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ȳ/ā/ē
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SUMMARY

The �eld of structural health monitoring (SHM) is concerned with the continu-

ous, long-term assessment of structural integrity. So-called �smart structures� have

embedded sensing elements that interrogate the structural framework and supply

time-history data to algorithms designed to recognize the appearance and progres-

sion of damage. One commonly investigated SHM technique uses guided ultrasonic

waves, which travel through the structure and interact with damage. Measured sig-

nals are then analyzed in software for detection, estimation, and characterization of

damage. A particularly attractive con�guration for such a system uses a spatially-

distributed array of �xed piezoelectric transducers; such a setup is inexpensive and

can cover large areas. Typically, one or more sets of prerecorded baseline signals are

recorded when the structure is in a known state, with imaging methods operating on

di�erences between follow-up measurements and these baselines.

Conventionally, images are created using the well-known delay-and-sum imaging

algorithm, which back-propagates signals and then adds them together. This al-

gorithm often performs poorly when multiple sites of damage are present or when

interference is present in the signals due to multipath e�ects or poor baseline sub-

traction. Presented in this dissertation is a di�erent class of algorithms that rely on

sparse reconstruction, which attempts to solve inverse problems for which the solu-

tion is known to have structure. Using an intelligently-selected redundant dictionary,

signals can be decomposed into a small number of atoms that have some physical

meaning. For this problem, that meaning is location-based, allowing a large recon-

struction coe�cient to directly correspond to damage at some location. A new class of
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Lamb wave SHM imaging methods is developed that uses this construction of sparsity

to produce imaging results that are superior to conventional delay-and-sum methods.

Two types of sparse imaging techniques are demonstrated in this work. The �rst,

which relies on sparse reconstruction of raw signals, signal analytic representations,

or signal envelopes, uses an a priori assumption of scattering behavior to generate a

redundant dictionary matrix where each column corresponds to a pixel in the two-

dimensional image. The measured signals are modeled as a linear combination of a

small number of dictionary columns, with damage at a particular pixel indicated by

a non-zero coe�cient for its corresponding column. The second method extends this

concept by using multidimensional models for each pixel, with each possible location

on the discretized region of interest corresponding to a �block� in the dictionary matrix

instead of a single column. This block-sparse method does not require any advance

knowledge or assumptions of scattering behavior.

The contributions of this work include:

• Formulation of damage detection and imaging as a sparse (and block-sparse)

reconstruction problem;

• Analysis of the e�ects of envelope detection on noisy signals that are used for

sparse reconstruction;

• Experimental veri�cation of the methods, including using nondispersive dictio-

naries to demonstrate robustness; and

• A method to extract scattering patterns from block-sparse imaging results.

The analysis and experimental results presented demonstrate the validity of the

assumption of damage sparsity. Additionally, experiments show that images gener-

ated with sparse methods are superior to those created with delay-and-sum methods;

sparsity-based techniques are experimentally shown to be tolerant of propagation

xviii



model mismatch. The block-sparse method described here also allows the extrac-

tion of scattering patterns from its reconstruction coe�cients, which can be used for

damage characterization; this capability is veri�ed with experimental data.
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CHAPTER I

INTRODUCTION

1.1 Overview

Ultrasonic testing has become a reliable and accepted method of damage interrogation

for over a half-century. It is possible to excite ultrasonic waves in a structure such

as an aircraft wing and examine the resultant wave�eld for re�ections from internal

�aws, which may be physically inaccessible or too small to detect by visual inspection.

Traditional ultrasonic inspection, however, is often intrusive and costly; for example,

aircraft are partially disassembled for scheduled inspections. The more recent �eld

of structural health monitoring envisions a di�erent paradigm, where sensors are

integrated into the structure and regularly interrogate it for damage. These data can

be monitored over the life of the structure to detect any new damage formation and

to monitor the severity of existing damage. If damage is detected, a more thorough

o�ine inspection can then be performed.

One particularly attractive method of performing ultrasonic SHM is through the

use of guided waves. In a plate-like structure, these waves are named Lamb waves,

after mathematician Horace Lamb, who published the �rst theoretical description

and analysis of their behavior [1] almost a century ago. Though the potential ben-

e�ts of Lamb wave ultrasonic testing were recognized in the mid-20th century [2],

it took many decades before such techniques became practical. This is for a variety

of reasons, including the need for more powerful computers and a more complete

understanding of Lamb wave excitation, measurement, and behavior. Research into

nondestructive testing and evaluation with guided ultrasonic waves, including Lamb

waves, began in the late 1980s and matured throughout the 1990s; a good summary
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of the techniques developed is presented in [3]. Early investigations into guided wave

SHM focused on Lamb wave behavior resulting from various manifestations of damage

in di�erent material types and shapes [4, 5, 6], including analysis of the advantages

and disadvantages of di�erent Lamb wave modes with respect to damage type. Some

of the �rst damage-detection methods included tomography [7, 8] and, later, the use

of phased arrays [9, 10, 11], sparse arrays [12, 13, 14, 15], and synthetic aperture

techniques [16, 17].

Of particular note is the work by Wang et al. in 2004 [12] that introduced the use

of signal baselines in the context of sparse array imaging. This research also adapted

delay-and-sum beamforming, a well-known radar technique, for use with guided waves

for the problem of damage detection and localization with a sparse array. Delay-and-

sum techniques are still considered the gold standard in SHM due to their robustness

and conceptual simplicity, but the performance of such methods is limited, especially

in cases with multiple sites of damage or high levels of interference or clutter. While

various improvements have been proposed, e.g. with statistical models or other a

priori assumptions, to date there has been no e�ort to incorporate the reasonable

assumption of damage sparsity. This research utilizes the sparsity assumption � that

is, the assumption that damage is limited to a small number of discrete locations �

to improve detection and localization of damage in plate-like structures.

Recently, interest in the �eld of sparse reconstruction has received considerable

attention, in part due to the rapid development of the related �eld of compressed

sensing. The fundamental idea behind sparse reconstruction is that most �interesting�

signals can be represented with a very small number of coe�cients, provided their

representation is chosen in a smart way. Instead of using least-squares methods,

linear inverse problems are solved using methods that produce sparse solutions (i.e.,

vectors whose entries are mostly zero-valued). This a priori assumption of a sparse

signal can often yield remarkable results when compared to least-squares methods;
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under certain circumstances, it is even possible to guarantee exact recovery [18].

A sparse solution usually makes the most sense in the context of an overcomplete

dictionary representation, which contains a very large number of columns, or atoms.

The measurement vector is assumed to be linear combination of a small subset of the

atoms; the �hard� portion of the problem is properly selecting which elements belong

in this subset for a given measurement.

1.2 The Problem of Interest

1.2.1 Introduction to the Problem

The work here considers a linear, elastic plate in a low-noise laboratory environment

and uses a sparse array of transducers. For analytical purposes, the plate is considered

to be of in�nite size, and edge re�ections from real data are treated as interference

(i.e., coherent noise). Some closed region of the plate is designated the region of

interest (ROI), inside which it is desired to detect any damage. A total of NT trans-

ducers are a�xed to the plate; to simplify notation, the transfer function of each

transducer is ignored (i.e., assumed to be 1), though incorporating known transducer

transfer functions into the algorithms presented is straightforward. This results in a

total of P = NT (NT − 1) /2 unique transducer pairs, with some arbitrary ordering,

1, 2, . . . , P . Within each pair, one transducer is designated the source and the other

the receiver; let si represent the 2-dimensional location of the source for pair i, and

let ri represent the location of the receiver.

It is assumed that the material properties of the plate and transducers are known;

in particular, there is a frequency that allows single-mode propagation as described

in [19], and it is assumed that the dispersion curve of that mode, cp [f ], is known.

(If the dispersion curve is not known, the group velocity can be used instead; the

e�ects of such a substitution are analyzed in Chapter 6.) Details about Lamb wave

propagation and scattering are presented in Section 2.2.
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1.2.2 Baseline and Follow-Up Measurements

For the following sections, it is be useful to use vector notation; appropriate choices

of sampling frequency and signal duration are assumed. A baseline measurement set

is taken while the plate is in a known condition, with one transducer transmitting

at a time while the others record received waves. Reciprocal signals (i.e., from a

pair's receiver to its source) may be recorded, but are not used for reconstruction,

as the principle of reciprocity dictates that the two reciprocal signals should be the

same. (However, these signal pairs can be used for other purposes, such as detecting

transducer failure [20].) Denote the excitation signal v0 ∈ RL, and the measured

waveform for pair i as yBL
i ∈ RL.

At some future time, a follow-up measurement is performed, under the same

conditions and in the same fashion as the baseline measurement. Denote the follow-

up wave�eld measurement for pair i as yFU
i ∈ RL. If no damage was introduced,

these signals should be equal to the baseline signals (except for noise); otherwise,

di�erences are assumed to be caused by newly-introduced damage.

1.2.3 Residual Measurement

At this point, baseline subtraction is performed; this is further described in Sec-

tion 2.3.2; the residual signal vectors are denoted yi. The simplest type of base-

line subtraction is simple subtraction, where the residual signals are computed as

yi = yFU
i − yBL

i . All signal processing is performed directly on the residual measure-

ments, which represent the changes to the plate since the baseline was recorded.

1.3 Notation

Throughout this text, bold, capital letters denote matrices (e.g., the matrix A). Bold,

lower-case letters denote vectors; this notation is used interchangeably with signal

notation whenever it is convenient (so, v0 and v0 [t] both refer to the same vector,
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but in di�erent contexts). A column of a matrix is referenced by a lower-case letter

and subscript (e.g., if context provides, ai is the ith column of the matrix A). Scalars

are never bold and can use the same notation to refer to an entry of a vector (e.g., xi

is the ith entry of x). All �gures use a custom colorset that appears grayscale when

printed in black and white.

1.4 Organization

This research utilizes sparse reconstruction techniques for the problems of damage

detection and localization. First, a history of both the problem and of sparse recon-

struction is presented in detail in Chapters 2 and 3. Next, it is shown in Chapter 4 that

a redundant dictionary of location-based signal components provides a representation

in which scattered signals are su�ciently sparse, and that furthermore solving a linear

inverse problem with sparse reconstruction is equivalent to �nding sites of damage.

This technique is then extended in Chapter 5 to incorporate a multidimensional linear

model that uses block-sparse reconstruction to allow for robust damage detection as

well as characterization. Extensive experimental results are shown in Chapter 6 and

compared to existing delay-and-sum techniques, and concluding remarks are made in

Chapter 7.

5



CHAPTER II

BACKGROUND ON ULTRASONICS

2.1 Introduction

Nondestructive testing and evaluation (NDT&E) is a collective term for many tech-

niques that inspect a structure without damaging it. Methods include the use of

X-rays, eddy currents, and, of particular importance to the proposed research, ultra-

sonic waves. Ultrasonic testing is used extensively in many industries; for example, it

is common in the aircraft industry, where it is used in a wide variety of materials [21,

pp. 8-21]. A particular advantage is the ability to detect subsurface �aws in many

materials without harming the structure or posing health risks to the operator [22].

The most common form of ultrasonic NDT&E is through the use of bulk waves that

propagate through the material, either in a speci�c direction or in a spherical pattern,

depending on the method of excitation. For example, a piezoelectric transducer may

be used to excite an ultrasonic wave which propagates into the material. This wave

is then re�ected at the opposite surface and the amplitude response is recorded at

the surface, either by the same transducer (a con�guration known as pulse-echo) or

a second transducer (called through-transmission when the transducers are on oppo-

site sides of the material, or pitch-catch when they are on the same side). If a �aw

is present, either additional re�ections will be present in the recorded signal, or an

expected echo will be missing or modi�ed; both are consequences of interaction of the

ultrasonic wave with the �aw.

While well-established, these conventional methods can be quite expensive and

time-consuming. For example, in a pulse-echo con�guration, the entire structure

needs to be �scanned,� since only �aws in close proximity to the transducer will be
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detected. Structures examined with this method are typically inspected by hand or

with the help of robotic scanning systems. In the U.S. airline industry, the FAA man-

dates inspections either annually or as part of a continuous airworthness maintenance

program [23]. Most airlines choose the latter option, which typically requires frequent

but less thorough routine inspections and occasional exhaustive inspections [21, pp. 8-

15], which require the aircraft to be disassembled for comprehensive testing. Other

structures such as bridges can be quite di�cult to examine, since there are many ar-

eas which inspectors cannot access. Even in cases where manual inspection is readily

available, operators must be well-trained to discriminate between scattered signals

from damage and other types of signal scattering such as from rivets or material

boundaries.

The �eld of structural health monitoring (SHM) focuses on continuous monitoring

of structures to reduce or eliminate the need for these costly and time-consuming man-

ual tests. Time-history data is often emphasized in many SHM systems to attempt to

determine and predict the integrity of a structure and determine when maintenance

or replacement is necessary. Ultrasonic methods are one of several techniques used in

SHM, and are especially suited for aircraft. In contrast, other sensing methods are

often more appropriate for general monitoring of very large structures such as bridges;

for example, after the I-35W Mississippi River Bridge tragically collapsed in 2007, it

was replaced with a �smart bridge� that incorporated strain gauges, accelerometers,

and �ber optic cable [24]. Nevertheless, ultrasonic techniques work well for portions

of these civil structures, such as welds [25] and portions of the structure with complex

geometry [26]. Ultrasonic guided waves are also commonly used to inspect pipes [27],

where the one-dimensional propagation enables very long travel distances [28].
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2.2 Guided Ultrasonic Waves

2.2.1 Introduction

In linear, isotropic solids, there are two di�erent types of ultrasonic bulk waves: longi-

tudinal (typically called P-waves, short for primary or pressure waves) and transverse

(known as S-waves, short for secondary or shear waves). These two types of waves

have di�erent propagation velocities, cl and ct, respectively; with the exception of

certain metamaterials, cl > ct in solids [29, p. 124]. Mathematician Horace Lamb

predicted the existence of ultrasonic guided waves in plates in 1917 that could form

as a result of the interaction of the two types of bulk waves with the plate boundaries

[1]. These waves use their solid medium as a waveguide; i.e, they propagate cylin-

drically outward as a two-dimensional wave within the structure when excited at a

point.

D. C. Worlton proposed an ultrasonic inspection method in the late 1950s [2]

using ultrasonic guided waves. At the time, they were predicted only in theory; in

1961 he published the �rst experimental veri�cation of their existence [30]. Lamb

waves are particularly attractive because of their ability to propagate over relatively

large distances, typically a meter or more, and can be sensitive to damage throughout

the plate thickness [4]. Lamb wave behavior, however, is complicated: the waves are

dispersive (i.e., di�erent frequency components propagate at di�erent velocities), and

like many types of guided waves, Lamb waves exist as a countably in�nite number

of propagation modes. Each of these modes arises when the longitudinal and shear

bulk waves interact with the two plate surfaces in such a way that they coalesce into

a propagating mode.

2.2.2 Lamb Wave Propagation Modes

Strictly speaking, the term �Lamb wave� has historically referred only to waves with

out-of-plane motion in a �at, linear, isotropic plate; however, the term is often applied
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more loosely to include the horizontally-polarized SH waves and/or any ultrasonic

guided wave in a plate-like structure, including layered plates and pipes with low

curvature. Here, the term is used only to refer to the more strict de�nition, with

other waves referred to simply as guided waves or quasi-Lamb waves.

A �at, linear, isotropic plate supports an in�nite number of Lamb wave propa-

gation modes [31, p. 70]; the behavior of these propagation modes depends on the

plate thickness h; the longitudinal and transverse (shear) bulk wave velocities, cl and

ct, respectively; and the frequency f . A Lamb wave has a class and an integral

order. There are two classes of propagation modes, symmetric modes and antisym-

metric modes, whose names refer to the displacement pro�le of a propagating wave.

The propagating Lamb wave modes have whole-number orders; the symmetric and

antisymmetric modes of order n are denoted Sn and An, respectively. With the ex-

ception of the zero-order S0 and A0 modes, which may exist at all frequencies, a Lamb

wave mode may not exist below its corresponding nascent frequency. The nascent

frequencies of symmetric and antisymmetric modes are of the form [31, p. 71]

fS =
{

0.5
cl
h
,
ct
h
, 1.5

cl
h
, 2

ct
h
, 2.5

cl
h
, . . .

}
fA =

{
0.5

ct
h
,
cl
h
, 1.5

ct
h
, 2

cl
h
, 2.5

ct
h
, . . .

}
,

(1)

where h is the plate thickness. Note that since cl and ct are unequal, the cuto�

frequencies for each mode class are not necessarily in the order presented in Eq. 1;

the symmetric and antisymmetric mode orders are always numbered by increasing

nascent frequency. In addition to the propagating Lamb wave modes, there are an

in�nite number of non-propagating (evanescent) modes which exist only in the near-

�eld of their point of excitation or at plate boundaries. These waves are not typically

used for damage detection and their existence may often be neglected.

Signals that contain multiple modes are signi�cantly more di�cult to analyze

than those that contain a single mode. At low enough frequencies, only the S0 and

A0 Lamb wave modes may exist. Since cl > ct in normal solids, any excitation
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at frequencies below fA1 = 0.5
ct
h

will eliminate any higher-order Lamb wave modes,

limiting any signal at such frequencies to two modes. Furthermore, it is often possible

to select a frequency for which a transducer is �tuned� to one of the two fundamental

modes, suppressing the other almost completely to create an almost purely single-

mode Lamb wave excitation [19]. This allows Lamb wave SHM systems to use waves

that are approximately single-mode to simplify analysis, though the speci�c frequency

required depends on the structure in question as well as the transducer geometry.

In addition to symmetric and antisymmetric Lamb wave modes, there are also SH

waves which have horizontal polarization, perpendicular to the direction of propaga-

tion [32, p. 190]. These guided waves are also used for SHM [33], but their use is

not described here. Circular transducers with vertical or radial polarization, such as

those used for the experiments here, do not generate or e�ectively measure SH waves,

allowing this type of guided wave to be safely ignored.

2.2.3 Dispersion

Each Lamb wave mode has its own dispersion pro�le, which describes the phase and

group velocities of the wave mode as a function of frequency. These pro�les, also

called dispersion curves, are most often calculated with computer software such as

DISPERSE [34] or Vallen Dispersion [35]. The dispersion curve of a Lamb wave mode

expresses the angular frequency ω as a function of wavenumber k and determines

how the shape of a wave pulse changes as it propagates. The phase velocity cp can

be expressed through the relation cp := ω/k = 2πf/k; the group velocity is de�ned as

cg := ∂ω/∂k. For a speci�c Lamb wave mode with a known phase velocity dispersion

curve cp (f), it is possible to describe the far-�eld shape of a cylindrically-propagating

wave [32, p. 220] after it has propagated a distance d from its source:

v (t) = F−1

{(
d

dref

)− 1
2
(
F
{
v0 (t)

}
(f)

)
exp

(
−i2πfd

cp (f)

)}
, (2)

10



where v0 (t) is the time-domain waveform excited by the source, dref is some reference

distance, F {·} denotes the discrete Fourier transform, and i =
√
−1. The �rst term in

Eq. 2 describes amplitude decay via geometric spreading, while the last term describes

propagation behavior of individual frequencies. It is convenient to express Eq. 2 more

concisely and in discrete time. Let v0 [t] be the source excitation, sampled at an

appropriate frequency (i.e., above the Nyquist rate). De�ne the propagation operator

Pcp in terms of v0 to represent the shape of a single-mode guided wave packet which

is excited at location p1 and measured at location p2 with a linear, isotropic plate as

a medium:(
Pcp

p→p

v0

)
[t] := F−1

{(
‖p2 − p1‖2

dref

)− 1
2

F {v0} [f ] exp

(
−i2πf ‖p2 − p1‖2

cp[f ]

)}
.

(3)

The inverse operation P−1
cp indicates reverse propagation and is de�ned(

P−1
cp

p→p

v0

)
[t] := F−1

{(
‖p2 − p1‖2

dref

)+ 1
2

F {v0} [f ] exp

(
+i2πf ‖p2 − p1‖2

cp[f ]

)}
.

(4)

Due to the superposition principle, these operations are linear in the argument v0.

2.2.4 Guided Wave Interaction with Damage

Consider an undamaged, in�nite plate with two ideal point-transducers; one is the

source (transmitter) and is located at s := [sx, sy]
T and the other is the receiver

and is located at r := [rx, ry]
T. Suppose a single-mode Lamb wave is excited by the

source transducer, with a time-domain waveform v0 [t]. The waveform measured by

the receiver, ignoring noise and material attenuation, is then measured as

vdirect [t] = Pcp
s→r

v0 [t] . (5)

A guided wave is scattered when it interacts with a defect within the medium of

propagation. The behavior of this secondary wave is a function of the geometry of the

defect, and may depend on numerous factors, including incident angle, Lamb wave
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mode, and frequency. The scattered wave may be highly directional and is typically

phase-shifted from the original wave. It is also possible for waves of other modes to

appear, a phenomenon known as mode conversion.

Small scatterers are often modeled as point scatterers that act using a linear

scaling called a scattering pattern, which is the frequency response as a function of

the incoming and outgoing angles. The scattering pattern is sometimes represented

as a two-dimensional lookup table known as a scattering matrix [36]. The point

scattering assumption is valid in the far �eld of the defect (outside the range of the

Lamb wave evanescent modes, which is typically on the order of one wavelength) and

when the order of magnitude of the size of the scatterer is the same as, or smaller

than, that of the Lamb wave mode's wavelength. More formally, consider once again

the two transducers located at s and r, and consider some scatterer at location q. The

model of the scattering pattern H
[
f ; θin, θout

]
assumes that the scattered portion of

the wave�eld measurement by the receiving transducer is (once again, ignoring noise)

vscattered [t; s, r,q, H] = Pcp
q→r

(
h [t; θs,q, θq,r] ∗ Pcp

s→q

v0 [t]

)

= h [t; θs,q, θq,r] ∗ Pcp
q→r

Pcp
s→q

v0 [t] ,

(6)

where θp1,p2 = ∠ (p2 − p1) and h = F−1 {H}. (Note that in practice, the convolution

in Eq. 6 is performed by multiplying by H
[
f ; θin, θout

]
in the frequency domain, but

this is tedious to repeatedly express with notation used here. Instead, the scattering

impulse response is used for conceptual simplicity.) H may depend on additional

parameters that are not explicitly indicated here. If a defect induces mode conversion,

there will be multiple scattering patterns; for example HS0→A0

[
f ; θin, θout

]
would

contain the amplitude and phase shift information of an S0-to-A0 mode conversion.

Since the excitation frequency is assumed to be chosen to tune a transducer to a single

mode on both generation and reception, any mode conversion can be neglected. In

addition to analytical results of simple damage shapes, estimates of scattering patterns
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for many types of damage such as through-holes and cracks are commonly obtained

using �nite element simulations or from wave�eld experiments using scanning laser

vibrometry (e.g., [37, 38, 39, 40, 41]); however, in many cases it is impossible to

predict in advance what type of damage will occur in a structure. A small library of

precomputed scattering patterns is of limited use in these cases.

A common simplifying assumption in damage detection is the single-scattering

assumption, where multiple defects are assumed to only interact with the direct wave;

second-order scattering is neglected. For K scatterers, where scatterer k is at location

qk, the combined scattered waveform is approximated as

vscattered [t; s, r, {qk}, {Hk}] ≈
K∑
k=1

{
hk [t; θs,qk

, θqk,r] ∗ Pcp
qk→r

Pcp
s→qk

v0 [t]

}
. (7)

This sort of simpli�cation is related to the Born approximation, which is used in

a diverse set of �elds related to scattering theory, from synthetic-aperture radar to

quantum mechanics, where a scattered �eld is assumed to be a function only of the

incident �eld. In addition to a reduction in analytical and computational complexity,

this simpli�cation also linearizes vscattered in terms of each piece of damage, which is

necessary to use sparse reconstruction methods, and is implicit in many other imaging

algorithms, such as DAS. This type of assumption is only valid when the magnitude

of the scattered �eld is much smaller than that of the incident �eld. For the case of

Lamb waves, the scattered �elds of interest (i.e., when damage is small) are typically

one to two orders of magnitude below that of the incident �eld.

2.3 Guided Wave Structural Health Monitoring

Recently, the concept of structural health monitoring (SHM) has been considered,

either as a replacement for or supplement to conventional NDT&E. The fundamental

concept of SHM is the implementation of automated material interrogation processes

that provide continuous monitoring of a structure, such as a pipe, bridge, or aircraft.

An SHM system thus provides a set of historical data for the structure, allowing
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for detection of changes over time, and even the ability to, for example, track the

growth of a crack and determine when it poses a risk of material failure. The even-

tual goal of SHM research would lead to fewer unnecessary periodic inspections (i.e.,

testing smarter instead of harder), or even, eventually, a near-complete replacement

of existing NDT&E methods for some industries.

Guided wave SHM is well-established in pipes, for which wave propagation is often

essentially one-dimensional. The lack of geometric spreading enables guided waves to

travel distances of tens of meters or more from a single point of excitation, and simple

time-of-�ight calculations can be performed to determine the locations of scatterers

that correspond to signal echoes. In contrast, damage detection and localization for

two-dimensional structures such as plates is more di�cult and is less mature.

2.3.1 Common Lamb Wave SHM Con�gurations

2.3.1.1 Sparse Arrays

One potential approach to Lamb wave SHM is the use of a sparse, or spatially-

distributed, array of NT �xed piezoelectric transducers, in either a repeating pattern

[42] or randomized arrangement [43, 44], with each transducer capable of generat-

ing and receiving Lamb waves [45]. The shape and location of the array can be

selected according to di�erent criteria; for example, to minimize the e�ects of geo-

metric spreading [42], to avoid the creation of areas with di�erent levels of sensitivity

to damage [46], or to maximize the probability of detecting certain types of scatterers

[47]. The spatially-distributed array is a commonly proposed con�guration because

of its low cost and ease of implementation. In typical operation, measurements are

taken in a round-robin procedure: one transducer generates a Lamb wave while the

other NT − 1 transducers record signals; this process is repeated NT times, so that

each transducer gets a turn as the transmitting element. This results in a total of

P = NT (NT − 1) /2 unique transducer pairs. The acoustic principle of reciprocity

states that both signals from a single pair (i.e., both A→B and B→A) should be
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identical; therefore a total of P signals are recorded, excluding the pulse-echo signals

which are not used here. Such a set of signals is referred to as a measurement set.

This research is performed with a sparse array con�guration, but there is nothing

that restricts the concepts developed here to such a setup.

Sparse arrays are inexpensive because they use a small number of elements. They

also have the advantage of interrogating damage at a wide variety of angles, receiving

forward- and back-scattered signals. One downside to this method is that it can

be di�cult to distinguish between direct arrivals and forward-scattered signals from

�aws in the material. The most common way to di�erentiate these two components is

by subtracting a prerecorded baseline signal set that contains only the direct arrival

[12].

2.3.1.2 Phased Arrays

The concept of a phased array was �rst created by physicist Karl Ferdinand Braun

in 1905 [48], who shared the Nobel Prize in Physics in 1909 with Guglielmo Mar-

coni �in recognition of their contributions to the development of wireless telegraphy.�

Phased arrays are widely used for electromagnetic waves, from communications to

radar, and also for acoustic waves; e.g., sonar [49, p. 84]. Phased arrays of various

geometries are used in ultrasonics for both bulk waves [50, 51, 52, 53] and guided

waves [9, 10, 11]. A phased array uses many transmitting elements to �steer� a beam

in a particular direction; the array is designed so that constructive interference will

maximize the signal energy in that direction. This steering can be accomplished in

various ways. Some phased arrays have �xed elements which are steered solely by the

element spacing and delay lines; these arrays are usually manually steered, e.g. by

gimbal mounting for radar arrays. Other phased arrays are dynamic and can have a

programmable phase shift or time delay assigned to individual elements, which can be

used to electronically steer the beam. Most ultrasonic phased arrays are dynamic and
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use time-delay steering, including many medical ultrasound devices as well as some

arrays used for inspection, and use a compact 1- or 2-dimensional array of transducer

elements; however, a number of devices feature a common pulsing mode that excites

all transducers simultaneously to generate images more quickly than sweeping a beam

over a wide area.

In addition to the capability of steered excitation, a dynamic phased array can

be used in a mode similar to that of a sparse array, with each element pulsing one-

at-a-time to collect a full set of pairwise signals. This acquisition method is often

called full matrix capture (FMC) and typically includes reciprocal pairs and pulse-

echo signals. Beamforming can then be performed using the total focusing method

(TFM) [52], which is essentially equivalent to performing DAS imaging on the FMC

signals.

Phased arrays have the advantage of being compact and steerable when used for

Lamb wave inspection, but only receive back-scattered signals from damage. Depend-

ing on the distance from the array, excitation can be complicated when interrogating

areas close to the array because of the cylindrical (or, for bulk waves, spherical) shape

of the propagation [54]. Phased arrays are also expensive compared to the relative

simplicity of the sparse array setup.

If a movable excitation method is available (e.g., an air-coupled transducer on a

CNC system), synthetic aperture methods can be used to emulate a phased array

[55, 56]; alternatively, a phased array can be used in a synthetic aperture mode by

collecting pulse-echo signals one-at-a-time instead of performing full matrix capture.

Synthetic aperture ultrasonic techniques are borrowed from radar, where the concept

has existed for over 50 years [57]. The use of delay-and-sum imaging on ultrasonic syn-

thetic aperture data is often referred to as the synthetic aperture focusing technique

(SAFT).
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2.3.2 Baseline Subtraction

For many SHM problems, a minimum of two measurement sets are recorded: a base-

line measurement set, which is taken when the structure is known to be damage-free

(or some other known state), and subsequent measurement sets to detect if any dam-

age has been introduced. If geometrical re�ections are ignored, the baseline measure-

ments are simply the direct arrival signals as described in Eq. 5. Each baseline signal

i = 1, 2, . . . , P can be represented as

yBLi [t] = Pcp
si→ri

v0 [t] + eBLi [t] , (8)

where si and ri are the locations of the transmitter and receiver for pair i, v0 [t] is the

excitation function (which is assumed to be the same for every pair), and eBLi [t] is a

term that encompasses noise and interference (clutter). If K scatterers are introduced

at locations qk, the follow-up measurement yFUi [t] is a sum of the direct arrival and

the scattered signals:

yFUi [t] = Pcp
si→ri

v0 [t] +
K∑
k=1

{
hk [t; θs,qk

, θqk,r] ∗ Pcp
qk→r

Pcp
s→qk

v0 [t]

}
+ eFUi [t] . (9)

Here any second-order scattering e�ects are considered to be negligible and are there-

fore incorporated into the noise term. This equation also assumes no mode conversion

(or, that it is also represented in the noise term).

Since SHM techniques attempt to detect changes over time, it is often useful to

consider the di�erence between two measurement sets. If no environmental changes

are present, a di�erential measurement set can be obtained by simply subtracting each

signal in the second measurement from the corresponding baseline [13]. Using this

method and the same assumptions as in Eqs. 8-9, the signals yi [t] in this di�erential
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set can be expressed as

yi [t] := yFUi [t]− yBLi [t]

=
K∑
k=1

{
hk [t; θs,qk

, θqk,r] ∗ Pcp
qk→r

Pcp
s→qk

v0 [t]

}
+
(
eFUi [t]− eBLi [t]

)
= vscattered

[
t; si, ri, {qk}, {Hk}

]
+ ei [t] ,

(10)

which, under ideal conditions, completely eliminates the direct arrival and leaves only

the scattered signals of Eq. 7 (plus noise).

Baseline subtraction under changing environmental conditions is more compli-

cated. For example, if the surrounding temperature changes between the baseline

and follow-up measurements, the signals will be mismatched; this is because the ma-

terial's thickness and bulk wave velocities are functions of temperature, and these

properties a�ect the Lamb wave mode's dispersion curves. When such a mismatch

is present, simple subtraction will produce large artifacts and can mask scattered

signals [42], because a change in temperature a�ects the arrival times of signals [58].

Adaptive baseline subtraction is an area of active research; e.g., [59, 60]. Applied

loads also a�ect Lamb wave propagation [61, 62], and the di�erences between signals

at di�erent loads can be used in place of residuals from baselines [63]. Regardless of

the actual method used in practice, the analyses presented in later chapters assume

ideal baseline subtraction.

2.3.2.1 Optimal Baseline Selection

One common adaptive strategy to correctly subtract baseline signals is optimal base-

line selection (OBS) [60, 64]. Instead of a single measurement set of baseline signals,

multiple baseline sets are recorded at various environmental conditions. When follow-

up measurements are recorded, they are matched to the closest baseline set, using

some distance metric. Such sets of baselines are easy to obtain in a laboratory, but

it may be infeasible for larger structures that are already in-use. Another problem

with OBS is that there may be a large number of environmental parameters that all
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have di�erent e�ects on signals (e.g., temperature, structural loading, humidity), with

each additional parameter geometrically increasing the number of required baselines.

Even for a small number of such parameters, selecting an appropriate range of values

and level of discretization can be di�cult. In some cases, interpolation can be used to

synthesize baselines whose signal parameters do not match those of the prerecorded

sets [65, 66].

2.3.2.2 Baseline Signal Stretch

Another technique is baseline signal stretch (BSS). Since the primary e�ect of a tem-

perature change is to stretch or compress the signal in time [60], BSS attempts to

correct this by �nding an optimal time-stretch parameter β that matches a baseline

to the corresponding measurement. This transformation is often performed in the

frequency domain. BSS can be combined with OBS in a two-step process, where

OBS is �rst used to select the closest baseline set, and then BSS is used to �ne-tune

the signals [60]. Various improvements to this two-step process also exist; e.g., [65].

2.3.2.3 Load Di�erential Imaging

In lieu of a baseline, signals can be acquired when the structure is subject to di�erent

loads. For example, a tensile force on a structure will open cracks, increasing the

magnitude of their re�ectivity [67]; if measurement sets are recorded at two di�erent

loads in the presence of such a crack, the di�erential measurement will contain a

scattered signal due to the change in the crack's scattering behavior. Load di�erential

imaging can be performed at multiple loads, and can be used to estimate crack severity

[63].

2.3.3 Lamb Wave Detection Methods

The simplest method of damage detection is baseline comparison, where follow-up

measurements are compared to baselines from a known state. This comparison can
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examine the energy in the residual, or the maximum of the cross-correlation, or mea-

sured modal parameters, and return a value that quanti�es the di�erence. This value,

often called a damage index [68], is then compared to a preselected threshold.

Various baseline-free detection methods also exist. Some techniques usually at-

tempt to detect echoes that could be explained by damage, or sources of mode con-

version that correspond to potential scatterers [69]. Other algorithms analyze modal

properties [70], special transducer con�gurations [71], or detection of symmetry break-

ing in symmetrical structures. One method of baseline-free damage detection is the

use of time reversal [72], which is a two step process: the transmitting element in a

transducer pair �rst generates a Lamb wave with a known excitation; the transducers

then switch roles, and the original receiving element transmits a time-reversed copy

of the wave�eld measurement that was previously recorded. If the structure behaves

linearly, the signal received by the original transmitter will be identical to the original

waveform due to the acoustic principle of reciprocity; di�erences are due to nonlin-

earities that could be indicative of damage. Since baseline-free techniques do not use

prerecorded signals from a known state, they are usually applicable to structures that

have simple shapes, such as beams and pipes, or have some type of symmetry.

2.3.4 Lamb Wave Localization

There are a variety of Lamb wave SHM damage localization methods, which are

capable of determining the locations of any sites of damage (and can also be used

for detection). The pioneering work by Wang, et al. [12] used a delay-and-sum

(DAS) technique, which is sometimes called synthetic time-reversal, point-focusing, or

time-domain beamforming, on di�erential signals; delay-and-sum methods are well-

established in the radar community, and are commonly used in Lamb wave SHM

due to their conceptual simplicity and computational e�ciency. Other methods in-

clude compact phased array beamforming [10] as well as adaptive methods, including
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minimum-variance imaging [73] (known as Capon beamforming in the radar commu-

nity), stochastic modeling [74], and multi-path deconvolution [75].

Lamb wave tomography is also commonly investigated, in which a region of interest

is considered to be a scalar �eld of some wave property such as slowness, attenuation,

or di�raction intensity [76]. An inverse problem is then solved to recover these values;

these often rely on parallel projection, di�raction methods, fan-beam geometry, or

iterative algorithms [77, 78, 79]. One popular algorithm, RAPID (reconstruction

algorithm for probabilistic inspection of damage), is not a true tomographic method,

but instead is an ad-hoc method that distributes signal di�erences over elliptical

regions [80].

A detailed description of DAS is provided, since it is foundation for the new work

shown in this thesis. Delay-and-sum imaging is performed over a discretized grid of

pixels and works by reverse-propagating signals along their hypothetical path from

source to scatterer to receiver and adding all such signals together. If a scatterer is

actually located at the pixel of interest, the back-propagated signals should add con-

structively; if no scatterer is present, the signals will not overlap or will destructively

interfere.

Let v0 [t] be a windowed toneburst (e.g., with a Hann window), and let t0 be the

time corresponding to the maximum of the window function. Calculate the di�erential

measurements yi [t] from the baseline and follow-up measurement sets. Assume that

there is a single scatterer at location q with an unknown scattering pattern.

Consider the pixel at X-Y location p. If a scatterer is (hypothetically) present

at p, the received scattered signal for pair i will have traveled a total distance of

‖ri − p‖2 + ‖p− si‖2. Back-propagating the signals through their assumed paths

results in the signals

yBacki,p [t] := P−1
cp

si→p

P−1
cp

p→ri

yi [t] . (11)

At this point, the signals are summed together. Since the scattering pattern is
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unknown in this case, the signal envelopes are used instead:

yDASp [t] :=
P∑
i=1

wi,p

∣∣∣yBacki,p [t] + iH
{
yBacki,p

}
[t]
∣∣∣, (12)

where H{·} represents the Hilbert transform and wi,p is a weighting variable. Finally,

the actual pixel value zDASp is determined by using the time index where the maximum

value is expected:

zDASp := yDASp [t0] . (13)

If p is the actual location of the scatterer (i.e., p = q), the inverse propagation

from Eq. 11 will cancel the propagation in Eqs. 7-10:

yBacki,q [t] = hk [t; θsi,q, θq,ri ] ∗ v0 [t] . (14)

The result of Eq. 12 when p = q is to sum P weighted copies of the original signal

envelope, each subject to the scatterer's impulse response at the appropriate angle.

If the scatterer behaves as expected (i.e., like a point scatterer), the pixel value zDASp

will be very high. In contrast, locations away from q will have smaller pixel values,

because the back-propagated signals will not align.

As noted, this is only an example of one simple delay-and-sum method. DAS

algorithms all share this general structure, but the speci�cs of the implementation

can vary. For example, some versions use only the group velocity to reverse-propagate

in the time domain, others integrate over some time window instead of simply taking

the value at t0, and various methods of weighting the signals exist.

22



CHAPTER III

BACKGROUND ON SPARSE RECONSTRUCTION

3.1 Introduction

A reasonable, but hitherto unconsidered, assumption for many operating structures

is damage sparsity. For example, it is extremely unlikely that an aircraft has damage

nearly everywhere while it is in �ight; cracks or other �aws almost always appear

individually and grow slowly over time, until one �aw undergoes a sudden rapid ex-

pansion that results in structural failure. While the structure is pre-failure, there may

be several damage sites at material stress points or locations that received some sort

of prior trauma, but most areas will necessarily be damage-free to permit operation.

As posed here, the sparsity assumption is integral to a detection algorithm that takes

a di�erential measurement as input and attempts to �nd a small set of locations that

could contain damage consistent with that measurement. This can present several ad-

vantages over current methods; for example, results using DAS methods often have a

spot size on the order of 75-100 mm (e.g., results in [43]) and easily get �overwhelmed�

in the presence of multiple defects or geometrical boundaries.

3.2 Sparse Reconstruction and Compressed Sensing

The name sparse reconstruction refers to a class of techniques for solving linear inverse

problems when it is known that the solution is sparse [81]. Consider the inverse

problem y = Ax, where x is the unknown vector. If A is square and full-rank,

there is exactly one solution; if underdetermined, there are in�nitely many solutions;

and if overdetermined, there is no solution. The conventional least-squares answer

to this problem is x̃ = A+y, where A+ is the Moore-Penrose pseudoinverse. If A is

23



underdetermined (�short and fat�), this operation will select the solution x̃ with the

least energy; if overdetermined (�tall and skinny�), it will select the �closest� x̃ using

Euclidean distance as a metric.

In many cases, it is known that x has a sparse structure; i.e., that most components

will be zero (or in the case of noisy measurements, very small). Especially if A is

underdetermined, the least-squares method is wholly inappropriate and will return

meaningless results [82]. In these situations, a sparse solver is preferred; in essence,

such a method must be able to (1) select a limited number of components of x̃

that should be assigned nonzero values, and (2) determine what those values are. A

sparse reconstruction algorithm will therefore impose an additional constraint on the

optimization problem; for example, it might be required that x contain no more than

S nonzero entries.

Many �interesting� signals have some sort of structure and can be represented

in a cleverly-selected basis for which they are sparse. One early example is the

representation of seismic layers; in 1988 Santosa and Symes successfully determined

underground impedance pro�les by assuming a piecewise-constant representation (i.e.,

the derivative is sparse) [83]. The JPEG 2000 image standard [84] compresses images

by representing them in the 2D wavelet domain, which is known to be mostly sparse

for images such as photographs.

Another particularly common case where sparse reconstruction is appropriate is

when signals can be represented with a redundant dictionary. In these situations, it

is known that y is a linear combination of a limited number of vectors, or atoms,

in this dictionary, but it is not known in advance which vectors will be present, nor

their coe�cients. Many problems can be represented this way, such as speech recog-

nition (where the dictionary could be a collection of phonemes or Gabor functions

[85]), array-based radar detection (where it might be a collection of steering vectors

over the azimuth-elevation plane), and ground-penetrating radar (where dictionary
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entries correspond to received signals [86]). The methods presented also use redun-

dant dictionaries; here each dictionary entry will correspond to a potential scatterer

at a di�erent location over some area of interest. Sparse reconstruction has previously

been applied to ultrasonic measurements in this context for denoising as well as mode

separation of signals [87, 88].

The �eld of sparse reconstruction has received renewed attention due to the emerg-

ing �eld of compressed sensing (also called compressive sampling), which concerns

signal acquisition using fewer samples than traditional Nyquist sampling. Under this

paradigm, sampling is generalized to multiplication by an acquisition matrix A; while

Nyquist sampling can be represented using the identity matrix, it is possible to take

fewer measurements (i.e., reduce the number of rows in A) by using di�use sampling

methods. The seminal research by Candès, Romberg, Tao, and Donoho derived con-

ditions under which exact recovery of a sparse signal can be guaranteed, including the

structure of A, the number of rows (samples) it must contain, and how to use sparse

reconstruction to perform the recovery [89, 90, 81]. The fundamental property that

A must satisfy is called the restricted isometry property (RIP) [18]. The restricted

isometry constant δS (A) for S-sparse vectors is the minimum value that satis�es the

inequality

(1− δS (A)) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δS (A)) ‖x‖2 for all S-sparse x. (15)

δS (A) is, roughly speaking, a measure of energy preservation when A is applied to

sparse vectors. A vector is considered S-sparse if it has S or fewer nonzero compo-

nents.

One issue with the RIP is that the constant δS (A) is itself NP-hard to compute.

A fundamental insight in compressed sensing is that random matrices (for example,

matrices where each element is a zero-mean Gaussian random variable) satisfy the

RIP with overwhelming probability, even when they are greatly underdetermined.

Speci�cally, if A ∈ RM×N is a random matrix, where M ∈ O (S log (N/S)), then with
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overwhelming probability, every S-sparse x ∈ RN can be recovered exactly by solving

an `1-norm optimization problem. When A is deterministic, it is more practical

to instead calculate the coherence µ (A) = max
i 6=j

∣∣∣ aH
i aj

‖ai‖2‖aj‖2

∣∣∣. Coherence is not as

rigorous as the RIP, but can still be used to estimate reconstruction performance.

Reconstruction is more di�cult with a highly-coherent dictionary because it contains

columns that are similar.

3.3 Algorithms for Sparse Reconstruction and Compressed Sens-

ing

Regardless of its computability, if the RIP constant δ2S (A) is less than 1, such as in

Gaussian and Bernoulli random matrices, then the optimization problem

x̃ = arg min
x
‖x‖0 subject toy = Ax, (16)

will exactly recover x if it is S-sparse [18]; here the `0 pseudo-norm is equal to the

number of nonzero entries in x. Equation 16 is NP-hard and can only be solved by

�brute force� methods, and is therefore infeasible for all but the most trivial cases. As

a result, several algorithms exist that approximate Eq. 16. Note that the RIP must

be satis�ed for vectors that are have twice as many nonzero entries as x, since the

di�erence between two S-sparse vectors is 2S-sparse.

It should be additionally noted that exact recovery is not always necessary. In

many engineering problems, there is some tolerance that is allowed or expected. For

example, in the damage detection problem, it might be acceptable for a scatterer's

reported position to be �o�� by 10-20 mm or for the solver to incorrectly detect

its amplitude. In these problems, even a matrix that does not satisfy the RIP can

perform extremely well.

3.3.1 Basis Pursuit

As previously stated, if the RIP-2S constant is less than one, the sparse vector x is the

unique solution to Eq. 16, which can only be solved by exhaustive search. However,
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under only slightly more strict RIP conditions [18], the solution to this problem is

exactly equal that of

x̃ = arg min
x
‖x‖1 subject toy = Ax, (17)

where ‖x‖1 = |x1|+|x2|+· · ·+|xN |. This well-known sparse recovery problem, known

as basis pursuit (BP) [91], can be solved with a linear program in polynomial time.

In most cases, there is some amount of noise in y; this is typically modeled as

additive noise of the form y = Ax+e. There are several convex optimization problems

related to Eq. 17 that are designed to handle noise:

x̃ = arg min
x
‖x‖1 subject to ‖y −Ax‖2 ≤ σ (18)

x̃ = arg min
x
‖x‖1 + λ ‖y −Ax‖2

2 (19)

x̃ = arg min
x
‖y −Ax‖2 subject to ‖x‖1 ≤ τ (20)

The three optimization problems above are equivalent under certain conditions. In

particular, for a given noise level σ, there exist λ and τ for which Eqs. 18, 19, and 20

will yield the same result, but the relation between the three parameters is unknown

in general, unless the problem is already solved. The names for these three problems

are often used interchangeably; Eq. 18 is often called basis pursuit denoising (BPDN),

though in the original description by Chen, et al., BPDN refers to Eq. 19 [91]. The

term LASSO (least absolute shrinkage and selection operator) was originally used

by Tibshirani to describe Eq. 20 [92], but now often refers to Eq. 19 in most usage

instead. In this document, BPDN refers to Eq. 18. The other two optimization

problems are not considered.

If the σ parameter is chosen such that ‖e‖2 ≤ σ, then the error ‖x̃− x‖2 is

bounded; this bound is a function of σ, δ4S (A), and the sparsity of x̃ [93].
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3.3.2 Matching Pursuit

While BP and BPDN have favorable performance guarantees, their execution time

can be slow on some problems. A second class of sparse reconstruction algorithms

called iterative greedy methods is much more conceptually simple, but the algorithms

lack the performance guarantees of BP-based methods. Iterative greedy algorithms

select appropriate columns of A one-at-a-time until some stopping criterion is met, so

that a small subset of atoms has been selected. The most well-known such algorithm is

matching pursuit (MP) [94], which repeatedly selects the column of A most correlated

with y and subtracts a scaled version, removing that component of the signal. An

improved version, orthogonal matching pursuit (OMP), uses orthogonal projections to

improve the convergence rate of MP [95]. Many other modi�cations exist; for example,

the well-known CoSaMP (compressive sampling matching pursuit) algorithm [96] is

tailored speci�cally for recovering sparse vectors in compressed sensing problems.

Algorithm 1 Matching Pursuit
Input: dictionary matrix A ∈ Cm×n, measurement y ∈ Cm, stopping cri-

terion
Output: sparse estimate x̃ ∈ Cn

Algorithm:

r0 ← y
x̃← 0
n← 0
while stopping criterion is not satis�ed do

n← n+ 1

i(n) ← arg max
i 6∈{i(1),...,i(n−1)}

∣∣aH
i r(n−1)

∣∣
x̃i(n)

← aH
i(n)

r(n−1)

r(n) ← r(n−1) − x̃i(n)
ai(n)

end while

return x̃

Matching pursuit is shown in Algorithm 1 and is extremely easy to understand.

It solves a sparse problem the way many people might try to solve such a problem
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by hand; it �nds and removes the biggest signal component, then repeats for the

next biggest signal component, and continues until the stopping condition is met.

Common stopping criteria include an energy bound on the residual vector rn or a

�xed number of iterations.

Algorithm 2 Orthogonal Matching Pursuit
Input: dictionary matrix A ∈ Cm×n, measurement y ∈ Cm, stopping cri-

terion
Output: sparse estimate x̃ ∈ Cn

Algorithm:

r0 ← y
x̃← 0
n← 0
while stopping criterion is not satis�ed do

n← n+ 1

i(n) ← arg max
i

∣∣aH
i r(n−1)

∣∣
S(n) ←

[
ai(1)

ai(2)
· · · ai(n)

]
r(n) ←

(
I−PS(n)

)
y

end while

x̃s ← S+
(n)y

for k from 1 to n do
x̃i(k)
← x̃s(k)

end for

return x̃

Orthogonal matching pursuit, shown in Algorithm 2, uses a similar principle to

MP, but it keeps a running list of all selected columns and updates the residual vector

every iteration via projection. Here, one column from the dictionary is picked every

iteration and appended to the �selected atoms� matrix S(n). The measurement vector

is projected onto the left null space of this matrix to get the new residual, which is

orthogonal to S(n)'s column space. (The matrix PA denotes the projection matrix

onto A's column space; i.e., PA := AA+.) When the stopping criterion is met, the

corresponding entries of x̃ are computed using the Moore-Penrose pseudoinverse.
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Since matching pursuit algorithms work one column at a time, they are particu-

larly bad at handling highly-coherent dictionaries. In these cases it is not uncommon

for the algorithm to pick the �wrong� dictionary column on the �rst iteration because

the available atoms are so similar. Depending on the problem and the degree of co-

herence, this may or may not be acceptable (for example, highly-correlated columns

represent similar damage locations for this research). Basis pursuit methods are not

immune to this problem, but they at least �nd a global solution to the optimization

problem and come with some performance guarantees; they also tend to be much

more robust to these situations.

3.3.3 Other Methods

There are also various less well-known or more specialized sparse solvers. One recent

example are approximate message passing solvers [97]. These new methods apply a

modi�ed form of message passing that uses iterative soft thresholding to converge on

a sparse solution. These techniques show great promise, but are not considered here,

as BPDN and OMP worked su�ciently well. Other solvers use variational methods

[98], and even more esoteric solvers use statistical or matrix completion methods. An

extensive collection of solvers and other references is available online at the sparse-

and low-rank approximation wiki [99].

3.4 Sparse Recovery of a Signal in a Union of Subspaces

One way to view sparse reconstruction is that it tries to �nd the smallest possible

subspace to explain the measured signal; for methods that allow noise, the algorithm

attempts to �nd the smallest possible subspace that explains some portion of the

signal. In this sense, the dictionary matrix A is an overcomplete basis from which

the smaller subspace is selected, and the nonzero entries of x̃ correspond to the

(non-orthogonal) basis vectors of the selected subspace. Sometimes, however, the

signal does not solely lie in a single subspace, but a union of subspaces, with each
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subspace corresponding to some sort of phenomenon. In other words, while �standard�

sparse reconstruction selects vectors independently, it might make sense to partition

the vectors in A into blocks and select the blocks independently instead of their

constituents. For the remainder of this document, any use of unquali�ed term �sparse

reconstruction� refers exclusively to the standard case without any block structure.

Examined in the more conventional sense, a union-of-subspaces problem is the

result of a block structured problem. In this sort of problem, the columns of A and

corresponding entries of x fall into natural �blocks.� The atoms within each block do

not exist in isolation; the entire block is collectively either �on� or �o�,� though each

atom still has its own, independently-determined coe�cient if its block is selected. If

a block is not selected, all of its coe�cients are set to zero. These problems are said

to exhibit a property known as block sparsity or group sparsity [100]. A vector is said

to be S-block-sparse if the total number of blocks with at least one nonzero entry is

S or less. For these problems, such a dictionary matrix will be denoted Â.

Suppose the dictionary matrix Â is divided into groups (blocks) by assigning

each column n a group index, denoted G (n). Two dictionary columns n1 and n2

are in the same group if G (n1) = G (n2). The group indices themselves are denoted

G1, G2, . . . , GΓ. Since x shares the same group structure as Â, the grouping G applies

to it as well. As a slight abuse of notation, G will also be used as the set of all

possible groups in statements (e.g., �for each G ∈ G...� is equivalent to �for each

G ∈ {G1, G2, . . . , GΓ}...�).

It is often convenient to describe only the submatrix of Â or the subvector of x

that corresponds to a group. Let xGi
, Gi ∈ G denote a subvector of x containing

only the entries in group Gi, and let the matrix ÂGi
contain the columns of Â that

correspond to that group. Table 1 shows an example of an arbitrary block structure.

The block-sparse problem is a generalization of its non-block counterpart and

has many similar properties. There exists a block-RIP constant [100] which measures
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Table 1: An example of group subvectors.

x group index xG1 xG2
2
4
6
8
10


1
1
2
1
2

2
4
8

 [
6
10

]

energy preservation when restricted to block-sparse vectors; if the block-RIP constant

for 2S-block-sparse vectors is less than one, the original vector x can be uniquely

recovered by an exhaustive search. Given Â, y, and G, if x is 2S-block-sparse and

the block-RIP-2S constant δ2S|G

(
Â
)
< 1, then the optimization problem

x̃ = arg min
x

∑
G∈G

I (‖xG‖2 > 0) subject toy = Âx (21)

will exactly recover x = x̃; I (·) represents the indicator function. Equation 21 uses a

mixed `2/`0 norm, though it may not be immediately apparent due to the use of the

indicator function; the equation can also be written as

x̃ = arg min
x

∥∥∥∥∥
[
‖xG1‖2 ‖xG2‖2 · · · ‖xGΓ

‖2

]T∥∥∥∥∥
0

subject toy = Âx. (22)

In this form, it is more clear that block sparsity changes the problem to a norm-of-

norms optimization. Regardless of how it is written, all Eqs. 21 and 22 do is minimize

the number of active blocks. Once again, this is computationally infeasible for all but

the smallest problems.

3.4.1 Block-Sparse Basis Pursuit

As with the non-block case, an argument can be made to use the `1 norm in place of

the `0 norm. If x is S-block sparse and δ2S|G

(
Â
)
<
√

2− 1, then the solution to the

`2/`1 optimization problem

x̃ = arg min
x

∑
G∈G

‖xG‖2 subject toy = Âx (23)
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is equal to x [100, 101]. In addition to the block-RIP constant, the matrix Â has

measures of block coherence, which is a generalization of coherence that applies to

subspaces, and sub-coherence, which is the maximum coherence within any one block

[101] which can be used to determine if Eq. 23 can achieve perfect reconstruction.

This condition, as well as the block-RIP condition, is su�cient (but not necessary)

to guarantee exact recovery.

There is also a block-sparse BPDN problem

x̃ = arg min
x

∑
G∈G

‖xG‖2 subject to
∥∥∥y − Âx

∥∥∥
2
≤ σ (24)

that allows for noise.

3.4.2 Block-Sparse Matching Pursuit

In addition to block-sparse basis pursuit, there are various modi�cations of matching

pursuit methods that are adapted to handle problems with block structure. Algo-

rithm 3 shows an implementation of block OMP, which functions nearly identically

to OMP, except it picks one block at a time instead of one vector at a time.

3.4.3 Block-Sparse Example: Touch-Tone Phone

3.4.3.1 Touch-Tone Phone Operation

Here is a simple example to demonstrate a block-sparse problem. Touch-tone phones

use a standardized dual-tone multi-frequency signal circuit [102] to uniquely identify

which key is pressed. Each button on the phone produces two di�erent tones according

to Table 2. The speci�cations also state that the actual frequencies transmitted must

be within 1.8% of the nominal frequencies and that the ratio of the tones to any

distortion must be at least 20 dB.

3.4.3.2 Detecting Touch Tones with Block-Sparse Reconstruction

Touch tones are commonly decoded with �lterbanks and combinatorial logic, however

in this example a di�erent approach will be used. Let y (t) be a received touch-tone
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Algorithm 3 Block Orthogonal Matching Pursuit

Input: dictionary matrix Â ∈ Cm×n, measurement y ∈ Cm, group
assignment G, stopping criterion

Output: sparse estimate x̃ ∈ Cn

Algorithm:

r0 ← y
x̃← 0
n← 0
while stopping criterion is not satis�ed do

n← n+ 1

G(n) ← arg max
G∈G

∥∥PÂG
r(n−1)

∥∥
2

S(n) ←
[
ÂG(1)

ÂG(2)
· · · ÂG(n)

]
(preserving block structure)

r(n) ←
(
I−PS(n)

)
y

end while

x̃s ← S+
(n)y (block structure of x̃s should match S(n))

for k from 1 to n do
x̃G(k)

← x̃sG(k)

end for

return x̃

signal from a single button, and denote its analytic representation ŷ (t) = y (t) +

iH{y} (t). Ignoring noise, ŷ (t) should lie in a two-dimensional subspace, with its

upper and lower tones as its basis functions. For example, if the �1� button is pressed,

then under ideal circumstances ŷ (t) = A exp (i2π (697) t)+B exp (i2π (1209) t), where

A and B are complex. In fact, ŷ could lie in one of twelve two-dimensional subspaces

� one for each button.

Table 2: International standards for touch-tone frequencies

Upper Tone (Hz)
1209 1336 1447

L
ow

er
T
on
e
(H

z) 697 1 2 3
770 4 5 6
852 7 8 9
941 ∗ 0 #
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This problem could be solved using (non-block) sparse reconstruction by con-

structing a dictionary matrix for the discretized vector ŷ ∈ Cn (presumed to be

sampled at su�ciently high frequency). Let Ff0 ∈ Cn denote a complex vector with

positive frequency component f0 that is normalized to unit `2 norm. Then the dic-

tionary matrix is:

A =

[
F697 F770 F852 F941 F1209 F1336 F1447

]
Solving Eq. 17, or Eq. 19 in the presence of noise, will recover the frequency

components in ŷ (t). Of course, this isn't revolutionary � as n approaches in�nity,

the coherence of the dictionary approaches zero; for any reasonable sample length,

x̃ = AHŷ recovers the components as well. After computing x̃ with either method,

its components are quantized to �0� or �1� and used to calculate the button pressed.

Another way to solve this problem is to directly �nd which of the twelve possible

subspaces contains ŷ, using a block dictionary:

Â =

F
6
9
7

F
1
2
0
9

F
6
9
7

F
1
3
3
6

F
6
9
7

F
1
4
4
7

F
7
7
0

F
1
2
0
9

F
7
7
0

F
1
3
3
6

F
7
7
0

F
1
4
4
7

F
8
5
2

F
1
2
0
9

F
8
5
2

F
1
3
3
6

F
8
5
2

F
1
4
4
7

F
9
4
1

F
1
2
0
9

F
9
4
1

F
1
3
3
6

F
9
4
1

F
1
4
4
7

[ ]1 2 3 4 5 6 7 8 9 ∗ 0 #

This matrix has a mutual coherence of 1, because it contains duplicated columns.

Since only one phone button is pressed at a time, the solution vector x to the equation

ŷ = Âx should be 1-block-sparse. It can be easily demonstrated that this matrix

does not satisfy the block-RIP by showing that δ2|G

(
Â
)
≥ 1; for example, the vector

c =
[

1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]T

is 2-block-sparse but lies in Â's null

space. (Â's block coherence and sub-coherence are not low enough to guarantee exact

recovery, either.) Regardless, block-BP (or, in the presence of noise, block-BPDN)

can be used to determine the button pressed.

To show this, a touch-tone signal was generated in Matlab for the �7� button

with the parameters shown in Table 3. The noise component of the signal is additive

white Gaussian noise. Figure 1 shows the generated signal.
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Table 3: Touch-tone signal parameters for block-sparse example problem

Parameters Value
Sampling Frequency 50 kHz
Signal Duration 10 ms
Upper Tone Frequency 1209 Hz
Upper Tone Amplitude 1
Upper Tone Phase −32◦

Lower Tone Frequency 852 Hz
Lower Tone Amplitude 1.3
Lower Tone Phase 95◦

Signal-to-Noise Ratio 10 dB

After computing the analytic signal ŷ, it is possible to recover the components of

each button by solving Eq. 23 with y← ŷ and with each pair of frequencies belonging

to the group that represents its button. Version 1.8 of the freely-available Spgl1

package for Matlab [103] was used to perform the optimization, with σ = 0.1 ‖ŷ‖.

Results are shown in Figure 2; even though the Â matrix is coherent, the coe�cients

are correctly assigned to block 7 due to the block structure of the problem.

3.4.3.3 Coe�cient Denormalization

The coe�cients in Figure 2 have been �denormalized� to account for the the nor-

malization of Â; i.e., the columns can be expressed as Ff0 [t] = 1
α

exp (i2πf0t),

with the coe�cient α used to normalize the vector. A matching signal component

yf0 [t] = A exp (i2πf0t) will then be assigned a coe�cient of αA, so the coe�cient can

be appropriately scaled by dividing by α.

3.4.3.4 Discussion

One advantage to the block-sparse method is that the results directly re�ect the

structure of the problem. The block with the highest norm, ‖x̃g‖2 , g ∈ G, is the

button that is pressed. For a simple problem like this, such structure is not of large
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bene�t; however, for much larger problems with more complicated structures, block-

sparse reconstruction allows the use of multidimensional models that directly correlate

to the unknowns of the problem.

(An astute reader might realize that a simpler way to solve this problem would

perhaps be to project the signal onto each of the twelve subspaces and measure which

contained the largest signal energy. Such an operation is equivalent to running block-

OMP for a single iteration.)
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Figure 1: Touch-tone phone signal generated in Matlab.
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Figure 2: Block-sparse reconstruction of touch-tone signal components. The signal
components are grouped by block, with the lower frequency on the left and the upper
frequency on the right.
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CHAPTER IV

A SPARSE RECONSTRUCTION ALGORITHM FOR

DAMAGE LOCALIZATION

4.1 Introduction

This chapter describes the implementation of a (non-block) sparse reconstruction

method to detect damage, given a set of residual signals yi. Initial development of

the method was presented in [104], with further analysis in [105].

To use sparse reconstruction methods, the damage detection problem must be

formulated so that it conforms to the linear equation y = Ax + e. The approach

taken in this research is to use a redundant dictionary with columns that correspond

to locations in the region of interest (ROI).

The use of sparse reconstruction to solve the problem of interest is presented

as follows. First, a method is presented that relies on usage of a known scattering

pattern. Next, strategies are described and analyzed for the more realistic scenario

where scattering patterns are unknown in advance. An in-depth examination of con-

cepts and considerations regarding the sparse solver follows; this section is tailored to

BPDN (the recommended algorithm), but the analysis may apply to other methods as

well. Finally, a discussion section contains various notes on the algorithm, including

dictionary coherence and computational e�ciency.

4.2 Sparse Reconstruction for Known Scattering Patterns

Initially, let us assume that only point scatterers occur in the region of interest, all

sharing the same scattering pattern. This scattering pattern is known a priori and

is denoted H
[
f ; θin, θout

]
, as de�ned in Section 2.2.4; its inverse Fourier transform is

39



denoted h
[
t; θin, θout

]
. Moreover, environmental e�ects such as temperature changes

are ignored; in particular, this means that the dispersion curves are assumed to

match the nominal curves computed based on the material properties. Finally, the

assumption of single-mode propagation remains in e�ect.

First, the ROI is discretized into N pixels, which are typically arranged as a 2D

rectangular grid. The grid spacing has an e�ect on the reconstruction algorithm; a

coarse spacing results in faster execution time and a less coherent dictionary, but may

lead to pixel straddle e�ects if scatterers fall between pixels; a �ne spacing increases

execution time and increases the dictionary coherence. Let {pn}Nn=1 be the set of

such pixels, where pn ∈ R2. It is assumed that a potential scatterer is present at each

pixel, with an unknown intensity coe�cient. Let the vector x ∈ RN represent the

intensity of the corresponding scatterer at pn; if xn = 0, no damage is present, and if

xn 6= 0, damage is present with a re�ectivity proportional to |xn|.

4.2.1 Model for a Single Transducer Pair

The dictionary matrix A is constructed from several submatrices; one submatrix

corresponds to each transducer pair. The vector y is constructed in the same way.

Consider a single pair i and the corresponding di�erential measurement yi ∈ RL,

where the source transducer is at position si and the receiver is at ri. Assume the

presence of K scatterers that each lie exactly on one of the pixels; denote the pixel

index of the kth scatterer nk; In other words, the kth scatterer is located at pnk
.

From Eq. 10, the expression for the di�erential signal yi is:

yi =
N∑
n=1

xn

{
hin ∗ Pcp

pn→ri

Pcp
si→pn

v0

}
+ ei

=
K∑
k=1

xnk

{
hink
∗ Pcp

pnk
→ri

Pcp
si→pnk

v0

}
+ ei,

(25)
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where hin = h [t; θsi,pn , θpn,ri ]. It is possible to write this equation in matrix form as

follows:

yi = Aix + ei, (26)

where Ai ∈ RL×N , with individual columns ai,n = hin ∗ Pcp
pn→ri

Pcp
si→pn

v0. (The matrix

Ai is intentionally unnormalized.) Note that ai,n can also be interpreted as the vector

representation of vscattered [t; si, ri,pn, H] from Eq. 6. In other words, each column of

the dictionary is generated by simulating damage at the corresponding pixel. Here a

nonzero xn corresponds to the intensity of the scattered (residual) signal at location

pn. Using this formulation, the dictionary submatrix Ai is highly coherent, since ai,n

is determined solely by the propagation distance ‖si − pn‖2 + ‖pn − ri‖2, which

takes equal values on elliptical contours with foci at si and ri; however Eq. 26

represents only a single transducer pair.

4.2.2 Model for all Transducer Pairs

Since there are P di�erent pairs, all of which are linear in x, it is possible to concate-

nate the system of equations to obtain

y = Ax + e where y =



y1

y2

...

yP


and A =



A1

A2

...

AP


D−1, (27)

where D is a diagonal matrix used to normalize the columns of the dictionary matrix

with diagonal elements Dn,n =

(
P∑
i=1

‖ai,n‖2
2

)1/2

. The matrix A has lower coherence

than each of its submatrices, although its coherence can still be high, depending on the

pixel grid spacing and the number of transducers as well as their locations. However,

the correlation between individual columns of A strongly depends on the proximity

of their corresponding pixels. Consider a scatterer located at p that results in the

(concatenated) di�erential signals yp. If the location of this scatterer is perturbed to
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p + ∆p, each constituent subvector in yp+∆p will be slightly shifted in time either

earlier (if the resulting source→ scatterer→ receiver path has been shortened) or later

(if the path has been lengthened). Depending on the excitation function, propagation

velocity, and pixel grid spacing, this time shift can be quite small, making columns

of A that correspond to adjacent pixels highly correlated. This high coherence is

normally a barrier to perfect reconstruction: since columns are highly correlated,

an algorithm will have a hard time �knowing� which columns to select if many of

them are similar; however, for this application, so-called �perfect� reconstruction is

not necessary. Even though some columns of A are highly correlated, these columns

almost always represent pixels that are very close to each other. In most cases, the

results are acceptable even if the damage sites reported by the algorithm are o� by

a small distance. A dictionary with many highly-correlated columns that do not

represent nearby pixels is often an indication of poor array design; for example, it

could indicate that there are too few transducers.

As previously stated, the pixel density chosen for discretization has several e�ects

on the reconstruction problem. In addition to increasing the coherence of the dictio-

nary, a more-�nely sampled grid will result in more columns in A, which increases

execution time and memory usage. Greedy algorithms like OMP have a linear time

complexity with respect to the number of columns in the dictionary [106], but BP

solvers have a higher (but still polynomial) time complexity � although, in practice

their execution time can be comparable (e.g., [107]). On the other hand, having too

coarse a pixel density will increase straddle e�ects, which results in a multiple pixels

with decreased amplitudes if a scatterer lies in a �gap� between pixels.

4.2.3 Summary

For the case with a known scattering pattern, each submatrix Ai is a collection

of di�erential signals, where damage is simulated at di�erent pixels on the area of
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interest. The full dictionary is the (normalized) concatenation of these submatrices,

and similarly y is the concatenation of the individual di�erential signals. The vector

e is the concatenation of the noise vectors, but this is not shown in Eq. 27. The

matrix A can be precomputed. After obtaining y from baseline subtraction, it is

possible to solve for x using a sparse solver such as BPDN or OMP.

4.3 Sparse Reconstruction for Unknown Scattering Patterns

For many (if not most) applications, a priori knowledge of the exact scattering pattern

H is not possible. In these cases, there can be poor imaging performance if the

assumed scattering pattern does not match an actual scatterer. Small di�erences

between the nominal and actual dispersion curves and transducer locations can lead

to phase shift errors as well. Since the scattering pattern contains both amplitude

and phase information about the scatterer, the reconstruction can contain a high

level of artifacting if, for example, the scatterer phase shift varies by angle but this

is not modeled in H. For a single pair, this would not be an issue, because the

reconstruction algorithm could be run with the analytic representation of signals and

return a complex amplitude for the scatterer. With multiple pairs, however, there

is an issue: suppose A is generated with the assumption of a uniform scatterer, but

in reality there is a scatterer with an angle-dependent phase shift. This will cause

phase issues in the dictionary: for some transducer pairs, yi will be in phase with

the appropriate column ai,n, but for others they will be out-of-phase. However, the

structure of Eq. 27 allows only a single coe�cient for the concatenated ai,n.

For example, Figure 3 shows the results of the sparse reconstruction algorithm

on two sets of simulated data for an aluminum-6061 plate with eight attached trans-

ducers using a 5-cycle, 100 kHz Hann-windowed toneburst and the nominal disper-

sion curve for the A0 mode. The scatterer in Figure 3(a) has a scattering pattern

H
[
f ; θin, θout

]
= 1, which matches the dictionary atoms; unsurprisingly, this scatterer
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is detected perfectly, with only a single pixel visible on the scale shown. Figure 3(b)

uses the same dictionary, but the scatterer instead has an amplitude of one but a

phase shift of π cos
(
θout − θin

)
. The results with this phase mismatch are of signi�-

cantly poorer quality due to this mismatch. (These images were generated using the

BPDN formulation in Eq. 37 with σ′ = 0.5σ′max and without image denormalization.

See Section 4.4 for details.)

4.3.1 Application of the Hilbert Transform

One way to reduce, but not eliminate, errors due to phase mismatch is to use a com-

plex dictionary by using the Hilbert transform to obtain the analytic representation
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Figure 3: Simulated results using raw (unrecti�ed) signals. (a) The scatterer acts
omnidirectionally and with no phase shift, which matches the model used for the dic-
tionary matrix. (b) The scatterer acts omnidirectionally, but with an angle-dependent
phase shift. For both images, circles denote transducer locations and the triangle de-
notes the location of the scatterer. The images are shown on a 20 dB scale, normalized
to the largest pixel value; note the di�erence in the scales of the two images. In both
cases, σ′ = 0.5σ′max.
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of signals. That is, instead of the form in Eq. 27, the optimization problem

y = Ax + e where y =



y1 + iH{y1}

y2 + iH{y2}
...

yP + iH{yP}


and A =



A1 + iH{A1}

A2 + iH{A2}
...

AP + iH{AP}


D−1 (28)

should be solved, where H{·} denotes the column-wise Hilbert transform. Note

that in this formulation, the matrix D is scaled by a factor of
√

2. Using analytic

representations allows a constant phase shift in y and also allows di�erent pixels

to constructively and destructively interfere. However, the underlying issue is not

solved: if only some transducer pairs are out of phase of the dictionary, the solver

will produce artifacts. Nevertheless, the additional degree of freedom in each pixel

value produces better results overall. Figure 4 shows the di�erences between the two

dictionary types, using the same con�guration as Figure 3(b). Figure 4(a) shows the

result with the real-valued dictionary. Figure 4(b) shows the result when using ana-

lytic representations. Artifacts are still present in the latter, but they are noticeably

closer to the actual scatterer location. In addition, the image created with analytic

representations is more sparse in the `1 sense.

4.3.2 Sparse Reconstruction of Signal Envelopes

4.3.2.1 Modi�ed Problem for Signal Envelopes

A di�erent approach to address the issue of phase mismatch is to adapt the method

described in Section 4.2 to the use of envelope-detected signals, which are obtained

from the absolute value of signal analytic representations. Let z be a time-domain

signal with analytic representation ẑ = z + iH{z}. Taking the complex absolute

value of ẑ yields the envelope of the signal, which is denoted z̄ = |ẑ| = |z + iH{z}|.

This envelope detection operation is nonlinear and discards all phase information in
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Figure 4: Simulated results using raw (unrecti�ed) signals. The scatterer acts om-
nidirectionally, but with an angle-dependent phase shift. Reconstruction performs
poorly because the dictionary does not model this behavior. (a) Imaging result using
real-valued signals and dictionary atoms; this is a zoomed version of Figure 3(b). (b)
Imaging result using analytic representations. Figures are zoomed and shown on a
20 dB scale, normalized to the largest pixel value. In both cases, σ′ = 0.5σ′max.

z. The approach taken here is to solve the modi�ed problem using signal envelopes,

ȳ = Āx + ē where ȳ =



ȳ1

ȳ2

...

ȳP


and Ā =



Ā1

Ā2

...

ĀP


D̄−1, (29)

instead of Eq. 27; here ŷ contains the envelopes of the residual signals, the matrix

Āi =
[
āi,1 āi,2 · · · āi,N

]
is the envelope dictionary, and D̄n,n =

(
P∑
i=1

‖āi,n‖2
2

)1/2

.

Since the reformulated problem discards phase information, Eq. 29 is more robust

to unknown scattering patterns. For scatterers that are at least somewhat omnidi-

rectional, using the envelope-detected form with the assumption that
∣∣H [· · · ]

∣∣ = 1

can signi�cantly improve results. There is, of course, a price that comes with this

operation. Since envelope detection is nonlinear, the signal ȳ is not simply the sum

of the envelope-detected contributions due to each scatterer; this reduces the �delity
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of the problem reconstruction. In practice, performance is far better with signal en-

velopes than in the case where scatterer phase information is mismatched. Using

signal envelopes for the data in Figure 3 completely eliminates the problems from

phase mismatch and results in an image nearly identical to Figure 3(a) (not shown).

Signal envelopes do not address scatterers with directionally-dependant amplitude.

4.3.2.2 Envelopes of Noisy Signals

A secondary issue with envelope detection is the transformation of the noise compo-

nent of y. Suppose that e is zero-mean, i.i.d Gaussian random noise with variance

σ2. The individual entries of y then have the distribution

yl ∼ N
(
[Ax]l , σ

2
)
. (30)

If the analytic representation of y is taken, the distribution is complex normal:

[ŷ]l ∼ CN
([

Âx
]
l
, 2σ2

)
, (31)

where Â holds the analytic representations of the columns of A. Note that entries

of the analytic signal will only be statistically independent if they are downsampled

by a factor of two (to �cancel out� the extra redundancy introduced by the Hilbert

transform). Taking the complex absolute value of the distribution in Eq. 31 results

in a Rice distribution [108]:

ȳl ∼ Rice
(∣∣∣[Âx

]
l

∣∣∣ , σ) . (32)

The Rice distribution has two interesting limiting cases. As the �rst argument (which

represents the complex absolute value of the complex normal random variable and

is often denoted ν) approaches in�nity, the Rice distribution approaches a normal

distribution:

Rice (ν, σ)
approx.∼N

(
ν, σ2

)
if ν >> σ. (33)
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On the other hand, if ν = 0, the Rice distribution reduces to the Rayleigh distribution:

Rice (0, σ) = Rayleigh (σ) . (34)

When the envelope-detection operation is performed on y, it therefore distorts the

noise component. In the parts of y that are mostly signal, the noise retains an

approximately Gaussian distribution; however, sections that are dominated by noise

become approximately Rayleigh-distributed instead. Since the Rayleigh distribution

arises from taking an absolute value, it has a nonzero mean; if R ∼ Rayleigh (σ), then

E [R] = σ
√

π/2. This nonzero noise mean can interfere with reconstruction results and

must be compensated in some way. The approach initially taken is simple subtraction

of this mean; that is, the problem(
ȳ − σ1

√
π/2

)
= Āx + ē (35)

is solved instead. If the noise power is unknown, it is possible to estimate σ; for

example,

σ̂ = median (ȳ)
√

2/π (36)

is a reasonable estimator when most of the time samples consist only of noise; the

result is to subtract the median value from the noisy signal. Subtracting this quantity

from the signal e�ectively converts the noise to zero-mean noise while reducing the

amplitude of signal components in a manner similar to soft thresholding.

4.3.2.3 E�ects of Uncompensated Rician Noise

Figure 5(a) shows sparse imaging results using signal envelopes on noisy data. Ad-

ditive white Gaussian noise was added to the signal used in Figs. 3 and 4 to create

a signal with 0 dB SNR within the bandwidth of the toneburst. The sparse recon-

struction method is able to recover the location of the scatterer, but the spot size is

approximately 75 mm in diameter and signi�cant artifacts are present in the corners

of the plate due to the nonzero mean. Figure 5(b) shows the �rst 600 µs of the noisy
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signal, its projection onto the range of Ā, and the signal obtained by reconstruc-

tion, Āx̄, for the �rst transducer pair. Since the noisy signal and its projection have

nonzero mean, the solver �wants� to create a reconstructed signal with wide support.

The pixels in the corners of the plate are the most time-delayed and therefore are

selected to widen the support as much as possible; this phenomenon is also present

when signals contain interference due to boundary re�ections or poor baseline sub-

traction. Figures 5(c) and 5(d) show the results when the median is subtracted from

ȳ before performing sparse reconstruction. Only two pixels are detected at the 20 dB

level; the image is unquestionably superior to that of the uncompensated case. (All

reconstructions are performed with σ′ = 0.5σ′max; the energy fraction E‖ is 0.24 for

the uncompensated image and 0.10 for the compensated image. The energies are

particularly low due to the high amount of noise in the signals; see Section 4.4 for

details on these measures.)

Noise compensation is even more important for the case of multiple scatterers.

Figure 6 compares imaging results (σ′ = 0.5σ′max) for uncompensated and compen-

sated noisy signal envelopes of simulated signals due to four scatterers with an in-

bandwidth SNR of 0 dB. Imaging on the uncompensated signals (E‖ = 0.23) fails

catastrophically, with three scatterers completely ignored; even at lower σ′ values,

reconstruction is unsuccessful. The image for the compensated signals (E‖ = 0.08)

contains several lower-amplitude artifacts, but all of the scatterers are detected.

4.3.3 Summary

For the case of an unknown scatterer, a modest increase in imaging quality can

be obtained by using signal analytic representations. However, the reconstruction

is improved greatly by using signal envelopes instead of either raw (RF) signals or

their analytic representations. Both the measurements and the dictionary columns

are replaced with their envelopes for this method. This converts zero-mean noise to
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Figure 5: Simulated results using envelopes of noisy signals (0 dB SNR within the
toneburst bandwidth). (a) Imaging result for signal envelopes with uncompensated
noise. (b) The signal envelope (blue) has a non-zero mean. The solver picks the
optimal signal (red) to match the projection of the signal envelope onto the column
space of the dictionary (green). (c) Imaging result using envelope compensation. (d)
Subtracting the median from the signal envelope results in zero-mean noise. Both
reconstruction images are shown on a 20 dB scale, normalized to the largest pixel
value. Circles denote the positions of transducer elements; the triangle is the location
of the simulated scatterer. The colorbar is not shown to conserve page width.
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(b) Reconstruction with compensated signal
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Figure 6: Simulated results using envelopes of noisy signals (0 dB SNR within the
toneburst bandwidth) for four scatterers. (a) Signal reconstruction with uncompen-
sated envelopes. (b) Signal reconstruction with envelopes that have been compensated
for noise. Both images are shown on a 20 dB scale, normalized to the largest pixel
value. Circles denote transducer locations; triangles denote scatterers.

nonzero-mean noise, for which compensation must be performed if a signi�cant noise

level is present. Taking a signal envelope is a nonlinear operation which degrades

the performance of the reconstruction algorithm, but not as much as an incorrectly-

modeled scatterer.

4.4 Performing Sparse Reconstruction with BPDN

In this section, the symbols y, A, and D refer to the measured signal, dictionary

matrix, and normalization matrix, respectively, but all analysis applies even if using

analytic representations or signal envelopes as described in Section 4.3.

4.4.1 Choice of σ and Column Space Projection

Once the problem is in the form of Eq. 27 (or Eqs. 28 or 29), a sparse reconstruction

algorithm can recover the scattering coe�cients at each pixel. For this problem, basis

pursuit denoising works very well and is recommended. As shown in Eq. 18, BPDN
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requires a parameter σ that o�ers a trade-o� between sparsity and reconstruction

�delity; the solver �nds the sparsest x̃ that is within a distance of σ to the solution

space of y = Ax. The value of σ must fall in the range 0 ≤ σ < ‖y‖2; the trivial

solution x̃ = 0 is the sparsest solution if σ ≥ ‖y‖2, while a choice of σ that is too

low will likely ensure that no solution exists. (σ = 0 reduces the problem to basis

pursuit.)

To show that there exists a low-valued σ for which no solution exists, split the

vector y into two parts: y‖A = PAy, the portion of y that lies in the column space of

A, and y⊥A = y− y⊥A = (I−PA) y, the remaining portion that lies in the left null

space of A, null
(
AT
)
. The latter signal component, y⊥A, is outside the range of A

and therefore ‖y −Ax̃‖2 ≥
∥∥y⊥A∥∥

2
for all possible x̃. Therefore, no solution exists

to Eq. 18 if σ <
∥∥y⊥A∥∥

2
; the behavior of a particular solver varies in this case, with

some returning a suboptimal solution and others returning an error. This problem

does not occur in compressed sensing, where the A matrix typically has full row rank

and thus null
(
AT
)
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Figure 7: Graphical decomposition of the energy in y into orthogonal components
and the role of σ in BPDN. The energy of y that lies in the column space of A is
shown in green and the energy in the left null space of A is shown in red.

A graphical decomposition of the energy in y is shown in Figure 7, with the energy

lying in the column space of A shown in green, and the remaining energy (i.e., energy

in the left null space of A) shown in red. A smaller value of σ corresponds to a smaller

residual; a larger value results in a higher level of sparsity. A meaningful solution only
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exists for a choice of σ2 that lies in the green section. Portions of y that lie outside of

A's column space can be from noise, model mismatch, or other e�ects such as pixel

straddling. In some sense these parts of the signal can be ignored; in fact, solving

Eq. 18 is equivalent to solving the optimization with only y‖A and an adjusted σ. In

other words, the optimization problem

x̃ = arg min
x
‖x‖1 subject to

∥∥y‖A −Ax
∥∥

2
≤ σ′, (37)

where σ′ :=
√
σ2 − ‖y⊥A‖2

2, results in an identical solution to Eq. 18 if
∥∥y⊥A∥∥

2
≤

σ ≤ ‖y‖2.

It is convenient to express the optimization in this form because it simpli�es the

selection of the parameter to a valid range of 0 ≤ σ′ ≤ σ′max :=
∥∥y‖A∥∥

2
. Additionally,

the energy fraction E‖ :=
‖y‖A‖2

2

‖y‖22
can be used to quantify the �t of the model. If E‖

is very small, either the model is badly mismatched or no damage is present.

Finding an optimal choice of σ′ is not straightforward. The measurements in

y‖A can be a�ected by di�erent types of model mismatch; for example, temperature

changes can change the Lamb wave mode dispersion curve. If σ′ is close to zero,

model mismatch can lead to very large spot sizes. In contrast, if multiple scatterers

are present, a value very close to σ′max will cause weaker scatterers to be undetected in

favor of a more parsimonious representation. For both simulations and experiments,

the (arbitrarily chosen) value σ′ = 0.5σ′max seems to perform well for a small number

of scatterers; in rough terms, this choice of σ′ requires that the recovered signal

ỹ := Ax̃ should explain three-fourths of the energy in y that �ts the dictionary

model; in general, the fraction of y required to be explained by the solution is equal

to 1 − (σ′)2. A lower value of σ′ should be used instead if several scatterers are

suspected; this increases the reconstruction �delity.

After choosing a value of σ′ and computing y‖A, the sparse solver can be used to

recover x̃. The SPGL1 solver for Matlab (available online [103] and described in
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[109]) is simple to use and relatively fast; as of version 1.8, the function spg_bpdn()

is used to solve the BPDN problem, with the syntax

x_tilde = spg_bpdn(A, y_A, sigma_prime[, opts]);

where A is the dictionary matrix A, y_A is the vector y‖A, and sigma_prime is σ′;

the optional opts structure holds con�guration settings such as the optimization

tolerance. After solving for x̃ = x_tilde, an image is generated by assigning the

intensity |x̃n| to the pixel pn, typically on a logarithmic scale.

4.4.2 Image Denormalization

Recall that the matrix A was normalized with a diagonal matrix D which had the

e�ect of dividing each column of the dictionary by its norm. The e�ect of this oper-

ation is to scale the coe�cient x̃n by that norm; see Section 3.4.3.3 for an example.

The denormalized pixel values are de�ned as

x̃d := x̃D−1. (38)

The denormalized solution vector re�ects the �true� scattering behavior in some sense.

Without denormalization, pixels that correspond to dictionary atoms with larger

norms (before normalization) are scaled more than other pixels; in other words, denor-

malization compensates for the e�ects of geometric spreading, which are not included

in the normalized dictionary. For the case of Lamb waves, a shorter propagation dis-

tance results in a larger dictionary atom, so as a result of denormalization, pixels that

are outside the transducer aperture have their pixel values scaled down, and pixels

that are extremely close to a transducer have their pixel values scaled up. The former

is typically bene�cial, as artifacts are much more likely towards plate edges; the latter

can be detrimental and create artifacts near transducer locations. Within the convex

hull of the transducer locations, the e�ects of image denormalization are minimal.

Most results shown here use the normalized pixel results (i.e., denormalization is not
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performed); in practice, images generated with and without denormalization do not

di�er signi�cantly.

4.5 Discussion

4.5.1 Dictionary Location-Dependence of Coherence

As previously stated, the dictionary matrices A and Ā have a high coherence. This

is especially true for the latter matrix, which has all non-negative columns and no

phase information. The high correlation between Ā's columns in particular prevents

the use of several useful theorems regarding exact recovery. However, the coherence

in the dictionary matrix is location-dependent; i.e., columns of the dictionary matrix

are highly correlated if they represent pixels that are close together. Figure 8 shows

an example of this location-dependence for the envelope dictionary described in Sec-

tion 4.3.2 for the dictionary entry representing the point (100, 100). The pixel value

z(x,y) for a pixel in this image is the correlation of its corresponding dictionary atom

with that of (100, 100); that is, z(x,y) =
∣∣∣aH

(x,y)a(100,100)

∣∣∣, where a(x,y) is the dictionary

column corresponding to the point (x, y). The correlation is above 0.75 for pixels

within roughly 50 mm, above 0.5 for pixels at a distance of less than 100 mm, and

ranges from 0.1 to 0.5 elsewhere. The result of this structure is that errors in exact

reconstruction are likely to be relatively close to the true location of the scatterer.

4.5.2 Computational Considerations

4.5.2.1 Sparse Matrices

Most excitations used in practice have compact support; in these cases, most entries

of the dictionary matrix will be zero-valued. Many programming languages support

sparse matrix data structures, which can use considerably less memory than storing

the full matrix;Matlab has native support for sparse matrices, and external libraries

are available for many languages, including C++ [110] and Python [111]. To use these

representations, the dictionary matrix must �rst be thresholded at a level above the
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Figure 8: Correlation map of envelope dictionary from (100, 100). The value of each
pixel is equal to the correlation between that pixel's corresponding dictionary atom
and that of (100, 100).

rounding error caused by the Fourier transform and its inverse. All results shown in

this work used Matlab's sparse matrix implementation for their dictionaries, with

a threshold value selected to preserve at least 99.9% of the energy in the matrix,

measured using the square of the Frobenius norm.

4.5.2.2 Projection Matrix Approximation

As discussed in Section 4.4.1, it is useful to project the measured signal y onto the

column space of A. The naive approach is to use the de�nition of a projection matrix,

which is PA := AA+. However, this computation can be quite expensive, as it relies

on a matrix inversion, and uses a large amount of memory. A better solution for

large matrices is to use the singular value decomposition to approximate PA. Let

A = UΣVH, with the singular values ordered from largest to smallest, and let Ur
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denote the matrix that holds the �rst r columns of U. Then, the matrix UrU
H
r is

the best r-rank approximation to PA, and the fraction of energy preserved in the

approximation can be computed as
‖UrUH

rA‖2

F

‖A‖2F
, where ‖·‖F is the Frobenius norm.

This approach saves computation time by avoiding a full matrix inverse and saves

memory, since only Ur needs to be stored instead of the entire projection matrix. All

results shown here use this approximation, with r selected such that
‖UrUH

rA‖2

F

‖A‖2F
≥

0.999.

4.5.2.3 Matrix Compression

The dictionary matrix A (or Ā) can be compressed using various orthogonal trans-

forms and then performing thresholding. Preliminary testing shows that, for dic-

tionaries of Hann-windowed tonebursts, the discrete wavelet transform (using, for

example, Daubechies wavelets [112]) can allow a compression factor of 2-5 for unrec-

ti�ed dictionaries and 5-10 for envelope dictionaries. Other transforms such as the

lapped orthogonal transform may be viable as well. Additionally, if using column

space projection, the matrix of left-singular vectors U (or its approximation Ur) can

be used as an orthogonal basis. Other than testing for feasibility, these transforms

were not used for the results presented.
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CHAPTER V

BLOCK-SPARSE RECONSTRUCTION FOR ROBUST

DAMAGE LOCALIZATION AND CHARACTERIZATION

5.1 Introduction

The problem with the sparse reconstruction method in Chapter 4 is that it strongly

depends on the model of the scatterer. If the scatterer's behavior is unknown, as is

commonly the case, an envelope operation is applied to remove problematic phase

information. However, this also destroys the assumption of linearity, throws out valu-

able portions of the data, and does not address amplitude model mismatch. One so-

lution to this problem is to use a multidimensional model for scattering. As discussed

in Section 3.4, block-sparse methods are particularly suited for a union-of-subspaces

problem. In this chapter, scattering is generalized to a linear model where each pixel

has its own corresponding subspace in which the residual signals reside. By modeling

the problem in this manner, scatterers with unknown behavior can be detected and

possibly even characterized. Once again, an in�nite plate is considered that supports

a single Lamb wave mode with a known dispersion curve and an unspeci�ed number

of point scatterers. These assumptions are made for clarity and conciseness; more

complicated models, e.g., those that incorporate multimode propagation or boundary

re�ections, are supported with this methodology. Unlike in the previous chapter, the

scattering behavior of potential scatterers is not considered to be known a priori.

Substantial portions of this chapter also appear in [113] and [114].
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5.2 Fixed Damage Location, Single-Pair Scattering Model

5.2.1 One-Dimension-Per-Pair Model of Analytic Signal

First, consider only transducer pair i, whose transducers are a�xed to the plate at

locations si and ri. After a baseline measurement is taken, damage is introduced at

a known pixel location pn. The simplest feasible scatterer model is point scatter-

ing with frequency-independent, but directionally-dependent, amplitude scaling and

phase shifting. The most common Lamb wave excitation is a toneburst, because a

narrow bandwidth reduces the e�ects of dispersion and allows mode tuning. In such

cases when the excitation v0 is narrowband, the scattering model can be relaxed to

a point scatterer whose directionally-dependent amplitude and phase responses are

constant over the bandwidth of the pulse.

Consider two �xed transducers that interrogate a scatterer under this assumption.

The simplest way to model the e�ects of scatterer on this particular transducer pair

is with a constant coe�cient. Because the scatterer has directional behavior, this

coe�cient varies with transducer placement; every transducer pair will measure a

di�erent scattering coe�cient because it is interrogating at di�erent incoming and

outgoing angles. Since this coe�cient must account for phase shift, it is convenient

to consider the analytic representation of the di�erential signals, ŷi ∈ CL, for i =

1, 2, . . . , P . Then, the scattering pattern H
[
f ; θin, θout

]
is simply a complex constant,

which will be denoted here xi,n ∈ C, and Eq. 6 can be rewritten:

v̂scattered [t; si, ri,pn, H] = xi,n Pcp
pn→ri

Pcp
si→pn

v̂0 [t] . (39)

Here, |xi,n| is the amplitude of the scatterer and ∠xi,n is the phase shift. As shown in

Eq. 10, under perfect baseline subtraction, the vectors yi are equal to vscattered [t; s, r,q, H]

plus noise; thus ŷi is the analytic representation of that scattered signal, plus complex

noise. Since the value of xi,n is unknown, it must be included in the scattering model.

Because the location of damage is assumed to be known, the scattering coe�cient is
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the only variable and may be found using the equation

xi,n =
âH
i,n ŷi

‖âi,n‖2
2

, (40)

where âi,n = Pcp
pn→ri

Pcp
si→pn

v̂0.

5.2.2 Generalized Model

If a higher-dimensional model for the scattered signal ŷ is available, Eq. 40 can be

generalized. Let Λ be the dimension of the model, and let Âi,n ∈ CL×Λ contain the

vectors that model ŷi as its columns, and denote the coe�cients xi,n ∈ CΛ. The

coe�cients can be recovered by using least squares:

xi,n = Â+
i,n ŷi. (41)

As an example, this model could be used for multimode signals by using one

column for each mode. It can also be used for block-sparse solvers unable to work with

complex numbers; in this case, Â+
i,n should have columns for the real and imaginary

parts of âi,n.

5.3 Fixed Damage Location, Multiple-Pair Model

In this section, all transducer pairs are considered, but the scatterer is still assumed

to be at the known location pn. Regardless of its dimension, the model for the

scattered signal ŷi is treated here as a matrix, Âi,n ∈ CL×Λ; similarly, even if the

one-dimension-per-pair model is used, the scattering coe�cient is treated as a vector,

xi,n ∈ CΛ. For the one-dimension-per-pair case, Λ=1.

Since each transducer pair has di�erent incoming and outgoing angles, it cannot

be assumed that there is only a single coe�cient (or, for the generalized Λ-dimensional

model, Λ coe�cients). Instead, each pair is modeled as having an independent scat-

tering coe�cient (or set of Λ coe�cients) and all of these coe�cients are evaluated
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simultaneously. This can be done by forming the extended linear equation

ŷ1

ŷ2

...

ŷP


︸ ︷︷ ︸

ŷ

=



Â1,n 0 . . . 0

0 Â2,n . . . 0

...
...

. . .
...

0 0 . . . ÂP,n


︸ ︷︷ ︸

Ân



x1,n

x2,n

...

xP,n


︸ ︷︷ ︸

xn

+ê (42)

where ŷ ∈ CLP , Ân ∈ CLP×ΛP , and xn ∈ CΛP . As in Section 5.2.2, the scattering

coe�cients can be determined by using least squares:

xn = Â+
n ŷ. (43)

The ΛP -dimensional model in Eq. 42 allows the scatterer to have di�erent ampli-

tude and phase shift between each pair due to the structure of the extended dictio-

nary matrix Ân. This is important because many other algorithms require a priori

characterization of potential scatterers. Since di�erent types of damage may behave

di�erently, it is usually not possible to a speci�c of scattering behavior. For example,

large cracks have highly directional scattering, while through-holes scatter approxi-

mately omnidirectionally. In contrast, the Ân matrix is completely parameterized by

the distance from each transducer to the damage location, and requires no advance

knowledge of the scattering pattern. Instead, the equation solution is the scattering

pattern, sampled at the various angles dictated by the geometry of the transducers

and the location of pn.

5.4 Unknown Damage Location, Multiple-Pair Model

Finally, consider the case where K scatterers are present at unknown locations on

the otherwise damage-free plate; K need not be known in advance. As in Chapter 4,

the ROI of the plate is discretized into N pixels. Each of these pixels has a di�erent

model matrix Ân, since each has a di�erent set of transducer distances and therefore
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di�erent propagated signals. This matrix is described in Eq. 42. Using these models,

an overcomplete block dictionary

Âd :=

[
Â1 Â2 · · · ÂN

]
∈ CLP×NΛP (44)

can be constructed, with columns from matrix Ân assigned to group Gn. As in the

sparse reconstruction case, the dictionary matrix must be normalized; the normalized

block dictionary matrix is de�ned as

Â := Âd D̂−1 (45)

where D̂ ∈ RNΛP×NΛP is a diagonal matrix with Dj,j =
∥∥∥(âd

)
j

∥∥∥
2
, where

(
âd
)
j
is the

jth column of Âd. The complete model of the K-scatterer di�erential signals is then

ŷ =

[
Â1 Â2 · · · ÂN

]
D̂−1︸ ︷︷ ︸

Â



x1

x2

...

xN


︸ ︷︷ ︸

x

+ê, (46)

where x ∈ CNΛP . If a scatterer is located at pixel n, the corresponding submatrix xn

will contain its scattering coe�cients; if no scatterer is present, the coe�cients should

be all zero. Because it involves a redundant dictionary, Eq. 46 cannot be solved using

least squares to obtain a meaningful result. Instead, the solver must (a) select which

blocks should be active and (b) determine the coe�cients within each active block.

Provided that most of the structure is damage-free, a block-sparse solver will satisfy

these criteria by selecting a sparse set of blocks that approximately describes the

residual signal measurements.

If the model of one dimension per transducer pair is used (i.e., if Λ = 1) another

way to express the block dictionary is by interleaving the pixel blocks. This results
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in the block-diagonal dictionary

Âalt :=



A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · AP


∈ CLP×NΛP , (47)

where each submatrix Ai ∈ CL×N is a per-pair submatrix. Under this formulation,

the block corresponding to pixel i consists of columns i, i+N, i+2N, . . . , i+(N−1)N .

The relationship between the non-block dictionary in Eq. 27 and the block dictionary

is more readily apparent for this de�nition.

5.5 Solving the Block-Sparse Model

Analysis from Section 4.4 applies to the block-sparse case as well. In particular, the

use of the vector ŷ‖Â = PÂŷ is recommended, which allows a range of σ′ from 0 to∥∥∥ŷ‖Â∥∥∥
2
. This results in the optimization problem

x̃ = arg min
x

∑
G∈G

‖xG‖2 subject to
∥∥∥ŷ‖Â − Âx

∥∥∥
2
≤ σ′. (48)

The spg_group() function of SPGL1 1.8 can then be used to solve the block-

sparse problem, with the syntax

x_tilde = spg_group(A_hat, y_hat_A, G, sigma_prime[, opts]);

where A_hat is the dictionary matrix Â, y_hat_A is ŷ‖Â, sigma_prime is σ′, and the

vector G holds the group assignments for y_hat_A. The optional opts structure holds

con�guration settings such as the optimization tolerance.

Using the block method, each pixel n has multiple coe�cients in its subvector x̃n.

To generate the image, assign the pixel n the intensity value ‖x̃n‖2. As before, the

�denormalized� coe�cients x̃d = D̂−1x̃ may be used in place of x̃ for this image.

In addition to its ability to work with unknown scattering behavior, this block-

sparse method can be used for damage characterization. The block coe�cients in
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the denormalized solution vector describe how the damage behaves between indi-

vidual transducer pairs, allowing for the possibility of scattering pattern estimation.

Examples are shown in the next chapter.

5.6 Discussion

5.6.1 Advantages over Sparse Reconstruction

For most applications, �standard� sparse reconstruction must be performed with signal

envelopes as described in Section 4.3, both because the scattering pattern is unknown

a priori and other contributions to phase may not be well-known. This worsens the

noise conditions as described in Section 4.3.2.2, but more importantly, it introduces

a nonlinearity into a problem that assumes linear scattering because the dictionary

cannot incorporate destructive interference due to phase di�erences. For excitations

with compact support, the e�ects on reconstruction will be minimal if scatterers are

far apart; however, at some separation distance, the nonlinearity of the problem can

mask scatterers. The block-sparse method is not subject to the same issue since the

algorithm �chooses� appropriate signal phases as part of the solution.

Figure 9 compares results using sparse reconstruction with signal envelopes to

block-sparse reconstruction using σ′ = 0.5σ′max with simulated signals of a 3.175 mm,

Al-6061 plate with four equal-strength, omnidirectional scatterers forming a square

with 50 mm side length. Amplitude di�erences are solely a function of transducer

and scatterer placement. Because of the nonlinearity involved, the envelope method

(Figure 9(a)) fails to detect the top-right scatterer, and the locations of the bottom

two scatterers are biased towards each other. The block-sparse method (Figure 9(b))

is not subject to these problems, though the amplitude of the top-right scatterer

is lower. At lower values of σ′, the envelope method detects the otherwise masked

scatterer, though only weakly (not shown). The excitation used was a 5-cycle, 100

kHz Hann-windowed toneburst using the A0 mode, with a pixel resolution of 4 mm.
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(a) Sparse reconstruction with envelopes
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(b) Block-sparse reconstruction

Figure 9: Simulated imaging results for four scatterers in close proximity. (a) Image
generated with sparse reconstruction on signal envelopes. (b) Image generated with
block-sparse reconstruction. For both images, circles denote transducer locations
and triangles denote scatterer locations. All scatterers are of equal strength, though
transducer placement can a�ect the pixel values. The images are shown on a 20 dB
scale, normalized to the largest pixel value, and used σ′ = 0.5σ′max.

Image denormalization is not performed for Figure 9(b), but the e�ects are negligible.

5.6.2 Dictionary Location-Dependence of Coherence

The coherence of Â is nearly 1 for the same reason that the submatrices in Sec-

tion 4.2.1 are coherent. It is more meaningful, however, to examine a measure of

similarity between dictionary blocks (subspaces) to determine how well coherence is

localized. One such measure is the set of principal angles between two subspaces [115].

These represent the angles between individual dimensions of the two subspaces. The

�rst (smallest) principal angle between two subspaces U and V is de�ned as

cos θ1 := min
u∈U
v∈V

uHv

‖u‖2 ‖v‖2

. (49)
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The minimizing vectors are denoted u1 and v1. The other principal angles are de�ned

recursively:

cos θk := min
u∈U
v∈V

uHv

‖u‖2 ‖v‖2

subject to u ⊥ ui,v ⊥ vi, for i = 1, 2, . . . , k − 1. (50)

The resulting D = min {dim (U) , dim (V)} principal angles, {θ1, θ2, . . . , θD}, are in

ascending order. The �rst principal angle θ1 is the angle between the closest dimen-

sions U and V ; θ2 is the angle between the next-closest dimensions, and so on, up to

the angle between the two least-correlated dimensions, θD. If dim (U) = dim (V) = 1,

then θ1 is just the angle between any two non-zero vectors in the two subspaces. The

principal angles are also related to the projection matrices of the two subspaces. Let

PU and PV be projection matrices onto U and V , respectively. Then the D largest

non-negative eigenvalues of PU −PV are {sin θ1, sin θ2, . . . , sin θD}.

The cosines of these principal angles, ρk := cos θk, represent correlation coef-

�cients between the individual dimensions. In fact, the principal angles have an

interesting relation to the statistical �eld of canonical correlation analysis [116]. Let

U = range (U) and V = range (V) for some matrices U and V. If the columns of U

and V are zero-mean, then the values {ρ1, ρ2, . . . , ρD} are the canonical correlations

of UT and VT. In this case, the rows of UT and VT are considered to be random

variables, and columns are considered to be observations.

As in Section 4.5.1, the correlations {ρk} between two blocks depend on the dis-

tance between their corresponding pixels. Since the blocks in this dictionary have

more degrees of freedom than the single vectors for the non-block case, the �worst�

correlation between two blocks, ρ1, will be higher than the corresponding correlation

coe�cient for the non-block dictionary. Figure 10 shows a correlation map similar

to Figure 8, but for a block dictionary that uses one (complex) vector per trans-

ducer pair, creating a 28-dimensional subspace for each pixel. Other parameters are

identical to those speci�ed in Section 4.5.1.
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(a) Map of ρ28 (best)
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(b) Map of ρ24
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(c) Map of ρ21
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(d) Map of ρ14
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(e) Map of ρ8
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(f) Map of ρ5
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(g) Map of ρ2
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(h) Map of ρ1 (worst)
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(i) Map of average correlation

Figure 10: Correlation maps of block dictionary from (100, 100). The value of each

pixel is equal to
∣∣∣ρ(x,y),(100,100)
k

∣∣∣, the cosine of the kth principal angle between that

pixel's corresponding dictionary block and that of (100, 100). (a-h) Each map rep-
resents the correlation of a single pair of dimensions between the 28-dimensional
subspaces. Pixels that are farther away have more uncorrelated dimensions. (i) Map

of the average correlation 1
28

28∑
k=1

∣∣∣ρ(x,y),(100,100)
k

∣∣∣.
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To generate the �gure, the principal angles between each subspace (block) in Â

and the subspace corresponding to (100, 100) were determined. The result was a set

of 28 principal angles, θ(x,y),(100,100)
k , and their corresponding correlation coe�cients,

ρ
(x,y),(100,100)
k . The result is 28 di�erent correlation maps (one for each principal angle

dimension), where the map for the ρ1 values shows the worst-case correlation and

the map for the ρ28 values displays the best-case correlations. Eight of these maps

are shown. Each displays a degree of locality: the least-correlated subspaces have a

correlation of less than 0.5 at a distance of roughly 25 mm; the map corresponding

to ρ14 (the middle correlation map) has a spot size of 100-150 mm; the highest-

correlated maps have a correlation of nearly 1 everywhere. The near-total correlation

of the subspaces in at least one dimension is a result of the elliptical nature of the

data. Two pixels lying on the same ellipse with foci at any two transducer locations

will share at least one dimension because the time-of-�ight from one transducer to

the pixel location to the other transducer is the same for both pixels. The �gure

clearly shows that most dimensions for close pixels are highly correlated. In contrast,

the subspaces for two distant pixels have a number of dimensions that are essentially

uncorrelated. The result of this sort of structure is that if there are errors in locating

scatterers due to noise increases and modeling errors, the solver is more likely to select

nearby pixels than distant ones. Figure 10(i) shows the average of all 28 maps and is

comparable to the case with signal envelopes shown in Figure 8.

5.6.3 Computational Considerations

5.6.3.1 Sparse Matrices and Matrix Compression

The discussion in Sections 4.5.2.1 and 4.5.2.3 also applies to the block-sparse dictio-

nary matrix Â. This matrix has many more columns and is much more sparse than

the dictionary matrix of the previous chapter, so the use of a sparse matrix structure

is all but required for large problems.
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5.6.3.2 Projection Matrix Approximation

As in Section 4.5.2.2, the projection matrix PÂ can be approximated with the singular

value decomposition. Due to the block structure of this dictionary, the projection can

also be split into blocks to further reduce computation time. Let Âi ∈ CL×NΛP

denote the submatrix of Â that contains only those rows corresponding to pair i;

the dictionary can be broken into P such blocks. The projection matrix for block i

can be approximated as PÂi ≈ Ui
ri

(
Ui
ri

)H
, where Ui

ri
is the �rst ri columns of the

left-singular matrix Ui of Âi. The projection matrix PÂ can then be approximated

with the block-diagonal matrix

PÂ ≈ P
{ri}
Â

:=



PÂ1 0 . . . 0

0 PÂ2 . . . 0

...
...

. . .
...

0 0 . . . PÂP


. (51)

All block-sparse reconstruction dictionary projection results presented here use this

procedure, with {ri} selected such that

∥∥∥∥P{ri}Â
Â

∥∥∥∥2

F

‖Â‖2

F

> 0.999.
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CHAPTER VI

RESULTS AND ANALYSIS

6.1 Experiment One

The �rst experiment was performed on an Aluminum-6061 plate with dimensions

1220 mm × 1220 mm × 3.175 mm. Eight 0.5 mm thick, 7 mm diameter transducers

were a�xed to locations in the center of the plate in a roughly circular pattern, with

the coordinates listed in Table 4. All are listed in two dimensions, with the origin at

the center of the plate. For this experiment, it was desired to minimize the e�ects of

re�ections from the plate edges; in addition to the large plate area, the sides of the

plate were damped with duct-sealing compound. The acquisition setup is shown in

Figure 11 and utilized an arbitrary waveform generator, signal multiplexer, ampli�er,

and digitizer. Additional details about the experiment are provided in [114].

To simulate damage, two 77.8 mm long steel rods were a�xed to the plate with

glue. The larger 9 mm diameter rod was attached at (30 mm, 40 mm), while the

smaller, 6 mm rod was placed at (−20 mm, −80 mm). One set of baselines was

recorded on the pristine plate; two follow-up measurements were taken: one after

Table 4: Transducer placement for experiments one and two

Transducer X (mm) Y (mm)

#1 -240 0
#2 -199 -145
#3 -56 -233
#4 130 -206
#5 214 -107
#6 201 138
#7 0 245
#8 -188 143

70



NI PXIe-1082 Chassis

NI PXI 2593
Multiplexer

NI PXI 5412
Arbitrary

Waveform
Generator

NI PXI 5122
Digitizer

Plate

Olympus Panametrics
PR 5072
Amplifier

Computer

Figure 11: Block diagram of experimental system.

placing the �rst (larger) rod, and one after both rods were attached.

Excitation was performed with a 200 µs chirp over the 50 kHz-500 kHz range and

sampled at 20 MHz. These signals were postprocessed to obtain the equivalent re-

sponse [117] to a 5-cycle, Hann-windowed toneburst with center frequency 100 kHz;

at this frequency, the A0 mode is dominant. Finally, the signals were downsampled

to a 1 MHz sampling rate and time windowed to 1 ms (1000 samples).

6.1.1 Delay-and-Sum

For comparison, an image was �rst generated using existing custom software capable

of performing DAS imaging [43]. The software uses signal envelopes and does not

incorporate dispersion, instead estimating the group velocity from experimental data.

For these images, no weighting of any sort was applied � signals were simply time-

shifted by the appropriate amount and added together. Figure 12 shows the DAS

result for the experimental data, on a 20 dB scale. Both rods are detected, but their

spot sizes are on the order of 75 mm in diameter and bleed into each other.
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Figure 12: Result for experiment one (glued-on steel rods) using delay-and-sum imag-
ing on signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value.
Circles denote transducer locations, and triangles denote the locations of the rods.

6.1.2 Sparse Reconstruction with Raw Signals

The sparse reconstruction dictionary A was formed using the nominally-computed

A0 dispersion curves and the same toneburst waveform, at the same 1 MHz sampling

frequency and number of samples. The square −248 mm ≤ x, y ≤ 248 mm was des-

ignated as the area of interest and was discretized into 4 mm pixels. Scattering was

assumed to be uniform and with no phase shift. The energy fraction after projec-

tion onto the real-valued dictionary is E‖ = 0.64, indicating that 64% of the energy

in the concatenated residuals lies in the column space of the dictionary; this is a

typical energy fraction for signals with good baseline subtraction and low levels of

noise and interference. Reconstruction was performed using σ′ = 0.5σ′max, meaning

that the reconstructed signal was required to explain 75 percent of the signal en-

ergy that remained after projection. Imaging results are shown in Figure 13, with
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no image denormalization. Reconstruction fails catastrophically, primarily due phase

mismatch.

A second reconstruction was performed using the analytic representations of the

di�erential signals and the dictionary matrix as described in Section 4.3.1. The energy

fraction after projection is E‖ = 0.64; imaging results using σ′ = 0.5σ′max and no

denormalization are shown in Figure 14 and show considerable improvement, though

artifacts are still present, including one with an intensity that is less than 4 dB below

the largest pixel of the top scatterer.

6.1.3 Sparse Reconstruction with Signal Envelopes

Next, reconstruction was repeated using signal envelopes. The dictionary matrix

Ā was constructed as described in Section 4.3.2; it is the complex absolute value

of the dictionary of analytic representations. Noise compensation was performed as

described in Section 4.3.2.2. The projection energy fraction E‖ = 0.65; the result with

σ′ = 0.5σ′max and no denormalization is shown in Figure 15. The two scatterers are

well localized and no artifacts are visible at the 20 dB level. When noise compensation

is not performed, the spot sizes are slightly larger (not shown).

6.1.4 Sparse Reconstruction with Signal Envelopes with Unknown Dis-

persion Curves

To test robustness to model mismatch, the previous reconstruction was repeated with

a dictionary that used only the theoretically-calculated A0 group velocity; i.e., disper-

sion was not modeled. No time o�set was used and the group velocity was con�rmed

to agree with experimental data. The energy fraction, E‖ = 0.65, is unchanged to

two decimal places. Imaging results using the same parameters are shown in Fig-

ure 16 and are visually similar to the results with the dispersive dictionary, despite

the simpler propagation model.
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Figure 13: Result for experiment one (glued-on steel rods) using sparse reconstruction
with RF signals, shown on a 20 dB scale, normalized to the largest pixel value. Circles
denote transducer locations, and triangles denote the locations of the rods.
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Figure 14: Result for experiment one (glued-on steel rods) using sparse reconstruction
with analytic representations of RF signals, shown on a 20 dB scale, normalized to
the largest pixel value. Circles denote transducer locations, and triangles denote the
locations of the rods.
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Figure 15: Result for experiment one (glued-on steel rods) using sparse reconstruction
with signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value.
Circles denote transducer locations, and triangles denote the locations of the rods.
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Figure 16: Result for experiment one (glued-on steel rods) using sparse reconstruction
with signal envelopes. Dispersion is not modeled in the dictionary. The image is
shown on a 20 dB scale and is normalized to the largest pixel value. Circles denote
transducer locations, and triangles denote the locations of the rods.
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6.1.5 Block-Sparse Reconstruction

Reconstruction was performed using block-sparse reconstruction as described in Chap-

ter 5. The complex-valued, one-dimension-per-pair model, presented in Section 5.2.1,

was used to create the dictionary. The energy fraction, E‖ = 0.65, is similar to the

previous non-block cases. Imaging results with σ′ = 0.5σ′max and without denormal-

ization are shown in Figure 17. The spot sizes of the scatterers are slightly reduced

compared to the non-block case with signal envelopes, but the results are otherwise

similar.

6.1.6 Block-Sparse Reconstruction with Unknown Dispersion Curves

To compare robustness with the standard sparse reconstruction method, block-sparse

reconstruction was repeated with a dictionary that did not model dispersion, in the

same manner as Section 6.1.4. Again, E‖ = 0.65, and results using σ′ = 0.5σ′max and

no denormalization are shown in Figure 18. The increase in spot sizes between the

block-based images shown in Figures 17 and 18 is greater than that of the envelope

images shown in Figures 15 and 16.

6.1.7 Discussion

A summary of the results from experiment one is shown in Table 5. Sparse recon-

struction with real-valued signals failed to locate the scatterers and is not shown. The

results for experiment one are very similar for block-sparse reconstruction and sparse

reconstruction with signal envelopes. As discussed in Section 5.6.1, signal envelopes

perform well when scatterers are far apart because the corresponding scattered sig-

nals are separated in time for many of the received signals. Additionally, the steel

rods have an approximately omnidirectional scattering behavior, so the dictionary is

well-matched to the data.
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Figure 17: Result for experiment one (glued-on steel rods) using block-sparse re-
construction, shown on a 20 dB scale, normalized to the largest pixel value. Circles
denote transducer locations, and triangles denote the locations of the rods.
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Figure 18: Result for experiment one (glued-on steel rods) using block-sparse recon-
struction. Dispersion is not modeled in the dictionary. The image is shown on a
20 dB scale and is normalized to the largest pixel value. Circles denote transducer
locations, and triangles denote the locations of the rods.
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6.2 Experiment Two

The second experiment was performed on the same plate as experiment one. The

glued-on rods were removed and a 9.9 mm notch was hand-cut at a 58◦ orientation

relative to the X-axis, using a drilled starter hole. The baseline signals were acquired

after drilling the starter hole but before cutting the notch. The plate dimensions,

transducer coordinates, and acquisition procedure were identical to the description

in Section 6.1. Of important note is that all dictionaries used for reconstruction in

experiment two are identical to those in the �rst experiment; the algorithms were

simply run with di�erent data �les to determine their robustness to di�erent types

and locations of damage.

6.2.1 Delay-and-Sum

As in experiment one, a preliminary delay-and-sum image was generated as a baseline

to which sparsity-based methods could be compared. Figure 19 shows the results using

the same software as experiment one. Again, the spot size of the scatterer is quite

large (on the order of 100 mm along its major axis) and a sizable portion of the ROI

is within 10 dB of the maximum.

6.2.2 Sparse Reconstruction with Raw Signals

Results with real-valued signals were shown to be extremely poor in Section 6.1.2

and were not repeated for this experiment. Using analytic signal representations,

the projection energy fraction is E‖ = 0.67. Imaging results using σ′ = 0.5σ′max

and no denormalization are shown in Figure 20. The scatterer is well localized;

however, several artifacts are present due to phase mismatches, in a similar fashion

as experiment one.
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Figure 19: Result for experiment two (hand-cut notch) using delay-and-sum imaging
on signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value.
Circles denote transducer locations, and the triangle denotes the location of the notch.
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Figure 20: Result for experiment two (hand-cut notch) using sparse reconstruction
with analytic representations of RF signals, shown on a 20 dB scale, normalized to
the largest pixel value. Circles denote transducer locations, and the triangle denotes
the location of the notch.
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6.2.3 Sparse Reconstruction with Signal Envelopes

Reconstruction was then performed using signal envelopes, using the same dictionary

as Section 6.1.3. Noise compensation was performed on the residual signals, which

somewhat decreased the energy fraction to E‖ = 0.59; without noise compensation,

the energy fraction is comparable to that of the dictionary of raw signals. Imaging

results with σ′ = 0.5σ′max and with no denormalization are shown in Figure 21. The

scatterer is clearly detected, but the spot appears elongated. Interestingly, the angle

of the spot in the image is similar to that of the notch. It is unknown if this is a

coincidence or is related to the 58◦ orientation. The small artifacts over transducers

5 and 7 are due to amplitude mismatch in the dictionary; the scatterer is highly

directional, but the dictionary is modeled with an omnidirectional scatterer. Despite

the artifacts, the use of signal envelopes successfully mitigates phase mismatch.

6.2.4 Sparse Reconstruction with Signal Envelopes with Unknown Dis-

persion Curves

As in experiment one, it was desired to determine robustness by using a dictionary

that lacked modeling of dispersion by using only the nominal group velocity. The

energy fraction is similar, at E‖ = 0.60 for the noise-compensated signals. Imaging

results are shown, again using the noise-compensated signals with σ′ = 0.5σ′max and

no denormalization, in Figure 22; the spot size has lengthened signi�cantly. Again,

artifacts are present at transducer locations due to model mismatch.

6.2.5 Block-Sparse Reconstruction

Next, reconstruction was performed using block-sparse reconstruction, using the same

dictionary as Section 6.1.5. For this dictionary, E‖ = 0.68; imaging results with

σ′ = 0.5σ′max and without denormalization are shown in Figure 23. The spot size of

the notch is signi�cantly smaller than for the envelope-based method; the �exibility

of the multidimensional model eliminates the artifacts of that method, as well.
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Figure 21: Result for experiment two (hand-cut notch) using sparse reconstruction
with signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value.
Circles denote transducer locations, and the triangle denotes the location of the notch.
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Figure 22: Result for experiment two (hand-cut notch) using sparse reconstruction
with signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value.
Dispersion is not modeled in the dictionary. Circles denote transducer locations, and
the triangle denotes the location of the notch.
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6.2.6 Block-Sparse Reconstruction with Unknown Dispersion Curves

Block-sparse reconstruction was repeated with a dictionary that did not model dis-

persion, to compare robustness with the envelope method; using this dictionary,

E‖ = 0.68. The imaging result, which was generated using σ′ = 0.5σ′max and with no

denormalization, is shown in Figure 24. In experiment one, the use of group velocities

instead of dispersion curves a�ected the block-sparse method more than the non-block

method with signal envelopes; in this experiment, the quality of the block-sparse im-

age is only slightly reduced and the method performs better with this simpli�cation

than its non-block, envelope-based counterpart.

6.2.7 Discussion

A summary of the results of experiment two is shown in Table 6. Unlike experiment

one, the results for experiment two are improved to some degree by the use of block-

sparse reconstruction over the envelope method. This is primarily due to the �exibility

of the former to handle directional scatterers without requiring a speci�c model.

Nevertheless, the envelope-detected dictionary method is still capable of locating the

hand-cut notch.
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Figure 23: Result for experiment two (hand-cut notch) using block-sparse reconstruc-
tion, shown on a 20 dB scale, normalized to the largest pixel value. Circles denote
transducer locations, and the triangle denotes the location of the notch.
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Figure 24: Result for experiment two (hand-cut notch) using block-sparse recon-
struction, shown on a 20 dB scale, normalized to the largest pixel value. Dispersion is
not modeled in the dictionary. Circles denote transducer locations, and the triangle
denotes the location of the notch.
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6.3 Experiment Three

The third experiment was conducted on a smaller plate to evaluate the e�ects of

edge re�ections. Six 0.5 mm thick, 7 mm diameter transducers were a�xed to an

Aluminum-6061 plate with dimensions 292 mm × 600 mm × 3.175 mm. The loca-

tions of the transducers are shown in Table 7. A 3.6 mm notch was hand-cut at a

−50◦ orientation from a 5.0 mm drilled starter hole at location (−50.5 mm,−51.0 mm)

after baseline measurements were obtained. The acquisition setup was identical to

the previous experiments (Figure 11), with the exception of the number of attached

transducers. The square region −146 mm ≤ x, y ≤ 146 mm was designated as the

region of interest; unlike the previous two experiments, the ROI touches the left and

right sides of the plate (but not the top and bottom).

For all imaging methods, the high levels of clutter in the signals (unmodeled

boundary re�ections) result in large artifacts at the edges of the ROI. Unless stated

otherwise, all images in this section are normalized to the largest pixel that is near

the scatterer's true location. This is to emphasize the relative magnitudes of artifacts

relative to the actual defect. Artifacts that are above the maximum of the 20 dB

scale are shown in dark brown.

Table 7: Transducer placement for experiment three

Transducer X (mm) Y (mm)

#1 -94.5 -41.0
#2 0.5 -108.0
#3 94.5 -63.0
#4 83.0 66.0
#5 0.5 110.0
#6 -89.0 47.0
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6.3.1 Delay-and-Sum

As with previous experiments, the �rst image to be generated was a DAS image for

comparison. Figure 25 shows the results. The scatterer is detected, but large artifacts

�ll the plate due to the numerous boundary re�ections that are either imperfectly

subtracted from their baselines or are secondary bounces due to the scatterer. The

overall dynamic range of the image is 8.51 dB.
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Figure 25: Result for experiment three (small plate) using delay-and-sum imaging
on signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value
near the scatterer. Circles denote transducer locations, and the triangle denotes the
location of the notch.

6.3.2 Sparse Reconstruction with Raw Signals

Due to the smaller size of the plate and imperfect baseline subtraction, a high degree

of interference is present in the residual signals. As a result, the projection energy

fraction is quite small: using the non-block, complex analytic form resulted in E‖ =
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Figure 26: Result for experiment three (small plate) using sparse reconstruction with
analytic representations of RF signals, shown on a 20 dB scale, normalized to the
largest pixel value near the scatterer. Circles denote transducer locations, and the
triangle denotes the location of the notch.

0.073. Figure 26 shows results using this dictionary with σ′ = 0.5σ′max. A few pixels

near the scatterer are high-valued, but even the largest of these pixels is less than

3 dB above some of the artifacts in the image. Due to the signal interference, many

pixels at the ROI corners and edges are higher-valued than the scatterer by 2 dB or

more.

6.3.3 Sparse Reconstruction with Signal Envelopes

Next, reconstruction was performed using signal envelopes. Because of the high level

of clutter in the signals, estimates of the noise level were unreliable, and noise com-

pensation was not used. The energy fraction resulting from the envelope dictionary,

E‖ = 0.061, is somewhat smaller than the corresponding result using raw signals. Re-

sults using σ′ = 0.5σ′max are shown in Figure 27; the image is an overall improvement

from the image generated with raw signals. Several pixels are lit in the immediate

vicinity of the scatterer, though many of these artifacts are present in locations that

88



correspond to the DAS image shown in Figure 25. The corner pixels have much higher

values than with raw signals; the pixel in the bottom-left corner is 16 dB above the

level of the largest pixel near the scatterer. The artifact in the upper-center portion

of the plate (within the convex hull of the transducers) is more than 6 dB below

the pixel value of the scatterer. Another artifact is present near transducer #1; this

artifact also appears in the DAS image and is likely exacerbated by the unmodeled

directionality of the scatterer.

6.3.4 Sparse Reconstruction with Signal Envelopes with Unknown Dis-

persion Curves

Results were then generated using an envelope-detected dictionary using only the

group velocity instead of dispersion curves. The energy fraction in the dictionary's

column space is similar, at E‖ = 0.057. Results are shown, with σ′ = 0.5σ′max, in

Figure 28. The spot sizes of the scatterer, central artifacts, and corner artifacts are

signi�cantly increased. The top-center artifact is only approximately 5 dB below the

pixel intensity of the scatterer, and the amplitudes of some corner artifacts are more

than 15 dB above that of the scatterer.

6.3.5 Block-Sparse Reconstruction

Next, reconstruction was performed using block-sparse reconstruction. The energy

fraction due to the block dictionary is similar to that of the non-block dictionary with

raw signals; E‖ = 0.077. Figure 29 shows the results when σ′ = 0.5σ′max. While the

spot size of the scatterer and artifacts is much larger than those of the corresponding

image using envelope-detected signals, the artifact level is greatly reduced due to

the �exibility of the block model: the largest artifact within the convex hull of the

transducer locations is nearly 9 dB below the level of the scatterer, and the largest

corner artifact is only 7.7 dB above the scatterer.
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6.3.6 Block-Sparse Reconstruction with Unknown Dispersion Curves

Block-sparse reconstruction was again repeated with a dictionary that did not model

dispersion, to compare to the the envelope method. The energy fraction is essentially

unchanged, at E‖ = 0.077. Figure 30 shows the results using σ′ = 0.5σ′max. Image

quality is similar to that of the dispersive dictionary; the largest artifact within the

transducer aperture is 11 dB below the scatterer intensity, but the largest corner

artifact is nearly the same amount above the scatterer (10.9 dB).

6.3.7 Discussion

Table 8 summarizes the performance of the various imaging methods. The comparison

between signal envelopes and block-sparsity is an interesting one for this experiment.

For the case of the dispersive dictionary, the envelope method exhibits superior results

to the block method in terms of spot size, though the artifacts are somewhat higher

in magnitude. In some sense, this result shows the strengths and weaknesses of the

block-sparse algorithm: it has a more robust scatterer model, which decreases artifact

magnitudes due to mismatch; however, the �exibility of the model leads to nearby

pixels sharing many of the dimensions of their respective subspaces, which increases

spot sizes.

When using group velocity instead of dispersion curves, the block-sparse method

does better overall: with the exception of the artifact at (−80 mm, 120 mm), which

is well outside the transducer aperture, all artifacts are decreased in magnitude com-

pared to the envelope method.

The projection energy fractions for this experiment are much smaller than previous

experiments due to the presence of unmodeled edge re�ections. The di�erential signal

envelopes for the �rst transducer pair in experiments two and three are compared in

Figure 31. The signals from experiment two are relatively clean, with a large peak

from the notch, as well as small peaks due to imperfect baseline subtraction. In
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Figure 27: Result for experiment three (small plate) using sparse reconstruction with
signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value near the
scatterer. Circles denote transducer locations, and the triangle denotes the location
of the notch.
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Figure 28: Result for experiment three (small plate) using sparse reconstruction with
signal envelopes, where dispersion is not modeled in the dictionary. The image is
shown on a 20 dB scale and normalized to the largest pixel value near the scatterer.
Circles denote transducer locations, and the triangle denotes the location of the notch.
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Figure 29: Result for experiment three (small plate) using block-sparse reconstruction,
shown on a 20 dB scale, normalized to the largest pixel value near the scatterer.
Circles denote transducer locations, and the triangle denotes the location of the notch.
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Figure 30: Result for experiment three (small plate) using block-sparse reconstruction,
where dispersion is not modeled in the dictionary. The image is shown on a 20 dB
scale and normalized to the largest pixel value near the scatterer. Circles denote
transducer locations, and the triangle denotes the location of the notch.
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contrast, the envelope from experiment three has large regions of overlapping echoes;

it is impossible to discern at �rst glance which part of the signal is due to the scatterer.

(In fact, the scatterer is responsible for the small wavepacket with the peak at 75 µs.)

Both signals are truncated and amplitude-scaled to �t on the same axes.

One particularly noticeable phenomenon is the bright artifacts at the corners of

the plate. As explained in Section 4.3.2.3, these can result from the solver attempting

to match later portions of the signal. Additionally, if baseline subtraction is imperfect,

there will be some residual due to signals bouncing at plate boundaries. These edge

re�ections appear as scatterers, and an algorithm has no way of di�erentiating this

sort of behavior from that of an actual scatterer. The DAS image does not su�er

from the speci�c issue of �corner lighting�; however, the DAS image is much worse

overall.

The performance of imaging in an actual structure is likely to fall somewhere

between experiments two and three. A realistic structure for this application would

not have free edges like the small plate of experiment three, but instead would have

more clutter at smaller amplitudes due to geometrical re�ectors such as fastener holes,

sti�eners, and welds.
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Figure 31: Comparison of di�erential signal envelopes for one pair in experiments
two and three. The signals are truncated at 500 µs and normalized to �t on the same
scale.
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6.4 Experiment Four

The �nal experiment was performed on an 8-layer cross-ply carbon �ber composite

plate with dimensions 460 mm × 460 mm × 2.5 mm. Six 0.5 mm thick, 7 mm diam-

eter transducers were a�xed at the locations shown in Table 9. Transducer #6 was

later found to be faulty and was not used, reducing the total number of transducer

pairs to ten.

Dispersion curves were unavailable for this material; instead, the group velocity

was computed from experimental data using the slant-stack Radon transform [118],

with no applied time o�set. Damage was simulated with small rare earth magnets

that were a�xed to both sides of the plate. The acquisition system was identical

to previous experiments (Figure 11), with the exception of the number of attached

transducers. The entirety of the plate, −230 mm ≤ x, y ≤ 230 mm was designated as

the area of interest. After exciting and postprocessing with a broadband pulse [117],

it was found that the wave�eld is nearly single-mode at 75 kHz for a pseudo-A0 mode

that is almost isotropic; this frequency was selected as the center frequency for the

excitation, which was selected to be a 5-cycle, Hann-windowed toneburst. The dic-

tionaries again had a resolution of 4 mm. Even though the plate was relatively small,

the greater material attenuation in the composite compared to aluminum helped mit-

igate the e�ect of unmodeled edge re�ections. Sparse reconstruction with raw signals

performed similarly to experiment three and is not shown.

Table 9: Transducer placement for experiment four

Transducer X (mm) Y (mm)

#1 42.5 142.0
#2 -118.5 105.0
#3 -165.0 -24.0
#4 -56.0 -142.5
#5 97.0 -125.0

#6 (defective) 144.0 -6.5
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6.4.1 Delay-and-Sum

Once again, a DAS image was generated for comparison; results are shown in Fig-

ure 32. The scatterer has a large spot size and two high-value artifacts above and

below it, to the right. A very noticeable artifact in the shape of an ellipse is present

with foci at the two rightmost transducers; this is likely caused by imperfect baseline

subtraction for that pair for the portions of the signals that correspond to at least

one edge re�ection.
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Figure 32: Result for experiment four (composite plate) using delay-and-sum imaging
on signal envelopes, shown on a 20 dB scale, normalized to the largest pixel value.
Circles denote transducer locations, and the triangle denotes the location of the mag-
nets.

6.4.2 Sparse Reconstruction with Signal Envelopes with Unknown Dis-

persion Curves

The projection energy an envelope-detected dictionary on signals without noise com-

pensation was E‖ = 0.61. Imaging results using σ′ = 0.5σ′max are shown in Figure 33.

97



The scatterer is well localized, with only a small number of artifacts away from plate

edges. The largest such artifact is 6.76 dB below the pixel intensity of the scatterer.

The artifact at the top edge of the plate on the right, which lies on the ellipse of

artifacts in Figure 32, is 1.52 dB above the magnitude of the scatterer.

For comparison, when noise-compensated signals are used, E‖ = 0.65, and results

are shown in Figure 34 for σ′ = 0.5σ′max. The artifact at (118 mm, 58 mm) is 4.79 dB

below the scatterer, and the largest artifact at the plate edge is 4.06 dB above the

scatterer. Although the spot sizes are reduced, the noise compensation has adversely

a�ected the image in terms of artifact level, possibly due to poor estimation of the

true noise level.

6.4.3 Block-Sparse Reconstruction with Unknown Dispersion Curves

An image was also generated using block-sparse reconstruction, where E‖ = 0.68 using

the block dictionary. Figure 35 shows the results using σ′ = 0.5σ′max. The image is

nearly identical to Figure 33, though the amplitude of the scatterer is somewhat

increased compared to that of the artifacts, with the largest internal artifact 6.91 dB

below the scatterer, and the largest artifact at an edge 0.19 dB above the scatterer.

6.4.4 Discussion

Results of experiment four are summarized in Table 10. In this experiment, only

results using group velocity were available, and very little di�erence is observed be-

tween envelope and block-sparse methods, with artifacts in the same locations and

similar spot sizes. Because of the small size of the plate and only a rough estimate of

propagation behavior, a small number of artifacts are apparent outside of the aper-

ture. Additionally, artifacts are present at the plate boundary; these types of artifacts

are also present in experiment three and are due to edge re�ections and imperfect

baseline subtraction. Interestingly, the corresponding artifacts in the DAS image are

smaller in magnitude than those in the sparsity-based images; however, DAS su�ers
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Figure 33: Result for experiment four (composite plate) using sparse reconstruction
with signal envelopes that were not compensated for noise, shown on a 20 dB scale,
normalized to the largest pixel value. Dispersion is not modeled in the dictionary.
Circles denote transducer locations, and the triangle denotes the location of the mag-
nets.
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Figure 34: Result for experiment four (composite plate) using sparse reconstruction
with signal envelopes and noise compensation, shown on a 20 dB scale, normalized
to the largest pixel value. Dispersion is not modeled in the dictionary. Circles denote
transducer locations, and the triangle denotes the location of the magnets.
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Figure 35: Result for experiment four (composite plate) using block-sparse recon-
struction, shown on a 20 dB scale, normalized to the largest pixel value. Dispersion is
not modeled in the dictionary. Circles denote transducer locations, and the triangle
denotes the location of the magnets.

from multiple large artifacts in the center of the plate.

A surprising result is reduction in quality from noise compensation; unlike ex-

periments one and two, the image is not improved by this operation. The cause is

unclear; it may be due to the relatively low noise levels, which made the true noise

level di�cult to estimate. Even this image, however, is superior to the DAS image

overall in terms of the spot size and amplitude of artifacts in the center of the plate.
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6.5 E�ect of Decreasing Numbers of Transducer Pairs

To analyze the e�ects of varying numbers of transducers, an analysis of data from

experiments one and two was re-run, �rst using only six of the available transducers,

and then using only four, for both the non-block case with signal envelopes and for

the block-sparse case. The smaller number of transducers was simulated by zeroing

out data: for the non-block method, the portions of the residual signal vector and dic-

tionary corresponding to unused transducer pairs were zeroed; for the block method,

only the residual vector needed to be zeroed.

6.5.1 Experiment One

Figure 36 shows results for experiment one with eight, six, and four transducers. For

the envelope method, only results without noise compensation are shown; results are

similar with noise compensation. With six or eight transducers, both methods are suc-

cessful at localizing the scatterers. With only four transducers, the envelope method

succeeds, but one scatterer's pixel value is reduced; in contrast, the block-sparse

method produces a large artifact in the center of the plate. This highlights a weak-

ness of the block-sparse method; as discussed in Section 5.6.2, some of the dimensions

in the subspaces that correspond to each pixel are highly correlated. As the number

of dimensions decreases, the likelihood of this becoming an issue with reconstruction

increases. In the case of this experiment with four transducers, the theoretical resid-

ual signal lies in a 12-dimensional subspace (six transducer pairs and two di�erent

scatterers). This subspace happens to be highly correlated with the artifact location

in �ve of its six dimensions. Figure 37 shows the cosines of the principal angles (i.e.,

correlations) between the subspaces Ascatterers = span
([

Â(32,40) Â(−20,−80)

])
and

Aartifact = span
(
Â(36,−48)

)
; the former represents the two pixel locations that are

closest to the scatterers, and the latter is the location of the largest-valued artifact

pixel. The �gure shows the dimensional correlations when restricted to dimensions
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present in the dictionaries generated using eight, six, and four transducers (28, 15,

and 6 transducer pairs, respectively). With eight transducers, 12 of the dimensions

have a correlation of less than 0.75; with six transducers, 5 dimensions do; with four

transducers, only one of the six dimensions has a correlation below 0.9. This explains

why the artifact occurs at that particular location; other pixels are not nearly so cor-

related. For example, the subspace corresponding to the (arbitrarily selected) pixel

at (132,−8) is only highly-correlated with Ascatterers in two of its six dimensions for

the four-transducer case.

The phenomenon of correlated artifacts is caused by the transducer con�guration.

Recall that each transducer pair detects time-of-�ight elliptically, where the trans-

ducers are the foci of a set of ellipses that correspond to increasing propagation times.

For the roughly square con�guration of the four transducers selected in Figure 36(f),

most of the ellipses that contain the two sites of damage cross the central area of the

plate. With a large number of pairs, this is not a major issue, since there are enough

uncorrelated dimensions to allow detection. However, with only six pairs total, this

con�guration can lead to artifacts if �aws are in the center of the aperture. This

can be addressed by varying the transducer geometry; for example, Figure 38 shows

results with a di�erent con�guration of four transducers. No artifacts are present at

the 20 dB level.
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(c) Envelope method, 6 transducers (15 pairs)
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(e) Envelope method, 4 transducers (6 pairs)
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(f) Block method, 4 transducers (6 pairs)

Figure 36: Results for experiment one with varying numbers of transducers. Circles
denote active transducer locations and triangles denote locations of the rods.
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Figure 37: Principal correlations between the dictionary blocks corresponding to scat-
terer locations and the dictionary block corresponding to the artifact in Figure 36(f),
for eight (top), six (middle), and four (bottom) transducer pairs.
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Figure 38: Results for experiment one for block-sparse imaging with four transducers
in an alternate con�guration.
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6.5.2 Experiment Two

Figure 39 shows results for experiment two with eight, six, and four transducers, us-

ing the same procedure as was used for the previous section. Since there is only one

scatterer present, the block-sparse method does not su�er the same problems with

artifacts as it did in the previous section. On the other hand, sparse reconstruction

with signal envelopes su�ers a modest reduction in image quality as the number of

transducers is reduced, due to dictionary mismatch (since the scatterer is directional).

For the four-transducer case, two high-valued artifacts are located near the two trans-

ducers that excite waves that hit the notch's broadside (upper-left and lower-right).

These pixel locations contribute disproportionately to the signal that travels between

these two transducers and are selected by the algorithm, since the scattering between

this pair has the highest amplitude.

6.5.3 Discussion

These cases demonstrate how each algorithm degrades with decreasing numbers of

transducers. The block-sparse method develops severe artifacts with four transducers

in experiment one (two glued-on steel rods), but is only slightly degraded by using

four transducers in experiment two (one hand-cut notch). This suggests that as the

number of transducers decreases, the block-sparse reconstruction method degrades as

the number of scatterers increases; the union of the subspaces due to these scatterers

grows in dimension and becomes more and more correlated with certain subspaces on

the plate, which increases the likelihood of artifacts. In contrast, sparse reconstruction

with signal envelopes is almost completely una�ected by a reduction of transducers in

experiment one; the only noticeable e�ect is a reduction in amplitude of the bottom

scatterer. In experiment two, however, the spot size of the scatterer increases as

transducers are removed, and artifacts develop at or near the transducer locations.

As discussed in Section 5.6.1, the envelope method can have di�culty with multiple

106



X (mm)

Y
 (

m
m

)

 

 

−200 −100 0 100 200

−200

−100

0

100

200

−50

−48

−46

−44

−42

−40

−38

−36

−34

−32

(a) Envelope method, 8 transducers (28 pairs)

X (mm)

Y
 (

m
m

)

 

 

−200 −100 0 100 200

−200

−100

0

100

200

−46

−44

−42

−40

−38

−36

−34

−32

−30

−28

(b) Block method, 8 transducers (28 pairs)
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(d) Block method, 6 transducers (15 pairs)
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(f) Block method, 4 transducers (6 pairs)

Figure 39: Results for experiment two with varying numbers of transducers. Circles
denote active transducer locations and the triangle denotes the location of the notch.
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scatterers, masking weaker-detected scatterers due to the nonlinear e�ects of envelope

detection; this e�ect did not appear to be signi�cantly a�ected by decreasing the

number of transducers, although it may not appear until more than two scatterers

are present. The noticeable progression of scatterer spot size in experiment two

suggests that the e�ects of scatterer mismatch increase as the number of transducers

is decreased for the envelope method.

One clear implication is that the quality of images generated with both methods

increases as the number of transducers increases, especially when increasing from four

to six transducers; the image quality is less substantially a�ected when increasing from

six to eight transducers. In situations with only a small number of transducers, the

di�erent characteristics of the algorithms might make one method more favorable

than the other, depending on anticipated �aw types and numbers.

6.6 Scatterer Characterization

One advantage of the block-sparse method is the ability to characterize damage by

using the scattering coe�cients from the solution. To demonstrate, block-sparse

reconstruction was performed on the residual measurement set from experiment one

(glued-on steel rods) for only a single glued-on rod, and the residual measurement

set from experiment two (hand-cut notch). For both sets of data, image coe�cient

denormalization was performed, as described in Section 4.4.2. For each case, the

result of block-sparse reconstruction is a set of 28 coe�cients for every pixel location

� one for each transducer pair. These coe�cients were summed element-wise for all

pixels in the scatterer's spot size to create a single set of 28 complex coe�cients. The

magnitudes of these coe�cients were then circularly interpolated in one dimension

with cubic splines to create eight scattering curves; each has a �xed incoming angle

and is a function of outgoing angle.

Figure 40 shows the curves generated for the data from experiment one from
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transducers 1, 3, and 5. Because the glued-on rod has a circular pro�le, the three

scattering patterns theoretically should be identical other than their rotation; how-

ever, di�erences in transducer responses (which were not taken into account) and the

large gaps between interpolation points can also have an e�ect on results. Neverthe-

less, the general characteristics of near-omni-directional scattering are apparent. The

interpolated curves generated with the data from experiment two, using transducers

1, 3, and 5, are shown in Figure 41. The directional nature of the scatterer for this ex-

periment is easily observed, with clear nulls in the curves around the end-on incident

angles for the notch. Additionally, the scattering pattern from transducer 3 (red) has

very low amplitude. Again, these results do not incorporate di�erences in transducer

transfer functions, and the scattering curves are only sampled at seven angles, which

could �straddle� a peak or valley in the response curves.

The clear di�erences between the scattering curves for experiment one (Figure 40)

and two (Figure 41) demonstrate that, at the very least, a rudimentary characteriza-

tion or classi�cation algorithm should be able to discriminate between the two types

of damage.
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Figure 40: Interpolated scattering curves for experiment one (with only one attached
rod) using block-sparse reconstruction and image denormalization. The colored ar-
rows show incoming angle, and the matching curves show scattered amplitude as a
function of angle. The white circles along the curves denote interpolation points.
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Figure 41: Interpolated scattering curves for experiment two (hand-cut notch) using
block-sparse reconstruction and image denormalization. The colored arrows show
incoming angle, and the matching curves show scattered amplitude as a function of
angle. The white circles along the curves denote interpolation points. The black
dashed line indicates the orientation of the notch.
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6.7 Comparison of Methods

Table 11 compares the relative performance of sparse reconstruction with signal ana-

lytic representations, sparse reconstruction with signal envelopes, block-sparse recon-

struction, and delay-and-sum imaging; this comparison is based on theory as well as

simulated and experimental data. The performance of the envelope and block meth-

ods is shown for both dispersive and nondispersive dictionaries. Sparse reconstruction

with real-valued signals is strictly inferior to sparse reconstruction with analytic rep-

resentations and is not shown. The table serves as an outline of the overall trends

exhibited by each method; actual performance depends on many factors, including

the problem geometry, number of transducers, and noise levels, and a particular meth-

ods may perform better or worse than expected under various circumstances. A few

observations do not �t in the table:

• When using a small number of transducers, images generated with the envelope

method are degraded if the scatterer does not match the dictionary.

• When using a small number of transducers, images generated with the block-

sparse method are likely to contain high-magnitude artifacts if multiple scat-

terers are present.

The general trend of the table is that sparse reconstruction with signal envelopes and

block-sparse reconstruction are the two most successful methods, with block-sparse

reconstruction tending to produce larger spot sizes of scatterers and artifacts, but

the artifacts have smaller magnitudes than those present in images generated using

sparse reconstruction with signal envelopes. Both methods exhibit overall image

superiority to DAS, which produces images with large spot sizes and is very sensitive

to interference, and sparse reconstruction with raw signals, which can fail outright

due to its low robustness and overly-sensitive model.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Improving Localization via the Assumption of Sparsity

Most existing Lamb wave SHM imaging methods are based on delay-and-sum tech-

niques. These are conceptually simple, but can have large spot sizes and many ar-

tifacts. These algorithms do not exploit the powerful nature of sparsity, though

the problem is well-suited to that assumption for working structures. By assuming

single-scattering behavior (which is an assumption that DAS already uses), responses

to multiple sites of damage are linearized and can be represented by corresponding

vectors (or blocks) in a redundant dictionary. The resultant linear equation can be

solved by a sparse (or block-sparse) solver, as described in Sections 4.4 and 5.5. For

most cases, where scattering behavior is unknown, there are two possible approaches,

each with its strengths and weaknesses.

Sparse reconstruction using signal envelopes is described in Section 4.3.2 and uses

envelope detection to remove phase information from signals before performing imag-

ing. Envelope detection creates a nonlinearity that can have detrimental e�ects on

scatterers that are close together, as demonstrated in Figure 9(a). Additionally, the

resultant dictionary does not incorporate information about scatterer directionality,

which can cause artifacts near transducer locations; the number and magnitudes of

such artifacts are signi�cantly increased when using small numbers of transducers.

However, its performance is somewhat faster and its images tend to have smaller spot

sizes than the block-sparse method (though it is still slower than DAS).

Block-sparse reconstruction uses a multidimensional model to match scatterers

with phase shifts or directionality. Unlike the envelope method, it does not require
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an a priori assumption of scatterer behavior or a nonlinear operation to correct for

phase mismatch; instead block-sparse reconstruction allows any scatterer to have

varying amplitude and phase between each transducer pair. Additionally, it can be

used to characterize scattering behavior and possibly to characterize defects. Its

more permissive model, however, can allow more artifacts and larger spot sizes than

the envelope method, especially with a small number of transducers and multiple

scatterers; it is somewhat slower as well.

The resultant images for both methods are quite similar overall, so the selection

of which algorithm to use depends on the type and severity of anticipated damage as

well as the trade-o� between low artifact levels and small spot sizes. Both types of

imaging outperform DAS imaging and are relatively insensitive to model mismatch;

they yield superior results even when using only the group velocity.

One negative trait these algorithms share is that they require a precomputed

dictionary. This large matrix can take several minutes to generate, even on a very

fast computer, and if dictionary projection is performed, more time is required to

compute its projection operator (or its approximation). These matrices consume

storage space as well, and while they can be compressed somewhat via orthogonal

transforms, sparse matrix representations, and downsampling, the �le sizes of these

matrices can become quite large for a large area of interest or a �nely-sampled pixel

grid.

7.2 Contributions

7.2.1 Formulation as Sparse Reconstruction

The major contribution of this work is the formulation and implementation of Lamb

wave detection and localization as both sparse and block-sparse reconstructions, as

described in Chapters 4 and 5. This new approach to imaging produces results that

are overall superior to existing DAS methods.
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For sparse reconstruction, the central concept is the redundant dictionary of

location-based residual signal components using either real-valued or analytic repre-

sentations. This dictionary requires a priori knowledge of scatterer behavior, which

is often unrealistic; a modi�ed method using signal envelopes is also presented, along

with an explanation of bene�ts and drawbacks. An analysis of the coherent nature

of the dictionary and the relation of its column space to the residual signals is also

performed. The use of denormalization to compensate for the normalization of the

dictionary matrix is described, and some general considerations are discussed.

Block-sparse reconstruction allows a multidimensional scattering model that re-

quires no a priori information. The fundamental concept presented is the extension

of the standard sparse reconstruction formulation to a block-sparse problem, includ-

ing the idea of a scatterer having one or more distinct coe�cients per transducer

pair. An analysis of the coherence between dictionary blocks was performed, and

computational considerations were compared to those of the non-block methods.

7.2.2 Noise Analysis of Envelope-Detected Signals

An analysis of envelope detection and the e�ects of Rician noise on sparse reconstruc-

tion with signal envelopes is presented in Sections 4.3.2.2 and 4.3.2.3. This analysis

includes a method of estimating the true mean of noisy portions of the signal, the

�corner lighting� e�ect of images generated with noisy signals, a simple compensation

procedure, and the use of simulations to verify the e�ectiveness of noise compensation.

7.2.3 Use of Nondispersive Dictionaries

One vital question that arose during this research was that of robustness. How

sensitive are such methods to the model assumptions? For any method to be viable,

it must have some tolerance to model mismatch. Robustness is addressed here by

using dictionaries that are nondispersive; i.e., they use only the group velocity of the

propagation mode. In cases where dispersion curves are unavailable, it is important
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that dictionaries can be used that do not require knowledge of dispersion curves. All

experiments performed evaluated the performance of nondispersive dictionaries; these

dictionaries were outperformed by those that incorporated dispersion curves, but

still successfully localized scatterers. This success indicates that the sparsity-based

methods are tolerant of at least some propagation model mismatch, demonstrating

their potential for use in �real-world� applications.

7.2.4 Extraction of Scattering Patterns

Another contribution is a method of extracting scattering patterns from block-sparse

image coe�cients. A relation between the multidimensional pixel values and scatter-

ing amplitude and phase is brie�y discussed in Section 5.5; a simple one-dimensional

interpolation operation is performed on data from the images for experiments one and

two to generate approximate scattering curves. Experiment one used glued-on steel

masses, while experiment two featured a hand-cut notch; the extracted scattering

curves for the two scatterers con�rm their expected di�erences.

7.2.5 Experimental Veri�cation

An important contribution of this work is the use of both presented methods on data

from a variety of experiments along with comparisons to the corresponding delay-and-

sum images. The �rst two experiments used an ideal plate with two di�erent types of

scatterers to show �best-case� behavior. The next experiment featured a small plate

with many edge re�ections to evaluate feasibility of the methods in a more di�cult

environment. An experiment was performed on a composite plate to demonstrate

robustness to the propagation model, which is di�cult to estimate for this material.

Finally, images from the �rst two experiments were generated using di�ering numbers

of transducers to determine the detrimental e�ects of limited amounts of data.
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7.3 Potential for Future Work

Presented here is a mathematical framework and initial laboratory experiments for

sparsity-based imaging methods. The next step for these algorithms is larger-scale

experiments on more realistic structures. Any novel application gains acceptance

only through extensive testing in a wide variety of scenarios. The aircraft industry

is a multi-billion dollar sector of the economy; they are rightly conservative about

accepting any new technology. Numerous experiments comprise the �rst step to

gaining such acceptance.

The most important issue that further research must address is the general prob-

lem of model mismatch. The methods presented are somewhat robust to mismatch in

the propagation model as well as unpredicted interference from edge re�ections and

poor baseline subtraction; however, additional work is required to determine a more

precise relation between mismatch severity and image quality for various types of

model mismatch. A particularly valuable result would be quanti�cation of the e�ect

of poor baseline subtraction, which can cause interference that, to a sparse algorithm,

is indistinguishable from damage.

One potential direction for future research is the possible application to damage

characterization, a capability that few current sparse array methods possess. Initial

examples of the potential of characterization are shown for the �rst two experiments,

demonstrating that scattering behavior and directionality can be determined, at least

to some degree. The extent to which these data can be used, however, is currently

unknown and beyond the scope of this present work. Experiments could be performed

to see if reconstruction coe�cients might be usable to, for example, track the growth

of cracks, in addition to discriminating between cracks and benign scatterers.

Another possibility for future investigation is improved dictionary generation. It

might be able to generate an adaptive dictionary on the �y that can use measured
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Lamb wave parameters to produce superior images. This would also have the advan-

tage of requiring far less disk space, which could make the proposed methods more

feasible for implementation on certain embedded hardware.

7.4 Conclusions

7.4.1 Sparsity Assumption

The central concept of this research is that the assumption of damage sparsity can

be used to generate Lamb wave images of scatterers. The analysis and experiments

presented demonstrate that sparsity-based methods are viable and generally behave

as expected.

7.4.2 Performance

Experimental results show that images generated via sparse reconstruction of signal

envelopes and block-sparse reconstruction are superior to conventional delay-and-sum

images when an appropriate model is provided. In particular, sparse and block-

sparse images have signi�cantly smaller spot sizes; fewer artifacts; and lower artifact

magnitudes, with the exception of artifacts at strongly re�ecting plate edges.

7.4.3 Model Mismatch

The success of imaging using only group velocities demonstrates that both sparse

reconstruction of signal envelopes and block-sparse reconstruction are tolerant to

some degree of model mismatch. Additionally, the block-sparse imaging method is

not susceptible to amplitude or phase mismatch of the scatterer; sparse reconstruction

with signal envelopes uses a scattering model, but the primary e�ect of scatterer

mismatch is an increase in the number of artifacts, usually present at or near the

transducer locations.
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7.4.4 Additional Advantages

The sparse and block-sparse methods presented have additional bene�ts over conven-

tional delay-and-sum imaging. The availability of a precomputed dictionary allows

the use of projection to quantify the level of model mismatch in residual signals; this

can indicate, for example, poor baseline subtraction, high levels of noise or interfer-

ence, or a problem with the SHM system. The use of BPDN o�ers a trade-o� between

sparsity and reconstruction �delity, which allows �exibility at the cost of requiring

some degree of user input. Finally, the block-sparse method allows scattering patterns

to be readily extracted from imaging results.

7.4.5 Concluding Remarks

Many hurdles stand between this document and the widespread adoption of these

techniques. The process will be gradual and will require additional research in co-

operation with industry, as well as advances in computational resources. However,

it is the belief of this author that a day will come that these techniques, speci�cally,

the ability to incorporate the assumption that damage is sparse, will be used to keep

critical structures safe and reduce the need for expensive and time-consuming manual

inspections.
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