified position rel-

ative to each other. Contrast measures the local intensity variations while cluster

shade and cluster prominence measures the uniformity and proximity in a perceptual

manner. Energy or angular second moment is a measure of homogeneity in the image

while dissimilarity measures the total variation present in the image. Homogeneity

(or inverse difference moment) measures the image homogeneity and takes larger val-

ues for smaller gray tone differences in pixel pairs. These features have been used for

classification of images based on texture. However, we use them here to encode video

motion dynamics, which in turn, are represented as textured patterns in frame kernel

matrices.

5.4 Feature selection

Some of the GLCM texture statistics are highly correlated with one another and may

be redundant [14]. Also, some features might be noisy and irrelevant for the skill

classification task. In addition, the MT texture analysis yields a 20-element feature

vector while SMT has (20 × W )-element feature vector. To derive skill relevant

features and to compensate for the effect of more features (over-fitting) in SMT as

compared to MT, we perform feature selection.

Feature selection is the process of selecting a subset of relevant features. Feature

data may contain redundant or irrelevant features. Redundant features are those that
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provide no more information than the currently selected features. Irrelevant features

provide no useful information in any context.

A feature selection algorithm can be viewed as the combination of a search tech-

nique for new feature subsets and evaluation criteria, which scores the different feature

subsets. The simplest algorithm is to test each possible subset of features finding the

one, which minimizes the error rate. There are two standard approaches for feature

selection – filter methods and wrapper methods. Wrapper methods utilize the learn-

ing machine of interest as a black box to score subsets of variable according to their

predictive power. Filters based methods select subsets of variables as a pre-processing

step and are independent of the chosen predictor.

For small feature sets such as our twenty GLCM features, wrapper methods can

be used for feature selection. Since our feature size is small, we use the simplest

greedy search algorithm Sequential Forward Feature Selection (SFFS) [45] to select

a subset of relevant features for each OSATS criteria. SFFS starts from the empty

set and sequentially adds the feature that results in the highest objective function

when combined with the features that have already been selected. We use a Nearest-

Neighbor (NN) classifier with cosine distance metric as a wrapper function for SFFS

and select the feature subset with minimum classification error in leave-one-out cross-

validation (LOOCV). The maximum size of selected feature subset was limited to 20

to allow comparable number of features for both MT and SMT approaches.

5.5 Experimental Evaluation

We use the Newcastle data set to demonstrate the efficacy of our motion texture

analysis technique for relative skill assessment. We group the participants into three

categories according to their expertise: low (OSATS score ≤ 2), intermediate (2 <

OSATS score ≤ 3.5) and high (3.5 < OSATS score ≤ 5) expertise levels to train our

models with sufficient samples per class. Table 6 shows the number of videos used
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Table 6: Number of samples for different expertise levels
RT TM IH SH FO KP OP

Novice 2 9 8 10 3 8 6
Intermediate 14 15 16 15 16 9 17
Expert 15 7 7 6 12 14 8

in our study corresponding to three expertise levels for each OSATS criteria. We

used our MT and SMT frameworks to classify all participants into three pre-defined

expertise groups (low, intermediate, and high), based on the surgical OSATS criteria.

We use our framework to train seven classifiers corresponding to each OSATS criteria.

5.5.1 Generalization across different users

To test the generalization across different users, we performed experiments with two

setups. In first setup, a single video was left out, i.e. leave one sample out (LOSO),

for testing while training was done on the remaining videos. Since, we have two videos

from each subject (except for one subject), we also use a setup in which all the videos

from a single user are left out for training, i.e. leave one user out (LOUO) while

training was done on the remaining videos. In LOUO setup, the training data does

not contain any video from the test subject and the left out test videos present unseen

data to the classifier. Thus, the classification accuracy of seven OSATS classifiers in

LOUO set-up indicates their generalization capability to classify previously unseen

data.

5.5.2 Effect of different parameters

We also test the effect of different parameters on the classification accuracy. The

number of gray levels used to evaluate GLCM (Ng) represents the level of granularity

to encode motion dynamics. With fewer gray levels, only limited number of motion

transitions can be encoded. This may be sufficient to represent simple activities,

however, a complex activity such as surgery might require fine-grained analysis. To

test this, we varied the number of gray levels from 23-28 keeping other parameters
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constant (k = 5 motion classes andW = 10 time windows for SMT). We also computed

the classification accuracy with varying number of STIP motion clusters (k) from [2-

10] with constant Ng = 8 gray levels and W = 10 time windows (for SMT). For SMT,

we also test the effect of varying the number of time windows W from [2-16].

5.5.3 Comparison with standard activity recognition methods

We also compared our methods with the state-of the-art Bag-of-Words (BoW) models

(built directly from the HoG-HoF descriptors), that are typically used for video-based

action recognition [59] and have also been used for surgical gesture recognition [62, 23].

The bag-of-words model was originally developed for document representation.

The basic idea is to first define a codebook that contains a set of code words, which

are then used to represent a document as a histogram of the code words, where each

entry is the count of a code word occurring in the document. Although the order

information of words is ignored, the bag-of-words model still captures the document

information effectively because of the significance of frequency information of code

words in documents [57].

Recently, the bag-of-words model is extended to analyze images and videos in

computer vision [43]. BoW techniques also represent the state-of-the-art for video-

based activity recognition with applications to realistic and diverse settings [33]. Local

patches extracted from images or videos are treated as words and the codebook is

constructed by clustering all the local patches in the training data. To apply BoW

model to images, we can treat an image as a document. However, we need to define

the “words” in the images. To achieve this, standard BoW methods usually includes

following three steps: Feature detection (computer vision), feature description and

code book generation.

For action recognition, the BoW model is typically constructed using visual code-

books derived from local spatio-temporal features [60]. More recently BoW based
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Algorithm 3 - Temporal and structural modeling using BoW
Require: Surgical videos in set V

Step 1: ∀v ∈ V , compute STIPs and 162-element HoG-HoF descriptors [32].
Step 2: Build bag-of-visual-events through k-means clustering, with k = 50.
Step 3: ∀v ∈ V , create event sequences, Ev =< e1, e2, . . . , en >, by assigning each STIP to its
nearest cluster.
Step 4: ∀Ev, augment Ev with temporal events, τi,j (where τi,j is the time elapsed be-
tween the end of event ei and the start of event ej , where j > i), such that Ev =<
e1, τ1,2, e2, . . . , ei, τi,j , ej , . . . >.
Step 5: Divide the total time into N bins and quantize the temporal events, such that ∀Ev, we
have Ev =< e1, ψ(τ1,2), e2, . . . , ei, ψ(τi,j), ej , . . . >, where ψ is function that maps each temporal
event to its respective bin.
Step 6: Capture local structure and causality information by extracting n-grams from event
vectors, Ev, using a moving window of size n [21, 8]. With n = 3, ∀Ev, we have Ev =<
”e1ψ(τ1,2)e2”, ”e2ψ(τ2,3)e3”, . . . , ”eiψ(τi,j)ej”, . . . >.
Step 7: Capture global patterns: Create a sub-space of regular-expressions and generate R
regular-expressions by randomly sampling that sub-space:

for 1 ≤ i ≤ R do
Generate a new random regular-expressions ri [8]
Add ri to Ev

end for
Step 8: Using event vectors Ev, train and test using the Vector Space Model (VSM) framework:
(1) Re-weight each word in Ev using the TF (term frequency) and IDF (inverse document
frequency) metrics and (2) Classify using k-NN with the cosine similarity distance metric.

approaches have focused on recognizing human activities in more realistic and di-

verse settings [33]. However, when activities are represented as bags of words, the

underlying structural (causal and sequential) information provided by the ordering of

the words is typically lost. To address this problem, recent approaches have included

temporal information into BoW models. For example, n-grams have been used to

represent activities in terms of their local event sub-sequences [21]. While this pre-

serves local structural information, adding absolute and relative temporal information

results in more powerful and expressive BoW representations as shown by Bettada-

pura et al. [8] in the Augmented BoW (A-BoW) model. We compare our MT and

SMT approaches with BoW and A-BoW methods. Algorithm 3 (steps 1-2) describes

the standard BoW models, which are then augmented with temporal and structural

information (Algorithm 3, steps 3-8).
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Table 7: Percentage of correctly classified videos using all features.
OSATS MT

(LOSO)
MT

(LOUO)
SMT

(LOSO)
SMT
(LOUO)

RT 77.4%
(24/31)

74.1%
(23/31)

70.9%
(22/31)

74.1%
(23/31)

TM 58.0%
(18/31)

61.2%
(19/31)

80.6%
(25/31)

80.6%
(25/31)

IH 61.2%
(19/31)

51.6%
(16/31)

70.9%
(22/31)

70.9%
(22/31)

SH 58.0%
(18/31)

54.8%
(17/31)

61.2%
(19/31)

61.2%
(19/31)

FO 58.0%
(18/31)

58.0%
(18/31)

64.5%
(20/31)

64.5%
(20/31)

KP 54.8%
(17/31)

54.8%
(17/31)

70.9%
(22/31)

70.9%
(22/31)

OP 54.8%
(17/31)

58.0%
(18/31)

77.4%
(24/31)

77.42%
(24/31)

5.6 Results

We present the results using MT and SMT techniques as percentage of correctly

classified videos using seven classifiers trained for each OSATS criteria. All results

are compared against the ground truth provided by expert surgeon.

Table 7 shows the results using all features for classification in LOSO and LOUO

setups. Note that with MT, higher classification accuracy is obtained for qualitative

criteria such as “respect for tissue” (RT). With SMT, higher classification accuracy is

obtained for all OSATS (except RT) as compared to MT approach. Table 8 (columns

2-5) shows the results using selected features. With feature selection, skill relevant

features are extracted resulting in higher classification accuracy with a smaller subset

of discriminating features. Also, note that there is not much difference in the classifi-

cation accuracies between LOSO and LOUO setups. This indicates the generalization

capability of the classifiers on unseen data.
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Table 8: Percentage of correctly classified videos with selected features.
OSATS MT

(LOSO)
MT

(LOUO)
SMT

(LOSO)
SMT
(LOUO)

BoW
(LOSO)

A-BoW
(LOSO)

RT 83.8%
(26/31)

83.8%
(26/31)

100%
(31/31)

100%
(31/31)

66.6%
(42/63)

73.0%
(46/63)

TM 80.6%
(25/31)

83.8%
(26/31)

100%
(31/31)

100%
(31/31)

50.7%
(32/63)

74.6%
(47/63)

IH 70.9%
(22/31)

70.9%
(22/31)

100%
(31/31)

100%
(31/31)

50.7%
(32/63)

68.2%
(43/63)

SH 74.1%
(23/31)

70.9%
(22/31)

96.7%
(30/31)

93.5%
(29/31)

69.8%
(44/63)

73.0%
(46/63)

FO 70.9%
(22/31)

77.4%
(24/31)

100%
(31/31)

100%
(31/31)

49.2%
(31/63)

66.6%
(42/63)

KP 61.2%
(19/31)

58.0%
(18/31)

100%
(31/31)

96.7%
(30/31)

60.3%
(38/63)

80.9%
(51/63)

OP 74.1%
(23/31)

77.4%
(24/31)

100%
(31/31)

100%
(31/31)

52.3%
(33/63)

71.4%
(45/63)

5.6.1 Effect of varying number of time windows W in SMT

Figure 22 shows the effect of varying the number of time windows for SMT with

constant number of gray levels (Ng = 8) and motion classes (k = 5) in LOUO setup.

With only two windows, lower classification rates are observed for all OSATS criteria.

As the number of windows is increased, the performance improves. Multi-modal

trend is observed for some OSATS criteria. For instance, OP performance peaks at

6 windows and then again at 9 windows. Similarly, IH performance peaks are at 5

windows and at 10 windows. This may be caused by possible periodicity in the time

series due to repetitive nature of the suturing task.

5.6.2 MT Vs. SMT

Figure 23, 24, and 25 show the confusion matrices with MT and SMT techniques

corresponding to classification accuracy in Table 8 (columns 2 and 4 corresponding

to LOSO setup). SMT performs better than MT for all OSATS. For RT, we have only

two novice videos (Table 6, column 2) which are classified correctly with SMT even

though only one sample is available for training. For most of the criteria, majority
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Figure 22: Effect of varying the number of time windows in the SMT approach

RT TM 

Figure 23: Confusion matrices for RT and TM OSATS criteria corresponding to
classification accuracy in Table 8 with MT (top row) and SMT (bottom row).
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IH SH FO 

Figure 24: Confusion matrices for IH, SH, and FO OSATS criteria corresponding to
classification accuracy in Table 8 with MT (top row) and SMT (bottom row).

KP OP 

Figure 25: Confusion matrices for KP and OP OSATS criteria corresponding to
classification accuracy in Table 8 with MT (top row) and SMT (bottom row).
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of the videos come from intermediate subjects. Despite very few samples to train for

novice and expert classes, SMT is able to discriminate the expertise levels. Figure 24

shows the confusion matrices for KP and OP criteria. Note that majority of the

subjects were knowledgeable about the procedure (14 experts for KP in Table 6),

while only 8 were rated as experts for the OP criteria. Thus, it is very important to

provide assessments on individual OSATS criteria.

5.6.3 Comparison with BoW and A-BoW

We compare our MT and SMT approaches with BoW and A-BoW in LOSO setup.

Table 8 (columns 6 and 7) shows the results. A-BoW captures the temporal and se-

quential motion aspects and performs better than standard BoW. Our MT technique

captures the qualitative motion aspects and higher classification accuracy of 83.8%

(an increase of 10% from A-BoW) is achieved for qualitative OSATS criteria such

as RT. However, for sequential OSATS such as KP, A-BoW performs better (around

20% better than both MT and standard BoW). For TM, our MT approach performs

slightly well with 80.6% correctly classified videos (an increase of 6% over A-BoW)

possibly due to finer analysis of motion dynamics. For other OSATS, both A-BoW

and MT show comparable performance but better than standard BoW. SMT, with

both qualitative and sequential motion aspects performs better than MT, BoW, and

A-Bow techniques. Note that BoW and A-BoW works [8] have used sixty-three videos

since they used both the long range and close up videos for each participant. We used

only long-range videos to ensure that the moving entities (hands, instruments etc.)

exist in most of the frames. By using only thirty-one videos, we have less training

data as compared to [8]. In addition, we also wanted to test our method in a LOUO

set-up to test the generalization of classifier on unseen data.
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5.6.4 Effect of varying gray levels (Ng) in the GLCM computation

Figure 26 shows the effect of varying the number of gray levels. MT captures the

qualitative aspects (RT) and in general, there is no appreciable increase in accuracy

with varying number of gray levels. With SMT, higher accuracy is achieved for all

OSATS criteria as compared to MT and slight increase in accuracy is observed for

IH, FO and KP with 256, 32 and 16 gray levels respectively (Figure 26, bottom).

5.7 Summary

The results presented in this chapter clearly demonstrate that MT and SMT ap-

proaches are suitable for assessment of surgical skills and perform better than BoW

and A-BoW. BoW approach is useful for classification of human activities in gen-

eral, that is, it may help in predicting what is being done in the video and sufficient

literature exists to support its efficacy. For example, RMIS works on gesture recog-

nition [62], and Haro et al. [23] reported good results for surgical gesture recognition

using BoW since the goal is to classify what (or which) gesture is the test sample,

however, for skill assessment, it is essential to assess the motion quality, i.e., how

competent the subject is in performing a given activity. The framework presented in

this work successfully achieved automated OSATS assessment of surgical competency

using video data.

Given the very encouraging assessment results of our case study, we believe that

automatic surgical skill assessment has the potential to have a positive impact to real-

world training settings in medical schools and teaching hospitals. In next chapter,

we extend our framework for OSATS skill score prediction (absolute skill assessment)

using regression analysis.
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Figure 26: Top: Classification accuracy for various OSATS criteria with varying
number of gray levels using MT approach; Bottom: Top: Same as top but using
SMT approach.
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CHAPTER VI

OSATS SKILL PREDICTION

Summary Motion texture (MT) features are used for absolute skill assessment

(prediction). Linear discriminant analysis is used to reduce the feature dimensions

followed by regression analysis for skill score prediction. Statistically significant cor-

relation is achieved between true and predicted scores.

In Chapter 5, we demonstrated the skill classification using motion texture fea-

tures. In this chapter, we go beyond simple skill categorization and predict the actual

skill scores. We demonstrate that a linear regression function can be learnt in the

reduced dimensional motion texture feature space using training data that can be

used to predict the OSATS scores for test data. We achieve statistically significant

correlation (p-value <0.01) between the ground-truth (given by domain experts) and

the skill scores predicted by our framework. Figure 27 illustrates the outcome of

proficiency evaluation approach for an exemplary surgical skill assessment task.

Ground truth: 5, Predicted: 4.73 Ground truth: 1.5 Predicted: 1.65 

Figure 27: Proficiency evaluation based on motion texture analysis for an exemplary
surgical skill assessment task. Ground truth quality judgments (from domain experts)
are automatically replicated with high precision for expert (left) and novice surgeons
(right).
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Figure 28 shows the flow diagram for skill score prediction via motion texture

analysis. Part 1 and 2 (in Figure 28 involve low-level motion feature extraction

followed by computing the frame kernel matrices as explained in Chapter 5. Part

3 (Figure 28) shows the flow diagram for skill score prediction. We accomplish this

by first extracting a lower dimensional feature subspace followed by learning a linear

regression function in the reduced dimensional feature space. Next, we explain the

technical details of score prediction framework.

6.1 Feature dimensionality reduction

After obtaining textural features using the GLCM or LBP-LC methods, we create a

linear regression model using the training data. GLCM and LBP-LC features encode

the fine motion details embedded in the frame kernel matrix. To cope with the

curse-of-dimensionality, we use dimensionality reduction. In many applications, it is

useful to achieve a broad categorization into coarse skill levels. Since our goal is to

predict the skill score, we use Linear Discriminant Analysis (LDA) [7] to find a linear

projection from the feature space that maximizes the separation of coarse skill levels

obtained by grouping the skill scores into C categories. For example, if the ground

truth scores range from 1–5, then three (C = 3) coarse skill levels could be: low (score

≤ 2), intermediate (2 < score ≤ 3.5) and high (3.5 < score ≤ 5).

6.1.1 Linear discriminant analysis

We use LDA to project the data into a subspace that can discriminate the participants

into coarse skill groups based on the seven OSATS criteria. The coarse skill levels are

linearly separable in the LDA subspace. This subspace with coarse skill separation

can be used to learn the linear regression function for precise skill prediction. Other

dimension reduction techniques such as principal component analysis (PCA) project

data along the direction of maximum variance, which may not be discriminating
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between different skill groups. LDA projects all the data points into lower dimen-

sional subspace, which maximizes the between-class separation while minimizing their

within-class variability. The dimensionality of the transformed space computed by

the LDA is one less than the number of classes in the problem.
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Part 1: Motion features 

Part 2: Encoding motion dynamics 

X: d-dimensional time series (motion features in each frame) 

κ (xi, x j ) = φ(xi )
Tφ(x j ) Kernel matrix 

X φ(X) φ(X) / φ(X) Kernel mapping and normalization 

κN (xi, x j ) =
exp( xi, x j /σ

2 )

exp( xi
2 /σ 2 )exp( x j

2
/σ 2 )

Normalized Gaussian 
kernel matrix 

           Motion features                                        Frame kernel matrix 

Part 3: Motion texture analysis 

GLCM features 

LBP-LC features 

Training data 
(grouped into three 

skill levels) 
 

Linear discriminant 
analysis (LDA) 

 { f1, f2,..., fn} {X1,X2}

Testing data 
 

Linear regression 
 
  

ŷ = aX1 + bX2 + cX1X2 + d

Project to LDA space 
learned during training  

Apply regression function 
to test data 

Predicted score 

Figure 28: Motion texture analysis framework for skill score prediction.
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The first step in the LDA is finding two scatter matrices referred to as the “between

class” and “within class” scatter matrices. If we have C different classes or sample

groups, then each sample group πi has a class mean x̄i given by,

x̄i =
1

Ni

Ni∑
j=1

xi,j, (23)

where there are Ni data points in class πi. We can also define a sample group covari-

ance matrix given by,

Σi =
1

Ni − 1

Ni∑
j=1

(xi,j − x̄i)(xi,j − x̄i)T , (24)

The global mean for the whole data set is given by,

x̄ =
1

N

C∑
i=1

Nix̄i =
1

N

C∑
i=1

Ni∑
j=1

xi,j, (25)

The between-class scatter matrix is defined as,

Sb =
C∑
i=1

(x̄i − x̄)(x̄i − x̄)T (26)

The within class matrix is defined as follows:

Sw =
C∑
i=1

(Ni − 1)Σi =
C∑
i=1

Ni∑
j=1

(x̄i,j − x̄i)(x̄i,j − x̄i)T (27)

The main objective of LDA is to find a projection matrix φLDA that maximizes

the ratio of determinants of Sb and Sw. Mathematically,

φLDA = arg max
φ

|φTSbφ|
|φTSwφ|

(28)

The ratio given by above equation is known as Fisher Criterion and it attempts to

maximize the variance of the class means and minimize the variance of the individual

classes. The projection matrix φLDA can be obtained by solving the generalized

eigenvalue problem [64],

SbφLDA = SwφLDAΛ, (29)
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or

SbφLDA − SwφLDAΛ = 0 (30)

Multiplying by inverse of Sw, we get

Sw
−1SbφLDA − Sw−1SwφLDAΛ = 0 (31)

that is,

Sw
−1SbφLDA − φLDAΛ = 0 (32)

Sw
−1SbφLDA = φLDAΛ (33)

Thus, the Fisher criterion is maximized when the projection matrix φLDA is com-

posed of the eigenvectors of Sw
−1Sb. There will be at most C − 1 eigenvectors with

non-zero corresponding eigenvalues since there are at most C points to estimate Sb.

Once, the projection is found, all data points can be projected to the new axis system.

Note that we could have used LDA in Chapter 5 for dimensionality reduction.

However, our primary goal in Chapter 5 was to test the motion texture features

without projecting them into a class discriminatory feature subspace such as the one

obtained by LDA. We do this to compare with other methods such as BoW and A-

BoW. In addition, we also wanted to test the effect of including sequential information

on classification accuracy.

Using broadly categorized training data, we use LDA to map the n-dimensional

motion texture features to C − 1 dimensions ({f1, f2, ..., fn} 7→ {X1, X2, ...XC−1}).

This gives us a skill discriminating (C − 1)-dimensional feature subspace that we use

to predict the skill score of a test sample.

6.2 Linear regression

A general linear regression model to represent the relationship between a continuous

response y and a continuous or categorical predictor x can be represented as

y = β1f1(x) + β2f2(x) + ...+ βLfL(x) + ε (34)
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The response y is modeled as a linear combination of functions of the predictor,

plus a random error ε. The expressions fj(x)(j = 1, ..., L) are the terms of the

model and the j(j = 1, ..., L) are the coefficients. Given n independent observations

(x1, y1), ..., (xn, yn) of the predictor x and the response y, the linear regression model

becomes an n× L system of equations:

y1

.

.

.

yn


=



f1(x1) ... fL(x1)

. . .

. . .

. . .

f1(xn) ... fL(xn)





β1

.

.

.

βL


+



ε1

.

.

.

εn


(35)

Ignoring the unknown error ε, above equation can be written as y = Xβ and can be

solved by least square estimation. The best possible estimate of β, β̂ is defined as the

quantity that minimizes the L2 norm of the error:

‖y −Xβ̂‖ = min
β
‖y −Xβ‖ (36)

To compute the least squares estimate, we calculate the partial derivatives of

‖y −Xβ‖2 by β and equate it to zero giving the following equation:

(−2)XT(y −Xβ̂) = 0 (37)

The above equation can also be written as XTXβ̂ = XTy giving β̂ = (XTX)
−1

XTy.

Once β̂ is computed, the model can be evaluated at the predictor data to compute

the predicted response ŷt as ŷt = Xtβ̂ or

ŷt = Xt(X
TX)

−1
XTy (38)

The predictor variable can be used in different forms in the linear regression. For

instance, polynomial terms such as f1(x)2 (for curvature) and product terms such

as f1(x)f2(x)x2 (for interaction) may be used. The following equation gives a linear
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regression equation with interaction between two predictor variables:

y = β1f1(x) + β2f2(x) + β3f1(x)f2(x) + ε (39)

We obtain a linear regression model (with interaction) using the C−1 dimensions

in the reduced LDA feature space. For C = 3 coarse categories, the linear regression

function with interaction is given by,

ŷ = aX1 + bX2 + cX1X2 + d, (40)

To predict the skill score, the n-dimensional test feature data (from GLCM or LBP-

LC) is first projected to the LDA space learnt during training giving C−1 dimensional

feature vector. The reduced test features {X1t, X2t, ...X(C−1)t} are then used to predict

the skill score ŷt of the test sample using the regression function obtained during the

training.

6.3 Experimental evaluation

To evaluate the efficacy of our framework for skill score prediction, we use the Nor-

malized Root Mean Square Error (NRMSE), given by,
√∑

(yn−ŷn)2∑
(yn)2

where yn is the

ground truth skill score and ŷn is the predicted skill score of the n-th sample. We

also compute the Pearson correlation coefficient R and the corresponding p value be-

tween the true and predicted scores to test whether the true and predicted scores are

correlated in a statistically significant manner.

Surgical skill score prediction : First, we process the surgery video data to

obtain motion features as explained in Chapter 5 (Section 5.1.1). Then, we use

the motion features to compute frame kernel matrices as described in Chapter 5

(Section 5.1.3). After computing frame kernel matrices, we extract GLCM and LBP-

LC features at different granularity, i.e., by varying number of gray levels Ng for

GLCM (23− 28) and computing LBP-LC features at different neighborhood sizes (8,

10, 12) and radii (2, 4, 8).
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We test our framework for predicting OSATS scores in a Leave-One-Out Cross

Validation (LOOCV) scheme. To reduce the feature dimensions using LDA, we group

the participants in training data into three coarse skill levels for each of the OSATS

criteria: low (OSATS score ≤ 2), intermediate (2 < OSATS score ≤ 3.5) and high

(3.5 < OSATS score ≤ 5). The test feature data (from GLCM or LBP-LC) is first

projected to the LDA space learnt during training. The reduced test features are then

used to predict the score using the regression function obtained during the training as

explained in Section 7.2. Figure 29 and Figure 30 show single instance prediction for

different OSATS criteria in LOOCV scheme along with broadly categorized training

data. The encircled sample in Figure 29 and 30 is the test sample in the LOOCV

scheme and shows the true and predicted OSATS score in the LDA space. The

remaining instances in each plot are the training samples plotted in the LDA space.

The color map is used to show the predicted OSATS value at each combination of

LDA components. Green diamonds represent the experts (3.5 < OSATS score ≤ 5),

cyan squares represent the intermediate (2 < OSATS score ≤ 3.5) and red circles

(OSATS score ≤ 2) represents the novices in the LDA space.

Table 9 shows the NRMSE and correlation coefficient R between the ground truth

and the predicted OSATS criteria using LBP-LC at different texture granularity. For

instance, multi-scale LBP-LC features computed at neighborhood sizes 12, 10 and

8 with radii 2, 4 and, 8, can be represented as N12(r2)N10(r4)N8(r8). Multi-scale

LBP-LC features with different radii and neighborhood sizes resulted in statistically

significant correlation (p-value <0.01) between the true and predicted scores. In

Table 9 and 10, “∗∗” refers to p value < 0.01, “∗” refers to p value < 0.05, Ni(rj)

represents the LPB-LC feature evaluated for neighborhood size i around the radius

j. For example, multi-scale LBP-LC features computed at neighborhood sizes 12, 10

and 8 with radii 2, 4 and, 8, can be represented as N12(r2)N10(r4)N8(r8). Multi-scale

LBP-LC features with different radii and neighborhood sizes resulted in statistically
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Figure 29: Single instance prediction for OSATS criteria in LOOCV scheme. Top
left: respect for tissue, Top right: time and motion, Bottom left: instrument handling,
bottom right: suture handling. Note the separation of experts (green diamonds),
intermediates (blue squares) and novices (red circles) in the LDA feature space. X1

and X2 are the two dimensions in the reduced LDA space. The color map shows
the predicted OSATS score using linear regression function at each combination of
X1, X2.
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Figure 30: Single instance prediction for OSATS criteria in LOOCV scheme. Top left:
flow of operation, Top right: knowledge of procedure, Bottom: overall performance.

significant correlation (p-value <0.01) between the true and predicted scores.

We also achieved statistically significant correlation with GLCM features (Ta-

ble 10) for several OSATS criteria, however; overall better performance was achieved
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Table 9: OSATS prediction (LBP-LC features)
Criteria Texture feature NRMSE R

Respect for Tissue {N12(r2) N10(r4) N8(r8)} 0.16 0.65∗∗

Time and Motion {N8(r2) N8(r4) N8(r8)} 0.20 0.81∗∗

Instrument Handling {N8(r2) N8(r4) N8(r8)} 0.22 0.79∗∗

Suture Handling {N12(r2) N10(r4) N8(r8)} 0.26 0.67∗∗

Flow of Operation {N12(r2) N10(r4) N8(r8)} 0.19 0.71∗∗

Knowledge of Procedure {N8(r2) N8(r4) N8(r8)} 0.24 0.68∗∗

Overall Performance {N8(r2) N8(r4) N8(r8) N10(r2)} 0.17 0.82∗∗

with LBP-LC features. In Table 10, Ng refers to the number of gray levels used

to compute the GLCM. Figure 31 shows the true versus predicted scores for seven

OSATS criteria using LBP-LC features. With our technique, we are able to predict

skill scores for all seven OSATS criteria for a diverse group of participants using two

different texture analysis methods (GLCM and LBP-LC). This demonstrates our gen-

eral concept of skill encoding via texture analysis of motion data encoded into frame

kernel matrices.

6.4 Summary

The results in this chapter clearly indicate that motion texture analysis can be used

for both relative and absolute skill assessment. Using simple feature dimension re-

duction techniques such as LDA, and linear regression, we can predict the skill scores

effectively for different OSATS criteria.

So far, we have discussed skill assessment using motion data from the whole video

(holistic time series analysis) and using all the moving entities (all STIPs). However,

for dexterity analysis, we need to isolate motion data from left and right hands. In

addition, we can use other data modalities such as depth and acceleration data. In

next chapter, we use GT-Emory data set to accomplish dexterity analysis and to

compare different feature types for relative skill assessment.
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KP FO 

OP True Vs. predicted scores for 
seven OSATS criteria using 
LBP-LC features. 
RT: respect for tissue 
TM: time and motion 
IH: instrument handling 
SH: suture handling 
FO: flow of operation 
KP: knowledge of procedure 
OP: overall performance  
 

RT TM 

SH IH 

Figure 31: Surgery data: True vs. predicted scores for seven OSATS criteria.
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Table 10: OSATS prediction (GLCM features)
Criteria Texture feature NRMSE R

Respect for Tissue Ng = 64 0.26 0.45∗∗

Time and Motion Ng = 128 0.34 0.56∗∗

Instrument Handling Ng = 8 0.30 0.56∗∗

Suture Handling Ng = 128 0.39 0.43∗

Flow of Operation Ng = 128 0.36 0.33
Knowledge of Procedure Ng = 128 0.49 0.45∗∗

Overall Performance Ng = 64 0.31 0.52∗∗
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CHAPTER VII

HAND MOTION AND DEXTERITY ANALYSIS

Summary Motion features are extracted from right and left hand along with corre-

sponding depth and acceleration data. Comparative analysis of different features and

hand locations is performed via MT and SMT techniques. Dexterity analysis of hand

motion data helps provide expertise rating for different time segments.

Relative and absolute skill assessments provide the overall competency for differ-

ent OSATS criteria. However, in medical training, an important issue is providing

dexterity feedback to the trainees. Dexterity feedback may be given in several dif-

ferent forms. For example, an expert faculty could provide dexterity feedback by

observing the hand movements of the trainees. They can also tell the trainee if they

are using the instruments properly or not. The hand (particularly the wrist) move-

ments are very important in surgery. For example, smooth rotation of the wrist as

the needle passes through tissues, is considered an important skill [18]. In addition,

proper usage and handling of the instruments is required to cause minimal tissue

damage.

In this chapter, we analyze the motion data collected from specific instruments

and hand locations. We use different types of data (RGB videos, depth videos, and

acceleration data) to provide dexterity analysis. Motion features from different hand

locations are computed to study the surgical dexterity. In Section 7.1, we describe

these features in detail. In Section 7.2, we describe our technique for dexterity analysis

using SMT and hand location information. In Section 7.3, we present our results to

compare the skill classification using different features. We also present our results

on dexterity analysis for different time windows in the surgical videos.
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7.1 Hand motion features

First, we test our MT and SMT techniques using different types of features from

different hand locations. In previous chapters, we presented results using Newcastle

data set with motion features such as STIPs along with GLCM and LBP-LC features.

In this chapter, we use GT-Emory data set with both RGB and depth videos. Using

colored gloves, we are able to track the hand locations in each frame and can use

standard blob features to compute the frame kernel matrices. We also use the depth

histograms for left and right hands to compute depth based frame kernel matrices.

Besides our previous method using STIPs, we also isolate the STIPs at right and

left hand locations. Table 11 gives a summary of the features used for comparative

analysis. We refer to the dominant hand as right hand (RH) and non-dominant hand

as left hand (LH).

7.1.1 Spatio-temporal interest points from right and left hand

We use color based blob tracking to extract the masks for left and right hand pixel lo-

cations. We used cvblob [41] library for this purpose. Figure 32 shows a sample frame

with corresponding left and right hand masks obtained using blob tracking. Note that

color thresholding is used at each frame and factors such as varying illumination may

result in noisy mask images. We apply morphological operations (image dilation and

hole filling) to obtain clean masks. In addition, note that we used finger-less gloves

so that the surgeons could perform the tasks without any obstruction. However, the

masks obtained do not include the finger region and image dilation helps alleviate

this issue by growing the mask boundaries beyond the glove region.

To extract the STIPs belonging to right and left hands, we use the mask boundary

pixel coordinates to define a polygon. The points inside the polygon are then detected

using standard point-in-polygon tests. We use MATLAB’s inbuilt function inpolygon

for this purpose.
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Table 11: Summary of features used for dexterity analysis
Feature Description Usage (purpose)

STIPs Spatio-temporal interest
points as described in
Chapter 5

Baseline for comparison with
other motion features (e.g.
STIPs extracted from left
and right hand (LH and RH)
locations

STIPs (RH, LH,
both)

Same as above except that
STIPs are extracted from
left and right hand loca-
tions using binary masks
obtained via color thresh-
olding

To test whether eliminating
noisy (or irrelevant motion fea-
tures) will improve skill assess-
ment.

Depth (RH, LH,
Both)

Normalized 10-bin depth
histograms using depth
data from left and right
hands

We use depth since fine mo-
tion dynamics might be captured
with depth variations at hand lo-
cations.

Blob (LH, RH, Both) Blob features (e.g. eccen-
tricity, circularity, perime-
ter, area etc.) extracted
from binary masks ob-
tained via color threshold-
ing

To compare the standard blob
features with depth features de-
scribed above

Acceleration : Sutur-
ing (RH, NH, Both)

Three dimensional acceler-
ation data collected from
dominant hand (RH) wrist
and needle-holder (NH)

To test the efficacy of using 3D
acceleration data from dominant
hand wrist and needle-holder for
suturing skill assessment

Acceleration: Knot
tying (LH, RH,
Both)

Same as above but for
knot tying task using ac-
celerometers on left and
right hands

To test the efficacy of using 3D
acceleration data from dominant
hand wrist and needle-holder for
knot tying skill assessment

Figure 33 shows sample frames with STIPs belonging to LH (left or non-dominant

hand) and RH (right or dominant hand) locations. For each frame, we count the

number of STIPs belonging to left and right hands to obtain the frame kernel matrices.

For each video, we compute three types of frame kernel matrices – from left hand

STIPs, right hand STIPs, and using STIPs from both hands. Note that, we do

not learn STIP motion classes when using the left and right hand STIPs. When

we used all STIP points (as in Chapter 5), we needed to learn the motion classes to

approximately cluster the motion information into different moving entities. However,
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Figure 32: Left and right hand tracking using colored gloves. Top row (left): A
sample frame with bounding box for red glove (left hand). Top row (right): Binary
mask for the right hand region. Bottom row: Same as top row for right hand.

when we use hand location based STIPs, the motion classes are inherently defined

into two (left and right hand).

In GT-Emory data set, we collected data for same time duration and allowed the

subjects to keep doing the task repetitively until the acquisition time is over. In

such scenario, an expert may be able to accomplish more instances of the task as

compared to the novice. These differences get encoded into frame kernel matrices.

For example, Figure 34 and 35 show the sample frame kernel matrices for expert and

novice surgeons computed using left and right hand STIP features. The relatively fine

texture (smaller rectangular patterns) of expert frame kernel matrices as compared

to novices (larger rectangular patterns) describes this difference.
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Figure 33: Top row: sample frames with RH (magenta) and LH (cyan) STIPs. Note
the irrelevant motion (e.g. top right frame has a moving person in the top left region
of the frame. Bottom row shows the distinct localization of RH STIPs close to fingers
and wrist region.

7.1.2 Blob Features

We used cvblob [41] library to extract masks for left and right hands. We compute

following standard blob features using MATLAB’s regionprops function to obtain a

11-element descriptor – (x, y) coordinates of the centroid, area, orientation, perimeter,

convex area, solidity, eccentricity, major axis length, minor axis length, and equiva-

lent diameter. Figure 36 and 37 show the sample frame kernel matrices for expert

and novice surgeons computed using blob features. Due to varying illumination and

background in the videos, blob detection might result in noisy masks resulting in the

frame kernel matrices that look almost similar for experts and novices.
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Novice Expert 

Suturing 

Knot Tying 

Figure 34: Sample frame kernel matrices computed using left hand STIPs.

7.1.3 Depth features

Using the right and left hand masks, we compute the depth features at hand locations.

We use the RGB-aligned depth frames and compute 10-bin normalized (between 0-1)

histograms using the non-zero depth values in the mask regions. Figure 38 shows a

sample aligned depth frame and corresponding depth histograms at hand locations.

Figure 39 and 40 show the sample frame kernel matrices for expert and novice surgeons

computed using depth features. Since depth values are used from right and left hand

masks obtained using blob detection, the noise in the mask is propagated to the depth

features. However, we use the histogram obtained using depth values at the mask

locations. This gives more information on motion dynamics as compared to the blob

features. Thus, we see clearer patterns in the frame kernel matrices obtained using

depth features as compared to the blob features.
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Novice Expert 

Suturing 

Knot Tying 

Figure 35: Sample frame kernel matrices computed using right hand STIPs.

7.1.4 Acceleration Features

We used two accelerometers to obtain three-dimensional acceleration data. For the

suturing task, one accelerometer is used on the wrist of the subject and another is

mounted close to the base of the needle-holder (NH). We align acceleration data with

video data using ELAN software [10]. Acceleration data is acquired at 50Hz and

video data at 30 frames per second. Thus, for 4000 video frames in a video, we have

4000 × (50/30) samples for acceleration data. Figure 41 and 42 show the sample

frame kernel matrices for expert and novice surgeons computed using acceleration

data. Acceleration data is not affected by artifacts related to image and video based

features such as varying illumination, occlusions etc. On the other hand, the vision

features, especially the STIPs and depth features, capture motion information from

multiple locations. Thus, there is a trade-off between the precision and coverage when

we compare the motion information extracted via STIPs and acceleration data.
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Novice Expert 

Suturing 

Knot Tying 

Figure 36: Sample frame kernel matrices computed using left hand blob features.

Novice Expert 

Suturing 

Knot Tying 

Figure 37: Sample frame kernel matrices computed using right hand blob features.

7.2 Dexterity analysis

We can use the SMT technique and hand location information to provide dexterity

feedback. In our analysis so far, we have classified or predicted skill values for the
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Figure 38: Sample depth histograms computed using the left (red) and right (green)
hand depth values.

Novice Expert 

Suturing 

Knot Tying 

Figure 39: Sample frame kernel matrices computed using left hand depth features.
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Novice Expert 

Suturing 

Knot Tying 

Figure 40: Sample frame kernel matrices computed using right hand depth features.

whole video data. However, it will be more informative for the trainees to get feedback

on individual hand movements and in different time slots (or surgical phases) so they

could improve themselves on those particular phases and also work on the dexterity

of specific hand motions.

Since manual segmentation of time series data might involve human bias and

surgical gesture vocabularies may not be sufficient due to non-standard gesture def-

initions, we adopt a data-driven approach. We use the SMT windows as time slots

and compute motion texture features for each time window. In a LOOCV scheme,

the training videos are processed to compute features from all time windows from all

videos. For example, with W = 10 windows and twenty videos in the training data,

we obtain features for 200 time windows. Similarly, a test video is processed to obtain

10 time windows. Frame kernel matrices are computed for all the videos. For training

data windows, the ground truth is skill label of the parent video. We predict the skill

score of the test video’s time windows using a nearest neighbor classifier with cosine

distance metric.
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Novice Expert 

Suturing 

Knot Tying 

Figure 41: Sample frame kernel matrices computed using left hand acceleration
features.

We assess the accuracy of predicted time window labels by computing the mode

of the predicted labels and comparing it with the ground truth label of the parent

video. If the mode is equal to the ground truth label of the parent video, it implies

that for most of the time windows, the predicted label is same as the overall skill

label of the whole video. However, using time windows, the trainee can go back and

review their performance and skill levels during specific time windows. We report

the dexterity based classification accuracy as the percentage of videos for which the

mode of the predicted skill labels is same as the overall skill label. Figure 43 shows

the flow diagram for dexterity analysis.

7.3 Experimental evaluation

7.3.1 Feature analysis

We performed several experiments to assess the efficacy of different data modalities

and feature types. We use GT-Emory data-set and classify trainee surgeons into three

skill levels – novice, intermediate, and expert based on overall assessment (ground
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Novice Expert 

Suturing 

Knot Tying 

Figure 42: Sample frame kernel matrices computed using right hand acceleration
features.

truth) provided by a senior faculty surgeon. We test both MT and SMT techniques

and select features using sequential forward feature selection (SFFS) in a LOOCV

scheme as explained in Chapter 5. We perform parameter selection using grid search

to select number of motion classes (k), GLCM gray levels (Ng), and number of time

windows (W for SMT). We also test the significance of features extracted from dif-

ferent hand locations. To test the generalization across different users, we test both

the LOSO (leave one sample out) and LOUO (leave one user out) set-up.

7.3.1.1 STIP motion features

Table 12 shows the results for our STIP based technique using all STIPs and STIPs

extracted from right and left hand locations. For the suturing task, LH STIPs seem to

provide better performance in both LOSO and LOUO set-ups as compared to STIPs

from all the locations and right hand. In general, extracting STIPs from left and right

hand seems to provide better performance as compared to STIPs from all locations.

Also, combining both left and right hand STIPs doesn’t improve the performance
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Figure 43: Flow diagram for dexterity analysis.

as compared to the left and right hand STIPs when used individually. For the knot

tying task, right hand STIPs provide better performance as compared to all STIPs

and left hand STIPs in both LOSO and LOUO set-ups. For suturing one video was

corrupt and we used two expert videos to learn motion classes for both suturing and

knot tying resulting in thirty-three videos for the suturing task and thirty-four videos

for the knot tying task analyses.

Using sequential information in SMT analysis, performance improvement is ob-

served for all cases for both suturing and knot tying tasks as shown in Table 13.
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Table 12: Percentage of correctly classified videos – MT with STIP features.
Task All STIPs LH STIPs RH STIPs RH–LH STIPs

Suturing
(LOSO)

87.87%
(29/33)

93.93%
(31/33)

90.90%
(30/33)

84.84%
(28/33)

Suturing
(LOUO)

81.81%
(27/33)

84.84%
(28/33)

78.78%
(26/33)

72.72%
(24/33)

Knot Tying
(LOSO)

85.29%
(29/34)

76.47%
(26/34)

85.29%
(29/34)

76.47%
(26/34)

Knot Tying
(LOUO)

79.41%
(27/34)

70.58%
(24/34)

85.29%
(29/34)

70.58%
(24/34)

Table 13: Percentage of correctly classified videos – SMT with STIP features.
Task All STIPs LH STIPs RH STIPs RH–LH STIPs

Suturing
(LOSO)

96.97%
(32/33)

93.94%
(31/33)

100.00%
(33/33)

100.00%
(33/33)

Suturing
(LOUO)

87.88%
(29/33)

87.88%
(29/33)

84.85%
(28/33)

96.97%
(32/33)

Knot Tying
(LOSO)

88.24%
(30/34)

91.18%
(31/34)

91.18%
(31/34)

91.18%
(31/34)

Knot Tying
(LOUO)

85.29%
(29/34)

82.35%
(28/34)

76.47%
(26/34)

79.41%
(27/34)

7.3.1.2 Blob features

Table 14 and 15 shows the results using blob features. Using both left and right

hand features as compared to individual hand locations, we obtain performance im-

provement for both MT and SMT analysis. Reasonable performance improvement is

obtained using SMT as compared to MT in both LOSO and LOUO set-ups.

Table 14: Percentage of correctly classified videos – MT with blob features.
Task LH Blob RH Blob RH–LH Blob

Suturing
(LOSO)

75.75% (25/33) 63.63% (21/33) 78.78% (26/33)

Suturing
(LOUO)

69.69% (23/33) 51.51% (17/33) 63.63% (21/33)

Knot Tying
(LOSO)

70.58% (24/34) 73.52% (25/34) 82.35% (28/34)

Knot Tying
(LOUO)

61.76% (21/34) 64.70% (22/34) 70.58% (24/34)

98



Table 15: Percentage of correctly classified videos – SMT with blob features.
Task LH Blob RH Blob RH–LH Blob

Suturing
(LOSO)

72.73% (24/33) 75.76% (25/33) 78.79% (26/33)

Suturing
(LOUO)

69.70% (23/33) 69.70% (23/33) 75.76% (25/33)

Knot Tying
(LOSO)

76.47% (26/34) 70.59% (24/34) 76.47% (26/34)

Knot Tying
(LOUO)

64.71% (22/34) 64.71% (22/34) 70.59% (24/34)

Table 16: Percentage of correctly classified videos – MT with depth features.
Task LH Depth RH Depth RH–LH Depth

Suturing
(LOSO)

69.69% (23/33) 75.75% (25/33) 93.93% (31/33)

Suturing
(LOUO)

60.60% (20/33) 60.60% (20/33) 81.81% (27/33)

Knot Tying
(LOSO)

64.70% (22/34) 79.41% (27/34) 79.41% (27/34)

Knot Tying
(LOUO)

58.82% (20/34) 61.76% (21/34) 58.82% (20/34)

7.3.1.3 Depth features

Table 16 and 17 show the results with right and left hand depth features. With MT

analysis, better performance is achieved by including right hand depth features for

both the suturing and knot tying tasks. With SMT analysis, classification accuracy

improved for both the tasks and for both LOSO and LOUO set-ups. Interestingly,

the performance of right hand depth features improves substantially with sequential

information in SMT analysis for both suturing and knot tying tasks. Thus, depth

features from the dominant hand seem to capture skill relevant information.

7.3.1.4 Acceleration features

Table 18 shows the results with MT analysis. Both right and left hand acceleration

data provides reasonable performance for the knot-tying task. For the suturing task,

acceleration data from right hand provides better performance as compared to the
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Table 17: Percentage of correctly classified videos – SMT with depth features.
Task LH Depth RH Depth RH–LH Depth

Suturing
(LOSO)

75.76% (25/33) 87.88% (29/33) 81.82% (27/33)

Suturing
(LOUO)

69.70% (23/33) 78.79% (26/33) 63.64% (21/33)

Knot Tying
(LOSO)

67.65% (23/34) 79.41% (27/34) 70.59% (24/34)

Knot Tying
(LOUO)

64.71% (22/34) 70.59% (24/34) 61.76% (21/34)

Table 18: Percentage of correctly classified videos – MT with acceleration features.
Task NH (or LH) Wrist (or RH) Both

Suturing
(LOSO)

60.60% (20/33) 72.72% (24/33) 69.69% (23/33)

Suturing
(LOUO)

54.54% (18/33) 66.66% (22/33) 66.66% (22/33)

Knot Tying
(LOSO)

82.75% (24/29) 72.41% (21/29) 79.31% (23/29)

Knot Tying
(LOUO)

68.96% (20/29) 68.96% (20/29) 62.06% (18/29)

left hand and combination of right and left hand features. Table 19 shows the results

with SMT approach using acceleration features. As seen previously for other feature

types, SMT gives better performance especially using acceleration data from both

the accelerometers. Due to technical difficulties during data acquisition, acceleration

data was not acquired properly for some subjects while performing the knot tying

task. The acceleration data from these subjects was not used in analysis resulting in

twenty-nine samples for knot tying.

In general, better performance is observed using SMT approach as compared to

MT approach. Table 20 shows comparison of best performance obtained by different

feature types. For suturing, acceleration features provide better performance than

blob features followed by depth and STIP features. For knot tying, blob, depth, and

acceleration features provide comparable performance and STIP features perform

better than other feature types. Next, we present the dexterity analysis results for
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Table 19: Percentage of correctly classified videos – SMT with acceleration features.
Task NH (or LH) Wrist (or RH) Both

Suturing
(LOSO)

84.85% (28/33) 81.82% (27/33) 87.88% (29/33)

Suturing
(LOUO)

81.82% (27/33) 78.79% (26/33) 87.88% (29/33)

Knot Tying
(LOSO)

86.21% (25/29) 86.21% (25/29) 89.66% (26/29)

Knot Tying
(LOUO)

79.31% (23/29) 79.31% (23/29) 82.76% (24/29)

Table 20: Comparison of performance with different features.
Task STIPs Blob Depth Acceleration

Suturing
(LOSO)

100% 78.79% 93.93% 87.88%

Suturing
(LOUO)

96.97% 75.76% 81.81% 87.88%

Knot Tying
(LOSO)

91.18% 82.35% 79.41% 89.66%

Knot Tying
(LOUO)

85.29% 70.59% 70.59% 82.76%

different hand motion data.

7.3.2 Dexterity analysis

First, we present the results on dexterity analysis, in terms of the percentage of

correctly classified videos based on the classification mode of SMT based time window

classification as explained in Section 7.2. These results provide validation for SMT

that can be also be used to classify individual time windows in a video into different

skill levels. We obtain reasonably good classification accuracy using different feature

types. Table 21 and 22 show the results obtained with SMT dexterity analysis using

different features from left (or non-dominant) (Table 21) and right (or dominant)

(Table 22) hands. Classification accuracy obtained with left hand is lower than that

obtained with right hand for all the feature types. This indicates that the dominant

hand motion is a better predictor of skill for the suturing task as compared to the
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non-dominant hand motion.

Figure 44 and 45 show the ground truth label and the predicted expertise level

for a novice surgeon using LOUO set up, W = 12 time windows and different feature

types. Note the visual correspondence between overall expertise and time window

based expertise labeling. Since the subject is a novice, most of the frames correspond

to novice level (red). In addition, note that the right hand features result in more

frame correspondence with the ground truth. Thus, the dominant hand is more

predictive of skill for the suturing task.

Figure 46 and 47 show the predicted expertise level for an expert surgeon using

LOUO set up, W = 12 time windows, and different feature types. Note the visual

correspondence between overall expertise and time window based expertise labeling.

Since the subject is an expert, most of the frames correspond to expert level (green).

In addition, note that the right hand features result in more frame correspondence

with the ground truth. Note that the overall skill level (obtained by mode of window

labels) corresponds to the ground truth given by the expert surgeon.

It is interesting to note the information consistency obtained with different fea-

ture types. For example, in the initial frames, the skill labels might not be consistent

among different feature types since the trainees were asked to shake hands for accel-

eration synchronization. However, for most of the remaining frames the skill label

obtained with different feature types remains the same.

The right hand motion of the novice surgeon shows interesting progression from

most of the novice labeled windows to intermediate labeled windows followed by few

expert-like windows in the end. This indicates expert like performance after getting

practiced on initial frames.

With dexterity analysis, we provide predicted skill labels based on specific hand

motion data. Thus, the trainee gets feedback on both the hands, i.e. “how well” they

have performed with respect to the right hand and left hand. In addition, we use
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Table 21: SMT dexterity analysis (left hand).
Task STIPs Blob Depth Acceleration

Suturing
(LOSO)

60.61%
(20/33)

66.67%
(22/33)

63.64%
(21/33)

63.64%
(21/33)

Suturing
(LOUO)

60.61%
(20/33)

60.61%
(20/33)

60.61%
(20/33)

66.67%
(22/33)

Table 22: SMT dexterity analysis (right hand).
Task STIPs Blob Depth Acceleration

Suturing
(LOSO)

75.76%
(25/33)

75.76%
(25/33)

81.82%
(27/33)

81.82%
(27/33)

Suturing
(LOUO)

81.82%
(27/33)

81.82%
(27/33)

81.82%
(27/33)

81.82%
(27/33)

data driven time windowing (SMT), which gives expertise labels for each time window.

Time windows are obtained using equal sized binning of motion class frequency counts

as explained in Chapter 5. This data driven approach avoids manual definition of time

segments or gestures, while still providing expertise level for different time segments.

Frame No. 

Ground truth 

Acceleration 

Depth 

Blob 

STIPs 

   1      2      3        4         5       6        7       8       9     10        11           12 

Novice 

Intermediate 

Expert 

Figure 44: Dexterity analysis for a novice surgeon using left hand features and SMT
technique. Note that for most of the time windows, the predicted skill is novice.
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Figure 45: Dexterity analysis for a novice surgeon using right hand features and SMT
technique. For most of the windows, the subject performs like a novice although some
intermediate and expert like performance is observed in some windows.

7.4 Conclusion

In this chapter, we compared different feature types under different set-ups (LOSO

and LOUO) and for different tasks. We used both MT and SMT techniques. In

general performance improved with inclusion of sequential information as we observed

for Newcastle data set. The GT-Emory data set used in this Chapter was acquired in

different settings as compared to Newcastle data set. In addition, a different expert

surgeon provided the ground truth. Thus, our approach can be used for data collected

in different settings and our results match the expert surgeon’s evaluation.

An interesting outcome of SMT approach is skill labeling of individual time win-

dows. Using hand specific motion information and time windowing, we provide skill

labels to individual time windows with significant correspondence among different fea-

ture types. Thus, for dexterity analysis, we can use the less computationally expensive
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Figure 46: Dexterity analysis for an expert surgeon using left hand features and
SMT technique. Left hand motion does not seem to be a good predictor of overall
skill.

features such as the three dimensional acceleration data to get equivalent performance

as obtained with STIPs, blob and depth features. In addition, the computation of

vision feature might get difficult in real surgical scenarios. The acceleration data

might be more useful in that situation.
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Figure 47: Dexterity analysis for an expert surgeon using right hand features and
SMT technique. The subject performed like an expert for most of the time windows.
Right hand motion seems to be a better predictor of overall skill as compared to left
hand motion.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This thesis explores automated skill assessment in the domain of surgical education

and training. Specifically, we consider the basic skills of suturing and knot tying as

they are taught to a majority of medical students and require careful manual assess-

ments based on several different criteria. We present motion texture and sequential

motion texture frameworks for both relative (classification) and absolute (prediction)

skill assessment along with dexterity analysis.

The main contribution of this work is a generalized framework for skill assessment.

The framework is built upon low-level motion data such as STIPs, blob features and

three-dimensional acceleration data, which can be encoded into frame kernel matrices.

The distinct texture patterns in frame kernel matrices correspond to the skill level.

Texture analysis can be used to extract skill defining information from frame kernel

matrices.

We present motion texture analysis, and sequential motion texture analysis that

incorporates sequential information also. Sequential motion texture analysis also

provides data driven time segments, which can be assessed individually to provide

segment-based skill assessment. Using simple mechanisms to isolate hand motion

features such as by using colored gloves and by using data driven sequential mo-

tion texture analysis dexterity can be assessed. Using appropriate feature selection

methods, skill can be assessed either for a single task or a corpus of tasks.

8.1 Future Directions

There are several directions for future research that can branch out of this thesis.

Some of the concepts can be directly extended to develop new ways to measure
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surgical skill levels and others can be built upon the framework to obtain even finer

measures of skill.

8.1.1 Incorporating other attributes besides motion

In this thesis, we presented skill assessment based on raw motion data. However,

other attributes such as surgeon’s gaze, hand-eye coordination and other biometrics

such as body temperature might also be used for skill assessment. Moreover, progres-

sion of skill acquisition can be monitored over a period of time and time-based skill

assessment models can be developed.

8.1.2 Real time skill assessment and feedback

In this work, we have presented framework for surgical skill assessment in a retrospec-

tive manner by analyzing the video recordings of surgical trainees. Real time system

for skill assessment and dexterity feedback can be developed by training the system on

more data-sets and parallel computing for real time processing. Computational load

can also be reduced by careful feature selection and selecting less computationally

expensive features and using several motion sensors. An interesting feedback could

be providing a live comparison with expert’s motion so that trainees can get real time

feedback on their performance.

8.1.3 Extending skill assessment to real surgical procedures

The scope of this thesis is confined to surgical training on simulation models. How-

ever, as the trainees achieve proficiency, they start learning complicated surgical pro-

cedures that are performed in the operating room. Assessment of surgical procedures

that are performed on real patients in an operating room is an important research

direction. This might involve challenges such as not being able to track the hands

due to occlusions by blood tissue etc. Wireless motion sensors such as accelerome-

ters might be suitable for real operating room assessments. In addition, the system
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may be extended to assess collaborative surgical environments where each surgeon’s

motion can be analyzed within the context (or phase of the surgery).

8.1.4 Video information summary

We used the sequential motion texture analysis for providing skill scores in different

time windows. This technique can also be used to generate summary of video data.

For example, the activity type or other meta-data can be substituted for skill levels

and models can be trained using this information. New video data can be labeled for

meta-data information using trained models.

8.1.5 Motion based surgical phases

Using hand motion data, we noticed specific configuration of STIPs as shown in

Figure 48. The top row in Figure 48 shows two parallel bands of STIPs on the

dominant hand (green glove) of the surgeon. On the other hand, both top and bottom

left frames show the movement of non-dominant hand (red glove). The bottom right

frame shows only the movements of dominant hand. Thus, specific arrangement of

moving points can be used to define surgical phases. This will also help finer analysis

of motion data by correlating the surgical phases with motion data.
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Figure 48: Sample frames showing specific arrangements of STIPs (marked by ar-
rows) on the surgeon’s hands and instruments. These specific geometric relations
between STIPs can be used to define gestures without manual intervention.
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APPENDIX A

BASIC INTRODUCTION TO SUTURING AND OSATS

Summary Skill assessment of even basic surgical tasks, such as suturing, involves

qualitative and sequential motion characteristics. Scoring systems such as OSATS are

used in medical schools and teaching hospitals and they provide standard assessment

guidelines to evaluate surgical trainees on several different criteria.

A.1 Need for objective assessment in surgery

In surgical residency programs, learning of surgical skills is an essential part of the

training process. The need for formal testing of surgical technical skills has been

noticed and studied by various groups. For instance, Martin et al. [37] stated that

the introduction of formal testing for specific operative skill could be used to provide

constructive feedback that would be of use in resident promotion decisions and could

identify deficiencies in the training program.

Advanced surgical procedures are mostly learnt in the operating room under the

supervision of expert surgeons. In addition, the basic skills may be learnt in animal

laboratory using anesthesia on animals. However, due to moral and ethical issues

involved in the use of live animals, it is becoming difficult to justify the use of animals

if alternative methods and materials are available [37]. Another option for teaching

and testing technical skills is by using the bench models. As compared to patients

and live animals, the bench models are lower in costs, have high portability, reuse the

materials, and are readily available.

In order to seek reliable and valid methods for surgical skill evaluation, checklists

and detailed global rating scales were introduced as far back as in 1971 [29]. Martin
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et al. proposed the Objective Structured Assessment of Technical Skills (OSATS)

criteria to evaluate surgical skills in late 1990s. The OSATS model involves direct

observation of residents performing a variety of structured operative tasks. The OS-

ATS model was developed for both live animals and bench models were used for this

and two types of scoring systems were developed – an operation-specific checklist and

a detailed global rating scale.

Before discussing the details of the global OSATS criteria, we briefly describe the

surgical tasks analyzed in this thesis. This will also provide the background required

to understand the details in the OSATS.

A.2 Surgical tasks

In this Section, we briefly provide a description of two basic surgical tasks–suturing

and knot tying. Our description here is in context with OSATS and is intended to

provide background to understand the work in later chapters. However, for details

on specific tasks, the reader is referred to [19, 39].

A surgical suture is used to hold body tissues together after an injury or surgical

incision. Figure 49 shows the instruments used for surgical suturing and Figure 50

shows the suturing needle. Suturing needle is a curved needle with main body and

swage. The swage is the point where the material joins with the needles. It creates a

single, continuous unit of suture and needle. There are three different types of swage.

The quality of the swage is critical to the performance of the suture. A high quality

needle and the strongest thread becomes futile if the needle detaches during surgery.

The first step in suturing involves mounting the needle with attached suture into

a needle holder. Then, the needlepoint is pressed into the tissue and advanced along

the trajectory of the needle’s curve until it emerges, and pulled through. The trailing

thread is then tied into a knot. Sutures should bring together the wound edges, but

should not cause indenting or blanching of the skin, since the blood supply may be
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impeded with increased risk of infection and scarring [28].

There are two common suture types – interrupted and running. In interrupted

suture, the stitches are not connected to each other. Instead, they are placed and

tied off individually. Placing and tying each stitch individually is time-consuming, but

this technique keeps the wound together even if one suture fails. The knot crosses the

wound perpendicularly. Interrupted sutures allow the surgeon to make adjustments

as needed to properly align wound edges as the wound is sutured. Figure 51 (left)

shows the interrupted sutures.

In running sutures, the surgeon uses a continuous piece of suture material and

works on alternating sides of the opening to pull the edges together to promote heal-

ing. Main advantage of the running suture is that it is easy and fast, but the stitch

has several disadvantages such as the tendency to let the tissues shift or ripple and er-

roneous approximation of wound edges compared to the interrupted stitch. Figure 51

(right) shows the running sutures. Compared with running sutures, interrupted su-

tures are easy to place, have greater tensile strength, and have less potential for

causing wound edema and impaired cutaneous circulation.

Several factors determine the choice of running or interrupted sutures such as the

wound’s location, cosmetic concerns, and the thickness of the tissue or skin. In both

running and interrupted sutures, two important sub tasks are suture placement and

knot tying. For suture placement, the needle is allowed to penetrate the skin at a

90◦ angle to minimize the size of the entry wound. The curved shape of the needle is

followed by circular wrist movement allowing the needle to exit perpendicular to the

skin surface [19].

Here we briefly describe the commonly used square knot. First, the tip of the

needle holder is rotated clockwise around the long end of the suture material for two

complete turns. The tip of the needle holder is used to grasp the short end of the

suture. The short end of the suture is pulled through the loops of the long end by
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Needleholder Forceps Scissors 

Figure 49: Instruments used in surgical suturing

crossing the hands, such that the two ends of the suture material are situated on

opposite sides of the suture line. The needle holder is rotated counterclockwise once

around the long end of the suture. The short end is grasped with the needle holder

tip, and the short end is pulled through the loop again.

The suturing task requires clear motions performed in a well-defined manner and

handling the instruments in an appropriate way to minimize tissue damage. All sur-

gical students practice suturing skills as part of their training. To reduce subjectivity

in assessing the trainee’s skills, the global rating scales such as Objective Structured

Assessment of Technical Skills (OSATS) are used. Next, we provide a brief description

of the global OSATS rating scale.

A.3 OSATS

Table 23 shows the global OSATS rating scale [37]. The global OSATS criteria are

briefly described below in the context of motion and to provide the foundation for

motion texture analysis in this work.
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Figure 50: Suturing needle.
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Figure 51: Interrupted and running suture

1. Respect for tissue (RT): This criterion describes the extent of damage

caused to the tissue while performing the procedure. It measures how well

the tissue is handled. The damage to the tissue may not be caused in a de-

terministic sequential manner. Thus, this criterion is mostly qualitative and

depends more on the motion quality and less on the execution order.

2. Time and motion (TM): Time and motion relates to efficiency of time while

performing the procedure. In the context of motion, this criterion depends on
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Table 23: Objective structured assessment of technical skills (OSATS) scale [37].
Criteria 1 2 3 4 5

Respect for
tissue

Frequently used
unnecessary force
on tissue or caused
damage by inap-
propriate use of
instruments

Careful handling of
tissue but occasion-
ally caused inadver-
tent damage

Consistently han-
dled tissues ap-
propriately with
minimal damage

Time and
motion

Many unnecessary
moves

Efficient time and
motion but some
unnecessary moves

Clear economy
of movement and
maximum efficiency

Instrument
handling

Repeatedly makes
awkward or tenta-
tive moves with in-
struments through
inappropriate use

Competent use of
instruments but oc-
casionally appeared
stiff or awkward

Fluid movements
with instruments
and no stiffness or
awkwardness

Suture han-
dling

Awkward and un-
sure with repeated
entanglement, poor
knot tying and in-
ability to maintain
tension

Careful and slow
with majority of
knots placed cor-
rectly with appro-
priate tension

Excellent suture
control with correct
placement of knots
and correct tension

Flow of op-
eration

Frequently stopped
operating and
seemed unsure of
next move

Demonstrated some
forward planning
and reasonable
progression of
procedure

Obviously planned
operation with ef-
ficiency from one
move to another

Knowledge
of proce-
dure

Insufficient knowl-
edge, looked unsure
and hesitant

Knew all important
steps of operation

Demonstrated fa-
miliarity with all
steps of operation

Overall per-
formance

Very poor Competent Clearly superior

unnecessary moves resulting in wasted time. The unnecessary moves might

occur in a sequential manner if the trainee performs these moves during spe-

cific subtasks, e.g. knot tying or they might happen abruptly especially for

trainees in very early stages. Thus, this criterion may have both qualitative and

sequential aspects depending upon the sub-tasks and the trainee’s experience.

3. Instrument handling : This criterion pertains to instrument usage. Specif-

ically, the fluidity of motion is examined while using the instruments. It is
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Figure 52: Qualitative and Sequential OSATS criteria.

important to note that this criterion might be related to respect for tissue since

tissue damage might be caused by inappropriate usage of instruments. Since

instruments are typically used during the whole procedure, this criterion is more

qualitative but might have some sequential aspects as well.

4. Suture handling : Suture handling predominantly pertains to knot tying. This

criterion is mostly sequential since knot tying is done sequentially (e.g. in

interrupted suturing) and within knot tying there are predefined moves.

5. Flow of operation : This criterion is mostly sequential since the surgical

moves are predefined. However, during early training, the trainees might be

unsure of the procedure and might perform steps out of sequence. Note that

this criterion may be related to knowledge of procedure since forward planning

and flow will depend on knowledge of procedure.

6. Knowledge of procedure : This criterion is sequential and depends on the

how well the trainee knows the sequence of steps to be performed. This crite-

rion is exemplified by the execution of the procedure and the flow of operation

criterion.
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7. Overall performance : Overall performance depends on both sequential and

qualitative motion aspects.

In conclusion, the OSATS criteria are very diverse and it is challenging to de-

sign an automated system to evaluate all these criteria within a common framework.

Figure 52 shows the categorization of the seven OSATS criteria into sequential and

qualitative aspects along with their relation to each other.
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