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SUMMARY 

 

 In the past few years, organic solar cells (OSCs) have gained much interest due to 

their unique electrical and optical properties, as well as for their potential for simple and 

low-cost processing. In spite of progress in the performance of OSCs, further 

improvement in device stability and power conversion efficiency (PCE) is still needed for 

OSCs to compete with other emerging photovoltaic technologies. Conventionally, the use 

of low work function (WF) metals, such as LiF/Al and Ca/Al, for the top electrode has 

caused issues with device instability. Recently, so-called inverted solar cells have been 

proposed and developed with better air stability and comparable PCE to conventional 

ones. However, stacked individual cells with complementary absorption ranges through a 

charge recombination layer (CRL), called tandem solar cells, are desired for realization of 

highly efficient solar cells by covering the emission spectrum of the sun more effectively.  

 This dissertation presents research work that advances the field of OSCs by 

studying hole- or electron-collecting interlayers and finally realizing new CRLs for 

efficient inverted tandem OSCs. As a first step toward the goal, a hole-collecting 

interlayer layer of OSCs, NiO processed by atomic layer deposition (ALD) was studied. 

The ALD system can offer well-controlled layer-by-layer growth of highly conformal 

and uniform films. A high-WF (5.4 ± 0.02 eV) of NiO-coated ITO when subjected to an 

O2-plasma treatment provided effective hole-collecting properties from a bulk 

heterojunction photoactive layer and maximized the open-circuit voltage of the OSC. 

With an O2-plasma-treated, 25-nm-thick NiO hole-collecting interlayer, the poly(3-hexyl 
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thiophene) P3HT:indene-C60 bisadduct (IC60BA)-based conventional single-junction 

OSCs yielded an average PCE around 4%.   

 The second step toward the goal was a study of polymeric surface modifiers, poly 

(N-vinylpyrrolidone) (PVP) and polyethylenimine (PEI) derivatives as electron-

collecting interlayers of OSCs. The surface modifiers were based on polymers containing 

simple aliphatic amine groups. The surface modifiers provided substantial and universal 

WF reduction on many different conductors, including metals, transparent conductive 

metal oxides, conducting polymers, and graphene. The WF reduction arose from 

chemisorption (PVP) or physisorption (PVP and PEI derivatives) of the neutral polymer, 

which turned the modified conductors into efficient electron-collecting electrodes. These 

surface modifiers were processed in air from a solution and at a relatively low 

temperature (≤ 100 °C), providing an appealing alternative to chemically reactive 

low−WF metals. With this modification, many different types of efficient inverted single-

junction OSCs, including all-polymeric solar cells, were demonstrated. With PEI 

exothylated (PEIE)-modified ITO electron-collecting electrodes, poly(4,8-bis-

alkyloxybenzo(1,2-b:4,5-b′)dithiophene-2,6-diyl-alt-(alkyl thieno(3,4-b) thiophene-2-

carboxylate)-2,6-diyl) (PBDTTT-C): [6,6]-phenyl-C61 butyric acid methyl ester 

(PC60BM)-based inverted single-junction OSCs showed an average PCE over 6%.    

 The last attempt to reach the goal of this dissertation was realization of new 

efficient CRLs of inverted tandem OSCs using the polymer surface modifier, PEIE. The 

use of PEIE modification in CRLs offered further reduced WF of the electron-collecting 

layer, leading to high WF contrast between two opposite CRL surfaces. Three CRLs 



 xxv 

(PEIE-modified MoOX/Ag, PEIE-modified MoOX/Al2O3:ZnO nanolaminate, and PEIE-

modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)) were 

demonstrated. The high-WF MoOX layer and PEDOT:PSS served as hole-collecting 

layers. The Ag layer (1 nm) improved the electrical connection of two subcells by 

reducing the WF of MoOX. The Al2O3:ZnO nanolaminate provided an electron-collecting 

layer in the CRL, but the WF was not low enough to efficiently collect electrons from the 

bulk heterojunction photoactive layer. In all cases, the PEIE modification provided 

further reduced WF on the layer below, and consequently formed an efficient and air-

stable CRL. The P3HT:IC60BA and PBDTTT-C:PC60BM-based inverted tandem OSCs 

with the new CRL of PEI-modified PEDOT:PSS showed fill factor over 70% and PCE 

over 8%. 
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CHAPTER 1 

INTRODUCTION 

1.1 Solar Cells 

 Providing sufficient quantities of safe and renewable energy to the general public 

is an essential prerequisite for a sustainable society. Currently, the burning of fossil fuels 

represents more than three-quarters of the world’s energy consumption and has had 

detrimental effects on the environment. To assure the public’s safety, a clean energy 

source is required for decreasing environmental contamination and greenhouse gas 

emissions. Photovoltaic technology– the conversion of solar energy to electric power– is 

believed to be one of the most promising alternative energy sources for reducing fossil 

fuel dependency. The initial photovoltaic effect can be traced back 119 years to 1893, 

when Alexandre-Edmund Becquerel observed light-dependent voltage from electrodes 

immersed in an electrolyte [1]. Since this discovery, a variety of materials has been 

studied. Chapin et al. announced the first silicon-based single p-n junction photovoltaic 

cell (also referred to as solar cell) with a power conversion efficiency (PCE) of 6%, a 

tipping point for photovoltaics considering the state of technology in 1954 [2]. 

Photovoltaic technology has been developing ever since, by employing various 

semiconducting materials and different cell geometries. The cumulative installed power 

capacity from photovoltaic technology was around 65 GW at the end of 2011, compared 

with only about 1.5 GW in 2000 [3]. Photovoltaic energy is very attractive because the 

average energy received on the earth in one hour (1.2 × 10
17

 Wh/m
2
) is larger than the 

world’s annual energy consumption (1.1 × 10
17

 Wh/m
2
), thus having great potential as a 

solution for the global energy challenge [4].  
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 1.2 Characterization of Solar Cells   

 Before starting this section, it should be noted that here and in the remainder of 

the dissertation, ‘‘solar cell’’ and ‘‘photovoltaic cell’’ are used interchangeably. This 

section introduces the basic electrical characteristics to evaluate the photovoltaic 

performance of solar cells. The photovoltaic performance of solar cells is characterized 

by measuring the current-density versus voltage (J-V) characteristics under illumination. 

To measure the J-V characteristics, standard test conditions have been designed. The 

simulated solar spectrum, AM 1.5G, with intensity on the order of 100 mW/cm
2
 is used 

as a standard light irradiation condition (incident power). AM stands for air mass, and 1.5 

corresponds to the inverse cosine of the angle defined between the incident light and the 

normal to the earth’s surface (Figure 1.1 (a)). The G represents global and means 

modified solar spectrum due to the small contribution that diffuse light has over the direct 

incident light [5]. Figure 1.1 (b) depicts the spectral irradiance of the AM 1.5G solar 

spectrum. 

 

 

Figure 1.1 (a) Concept of air mass, (b) Spectral irradiance of the AM 1.5 G solar 

spectrum, and (c) Power and current-density as a function of applied voltage of a solar 

cell under illumination. 
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 3 

 Figure 1.1 (c) shows a typical J-V characteristic of a solar cell under illumination 

and the power density (P), defined as the product of J and V, as a function of applied 

voltage. Here, note that a negative power density physically means that power is being 

generated by the solar cell. The PCE of a solar cell under a known illumination source is 

characterized by three parameters derived from the J-V characteristics under illumination: 

the short-circuit current density (JSC), the open-circuit voltage (VOC), and the fill factor 

(FF). 

 The VOC is defined as the maximum voltage extractable from the solar cells, and is 

the measured voltage when no current is produced by the solar cell under illumination.  

 The JSC is defined as the maximum current density drawn from a solar cell under 

illumination, and is measured at zero voltage. The JSC is pertinent to generation rate and 

collection probability of charge carriers. The maximum JSC can be expressed as follows: 

                                           (1.1) 

where e is the elementary charge (1.6 ×10
-19

 C), EQE is the external quantum efficiency 

and Nph(λ) is the spectral photon flux density under AM1.5 G illumination. The EQE, 

referred to as incident-photon-to-current efficiency, is defined as the number of electrons 

collected under a short-circuit condition divided by the number of incident photons.  

e

hc

P

J

n

n
EQE

o

SC

ph

e


 )(                                                 (1.2) 

where P0 is the incident optical power density, h is Planck’s constant (6.626 ×10
−34

 J·s), c 

is the speed of light, λ is the wavelength of light. The upper limit of the JSC is attained by 

integrating the solar spectrum over the spectral region where light is being absorbed by 


5.1

)()(
AM

phSC dNEQEeJ
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the solar cell.  Experimentally, as shown in Figure 1.1 (c), the VOC and JSC can be 

obtained from intersects of the electrical characteristics with the vertical axis for the VOC 

and the horizontal axis for the JSC. 

The VOC and JSC represent the maximum voltage and maximum current density, 

respectively. However, at these operating points, no power is generated. As shown in 

Figure 1.1 (c), the power density defined as the product between V and J reaches its 

maximum absolute value, Pmax, at a point defined by the voltage value Vmax and the 

corresponding current density Jmax. The FF is a parameter that determines the maximum 

power density that can be extracted from a solar cell. The FF is defined as the ratio 

between Pmax and the product of VOC and JSC. 

                                                      (1.3) 

 The PCE, which represents how much power can be generated from the solar cells 

with incident light, is defined as: 

                                        (1.4) 

where Pinc denotes incident optical power density. All parameters used to describe the 

PCE are illustrated in Figure 1.1 (c). 

 

1.3 Current Status of Photovoltaic Technologies 

 This section will briefly discuss the state-of-the-art in photovoltaic technologies. 

As mentioned in the previous section, photovoltaic cells can be formed in various ways 

with the ultimate goal of the photovoltaic technologies will always be maximum power at 
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
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minimum cost. In general, the photovoltaic technologies are categorized by the choice of 

the light-absorbing material.  

 Crystalline silicon is the most widely used semiconductor as a light-absorbing 

material, representing more than 80% of the market share because of their high PCE (~25% 

from mono-crystalline solar cells) and reliable yield. However, silicon solar cells require 

thick light-absorbing layers (several hundred µm) due to their relatively small absorption 

coefficients in the visible spectral range. Commonly, two types of crystalline silicon, 

mono-crystalline, from a high-purity single crystal boule, and multi-crystalline, from 

sawing a cast block of silicon, have been used in industry. Also, other silicon production 

technologies, such as growing silicon ribbons and melting silicon powder have been 

employed to overcome the inefficiencies from single crystal boule growth/casting and 

wafer sawing processes. Due to the high cost of crystalline silicon, there is a need for less 

expensive materials for the fabrication of solar cells [6].  

 Growth of the photovoltaic market depends upon price reductions, and 

competitive production needs to move to a thin film and away from bulk material. The 

thin film technologies enable reduction in the cost of photovoltaic devices by lowering 

material and manufacturing costs. Amorphous silicon (a-Si) and polycrystalline materials, 

such as cadmium telluride (CdTe), copper indium (gallium) selenide (CI(G)S) have been 

employed as thin film light-absorbing materials. These materials only need to be about 1 

µm thick, have very strong light-absorbing properties, can be deposited on relatively 

large substrates and used for high throughput manufacturing. Furthermore, low 

temperature processing can be used for deposition of such thin films and more impurities 

can be tolerated because a shorter distance is required for charge carriers to travel in the 

active layer as compared to crystalline silicon-based solar cells. Advantages offered by 

thin film-based solar cells can lead to lower fabrication cost per unit area, but typically 

display lower PCE values than crystalline silicon-based solar cells [7].  
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  Recently, numerous other photovoltaic technologies have emerged. These 

emerging technologies include organics-based approaches and those that do not depend 

on the conventional single p-n junction such as multi-junction gallium arsenide (GaAs)-

based solar cells, dye-sensitized solar cells (DSSCs), organic solar cells (OSCs), and so 

forth [8]. GaAs-based solar cells with a multi-junction structure and a light concentrator 

is the most efficient solar cell, to date (PCE of 44 %) [9]. With the concentrator, solar 

cells can operate with increased light intensity. Also, with a multi-junction structure, 

nearly all of the solar spectrum can be used to generate electricity. Although the largest 

PCE value has been achieved with these kinds of solar cells, GaAs solar cells are only 

utilized on special applications such as space exploration and satellites because of their 

very high costs [10].  

 Two other technologies, DSSCs and OSCs use organic compounds as light-

absorbing materials. The DSSC carries out light absorption and charge separation by 

combining an organic photo-sensitizer (dye) as the light absorbing material with a 

mesoporous or nanocrystalline semiconductor [11]. However, the reported highest PCE 

around 12 % from DSSC is still low compared to silicon-based solar cell [12]. In addition, 

the DSSCs use volatile solvents in their liquid electrolytes that can cause device 

instability [9,13].  

 Another organics-based emerging technology is the OSC. The OSCs use a thin-

film of solid-state organic semiconductors, including polymers and small-molecule 

compounds for light absorption and charge transport to convert light into energy [8]. 

Since the OSC technology is so young, the highest reported PCE of the OSCs of about 

12 % has not been able to match the PCE of the silicon-based solar cells and the air-

stability is relatively poor [9,14]. However, the OSCs have huge potential as a future 

renewable energy source because of the unique ability to tune the electrical and optical 

properties of organic semiconductors and the viability for use low cost, simplified, and 

high throughput processing.  
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 Among the photovoltaic technologies introduced above, this dissertation will deal 

with OSCs due to their interesting properties regarding the photo-conversion mechanism 

(from light absorption to charge generation) along with the prospect of low-cost and high 

throughout processing.   

 Figure 1.2 shows the summary of the highest PCEs from different types of solar 

cells throughout the years. 

 

 

 

 

Figure 1.2. Reported timeline of the highest power conversion efficiencies from various 

solar cells [9].  
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1.4 Organic Solar Cells    

 The purpose of this section is to introduce the fundamental knowledge necessary 

to understand the operation of OSC and challenges faced by this technology. Finally, the 

aim and scope of this dissertation will be presented.   

 

1.4.1 Organic Semiconductors 

 One of the most essential parts in solar cells is the light-absorbing layer, also 

referred to as the photoactive layer. The light-absorbing layer in an OSC comprises thin 

films of organic semiconductors. Many different properties of the thin film of the organic 

semiconductors make them very attractive for photovoltaic applications. The electro-

chemical properties of the organic semiconductors such as energy levels, charge transport, 

and solubility can be tailored by modifying the chemical structure of organic molecules. 

Organic thin films can be formed using various low-temperature and high-throughput 

methods such as spin-coating and roll-to-roll processing that can reduce manufacturing 

costs. Only small amounts of organic materials are required to form a thin film (100 – 

200 nm) since they typically display high absorption coefficients in the visible spectral 

range ( ≥ 10
5
 cm

-1
) [15,16].  

 Organic semiconductors can be broadly classified into two groups on the basis of 

their molecular weight and basic units [17]: small-molecules and polymers. The small 

molecules are low molecular weight organic compounds (< 1000 g/mol) in which carbon 

atoms form molecules usually with benzene rings. Polymers are high molecular weight 

organic compounds (> 1000 g/mol) comprising linked many small repeating units, called 

monomers. All organic semiconductors share common characteristics in their electronic 

structure that lead to similar optical and electronic properties [18]. These characteristics 

arise from electronic conjugation, the alternation of single and double bonds between 
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carbon atoms [19]. The details of the electronic configuration of the carbon atomes will 

be discussed in the following.  

 The carbon (C, atomic number 6) atom has an 1s
2
2s

2
2p

2
 electronic configuration 

in the ground state [18]. The two s orbitals, 1s and 2s, have two electrons each and are 

fully occupied. Hence, the C atom has only two unpaired electrons in its ground state and 

valence of 2 can be expected. However, the C atom prefers to form tetravalent 

compounds, resulting in valence of four. This can occur by promoting one electron of the 

2s orbital into the third 2p orbital and enables C to have the electronic configuration 1s
2
, 

2s
1
, 2px

1
, 2py

1
, 2pz

1
. When the four valence electrons of a C atom interact with the 

valence electrons of other elements such as C, hydrogen (H), oxygen (O), and so forth, 

they form covalent bonds. The covalent bonds occur when pairs of electrons are shared 

between atoms. In other words, covalent bonds result from the overlap of atomic orbitals 

that describe the wave function of electrons, to produce molecular orbitals. When two 

atoms share a pair of electrons, it is called a single bond. Likewise, the cases that two or 

three pairs of electrons are shared between two atoms are called double or triple bonds.  

 Most cases of molecular bonds made in organic semiconductors have hybrid 

orbitals. This is different from the linear combination of one 2s orbital and three 2p 

orbitals. C atoms can form three different kinds of hybrid orbitals, sp
1
, sp

2
, and sp

3
. The 

sp
2
 orbital, for instance, hybridization happens between one s orbital and two p orbitals 

(px, py), resulting in three sp
2
 orbitals and remaining one un-hybridized orbital (pz) that is 

perpendicular to the plane spanned by the sp
2
 orbitals. Figure 1.3 (a) describes the 

formation of the sp
2
 hybridization in ethylene (C2H4) from two methyl radicals (CH3·). 



 10 

 

 

Figure 1.3 (a) Chemical structure and illustration of molecular orbital in two methyl 

radicals (CH3·) and an ethylene (C2H4) and (b) HOMO and LUMO formation in an 

ethylene.  

 

 

The double bond comprises two different overlaps: One is formed by overlapping two sp
2
 

hybrid orbitals between two C atoms and the other one is formed by overlapping two pz 

orbitals between two C atoms. The bonding formed by overlapping the two sp
2
 hybrid 

orbitals has a high degree of overlap, so-called  bonding. Unlike the  bonding, the 

bonding formed by overlapping the two pz orbitals has a low degree of overlap, and is 

called  bonding. Because of the reduced overlap in  bonding, electrons, also referred to 

as -electrons, are weakly coupled, thus more delocalized in space than electrons 

participating in  bonds. The π-electrons are typically delocalized along the backbone 

comprising the alternation of single and double bonds and this delocalization provides a 

pathway for the π-electrons to move along a molecule or a polymer chain. This is the 

origin of the conductivity in the organic compounds. 

 The delocalized π molecular orbitals formed by overlapping π atomic orbitals 

along the backbone define the frontier electronic levels, highest occupied molecular 

orbital (HOMO, bonding orbital) and lowest unoccupied molecular orbital (LUMO, 

antibonding orbital), depending on the configuration of signs of the pz orbitals. Figure 1.3 

(b) illustrates the formation of the frontier orbitals (HOMO and LUMO) in an ethylene 
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molecule.  The HOMO and LUMO are separated by an energy band-gap (EG, also 

referred to as a transport gap) that makes such an organic compound a semiconductor. A 

rough analogy can be made these HOMO and LUMO with valence band and conduction 

band, respectively, in an inorganic semiconductor. A transition of an excited electron 

from the HOMO to the LUMO can only occur when a photon with energy larger than the 

EG interacts with the material. At room temperature, an electron in the LUMO is not 

freely delocalized, and hence the difference between organic semiconductor and 

inorganic semiconductor.   

 

1.4.2 Simplified Energy Level Diagram of Organic Solar Cells 

 Before starting this section, some energy levels used for electrical or optical 

characterization of OSCs are defined. An energy level diagram of an OSC is shown in 

Figure 1.4. It should be noted that the energy level diagram is before contacting all 

components. The ionization energy (IE) is the amount of energy needed to remove the 

most loosely bound electron from an atom or molecule to form a positive ion or a radical 

cation. The electron affinity (EA) is the amount of required energy released when an 

extra electron is added to a neutral atom or a molecule to form a negative ion or a radical 

anion. In OSCs, the IE (EA) is the energy level difference between HOMO (LUMO) and 

a vacuum level. Since HOMO and LUMO energies can only be calculated, these levels 

can be estimated by measuring IE and EA via experimental methods, such as ultra-violet 

(UV) photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPES). 

The work function (WF) is the energy required to move an electron from the Fermi level 

into vacuum and can be estimated by using experimental methods, such as UPS or the 

Kelvin probe method. The Fermi level (EF) is a hypothetical energy level of an electron 

that has a 50% probability of being occupied with electrons.  

 In general, two different organic semiconductors are employed to form the 

photoactive layer of an OSC. One has an electron-donating property (donor) and the other 
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one has an electron-accepting property (acceptor). The donor and acceptor materials have 

low IE and high EA, respectively. Also, the donor and acceptor materials provide for 

efficient hole and electron transport layers, respectively [18]. Two charge-collecting 

electrodes, a hole-collecting electrode (HCE) and an electron-collecting electrode (ECE) 

with different WF values are employed on either side of donor and acceptor material to 

collect photo-generated charge carriers.   

 

     

Figure 1.4 Energy level diagrams of donor and acceptor materials and charge-collecting 

electrodes in heterojunction organic solar cells (before contact is made).  

 

1.4.3 Basic Operating Principles of Organic Solar Cells 

 The operating principles of an OSC are not yet fully understood. From light 

absorption to electric power generation, several scenarios have been suggested. This 

section briefly introduces one of the possible explanations for the operation of the OSC. 

 Firstly, photons with average photon energy larger than the optical band-gap of 

the photoactive layer are absorbed in the organic semiconductor active layer. It should be 

noted that the optical band-gap is different from the transport gap and roughly defined as 

the energy difference between the hole and electron in an exciton (the details of the 

exciton will be discussed soon). Organic semiconductors have a high absorption 

coefficient, above 10
7
 m

-1
 that allows very thin layers, between 100-300 nm, to absorb 
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sufficient light. The absorbed photon energy excites an electron in the ground state up to 

a higher energy state. The promoted charge relaxes down to the bottom of the potential 

energy surface of the lowest excited state by a thermal energy loss. This excited state gets 

to its equilibrium geometry and an exciton is created [8]. These excitons are generally 

known as Coulomb-bound electron-hole pairs. The binding energy of the excitons can be 

expressed as follows: 

22

0

4

)4(

2

h

em
E red

bindingExciton


                                                (1.5) 

where the reduced mass of the exciton, mred =  me
*
·mh

*
 / (me

*
 + mh

*
), (me,h* is the 

effective mass of an electron and a hole),
  

is employed to explain the movement of 

electron and hole around their common center of mass, ɛ is the dielectric permittivity, and 

ɛo  (8.854 × 10
−12

 F/m) is the permittivity in free space [20]. The excitons formed in 

organic semiconductors exhibit a binding energy on the order of 500 meV at room 

temperature, much higher than their thermal energy (25 meV) [18]. In OSCs, absorbed 

photons induce a generation of excitons and not free charge carriers directly. However, 

the exciton binding energy of inorganic semiconductors is much smaller than their 

thermal energy at room temperature due to their high dielectric permittivity (ɛ > 10). 

Thus, the excitons can be formed in inorganic semiconductors only at low temperature, 

and at room temperature photo-generated excitons are immediately thermally dissociated 

into free electrons and holes with the absorption of photons [20]. This is one of the main 

differences of the OSC to inorganic solar cells. 

 To dissociate an exciton into free charge carriers, excitons should move to the 

donor–acceptor interface where they can be separated into electrons and holes before they 

decay back to the ground state. Since excitons are neutral species, their movement to the 

interface is governed by their concentration gradient, namely by diffusion via random 

hops [8,18].  
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 In general, excitons that reach the donor–acceptor interface can dissociate to free 

charge carriers if the band offset energy between the EA of the donor and acceptor is 

larger than the exciton binding energy. However, exciton dissociation is a more complex 

process than what is described here. Unfortunately, no clear description has emerged yet 

to explain the exciton dissociation process; one possible mechanism is as follows: The 

electrons of the excitons from the donor transfer to the acceptor. Likewise, the holes of 

the excitons from the acceptor transfer to the donor. After the charge transfer, the exciton 

needs to split to a positive polaron in the donor and a negative polaron in the acceptor. 

The polaron refers to a charge carrier with a distortion of the charge’s environment. Since 

the positive and negative polarons still remain in close proximity, they are 

Coulombically-bound (charge-transfer state). Although this binding energy is not as 

strong as that of the excitons, the polaron pairs need to be separated to provide free 

charge carriers (charge-separated state). To explain the eventual charge separation, many 

different theories have been suggested. One of these scenarios indicates that the presence 

of disorder or dipoles at the interface, or help from the phonon energy can induce an 

increased charge separation rate  compared to the charge recombination rate [18]. 

 After successful charge separation, the positive and negative charge carriers 

(polarons) can reach their respective electrodes via drift and diffusion that is driven by 

the gradient of the electrochemical potential and are collected by the charge-collecting 

electrodes. Because of the properties of organic semiconductors, such as the large 

electron-vibration coupling and the disorder effect, the motion of the positive and 

negative carrier is somewhat different from that of inorganic semiconductor. In such 

disordered molecular materials, band-like transport is not always applicable. Instead, 

charge carrier transport is governed by a hopping mechanism between distributed 

localized sites. In addition, charge collection at the interface between the organic 

semiconductor and the charge-collecting electrodes is also intricate. Many factors such as 

energy level mismatch between the WF of charge-collecting electrodes and EA or IE of 
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the organic semiconductor, the interfacial charge distribution, etc. can affect charge 

collection at the interface [8].  

 

1.4.4 Equivalent Circuit Model and Model Fitting 

 The device performance of the OSCs can be approximated with an equivalent 

circuit used for a conventional p-n junction solar cell [21]. Figure 1.5 shows a schematic 

of the equivalent circuit comprising a current source (Jph), a diode (J0), a series resistance 

(RS), and a shunt resistance (RP). The current source corresponds to the generated 

photocurrent, Jph, under illumination. The diode takes account of the rectifying behavior 

of the OSC and is characterized by the reverse saturation current density J0 and ideality 

factor n. The RS is related to the resistance of the photoactive layer, the contact resistance 

at the interface between layers, and the resistance of charge-collecting electrodes and 

interconnections, etc. The RS should be minimized. The RP originates from the loss of 

carriers because of pinhole leakage in the film or carrier recombination caused by 

impurities, etc. The RP has to be maximized [8,21].  

 

Figure 1.5 Equivalent circuits used to model OSCs (a) in the dark and (b) under 

illumination. 
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 According to Shockley’s theory, the current density of the diode as a function of 

the applied voltage is given by:  
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where J0 is the reverse saturation current density, e denotes the elementary charge, k 

denotes the Boltzmann constant (8.617 × 10
−5

 eV/K), and T denotes the temperature. By 

using the Shockley equation (Eq. 1.6), the equivalent circuits in the dark (Figure 1.5(a)) 

and under illumination (Figure 1.5(b)) can be solved analytically as follows: 
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where A denotes the area of the cell. Furthermore, from Eq. 1.8, an equation for the VOC 

can be derived with an assumption of J equal to zero, and the JSC can be derived V equal 

to zero. Also, the derived equations for the VOC and the JSC can be expressed with an 

approximated form, where RSA is very small, RPA is large enough so that the effects can 

be ignored, and Jph/J0 >> 1. The VOC and JSC can be expressed as: 
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 The equivalent circuit model reveals that the VOC is influenced by n, Jph, and J0 

and follows a logarithmic function of the ratio of the Jph and the J0. The JSC is close to Jph 

with a small RSA value, a large RPA value, and a much larger Jph than J0. J-V 

characteristics of solar cells can be fitted by using Eq. 1.8 and RSA, RPA, J0, and n as the 

fitting parameters. 

 Another quantity needs to be calculated to evaluate the device performance is FF 

which is defined as Jmax×Vmax/JSC×VOC. Under ideal conditions where RS = 0 and 1/RP = 

0, the ideal FF0 of a solar cell is given as [21,22]: 
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where vOC = eVOC/nkT. However, the FF0 of an actual device can be affected by RS and RP, 

and thus should be lower than the ideal value. To incorporate the effects of RS and RP, a 

characteristic resistance for the device is defined as RCH = VOC/(JSCA) and normalized 

series resistance (rS) and normalized shunt resistance (rP) defined by rS =RS /RCH  and rP 

=RP /RCH, respectively. Using these quantities, the following semiempirical expressions 

have been shown to be good approximations to experimental values of the FF:  
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 It should be noted that the equations shown above yield good approximations 

which are close enough in most cases for vOC >10, but more generally applicable 

equations over a range of smaller values of vOC (relatively large n) should be investigated. 

  

1.4.5 Photovoltage Generation in Organic Solar Cells 

 The operating principle discussed in Chapter 1.4.3 described the photocurrent 

generation process in OSCs. Another important parameter of solar cells is the VOC which 

is the voltage that compensates the current flow through the external circuit. In general, 

the VOC of an OSC is known to be determined by several factors. 

 Properties of materials that comprise the photoactive layer affect the VOC. In 

particular, the relative energies of the relevant energy levels at the junction between 

donor and acceptor materials play an important role in the generation of the VOC [23-25]. 

In the dark, the OSC works as a diode. That is, in the absence of generated charge carriers, 

the OSC is in equilibrium and no VOC is observed since J–V characteristics in the dark 

cross the origin. The electron and hole densities are specified by the position of the EF, 

and the EF of all components in an OSC are aligned in equilibrium (Figure 1.6 (a)).  

 

Figure 1.6 Energy level diagrams of donor and acceptor materials and charge-collecting 

electrodes in heterojunction organic solar cells (a) after contact in the dark, and (b) after 

contact under illumination. 

(a) In contact
In the dark, equilibrium

(b) In contact
Under illumination, quasi-equilibrium
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 Under illumination, additional electrons and holes in the OSC are produced by the 

absorption of photons. The concentration of both the electron of the acceptor and hole of 

the donor are larger than in the dark. In this quasi-equilibrium, the generated charge 

carriers can no longer be described by a single EF [4]. Instead, the density of the 

generated electrons and holes can be expressed by quasi-Fermi levels (EF,e for electrons, 

EF,h for holes). Due to the increased electron density in the acceptor, the EF,e must be 

closer to the LUMO than in the dark. Likewise, the increased hole density in the donor 

leads to an EF,h that is closer to the HOMO than in the dark. The density of electrons in 

the LUMO is given by 
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where n is electron concentration, NC is the effective density of states 
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where p is hole concentration, NV is the effective density of states in the HOMO 

(NV=2[2π×mp
*
×(kT)/h

2
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1.5
, mp

*
 is effective mass of a hole) [26]. In quasi-equilibrium, the 

so-called law of mass action expressed below is no longer applicable. 
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where ni is the intrinsic carrier concentration. The np then follows that 
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That is, the concentration of generated charge carriers in the donor and acceptor 

determine the quasi-Fermi levels, and the VOC of the OSC generally originates from the 
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quasi-Fermi level difference between the donor material and acceptor material under 

illumination at zero current (Figure 1.6 (b)).  
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However, it should be noted that the estimation of VOC with Eq. 1.17 only is applicable if 

there is no potential loss at the junction between the photoactive layer and the charge-

collecting electrodes [8,18,27].  

  The WF difference between the two charge-collecting electrodes, the HCE and 

the ECE, also affects the VOC of the OSC. Here, it is assumed that the charge-collecting 

electrodes are metals and are characterized by the chemical potential. The WF is known 

as the absolute value of the chemical potential. At the junction between an organic 

semiconductor and a metal, an electric potential difference arises, corresponding to the 

WF difference. Since the metal has a high concentration of electrons, the charge 

distribution in metal degenerates to a surface charge. Hence, the formed potential 

difference between the organic semiconductor and the metal is shown across the space 

charge layer of the organic semiconductor. If it is assumed that there is no charge at the 

contact except the surface charge of the metal, the electric potential is continuous across 

the interface. For example, the contact between an acceptor and an ECE (metal) under 

illumination, metals with a smaller WF value than EF,e of the acceptor material allow 

electrons to transfer into acceptor via thermal activation, resulting in an accumulation of 

electrons in the acceptor material (Figure 1.7 (a)). Hence, the EF,e of the acceptor is 

leveled and pinned to the WF of the ECE. Therefore, ECEs with small WF are favorable 

for transferring electrons and form a barrierless contact to acceptor materials. Conversely, 

HCEs with a large WF value are favorable to form a barrierless contact to donor 

materials. Consequently, in an OSC where barrierless contacts are formed, the VOC is 

mainly determined by the interfacial kinetics at the heterojunction between a donor and 
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an acceptor, regardless of the WF of the charge-collecting electrodes. In other words, the 

VOC is determined by Eq. 1.17. 

 On the other hand, ECEs with larger WF than EF,e of the acceptor material cause 

depletion of electrons in the acceptor material (Figure 1.7 (b)), and HCEs with smaller 

WF than EF,h of the donor material induce depletion of holes in the donor material. The 

EF,e of the acceptor is aligned with the WF of the ECE and EF,h of the donor is aligned 

with the WF of the HCE, However, in this case, the upper limit of EF,e is restricted to the 

WF of the ECE and the lower limit EF,h is constrained by the WF of the HCE. 

Consequently, the VOC is limited by the WF difference between the HCE and the ECE 

[20,27].  

ECEHCEinBuiltOC WFWFVV  

max                                            (1.18) 

Furthermore, the depletion of the electrons in the acceptor material and that of the holes 

in the donor material induce potential barriers at either contact, resulting in an 

unavoidably high level of surface recombination at the interface [20]. This causes an S-

shape kink in the J-V characteristics, resulting in reduced FF. Besides the two factor, 

many other effects such as band bending, temperature, etc. are also known to influence 

the VOC [27,28].  
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Figure 1.7 Energy level diagrams at the junction between an acceptor and an electron-

collecting electrode. The electron-collecting electrode (a) has a smaller work function 

value and (b) has a larger work function than the quasi-Fermi level of the acceptor 

material under illumination (left column: before contact and right column: after contact). 

 

 

 1.4.6 Photoactive Layers in Organic Solar Cells 

  A major breakthrough in OSC technology was made when the bilayer 

heterojunction was used as the photoactive layer. The first bilayer heterojunction OSC 

was presented by C. W. Tang [29].  In this bilayer heterojunction OSC, the donor 

material, copper phthalocyanine (CuPc), and the acceptor material, a perylene 

tetracarboxylic derivative (Me-PTC), were sequentially stacked on top of each other. A 

PCE of around 1 % was achieved under simulated AM 2 illumination on this OSC. 

Figure 1.8 (a) shows a bilayer heterojunction OSC. In these kinds of OSCs, only the 

excitons created at a distance smaller than their diffusion length (typically 10-20 nm) 
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the heterojunction is longer than the exciton diffusion length, and consequently results in 

a low quantum efficiency and limited solar cell efficiency [30-32]. 

 

 

Figure 1.8 Types of photoactive layers for organic solar cells. (a) bilayer heterojunction, 

and (b) bulk heterojunction solar cells. 

 

To overcome the limitation of small diffusion lengths in bilayer heterojunction-

based devices, so-called bulk heterojunction OSCs comprising a blend of a donor 

material and an acceptor material emerged in 1991 [33]. A typical device configuration is 

shown in Figure 1.8 (b). In these kinds of OSCs, the donor and acceptor phase separate at 

10-20 nm length scales. In this photoactive layer, the heterojunction interface between 

donor and acceptor phases can be made within the exciton diffusion length from the 

absorbing site, thus, the exciton decay process can be reduced [34]. The increased 

interface area in bulk heterojunction OSCs also improves the charge dissociation 

efficiency [33,35]. Unlike bilayer heterojunctions in which the donor and acceptor phases 
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a good control of the morphology in the bulk heterojunction photoactive layer and the 

selection of charge-collecting electrodes are more sensitive in bulk heterojunction OSCs 

than bilayer heterojunction–based OSCs [18,34,36]. 

The first bulk heterojunction OSCs was demonstrated by Hiramoto et al. [37]. 

The photoactive layer comprised of three layers where a bulk heterojunction layer made 

by co-depositing the donor (metal-free phthalocyanine (H2Pc)) and acceptor (Me-PTC) 

materials, was sandwiched between a single donor (H2Pc) layer and a single acceptor 

(Me-PTC) layer. This structure yielded two times higher J compared to the OSC without 

the bulk heterojunction layer. Ever since, bulk heterojunction OSCs made with other 

small molecules such as copper phthalocyanine (CuPc) and 3,4,9,10-perylene 

tetracarboxylic bis-benzimidazole (PTCBI) were also demonstrated [38].    

One of the first reported OSCs with a solution-processed bulk heterojunction 

photoactive layer was demonstrated by using a mixture of two polymers, poly(2-

methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) as the donor with 

cyano-polyphenylene vinylene (CN-PPV) as the acceptor for the photoactive layer [39]. 

The interpenetrating network formed by the natural phase-segregation of the two 

polymers improved charge generation and charge carrier transport [39]. Yu et al. 

introduced the use of a soluble fullerene derivative, [6,6]-phenyl-C61 butyric acid methyl 

ester (PC60BM) as an acceptor. An OSC using a blend of MEH-PPV and the PC60BM as 

a photoactive layer yielded a PCE of around 2.9 % under illumination (light intensity: 20 

mW/cm
2
) [33]. Shaheen et al. showed a solvent effect on the OSC performance. Use of a 

high boiling point solvent such as chlorobenzene enabled the bulk heterojunction film to 

gain more time for improved self-organization (phase separation) due to slow solvent 
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evaporation than the relatively low boiling point solvent, toluene. The enhanced phase 

separation induced more than twofold increase in the JSC of PPV:PC60BM-based OSCs 

[40].  

 Padinger et al. presented a photoactive layer with a conjugated donor polymer, 

poly(3-hexyl thiophene) donor (P3HT) in conjunction with PC60BM. A further increase 

in PCE from 0.4% to 3.5% was achieved after a post-thermal annealing process at a 

temperature above the glass transition of the polymer. The following year, performance 

of OSCs steadily increased as research focused on optimization of bulk heterojunction 

devices with P3HT:PC60BM photoactive layers. By optimizing the fabrication conditions, 

efficiencies in excess of 5% have been reported on P3HT:PC60BM-based OSCs [36,41]. 

In recent years, as a result of tremendous efforts focusing on synthesizing new conjugated 

polymers and designing novel device architectures to increase absorption and carrier 

transport, OSCs have been reported with PCE up to 9.2 %. This highest PCE value 

reported on bulk heterojunction OSCs, was reported on poly thieno[3,4-

b]thiophene/benzodithiophene (PTB7): [6,6]-phenyl C71-butyric acid methyl ester 

(PC70BM)-based organic solar cells [42,43].  

 

1.4.7 Charge-collecting Interlayers in Organic Solar Cells   

 OSCs are commonly composed of a bulk heterojunction photoactive layer 

sandwiched by two charge-collecting electrodes: a HCE and an ECE. In a bulk 

heterojunction photoactive layer, two different types of materials: a donor material with a 

high HOMO and an acceptor material with a low LUMO  are well dispersed in the bulk 

[8].  
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 In the limit of a non-interacting metal/semiconductor interface, the Schottky-Mott 

limit, the barrier for electron (or hole) injection for an electrode with a WF within the 

semiconductor EG, i.e. EA< WF < IE, is given by  

 

EAWFECEB   or ( HCEB WFIE  )                              (1.19) 

 

For charge collection, the height of this barrier appears to be relevant to the overall 

reduction of charge collection at that electrode/semiconductor interface. However, if the 

WF of the electrode approaches the limit of the EG (IE or EA), it has been found that a 

substantial charge transfer can occur between the electrode and the semiconductor 

leading to interfacial dipoles and pinning of the Fermi level at an energy [44,45]. Hence, 

if the WF of an electrode can be modified to be WF ≥ IE of the donor material or WF ≤ 

EA of the acceptor material, then more efficient charge collection is speculated. Thus, the 

HCE should have sufficiently high WF and the ECE should possess sufficiently low WF 

to avoid the formation of a Schottky barrier between the donor and the HCE and between 

the acceptor and ECE.  

 In addition, as mentioned in Chapter 1.4.5, the VOC of the OSC is known to be 

limited by the difference between EA of acceptor and IE of donor and the WF contrast 

between the HCE and ECE. Thus, these differences should be largest possible to 

maximize the VOC of an OSC [23,24]. Since the difference between EA of acceptor and 

IE of donor in an OSC is determined by selection of donor and acceptor materials, to 

maximize the VOC, and achieve efficient charge collection, the HCE and ECE should 

present a high WF contrast. 

 These charge-collecting electrodes are often realized by combining a conductor 

with a charge-collecting interlayer (CCI). The CCIs between the bulk heterojunction 

photoactive layer and electrode modifies the conductor to serve the roles of the charge-

collecting electrodes (HCEs and ECEs) effectively. In general, to be efficient CCIs, they 
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should fulfill several requirements regarding electrical, optical, chemical, and mechanical 

properties. Above all, CCIs are required to have proper WF values, sufficiently high-WF 

for the HCE and low-WF for the ECE to enhance charge-collection efficiency. The 

charge-collection efficiency estimates the quality of charge collection with respect to 

charge generation in the photoactive layer [46]. Besides this, the CCIs should have high 

optical transparency to allow photons to reach the photoactive layer (if they are 

modifying a transparent electrode) and chemical compatibility with the adjacent layers to 

enhance device lifetime [47].  

 One of the most commonly used hole-collecting interlayer is a conducting 

polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). 

PEDOT:PSS is solution processible and its conductivity can be varied by controlling its 

chemical composition
 
from 10

-6 
to 10

3 
S/cm. Its WF of around 5.1 eV provides a good 

energy level matching with IE of various donor polymers [48,49]. However, a polymer 

with a larger HOMO level of 5.64 eV, such as poly[3,6-di(4’-ethyloctyl)thieno [3,2-b] 

thiophene-2,5-diyl-2,1,3-benzothiadiazole-4,7-diyl] (PTTBT) is not compatible with 

PEDOT:PSS. The electrical and structural inhomogeneities from the insulating PSS layer 

can reduce charge-collection efficiency, and acidic nature can cause chemical instability 

[47,50,51].  

 Another type of hole-collecting interlayer is transition metal oxides. N-type 

transition metal oxides such as vanadium oxide (V2OX), molybdenum oxide (MoOX) and 

tungsten oxide (WOX) have been widely employed to extract holes from the photoactive 

layer [52-54]. As n-type semiconductors, the enhanced hole-collecting properties of these 

metal oxides are induced by their high WF values and EA values, which are much larger 

than HOMO levels of common organic semiconductors used as electron-donor materials 

in OSCs. The holes of the electron-donor materials can be extracted via injection of 

electrons through the metal oxide layers. The EA values of V2OX, MoOX and WOX are 

4.9 eV, 6.7 eV and 6.27 eV, respectively, and the IE values of V2OX, MoOX and WOX are 



 28 

8.1 eV, 9.68 eV and 9.66 eV, respectively. The WF values of V2OX, MoOX and WOX are 

5.6 eV, 6.86 eV and 6.47 eV, respectively [52,55,56].  

 A p-type transition metal oxide, nickel oxide (NiO) has been also employed to 

collect holes from the photoactive layers in OSCs. NiO possesses a relatively large EG 

along with a sufficiently low EA (1.8 eV) than the EA values of both donor and acceptor 

materials so that they can effectively block electron transport through the metal oxide 

layers. Also, their high WF of around 5.0-5.4 eV provides a good energy level matching 

to the IE of the donor materials. These metal oxides can be deposited either by 

evaporation under vacuum, a solution process, or atomic layer deposition [41,57-59]. 

Besides these transition metal oxides, an oxidized derivative of graphene, graphene oxide 

(GO) has also been used as a hole-collecting interlayer [60,61].  

 Along with the hole-collecting interlayers, a variety of interlayers to enhance the 

electron-collection have been introduced. Conventionally, vacuum deposited thin layers 

of low-WF metals, such as Ca, have been employed on top of the photoactive layer to 

extract electrons. However, sensitivity of the low-WF metals to air and moisture 

contributes to device instability [62]. 

 N-type metal oxides have been investigated for use as electron-collecting 

interlayers in OSCs. So far, titanium oxide (TiOX) [63-66] and zinc oxide (ZnO) [67,68] 

have been most widely used as the electron-collecting interlayer by modifying the WF of 

conductors such as ITO. The low WF value of TiOX (4.1 eV - 4.3 eV) [65,69] enabled a 

good energy level match with the LUMO level of acceptor materials, such as PC70BM, 

leading to efficient electron-collection. The maximum light intensity can be redistributed 

by inserting the optical spacer, TiOX, between the photoactive layer and the ECE [70]. 

TiOX can be fabricated by various techniques, such as spin-coating nanoparticles, sol-gel 

methods (including a conversion of the titanium oxide precursor by hydrolysis), ALD, 

and chemical bath deposition (CBD) [65]. 
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 ZnO has a very similar electronic structure to that of TiOX. That is, the low WF 

value of ZnO (4.0 eV - 4.2 eV) roughly matches with LUMO levels of acceptor materials 

commonly used in OSCs. In addition, its high optical transmittance in the visible range 

combined with a high electrical conductivity and a low cost make ZnO more attractive as 

an electron-collecting interlayer. So far, many different processing methods have been 

used to realize ZnO layers, including solution processed sol-gel [68,71], spin-coating 

nanoparticles [72], sputtering [73], and ALD [67].  

 In addition to these two metals oxides, an ultrathin (1 nm) layer of aluminum 

oxide (Al2O3) processed by ALD has been reported as an electron-collecting interlayer in 

OSCs [74]. However, further UV treatment is required to operate the OSCs efficiently.  

 Besides these metal oxides, alkali metal salts, such as cesium carbonate (Cs2CO3) 

have been deposited on top of conductors such as ITO to work as an electron-collecting 

interlayer. The Cs2CO3 layer is decomposed through thermal annealing, forming a doped 

n-type semiconductor. This decomposed Cs2CO3 has a sufficiently low-WF (from 3.45 

eV to 3.06 eV), leading to efficient electron-collection [75].  

  In another approach, an ultrathin layer (less than 10 nm) of a surface modifier can 

be used to coat a conductor surface. These modifiers are adsorbed on the conductor 

surface by physisorption or chemisorption. They create strong interface or molecular 

dipole moments that induce a vacuum level shift and modulate the WF of the conductor 

surface. For example, the WF of ITO was decreased from 4.4 eV to 3.9 eV by a basic 

solution, tetrabutylammonium hydroxide (N(C4H9)4OH) [76] and from 4.6 eV to 3.7 eV 

by amine containing conjugated small molecules such as tetrakis(dimethylamino)ethylene 

(TDAE) [77].   

 However, materials used as electron-collecting interlayers shown above have 

some issues that must be overcome. First, the Ca and TDAE are not stable in ambient air. 

Next, the WF values from the metal oxides mentioned above (4.0 eV – 4.3 eV) may not 
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be compatible with an acceptor with a low LUMO level [71].  Moreover, some materials 

such as Cs2CO3 need specific chemical reactions at relatively high temperatures  [62].  

  Recently, the Kippelen Research Group discovered that surface modifiers based 

on polymers containing simple aliphatic amine groups substantially and universally 

reduce the WF of conductors including metals, transparent conductive metal oxides, 

conducting polymers and graphene. The WF reduction comes from physisorption of the 

neutral polymer, which turns the modified conductors into efficient ECEs. These polymer 

surface modifiers are processed in air from solution, providing an appealing alternative to 

chemically reactive low−WF metals. For example, the WF of ITO decreases up to 0.8 eV 

by a polymer surface modifier of poly (N-vinylpyrrolidone) (PVP) and up to 1.1 eV by 

another polymer surface modifier of ethoxylated polyethylenimine (PEIE). These 

polymer surface modifiers will be discussed in Chapter 4 in detail. The WF values of the 

hole- or electron-collecting interlayers are summarized in Table 1.1. 
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Table 1.1 Work functions of charge-collecting interlayers. (Materials firstly used from 

the Kippelen Research Group are in red) 
Charge-collecting interlayers Work functions (eV) Ref. 

Hole-collecting interlayers 

PEDOT:PSS 5.1 - 5.2 [41,47] 

NiOX 5.0 - 5.4 [41,57-59] 

MoOX 6.86 [52,56] 

V2OX 5.5 [55] 

WO3 6.47 [52] 

GO 4.9 - 5.1 [60,61] 

Electron-collecting interlayers 

Ca 2.9 [47] 

ZnO 4.0 - 4.3 [67,68,78] 

TiO2 4.3 - 4.14 [65,69] 

Al2O3 4.3 [74]  

Cs2CO3 3.06 [75] 

N(C4H9)4OH 3.9 (on ITO) [76] 

TDAE 3.7 (on ITO) [77] 

PVP 3.6 (on ITO) [79] 

PEIE 3.3 (on ITO) [62] 

 

  

1.4.8 Conventional and Inverted Geometries  

 One important characteristic that OSCs require is to achieve good air stability. 

This is a problem caused in part by the geometry of an OSC. As shown in Figure 1.9, 

OSCs can be realized based on two types of device geometries, the so-called 

conventional geometry and the inverted geometry, in which the polarity of the charge-

collecting electrodes is reversed. In both cases, the OSC is generally made up with a 

photoactive layer and two charge-collecting electrodes. Charge carriers are created in the 

photoactive layer, and two charge-collecting electrodes, an ECE and a HCE collect 

electrons and holes from the photoactive layer, respectively. As mentioned in Chapter 

1.4.7 to provide better extraction of the electrons and the holes from the photoactive layer, 

the WF of the HCEs should be sufficiently high to match the IE of the donor material in 
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the photoactive layer and the WF of the ECEs should be low enough to match with the 

EA of the acceptor material in the photoactive layer. Moreover, the HCE and the ECE 

should build an energy barrier to holes and electrons, respectively, inhibiting charge 

carriers from recombining in the contact while allowing the appropriate carriers through.   

 An OSC with the conventional geometry (hereon will be referred to as 

conventional OSC) is defined as an OSC wherein the HCE is made at the bottom of the 

cell and is typically transparent, and the ECE is reflective and is fabricated at the top of 

the cell. Whereas an OSC with the inverted geometry (hereon will be referred to as 

inverted OSC) is defined as an OSC wherein the HCE is reflective and generally made at 

the top of the cell, and the ECE is transparent and typically fabricated at the bottom of the 

cell.      

  

 

Figure 1.9 Organic solar cells with (a) a conventional geometry and (b) an inverted 

geometry. 

  

  

 In a conventional OSC, low-WF metals such as LiF/Al and Ca/Al as the ECE are 

typically used at the very top of the cells. Thereby, the HCE generally PEDOT:PSS-

coated ITO, is fabricated at the bottom of the cell. However, the facile oxidation of the 
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low-WF metal is a major factor that contributes to limiting the air stability of solar cells 

and forces the use of encapsulation layers to improve their shelf stability [67,74,78,79]. 

In contrast to the conventional approach, in an inverted OSC, the ECE is commonly a 

modified ITO electrode with a low-WF electron-collecting interlayer, for example, 

surface modified ITO with amine containing polymer such as PEIE or low-WF metal 

oxides such as ZnO- or TiOX- coated ITOs. The ECE in this type of cells is commonly 

fabricated at the bottom of the cell while the HCE, made of relatively high-WF metals 

such as Ag and Au, is fabricated at the top of the cell. Inverted OSCs avoid the use of the 

reactive low-WF metal electrodes at the top of the cell and therefore are attractive 

geometries, because the air stability can be improved.  

 

 

1.4.9 Tandem Organic Solar Cells 

 Organic and inorganic solar cells suffer from two major losses, namely the sub-

band-gap transmission and the thermalization of charge carriers. In addition, organic 

semiconductors suffer from narrow absorption bands and poor charge carrier transport 

[36]. One way to overcome these limitations simultaneously is the realization of tandem 

OSCs. Tandem solar cells contain several single-junction solar cells with different 

absorption ranges. A broader portion of the solar spectrum can be absorbed by multi-

junction solar cells and thereby the PCE can be increased. Theoretically, an inorganic 

tandem solar cell with two sub-cells with band gaps of 1.9 eV and 1.0 eV, respectively, 

can allow achieving a PCE of 42 % which is exceeding the proposed detailed balance 

limit of  a single p-n junction solar cell, 30 %, so-called the Shockley-Queisser limit 

[22,80]. Indeed, experimentally, a PCE as high as 36.9 % has been reported from 

GaInP/GaAs/GaInAs based solar cells under illumination of non-concentrated AM 1.5 G 

spectrum [81]. Similar to inorganic tandem solar cells, small molecules and polymers 

have been used in tandem solar cells geometries. Generally in tandem OSCs, two or more 
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single-junction OSCs are stacked and connected through charge recombination layers 

(CRLs). In the case of all sub-cells connected in series for a tandem OSC, the VOC of the 

sub-cells adds up, the JSC of the tandem cell is limited to the smallest JSC generated in any 

of the sub-cells and consequently the PCE can be increased [80,82]. Figure 1.10 describes 

a tandem OSC with the conventional geometry. 

 To realize tandem OSCs, selecting photoactive materials for the bottom cell (the 

first light-absorbing sub-cell) and top cell (the second light-absorbing sub-cell stacked on 

top of the bottom cell through a CRL) with complementary absorption is essential to 

obtain a high JSC. Matching the photo-generated current between sub-cells connected in 

series is also necessary to maximize the JSC and consequently the PCE.  

 Another critical component to maximizing the PCE of a tandem OSC is the CRL 

that connects two OSC sub-cells in series. This layer allows holes to be collected, from 

one sub-cell, and be recombined with the electrons collected from the other sub-cell. 

Therefore, the WF of one side of the CRL is supposed to be high enough to provide good 

energy level alignment with the IE of the donor material, in the adjacent sub-cell, for a 

hole to be collected effectively at that interface. Also, the WF at the other side of the 

CRL should be low enough to provide adequate energy level alignment with the EA of 

the acceptor material in the adjacent sub-cell, for an electron to be collected efficiently at 

that interface. In addition, the CRL should work as an efficient recombination center for 

collected electrons and holes. Furthermore, materials for the CRL are required to have 

low optical absorption in the spectral region of interest. From a practical perspective, in 

tandem solar cells wherein the top active layer is solution-processed, the CRL also needs 

to be mechanically robust enough to prevent damage of the bottom cell and of the CRL 

itself during the processing of the top cell [80].  
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Figure 1.10 Formation of a tandem organic solar cell with a conventional geometry. 

   

  To date, a number of approaches to realize tandem OSCs either by different 

processing methods or device structures have been demonstrated. One of the first 

reported tandem OSC was made by Hiramoto et al.[83]. In this tandem OSC, H2Pc and 

an n-type perylene tetracarboxylic derivative (Me-PTC) served as photoactive layers for 

the bottom and top cells identically and a thin Au layer was used as the CRL. The first 

tandem OSC exhibited almost doubling of the VOC of each individual cell to reach a value 

of 0.78 V. 

 Yakimov et al. demonstrated the first tandem OSC with heterojunction 

photoactive layers wherein two, three, or five stacked thin photoactive layers comprising 

CuPc and PTCBI served as an electron-donor and –acceptor materials, respectively [84]. 

Ultrathin Ag clusters (5 Å) inserted between each sub-cells worked as the CRLs. The 

PCEs of the tandem OSCs with two and three heterojunctions photoactive layers under 

AM 1.5 illumination were about 2.5 % and 2.36 %, respectively. These PCE values were 

more than twice of that from single-junction OSC, 1.1 %. Also, the VOCs from these two 
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tandem OSCs were 0.93 V (two sub-cells) and 1.20 V (three sub-cells), respectively 

while the 0.45 V was achieved from the single-junction OSC. These small molecule 

based tandem OSCs had the advantage that a number of layers including the photoactive 

layers and CRLs can be easily deposited with dry processes such as thermal evaporation. 

However, due to the lack of small molecules having different absorption ranges, hybrid 

tandem OSCs that used a polymer sub-cell and a small molecule sub-cell, and solution-

processed tandem OSC that had two different polymer sub-cells emerged. 

 Dennler et al. demonstrated the first hybrid tandem OSCs composed of a 

polymer-based bottom cell comprising P3HT:PC60BM and a small molecule-based top 

cell made with Zn-Pc:C60 [85]. For the P3HT:PC60BM layer was processed from solution 

and the Zn-Pc:C60 layer was fabricated by vacuum deposition. Using photoactive layers 

with complementary absorption range (P3HT:PC60BM: 375-630 nm Zn-Pc:C60: 600-800 

nm), a tandem OSC could utilize the whole visible range of the solar spectrum. For this 

tandem OSC, 1 nm-thick Au served as the CRL. The VOC from the tandem OSCs (1.02 V) 

was almost equal to the sum of VOCs from the single cells, 0.55 V from P3HT:PC60BM 

cell and 0.47 V from Zn-Pc:C60 cell. 

 Kawano et al. showed one of the first polymer-based tandem OSCs with two 

identical bulk heterojunction photoactive layers comprising a blend of poly[2-methoxy-5-

(3’,7’-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) and PC60BM [25]. For 

this tandem OSC, ITO deposited by sputtering and PEDOT:PSS deposited by spin-

coating were used for the CRL. The tandem OSCs showed about 1.6 times higher VOC 

(1.34 V) than that of the single-junction reference OSC (0.84 V) with a structure of 

ITO/PEDOT:PSS/MDMO-PVP/Al. Although the VOC from the tandem cell should be a 

sum of the VOCs from sub-cells, the VOC from this tandem OSC did not show doubled VOC 

due to the increased series resistance introduced by the CRL. The JSC (4.1 mA/cm
2
) and 

FF (56 %) from the tandem OSC were slightly lower than those from the single-junction 

reference OSC (JSC: 4.6 mA/cm
2
 and FF: 59 %). These were attributed to the use of 



 37 

identical photoactive layers which reduce light absorption at the top sub-cell, so different 

photoactive layers with complementary absorption ranges were believed to improve the 

device performance.  

 One major breakthrough in the tandem OSCs was realization of all solution 

processible polymer tandem OSC by Kim et al.[86]. In this tandem OSC, two mixtures of 

poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-

benzothiadiazole)] (PCPDTBT):PC60BM and P3HT:PC70BM were used as photoactive 

layers for the bottom and top sub-cells, respectively. Highly conductive PEDOT:PSS (PH 

500) and TiOX were spin-coated on top of the bottom sub-cell to serve as the CRL. The 

two polymers, PCPDTBT and P3HT, have complementary absorption ranges, so that the 

tandem cell could use a broader portion of the solar spectrum up to 850 nm. Under AM 

1.5 G illumination, the tandem OSCs showed a JSC of 7.8 mA/cm
2
, a VOC of 1.24 V, a FF 

of 0.67, and PCE of 6.5 %. 

 To avoid use of the low-WF metal at the top of the tandem OSCs, which is 

sensitive to oxygen and moisture, and causes device instability, inverted tandem OSCs 

have been demonstrated. One of the first report regarding inverted tandem OSCs were 

made by Sun et al. [87]. This inverted tandem OSC used two identical photoactive layers 

consisting of P3HT:PC60BM for the bottom and top cells, and a CRL composed of 

ultrathin multiple metal layers of Ca/Al/Ag and metal oxide MoO3 that showed high 

transparency. The CRL in the tandem OSC showed effective charge recombination 

properties with VOC values (1.18 V) corresponding to the sum of two sub-cells and a high 

FF of 0.618. The maximum PCE shown in this tandem OSC was 2.78 % under 100 

mW/cm
2
 AM 1.5 G illumination.  

 Ever since, tremendous efforts have been made towards providing new 

conjugated polymers with lower EG and making more efficient CRLs with larger WF 

contrast between two opposite interfaces and lower optical loss. One of the most highly 

efficient CRLs was recently demonstrated by Zhou et al. from the Kippelen Research 
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Group [88]. In this work, efficient inverted tandem OSCs with an all-polymer CRL, 

comprising a conducting polymer PEDOT:PSS coated with an ultra-thin polymer surface 

modifier, PEIE were introduced for the first time. For the photoactive layers of the 

bottom and top cells, P3HT: indene-C60 bisadduct (IC60BA) and poly(4,8-bis-

alkyloxybenzo(1,2-b:4,5-b′)dithiophene-2,6-diyl-alt-(alkyl thieno(3,4-b) thiophene-2-

carboxylate)-2,6-diyl) (PBDTTT-C): PC60BM were employed, respectively. The tandem 

OSCs with the polymer CRL exhibited high performance with a VOC of 1.50 V, a JSC of 

7.7 mA/cm
2
, a FF of 0.72, leading to a PCE of 8.2% under AM 1.5 100 mW/cm

2
 

illumination. 

 Recently, You et al. demonstrated inverted tandem OSCs with a PCE as high as  

10.6 % [89]. In this inverted tandem cell, a low EG (1.38 eV) conjugated polymer, 

poly[2,7-(5,5-bis-(3,7-dimethyl octyl)-5H-dithieno[3,2-b:20,30-d]pyran)-alt-4,7-(5,6-

difluoro-2,1,3-benzothiadiazole)] (PDTP-DFBT) blended with PC70BM and relatively 

large band gap polymer P3HT mixed with IC60BA served as top and bottom photoactive 

layers. As the CRL, solution processible ZnO and PEDOT:PSS were employed. This was 

the first tandem OSC that broke the 10 % efficiency hurdle, which had been believed as a 

minimum required PCE for the commercialization of OSCs.  

 Although the device structures, including the photoactive layers and the CRL of 

the state-of-art tandem OSC have not been revealed by the inventor yet, PCE values as 

high as 12 % have been reported. A brief summary of the reports dealing with tandem 

OSCs with the conventional and inverted geometries is presented in Table 1.2. 
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Table 1.2 Summary of tandem OSCs with the conventional or inverted geometries. (PCE 

values were rounded off two digits after the decimal point.) 

Bottom cells CRLs Top cells 
PCE 

(%) 
Year Ref. 

Conventional geometry 

PBDTT-FDPP-C12:PC61BM PFN/TiO2/PEDOT 
PBDTT-SeDPP 

:PC71BM 
7.3 2013 [90] 

PCDTBT:PC70BM ZnO/PEDOT:PSS PDPP5T:PC60BM 7.5 2012 [91,92] 

P3HT:PC60BM ZnO/PEDOT:GO P3HT:PC60BM 4.1 2011 [93] 

P3HT:IC60BA TiO2/m-PEDOT PSBTBT:PC70BM 7.0 2011 [94] 

SubNc/C60 PTCBI/Ag/MoO3 SubNc/C60 5.2 2010 [95] 

PF10TBT:PC60BM ZnO/PEDOT:PSS PF10TBT:PC60BM 4.5 2010 [96] 

PFTBT:PC60BM ZnO/N-PEDOT PBBTDPP2:PC60BM 4.9 2010 [50] 

P3HT:PC70BM 
Al/TiO2/ 

PEDOT:PSS 
PSBTBT:PC70BM 5.8 2010 [97] 

P3HT:bis-PC60BM LiF/ITO/MoO3 P3HT:PC70BM 5.2 2010 [98] 

P3HT:PC60BM Al/MoO3 P3HT:PC60BM 2.2 2009 [99] 

P3HT:PC60BM LiF/Al/WO3 CuPc:C60 4.6 2007 [100] 

P3HT:PC60BM 
Sm/Au/PTrFE/ 

Au/PEDOT:PSS 
PTBEHT:PC60BM 3.0 2007 [101] 

PCPDTBT:PC60BM TiOX/PEDOT:PSS P3HT:PC71BM 6.5 2007 [102] 

MDMO-PPV:PC60BM ZnO/PEDOT:PSS P3HT:PC60BM 1.7 2007 [103] 

P3HT:PC60BM 
BPen:Li/Au/MTDATA:F4-

TCNQ 
CuPc/C60 1.2 2006 [104] 

P3HT:PC60BM C60/Au ZnPc/ZnPc:C60/C60 2.3 2006 [85] 

MDMO-PPV:PC60BM ITO/PEDOT:PSS MDMO-PPV:PC60BM 3.1 2006 [25] 

p-doped MeO-TPD/ blend 

ZnPc:C60/n-doped C60 
Au 

p-doped MeO-TPD/ blend 

ZnPc:C60/n-doped C60 
3.8 2005 [105] 

CuPc/CuPc:C60/ 

C60/PTCBI 
Ag 

m-MTDATA/CuPc/ 

CuPc:C60/C60/BCP 
5.7 2004 [106] 

CuPc/PTCBI Ag CuPc/PTCBI 2.5 2004 [107] 

CuPc/PTCBI Ag CuPc/PTCBI 2.3 2002 [84] 

Me-PTC/H2PC Au Me-PTC/H2PC NA 1990 [108] 

Inverted geometry 

PDTP-DFBT 

:PC71BM 
MoO3/M-PEDOT:PSS/ZnO 

PDTP-DFBT 

:PC71BM 
10.2 2013 [109] 

P3HT:IC60BA PEDOT:PSS/ZnO 
PDTP-DFBT 

:PC71BM 
10.6 2013 [89] 

P3HT:IC60BA PEDOT:PSS/ZnO PBDTT-SeDPP 9.5 2013 [110] 
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:PC71BM 

P3HT:IC60BA PEDOT:PSS/PEIE 
PBDTTT-C: 

PC60BM 
8.2 2012 [88] 

P3HT:IC60BA PEDOT:PSS/ZnO 
PBDTT-DPP: 

PC71BM 
8.6 2012 [111] 

P3HT:IC60BA PEDOT:PSS/ZnO PDPP5T:PC60BM 5.8 2012 [112] 

P3HT:PC60BM MoOX/Ag/PEIE P3HT:PC60BM 2.1 2012 [113] 

P3HT:IC60BA PEDOT:Au/TiO2:Cs PSBTBT: PC71BM 6.2 2012 [114] 

F4-ZnPc:C60 
DiNPB/p-DiNPB 5%/p-DiNPB 

10%/n-C60/C60 
DCV6T:C60 6.1 2011 [115] 

P3HT:PC60BM MoO3/Ag/Al/Ca P3HT:PC60BM 2.9 2011 [116] 

P3HT:PC60BM MoO3/Al/ZnO PSBTBT:PC70BM 5.1 2011 [117] 

P3HT:PC60BM 
PEDOT:PSS/ZnO/ 

C60-SAM 
P3HT:PC60BM 2.9 2010 [118] 

P3HT:PC60BM MoO3/Ag/Al/Ca P3HT:PC60BM 2.8 2010 [87] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

1.4.10 State of The Art 

 The current status of OSCs, the reported highest values of photovoltaic 

parameters from OSCs with different geometries is summarized in this section (Table 

1.3). Also, the device performances of the champion OSCs with different geometries 

fabricated in the Kippelen Research Group are introduced.  

    

Table 1.3 A summary of the highest values of photovoltaic parameters in organic solar 

cells with different geometries. (The highest values are in red. Values of VOC, FF, and 

device area were rounded off three digits after the decimal point and values of JSC and 

PCE were rounded off two digits after the decimal point and device area values were 

rounded off three digits after the decimal point.)   

Junction 
Device 

polarity 
Device structure 

VOC 

(V) 

JSC 

(mA/cm2) 
FF 

PCE 

(%) 

Area 

(cm2) 

Year

,Ref. 

1 

Conventional 

ITO/PEDOT:PSS/PTB7:PC71BM/PF

N(Ca)/Al 
0.76 15.8 0.70 8.4 0.16 

2011 

[119

] 

ITO/PEDOT:PSS/PCDTBT: 

PC71BM/ BCP/ Al 
0.91 11.8 0.66 7.1 1.0 

2011 

[120

] 

ITO/PEDOT:PSS/PBnDT-

FTAZ:PC61BM/Ca/Al 
0.79 12.5 0.72 7.1 0.12 

2011 

[121

] 

ITO/PEDOT:PSS/PBDTTT-

C:PC60BM/Ca/Al 

(The Kippelen Research Group) 

0.67 14.3 0.62 6.0 0.1 
2012 

[62] 

Inverted 

ITO/PFN/PTB7:PC71BM/MoO3/Ag 0.75 17.5 0.70 9.2 0.16 
2012 

[42] 

ITO/PEIE/P3HT:IC60BA/MoOX/Ag 

(The Kippelen Research Group) 
0.81 7.9 0.73 4.7 0.1 2013 

ITO/ZnO/BTI-

BDT:PC71BM/MoOx/Ag 
0.92 9.6 0.62 5.5 0.06 

2012 

[122

] 

ITO/PEIE/PBDTTT-C:PC60BM 

/MoOX/Ag 

(The Kippelen Research Group) 

0.68 16.1 0.61 6.6 0.1 
2012 

[62] 

2 Conventional 
ITO/PEDOT:PSS/PCDTBT:PC70BM

/ZnO/PEDOT:PSS/PDPP5T:PC60B
1.44 8.8 0.59 7.5 0.16 

2012 

[91] 
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M/Al 

ITO/SubNc/C60/PTCBI/Ag/MoO3/Su

bNc/C60/BCP/Ag 
1.92 4.3 0.62 5.2 0.13 

2010 

[95] 

ITO/PEDOT:PSS/BP2T/AlClPc/ZnP

c:C60/C60/Alq3/Al (Parallel tandem 

OSC) 

0.54 12.2 0.53 3.5 0.03 

2012 

[123

] 

ITO/PEDOT:PSS/P3HT:bis-

PC60BM/LiF/ITO/MoO3/P3H:PC70B

M/LiF/Al[81] 

1.14 

 

6.1 0.74 5.2 0.06 
2010 

[98] 

Inverted 

ITO/ZnO/P3HT:ICBA/PEDOT:PSS/

ZnO/PDTP-

DFBT:PC60BM/MoO3/AG 

1.53 10.1 0.69 10.6 
0.01-

0.10 

2013 

[89] 

ITO/n-C60/C60/F4-

ZnPc:C60/DiNPB/p-DiNPB 5%/p-

DiNPB 10%/n-

C60/C60/DCV6T:C60/BPAPF/p-

BPAPF 10%/p-BPAPF 5%/p-

BPAPF 10%n-C60/Al 

1.59 6.2 0.62 6.1 2 

2010 

[115

] 

ITO/PEIE/P3HT:IC60BA/PEDOT:PS

S/PEIE/PBDTTT-

C:PC60BM/MoOX/Ag 

(The Kippelen Research Group) 

1.50 7.7 0.72 8.2 0.09 
2012 

[88] 

Proprietary (Heliatek) - - - 12 1.1 
2012 

[81] 

 

 

1.5 Objectives and Scope of the Dissertation 

 In spite of advancement in the field of OSCs, more progress needs to be 

accomplished to overcome challenges related to commercial applications. This section 

addresses several issues related to the aim of the research conducted in this dissertation 

and introduces the goals and scope of this dissertation. 

 As discussed in the previous section, the facile oxidation of the low-WF metal 

such as Ca used for the electron-collecting electrode is a major factor that contributes to 

limiting the environmental stability of OSCs and forces the use of encapsulation layers to 
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improve their shelf stability. Also, the energy level mismatching between the WF of 

electron-collecting interlayers or electrodes and LUMO level of acceptor materials, and 

hole-collecting interlayers or electrodes and HOMO level of donor materials can limit the 

VOC and PCE as well. Moreover, even with recently developed small EG polymers, less 

than 60% of the incident solar power is absorbed. Maximizing light absorption by 

increasing the thickness of the layers can reduce the carrier collection efficiency and 

make the cells too resistive, thus impacting its performance. Besides these challenges, 

some other issues such as processibility, scalability, etc. still exist. The research 

conducted in this dissertation aimed to overcome these issues.    

 The primary objective of this dissertation is to realize efficient charge-collecting 

interlayers for single-junction OSCs. The research related to the charge-collecting 

interlayers is divided into two main parts, a hole-collecting interlayer and an electron-

collecting interlayer, and they are shown in the Chapter 3 and 4, respectively. Chapter 3 

investigates use of a NiO layer processed by ALD for a hole-collecting interlayer in 

OSCs. The ALD process is firstly adopted for the NiO layer synthesis. The photovoltaic 

performance of the single-junction OSCs with the NiO hole-collecting interlayer is 

explored and a comparison with the widely used hole-collecting interlayer PEDOT:PSS 

is presented.  

 In Chapter 4, an investigation on the electron-collecting interlayers is described. 

The electron-collecting interlayers include TiO2 nanoparticles and two polymeric 

materials, PVP and PEIE. Firstly, the use of the PVP for the dispersant for the TiO2 

nanoparticles is introduced. Then, a discovery of the polymeric interlayers (surface 

modifiers) during the optimization of the performance of OSC with the TiO2:PVP layer is 

described. In the next chapters, the electron-collecting interlayers made only with 

polymeric materials, PVP and PEIE are investigated. The mechanism for the WF 

reduction of the conductor surface by the polymeric interlayers is introduced. Secondly, 
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several examples of conductors with reduced WF by the polymeric interlayer are 

introduced. Finally, with these polymeric interlayers, various types of efficient single-

junction OSCs, including all-plastic solar cells, are demonstrated. 

 The second objective of this dissertation is to advance the field of OSCs by 

studying CRLs and finally realizing efficient inverted tandem OSCs. The work presented 

in Chapter 5 is related to tandem OSCs, especially the CRLs. Three different CRLs are 

introduced, including MoOX/Ag/PEIE, MoOX/Al2O3:ZnO nanolaminate/PEIE, and 

PEDOT:PSS/PEIE. Even though the hole-collecting layers in the CRLs are different, the 

PEIE layer is commonly used at one side of the CRLs for electron collection. In the first 

tandem OSCs with the CRL of the MoOX/Ag/PEIE, two identical photoactive layers are 

used for bottom and top cells. The second tandem OSCs with CRL of the 

MoOX/Al2O3:ZnO nanolaminate/PEIE and third tandem OSCs with the CRL of the 

PEDOT:PSS/PEIE have different photoactive layers for bottom and top cells with a 

complementary absorption range. The characterization of the CRLs themselves and 

photovoltaic performance of the tandem OSCs with the CRLs is described. Also, it 

should be noted that all the experimental details and methods regarding device fabrication 

and characterization are summarized in Chapter 2. 

 Chapter 6 summarizes the work presented in this dissertation and presents 

recommendations for future work.  
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CHAPTER 2 

EXPERIMENTAL METHODS 

2.1 Introduction 

  

 This chapter will show a detailed description of all experimental procedures used 

in this thesis. All steps included in device fabrication and characterization will be 

summarized in this chapter. The experimental method will be divided into two parts. The 

first part will illustrate critical steps for fabrication of OSCs, starting with the preparation 

of substrates used for the OSCs. Also, fabrication of thin films by various methods such 

as spin coating and ALD will be included. Finally, deposition of metal electrodes through 

thermal evaporation will be introduced. The second part will deal with the methods of 

characterizing OSCs used in this thesis. The techniques used for electrical and optical 

characterization of thin films will be shown first. Then, the measurement of the electrical 

characteristics of OSCs will be discussed.                       

       

2.2 Organic Solar Cell Fabrication 

2.2.1 Substrate Preparation 

 Preparing substrates is exceptionally important for providing reproducibility of 

the device performance. For this thesis, two different substrates were used. The first was 

a glass coated with a transparent conducting oxide, ITO (hereafter referred as ITO-coated 

glass). While the ITO-coated glass was a rigid and non-flexible substrate, the other 

substrate was a plastic substrate made with polyethersulfone (PES). Moreover, patterning 

these substrates was required to define a photoactive area. In case of the ITO-coated glass, 

half of the substrate was deposited with a SiOx thin film or etched by an acidic solution. 
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In the case of the PES substrate, half of the substrate was covered with conducting 

polymer, PEDOT:PSS as a transparent electrode.  

The preparation process for these substrates will be explained in more detail below. 

 

ITO-coated glass substrate: ITO-coated glass (Colorado Concept Coatings LLC) with 

sheet resistivity of 15 Ω/sq was used as substrates. Substrates were cleaned in an 

ultrasonic bath of detergent (Liqui-Nox® Phosphate-Free Liquid Detergent, Alconox, 

Inc.) in water, rinsed with deionized water, and then cleaned in sequential ultrasonic 

baths of distilled water, acetone (VWR), and 2-propanol (VWR) (20 min each). Nitrogen 

was used to dry the substrates after each bath.  

 To define the photoactive area on ITO-coated glass substrate, two methods were 

employed. The first one is with deposition of SiOX. On each ITO-coated glass substrate, a 

300-nm-thick (estimated from the crystal thickness monitor) layer of SiOX (Silicon 

Monoxide, Kurt J. Lesker) was deposited by electron-beam deposition (AXXIS, Kurt J. 

Lesker) through a shadow mask, at a rate of 0.4 - 0.6 nm/s and a base pressure of ~8 × 10
-

8
 Torr to electrically isolate half of the ITO area. 

 Another way to isolate the half of ITO-coated glass substrate was etching with an 

acidic solution. Half of ITO-coated glass substrate was masked with Kapton tape (VWR, 

Radnor, PA) (1/2 inch wide) and the uncovered areas were etched with an acid solution 

of HCl:HNO3 (1:3) at 75 °C for 5 min. After etching, the Kapton tape mask was removed, 

and substrates were cleaned in an ultrasonic bath of detergent in water, rinsed with 

deionized water, and then cleaned in sequential ultrasonic baths of distilled water, 

acetone, and 2-propanol (IPA) (20 min each). Nitrogen was used to dry the substrates 

after each bath.  

   

 PES substrate: The PES films (I-component, South Korea) were attached to rigid 

glass substrates with a piece of cured polydimethylsiloxane (PDMS, Gelest, Inc., 
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Morrisville, PA). Next, a piece of PDMS as a shadow mask was put down on half of the 

PES substrates to keep its hydrophobic property prior to plasma treatment. Then 5 

seconds of O2-plasma treatment was performed on the PES substrates and the PDMS on 

half the substrate was peeled off. At this moment, half of the PES substrate is hydrophilic 

and the other half is hydrophobic. Then aqueous and high conductivity PEDOT:PSS 

PH1000 (CLEVIOS™ PH 1000, HC Stack Inc.) with 5% dimethyl sulfoxide (DMSO, 

VWR) was spin coated on PES substrates at a speed of 1000 rpm for 30 s and an 

acceleration of 1000 rpm/s and annealed at 140 °C for 10 min on a hot plate in air. Since 

the aqueous PH1000 solution only wets on the half PES substrates with hydrophilic 

property, PH1000 film was only deposited on half of the PES substrate.  

 

2.2.2 Thin Films Deposition 

 An OSC comprises many thin layers with different functions, such as a 

photoactive layer, charge-collecting interlayers, etc. To form these layers, various 

techniques were used for this thesis. 

2.2.2.1 Spin Coating 

 The first technique was spin coating. Spin coating is performed to deposit a 

uniform film on a flat substrate. A small amount of coating material is applied to the 

substrate, and then the material spreads out by centric force during the substrate spinning. 

The thickness of the film commonly depends on spin speed, viscosity, and concentration 

of the coating materials.[124] Spin coating was used for this thesis for depositions of 

photoactive layers, charge-collecting interlayers, and CRLs. The spin-coating process for 

these layers will be explained in more detail below. 
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Photoactive layers:  

P3HT:IC60BA: A solution of P3HT (Rieke Metals):IC60BA (Luminescence Technology 

Corp.) was made in 1,2-dichlorobenzene (DCB, Sigma Aldrich) with a weight ratio of 1:1 

(P3HT:IC60BA) and a total P3HT+IC60BA concentration of 40 mg/ml. The P3HT:IC60BA 

solution was stirred overnight in a nitrogen-filled glove box, and heated at a temperature 

of 70 °C for 8 hours before use. 200-nm-thick films of P3HT:IC60BA were deposited by 

spin coating at 800 rpm for 30 seconds, using a 0.2-µm-pore PTFE filter, and dried in 

covered glass Petri dishes for 5 hours under a nitrogen atmosphere. The films were then 

annealed at 150 ºC for 10 minutes under a nitrogen atmosphere (Chapter 3.1, 4.3, 5.2, and 

5.3). 

P3HT:PC60BM: A solution of P3HT:PC60BM (Nano-C) was made in chlorobenzene 

(CB, Sigma Aldrich) with a weight ratio of 1:0.7 (P3HT:PC60BM) and a total 

P3HT+PC60BM concentration of 20 or 34 mg/ml. The P3HT:PC60BM solution was 

stirred overnight in a nitrogen-filled glove box, and heated at a temperature of 45 °C for 

one hour before use. 90- or 180-nm-thick films of P3HT:PC60BM were deposited by spin 

coating at 700 rpm for 60 seconds, using a 0.2-µm-pore PTFE filter. The films were then 

annealed at 150 ºC for 10 minutes under a nitrogen atmosphere (Chapter 4.1, 4.2, and 

5.1). 

PBDTTT-C:PC60BM: A solution of PBDTTT-C (Solarmer Materials):PC60BM was 

made in CB:1,8-diiodooctane (DIO) (97:3, volume (v):volume (v)) with a weight ratio of 

1:1.5 (PBDTTT-C:PC60BM) and a total PBDTTT-C +PC60BM concentration of 25 

mg/ml. The PBDTTT-C:PC60BM solution was stirred overnight in a nitrogen-filled glove 
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box before use. 90-nm-thick films of PBDTTT-C:PC60BM were deposited by spin 

coating at 1000 rpm for 20 seconds (Chapter 4.3, 5.2, and 5.3). 

 The chemical structures of the materials used for the photoactive layers are shown 

in Figure 2.1.  

 

Figure 2.1 Chemical structures of donors and acceptor compounds for the photoactive 

layers in this dissertation. 

 

Charge-collecting interlayers or charge-collecting electrodes:  

TiO2:PVP: Titanium dioxide (TiO2) nanopowder (Sigma Aldrich) and PVP (Sigma 

Aldrich) was dispersed in distilled water with a total concentration of 0.14 wt.% 

(TiO2 :0.07 (weight %) wt.% and PVP: 0.07 wt.%). The TiO2:PVP solution was stirred 

overnight in air, and a ultrasonication for 30 minutes was performed on the solution. 

Then, the solution was centrifuged at a rotation speed of 3000 rpm for 5 minutes 

(Eppendorf Centrifuges 5804 R, Eppendorf AG). The taken solution from the top of the 

centrifuged solution was spin-coated onto ITO at 3000 rpm for one minute. The 

TiO2:PVP film was then annealed at 80 ºC for 10 minutes in ambient air (Chapter 4.1). 
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PVP: PVP was dispersed in distilled water with a concentration of 0.07 wt.%. The PVP 

solution was stirred overnight in air, and a ultrasonication for 30 minutes was performed 

on the solution. The solution was spin-coated onto ITO at 3000 rpm for one minute. The 

PVP film was then annealed at 80 ºC for 10 minutes in ambient air (Chapter 4.2). 

PEIE: PEIE (80% ethoxylated, Aldrich) was diluted into 2-methoxyethanol (Aldrich) to 

two different concentrations of 0.1 wt. %  (for the CRL of PEIE-modified MoOX/Ag) and 

0.4 wt. % (for all except the CRL of PEIE-modified MoOX/Ag). The PEIE solution was 

stirred overnight in air. The solution was spin-coated onto substrates at 5000 rpm for one 

minute. The PEIE film was then annealed at 100 ºC for 10 minutes in ambient air 

(Chapter 4.3, 5.1, 5.2, and 5.3). 

PEDOT:PSS: Three different PEDOT:PSSs (H.C. Starck, Newton, MA), Clevios™ P 

VP AI 4083 (4083), Clevios™ PH 1000 (PH1000), and Clevios ™ CPP D105 (CPP) are 

used in this thesis. Each PEDOT:PSS has its distinctive functions such as conductivity 

and wettability. The PEDOT:PSS (4083) that has low conductivity (≤ 10
-3

 S/cm) is used 

for hole-collecting interlayer on top of ITO. The PEDOT:PSS (PH 1000) that has high 

conductivity (≈ 10
3
 S/cm) is employed as a transparent HCE on a bare glass (Chapter 4.3), 

or hole-collecting layer in the CRL of the PEIE-modified PEDOT:PSS (Chapter 5.3). The 

PEDOT:PSS (CPP) that has a good wettability on photoactive layer is used for hole-

collecting interlayer and deposited on top of the photoactive layer followed by a metal 

electrode deposition. 

PEDOT:PSS (4083): Prior to depositing PEDOT:PSS (4083), substrates such as SiOX-

patterned ITO-coated glass were first treated with O2-plasma for 3 min to change the 
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surface to hydrophilic. Then, PEDOT:PSS (4083) was filtered through a 0.45 μm pore 

PVDF filter and spin-coated in air at 5000 rpm for 60 s. The substrates were then 

annealed for 10 min at 140 °C (Chapter 3.1). 

PEDOT:PSS (CPP): PEDOT:PSS (CPP) was spin-coated in air at 2000 rpm for 45 s 

without any filtration. The substrates were then annealed for 10 min at 120 °C (Chapter 

4.1 and 4.2). 

PEDOT:PSS (PH 1000): PEDOT:PSS (PH 1000), substrates such as a glass, or a PES, 

and the bottom cell with photoactive layer were first treated with O2-plasma for 5 sec and 

1 sec, respectively, to change the surface to hydrophilic. Then, PEDOT:PSS (PH 1000) 

was filtered through a 0.45 μm pore PVDF filter and spin-coated in air at 5000 rpm for 60 

s. The substrates were then annealed for 10 min at 110 °C (Chapter 4.3 and 5.3). 

Mixed PEDOT:PSS (PH1000 + CPP, 3/1, v/v): PEDOT:PSS (PH 1000) and 

PEDOT:PSS (CPP) were blended and stirred overnight in air. Then, the mixed one was 

spin-coated in air at 1000 rpm for 30 s without any filtration. The substrates were then 

annealed for 10 min at 110 °C (Chapter 4.3). 

 The chemical structures of the materials used for the charge-collecting interlayers 

or electrodes are shown in Figure 2.2. 
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 Figure 2.2 Chemical structures of electron- and hole-collecting interlayers used in this 

dissertation. 

 

2.2.2.2 Atomic Layer Deposition (ALD) 

 The second deposition method is ALD (Savannah 100, Cambridge NanoTech, 

Cambridge). For this thesis, ALD was used for depositions of charge-collecting 

interlayers (ZnO and NiO) and CRL (Al2O3:ZnO nanolaminate). ALD uses sequential 

gas-phase chemical reaction. Due to its self-limiting and surface reaction characteristics, 

ALD can offer well-controlled layer-by-layer growth of highly conformal and uniform 

films. The thickness of the films deposited by ALD can be controlled at the nanometer 

scale by changing the number of deposition cycles. Also, since the ALD can be run in 

relatively low temperatures, temperature-limited substrates can be used [67]. In addition, 

high-speed ALD techniques have advanced to achieve deposition rates up to 1.2 nm/s, 

improving the industrial viability of this technology [125].  

 Figure 2.3 illustrates an ALD cycle for ZnO deposition. Si was used here as a 

substrate. One cycle of ZnO in the ALD system comprised sequential pulses of H2O and 
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diethylzinc (DEZ) precursors injected into the ALD reactor, utilizing nitrogen as a carrier 

gas. First, a pulse of H2O was injected into the ALD reaction chamber, utilizing nitrogen 

as a carrier gas, and adsorbed on the Si surface, forming hydroxyl group (-OH). Next, a 

diethylzinc (DEZ) precursor was introduced into the ALD reactor using the same carrier 

gas and chemisorbed on the hydroxylated Si surface, forming a uni-ethylzinc (–ZnC2H5). 

Because the DEZ does not react with itself, this process was finished with one layer 

formation. Then, the excess DEZ and reaction product (ethane, C2H6) were removed by 

inert nitrogen gas. Again, a pulse of H2O was injected into the ALD reaction chamber 

and reacted with the dangling ethyl group. This reaction created a hydroxyl surface group 

on Zn as well as a Zn-O bridge. Also, the excess H2O and the reaction product were 

pumped away by the nitrogen gas. This sequential process made one atomic layer, and 

the films could be made to the desired thickness by repeating this process [126].  The 

ZnO layer formed on the ITO substrate was made following the same process described 

above (Chapter 4.2). 

 

Figure 2.3 An illustration for ZnO formation by ALD and chemical reactions. (This 

figure was drawn by Hyeunseok Cheun) 
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 The ALD process of NiO and Al2O3:ZnO nanolaminate was similar to that of 

ZnO but used slightly different conditions with different precursors. The detailed 

processing conditions for NiO and Al2O3:ZnO nanolaminate employed in this thesis are 

as follows. 

NiO: NiO layers of three different thicknesses (6, 13, and 25 nm) were deposited by ALD. 

One cycle of NiO in the ALD system comprised sequential pulses of H2O (15 ms pulse) 

and Ni-AMD (Nickel Alkyl Amidinate) (750 ms pulse) precursors injected into the ALD 

reactor, utilizing nitrogen as a carrier gas at a temperature of 150 °C. (Chapter 3.1). 

Al2O3:ZnO nanolaminate: 10-nm-thick Al2O3:ZnO (1:20, 84 cycles) nanolaminate was 

deposited by ALD. One cycle of Al2O3 in the ALD system comprised sequential pulses 

of H2O (15 ms pulse) and trimethylaluminum (15 ms pulse) precursors injected into the 

ALD reactor, utilizing nitrogen as a carrier gas at a temperature of 150 °C. One cycle of 

ZnO was made up of H2O (15 ms pulse) and DEZ (15 ms pulse) pulse precursors. Finally, 

10-nm-thick Al2O3:ZnO nanolaminate film was deposited with a series of ZnO cycles 

with interspersed Al2O3 cycles incorporated at a 1:20 ratio (Al2O3:ZnO) (Chapter 5.2). 

2.2.2.3 Thermal Evaporation 

 The last deposition method used in this thesis was thermal evaporation 

(SPECTROS, Kurt J. Lesker). In this thermal evaporation system, the substrates and 

source materials were loaded in a chamber. Next, the chamber was pumped down to the 

proper vacuum level. Under vacuum, the source material contained in a crucible was 

heated until it was evaporated or sublimed. The evaporated particles traveled directly to 

the substrate. Deposition rate was controlled by applied power on the source crucible, and 

the thickness of the deposited film was monitored by quartz crystal microbalances. To 

pattern the deposited film, shadow masks were used. 
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 The SPECTROS is a computer-controlled physical vacuum deposition (PVD) 

system. Conditions for deposition of individual materials such as deposition rate, base 

pressure, deposited layer thickness, etc., were recorded into a recipe and programmed for 

automatic deposition process. The SPECTROS was connected to an N2-filled glove box 

from MBRAUN Company. This direct accessibility from the N2-filled glove box 

protected the OSC from exposure to ambient air, which could cause performance 

degradation. The SPECTROS used a cryopump for high vacuum and roughing, and 

regeneration was conducted with a rotary vane pump. The base pressure for all deposition 

was lower than 1 × 10
-7

 Torr.  

 The SPECTROS system was equipped with two metal sources and four organic 

sources. For this thesis, only the metal sources were used for charge-collecting interlayers 

and metal electrodes. For use of a new crucible, the new empty crucible was baked at 

high temperature before loading metal sources to avoid contamination. Two metal 

sources were loaded in separated crucibles and evaporated. A shadow mask close to the 

substrate was employed to define a pattern in the deposited layers. The substrates were 

rotated during the film deposition to improve the uniformity. In this thesis, seven 

materials, Ca (Chapter 3.1), Al (Chapter 3.1), MoOX (Chapter 4, 5), and Ag (Chapter 4, 

5), phthalocyanine (CuPc) (Chpater 4.2), C60 (Chpater 4.2), bathocuproine (BCP) 

(Chpater 4.2) were deposited with a deposition rate around 1.0 Å/s.  
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2.3 Characterization 

2.3.1 Thin Film Characterizations 

 The energy levels of the conductors and semiconductors reported in this 

dissertation were measured by Kelvin Probe (Besocke Delta Phi, with a probe diameter of 

around 3 mm) in air, and by UV photoelectron spectroscopy (UPS) and inverse 

photoemission spectroscopy (IPES) in ultra-high vacuum.  

A Kelvin probe that measures the contact potential difference between surfaces of two 

conductors was used for WF measurements. For this Kelvin probe method, two 

conductors are brought into close proximity, but without electrical contact between the 

surfaces of the two conductors, like in a parallel plate capacitor. One of the conductors is 

vibrated with a certain frequency (ω). This periodic vibration induces a change in the 

distance between the two surfaces and results in AC current i(t) given by,  

)cos()( tCVti CPD                                                 (2.1) 

due to changes in capacitance (ΔC). To measure the CPD, an additional voltage having a 

polarity opposite that of the voltage induced by the CPD is applied between the two 

conductors until the i(t) equals zero. Also, it should be noted that true WF measurements 

need a reference with a known WF because the Kelvin probe can only measure the CPD 

[127]. For this dissertation, Kelvin probe measurements were done on three spots 

separated by ~1/2 inch and distributed across a 1×1 inch
2
 substrate. Average values and 

standard deviations were generated over these spots. A highly ordered pyrolytic graphite 

(HOPG) sample with a WF of 4.5 eV was used as the reference sample.  
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 UPS and IPES provided information on the energy distribution of occupied (IE: 

occupied states maximum) and unoccupied states (EA: unoccupied states minimum) at 

the surface of materials, respectively [128]. The UPS and IPES measurements in this 

dissertation were performed at Princeton University. 

 Figure 2.4 describes simplified processes of UPS and IPES. In the case of the 

UPS, information on the occupied states of the materials can be extracted from the 

analysis of kinetic energy spectra of photoelectrons emitted by materials that have 

absorbed UV photons. For the UPS measurements in this dissertation, a He I (21.22 eV) 

radiation line from a discharge lamp was used with an experimental resolution of 0.15 eV. 

It is worth mentioning that the UV illumination from the UPS lamp has been shown to 

cause variations of the WF of metal oxides, such as ITO, when continuously exposed for 

long periods of time. Exposure to UV light from the UPS lamp was minimized by 

exposing ITO-containing samples for only a very short period of time, and the results 

were confirmed by measuring several independent ITO samples. This effect was 

negligible on other substrates. 

 In case of the IPES, information on the unoccupied states of the materials can be 

obtained from the detection of emitted photon energy spectra when electrons are injected 

into high-lying (top) unoccupied states decay to low-lying (bottom) unoccupied states. 

For this dissertation, IPES was carried out in the isochromat mode, with a resolution of 

0.45 eV [128]. UPS and IPES measurements were repeated two or three times per sample. 

The Fermi level reference was established by UPS and IPES measurements using an air-

exposed Au surface. 
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Figure 2.4 Simplified processes of UPS, IPES, and XPS measurements.     

 Besides these two photoemission spectroscopies, another photoemission 

spectroscopy is x-ray photoemission spectroscopy (XPS). XPS is a surface chemical 

analysis technique. For this dissertation, XPS (K-Alpha, Thermo Scientific) measurement 

was conducted to confirm the presence of each surface component by detecting the core 

levels of each component. A simplified process of XPS is illustrated in Figure 2.4. A 

basic mechanism for obtaining data (photoemission spectra) of XPS is similar to that of 

UPS. However, photons with larger energy (x-ray) than photons used in UPS (UV) are 

used in XPS. For this dissertation, an XPS system implemented with an Al K-alpha 

monochromatic source of photons with an energy of 1486.6 eV and a spot size of 300 μm 

was utilized to study the surface composition of ECEs, HECs, and CRLs.            
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 Thicknesses and refractive indexes of films, including HCEs, ECEs, and 

photoactive layers, were derived from spectroscopic ellipsometry (J. A. Woollam Co., 

Inc.) data taken at incidence angles of 65°, 70° and 75°. Spectroscopic ellipsometry traces 

the evolution of polarization of light that reflects or transmits from a material. The 

change in polarization is derived from the optical properties and thickness of the material. 

Thus, such material properties as refractive indexes and thickness of the material can be 

derived from the spectroscopic ellipsometry [129]. In this dissertation, the data from 

spectroscopic ellipsometry were modeled by considering a single-layer model (without 

surface roughness) and Cauchy refractive index dispersion characteristics.  

 Surface morphology of films, including HCEs, ECEs, CRLs, and photoactive 

layers, was examined by atomic force microscopy (AFM). The basic operating principles 

of AFM are that a cantilever with a sharp tip (probe) is scanned over the surface of a 

sample with feedback mechanisms. These feedback mechanisms allow for the 

piezoelectric scanners to maintain the probe at a constant force to achieve height 

information, or at a constant height to acquire force information above the surface of the 

sample. The AFM can be operated in many different modes, depending on the application. 

Generally, modes for imaging the surface of a sample are divided into contact mode, non-

contact mode, and tapping mode [130]. For this dissertation, the AFM (Dimension 3100, 

Veeco) studies were carried out using a MultiMode AFM equipped with a NanoScope III 

controller.    
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2.3.2 Device Characterization 

2.3.2.1 Current Density - Voltage (J-V) Characterization 

 The J-V characteristics in the dark and under illumination of all OSCs discussed 

in this thesis were mainly conducted in an N2-filled glove box (MBRAUN) using a 

source meter (2400, Keithley Instruments) controlled by a LabView program. Programs 

such as OriginLab and Matlab were used for data analysis. A four-wire configuration was 

adopted for the measurements. Two wires (one pair) were used for applying the current 

and another two wires (one pair) providing a low current were equipped to detect the 

voltage.  

 An AM 1.5 G solar simulator (Oriel 91160, Oriel instruments) with an irradiance 

of IL = 100 mW cm
-2

 was used as a light source. For the calibration of the light source, a 

calibrated Si photodiode (S2386-44K, Hamamatsu) and a thermal detector (PM100, 

Thorlabs) were employed to estimate the irradiance of the source. 

 Prior to the electrical characterization, the photoactive areas of the devices were 

measured either by placing a shadow mask with a single aperture with an area of 0.092 

cm
2
 onto the glass substrate of the solar cell or by using a microscope for each individual 

device. 

2.3.2.2 External Quantum Efficiency (EQE)   

 EQE measurements were conducted using a monochromator (CM110, CVI 

Spectral Products) coupled with 175 W xenon lamp (ASB-XE-175EX, CVI Spectral 

Products) and a calibrated photodiode (S2386-44K, Hamatsu). The light from the 

monochromator was passed through a diffuser to spread the light over the entire device 

and was illuminated through an aperture (size: 0.05 cm
2
). To measure the EQE of the 

tandem OSCs (Chapter 5.2), light bias was used with two different wavelengths, 520 nm 
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and 750 nm. The current measurement was conducted by using a Keithley 2400 source 

meter in a four-wire scheme controlled by a LabView program. All EQE measurements 

were taken in ambient air. 

 

2.3.2.3 Current Density Simulation for Tandem Organic Solar Cell 

 

 The absorptance of OSCs was measured and simulated by adjusting the 

thicknesses of individual layers using the transfer matrix method; a breakdown of the 

contribution to the total absorptance of each layer in the solar cell structure was carried 

out for reference single-junction OSCs with P3HT:IC60BA and PBDTTT-C:PC60BM 

using the transfer matrix method. The absorptance of the photoactive layer, APL(λ) (PL: 

photoactive layer), was multiplied by the spectral photon solar irradiance (AM 1.5G), 

  2 1 1

1.5AMS photons cm s nm        , and its product integrated spectrally. The internal 

quantum efficiency (IQE) was then approximated as a constant given by:  

 




 dSAe

J
IQE

GAMPA

measuredSC

)()( 5.1

,
                                          (2.2) 

where 2

,sc measuredJ A cm    represents the average measured short circuit current and e is 

the elementary charge.  In this way, IQE values of 0.61 and 0.86 were estimated for two 

OSC with structures of ITO/PEIE/P3HT:IC60BA/MoOX/Ag and ITO/PEIE/PBDTTT-

C:PC60BM/MoOX/Ag, respectively. For tandem OSCs, the following expression was 

employed to estimate the JSC in each subcell: 

  dSAIQEeJ GAMPAxPAxPAxSC )()( 5.1,                               (2.3) 

The JSC of the tandem solar cell was taken as the minimum value between JSC,AL1 and 

JSC,AL2 
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CHAPTER 3 

HOLE-COLLECTING INTERLAYERS 

 Previously, the roles of the charge-collecting interlayers in OSCs were introduced. 

In this chapter, the photovoltaic properties of OSCs with the conventional geometry using 

a hole-collecting interlayer, NiO processed by ALD will be discussed. First, various 

thicknesses (6-, 13-, and 25-nm-thick) of NiO layers were made on glass/ITO substrates. 

Next, electrical, optical, morphological properties of the NiO layers were characterized to 

see their viability as hole-collecting interlayer. Finally, the photovoltaic properties of 

P3HT:IC60BA-based OSCs with a NiO layer were evaluated and compared with those of 

reference OSCs with PEDOT:PSS-coated glass/ITO as a hole-collecting electrode.     

3.1 Nickel Oxide (NiO) as The Hole-collecting Interlayers  

3.1.1 Introduction  

  Polymer-based OSCs, referred to as polymer solar cells (PSCs), are commonly 

composed of a bulk heterojunction photoactive layer sandwiched by a HCE and an ECE. 

As discussed in Chapter 1.4.7., to enhance the charge collection efficiency and maximize 

a VOC of PSCs, a large WF contrast between the HCE and ECE is required. To optimize 

the photovoltaic performance of PSCs with the conventional geometry, the PSCs 

commonly have ECEs made of reflective and low-WF metals such as LiF/Al and Ca/Al 

at the top of the PSC. Also, they have HCEs composed of transparent high-WF 

components such as ITO generally modified with high-WF interlayer such as 

PEDOT:PSS at the bottom of the PSCs [47]. 
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 One candidate for a hole-collecting interlayer in PSCs is NiO. Stoichiometric NiO 

is known as an insulator with room temperature conductivity on the order of 10
-13

 S/cm. 

The conductivity of the NiO can be increased by p-doping with lithium (Li) or by the 

existence of nickel vacancy or interstitial oxygen in the NiO crystallite. P-type NiO is 

also a wide EG (3.6 eV- 4.0 eV) semiconductor [57,131,132]. In recent reports, Irwin et al. 

and Steirer et al. showed PSCs with a NiO as the hole-collecting interlayer [41,57,132]. 

The NiO layers were made either by pulsed laser deposition (PLD) or spin coating; a WF 

value of 5.0 eV was found in both cases. PSCs with NiO hole-collecting interlayers 

yielded comparable photovoltaic performance to PSCs containing PEDOT:PSS 

interlayers but showed enhanced device air stability.  

 In this chapter ALD-processed NiO films are introduced as a hole-collecting 

interlayer in PSCs. As mentioned in Chapter 2, the ALD is suitable method for 

fabricating the charge-collecting interlayer of PSCs. It can offer well-controlled layer-by-

layer growth of highly conformal and uniform films. Also, the thickness of the layer 

deposited by ALD can be controlled at the nanometer scale by changing the number of 

deposition cycles [67]. In this chapter, the structural, morphological, and optical 

properties of the ALD processed NiO were investigated by XPS, AFM, and spectroscopic 

ellipsometry. Optimized PSC composed of a P3HT:IC60BA photoactive layer and using 

an ITO/NiO HCE are shown to yield a PCE of 4.1 ± 0.2 % under a 100 mW/cm
2
 AM 

1.5G solar illumination.          

 

3.1.2 NiO Layer Characterization  

 NiO films were found to grow at an average rate of 0.05 ± 0.01 nm/cycle on Si 

substrates. One cycle includes one pulse of H2O and one pulse of AMD. The WF of the 

HCEs comprised by NiO-coated ITOs was studied with a Kelvin probe in air using 

different thicknesses of the NiO layer. The WF of a pristine 25 nm-thick NiO film 
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deposited on an ITO substrate had an initial value of 4.7 ± 0.05 eV and increased to a 

value of 5.4 ± 0.02 eV after a 3 min O2-plasma treatment. NiO-coated ITO substrates 

with 6-nm and 13-nm-thick NiO layers exhibited similar WF values of 5.3 ± 0.02 eV and 

5.3 ± 0.03 eV, respectively, after the 3 min O2-plasma treatment.  The value of the WF of 

bare ITO was 4.6 ± 0.02 eV.  Figure 3.1 summarizes the WF values from different 

thicknesses of NiO layer on ITO and a bare ITO.  

 

 

Figure 3.1 Work function values of a bare glass/ITO substrate, and pristine 25 nm-thick 

NiO films, O2-plasma treated 25 nm-thick NiO films, O2-plasma treated 13 nm-thick NiO 

films, and O2-plasma treated 6 nm-thick NiO films on a glass/ITO substrate by a Kelvin 

probe. 

 

 

  XPS measurements were conducted on 25 nm-thick NiO film (as-deposited and 

with a 3 min O2-plasma treatment) and bare ITO. It should be noted that the 25 nm-thick 

NiO films were selected for the XPS analysis because, as will be discussed later, they 

show PSCs with the best performance. 

 A comparison of an XPS survey from bare ITO and 25-nm-thick NiO coated 

ITOs (as-deposited and with O2-plasma treatment) is shown in Figure 3.2(a). The high 

resolution XPS spectra of the O 1s and Ni 2p core levels of bare ITO and 25-nm-thick 

NiO coated ITOs (as-deposited and with O2-plasma treatment) are shown in Figure 3.2 
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(b). The peaks above 850 eV (Ni 2p) clearly indicate presence of NiO on ITO. The 

complete disappearance of the peaks around 450 eV corresponding to In 3d and 490 eV 

corresponding to Sn 3d confirm that the conformal nature of the NiO layer. 

 

 

Figure 3.2 (a) A survey of XPS spectra for O2-plasma treated 25 nm-thick NiO films (top) 

and pristine 25 nm-thick NiO films (middle) on a glass/ITO substrate, and a bare 

glass/ITO substrate (bottom), (b) XPS spectra of the O 1s and Ni 2p core levels for O2-

plasma treated 25 nm-thick NiO films (top, closed circle) and pristine 25 nm-thick NiO 

films (middle, open circle) on a glass/ITO substrate, and a bare glass/ITO substrate 

(bottom, closed triangle).   

 

 High resolution XPS data shown in Figure 3.2(b) also shows that at least two NiO 

species exist on the ALD-synthesized films, the low binding energy peaks at 853.9 eV 

(Ni 2p) and at 529.4 eV (O1s) correspond to the more abundant Ni
+2

 (NiO) [133,134] and 

the higher binding energy peaks at 855.6 eV(Ni 2p) and at 531.3 eV (O1s) corresponding 

to a less abundant species, likely corresponding to nickel hydroxide (Ni(OH)2) [134] 

rather than commonly ascribed Ni2O3 [133]. The existence of (Ni(OH)2) peaks around 

855.6 eV can be related with the chemisorption of water from air or from unreacted 

hydroxylated Ni sites during the NiO deposition. Furthermore, the peaks near 280 eV 

indicate the presence of carbonaceous species on the surface of both ITO and as prepared 

ITO/NiO. Greiner et al. claimed that these Ni(OH)2 and carbonaceous species on the 

surface of the as-deposited NiO film correlated with a significant WF reduction of the 

NiO films (6.73 eV to 5.5 eV, in air-exposed films, measured by UPS) [134]. Upon 3 min 
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O2-plasma treatment, intensity of both Ni(OH)2 and carbonaceous peaks were reduced 

and the NiO peaks in vicinity of 853.9 eV became even more dominant at the surface of 

the film. Thus, the measurable decrease of the strength of the Ni(OH)2 and carbonaceous 

peaks made by the O2-plasma treatment can explain the observation of the WF increase 

of the pristine NiO films after O2-plamsa treatment.  

 In addition, the WF increase by the O2-plamsa treatment can be attributed to p-

doping. According to previous photoemission spectroscopy studies on solution-processed 

NiO films conducted by Steirer et al, the O2-plasma treatment increased the IE and Fermi 

levels of the NiO layer linearly while it left the electron affinity constant. While the 

energy level difference between the IE and the EF of the NiO remains unchanged before 

and after O2-plasma treatment, the increase in the band gap after the O2-plasma treatment 

can arise from p-doping of the NiO layer. Even though energy levels such as IE and EA 

have not been measured here, this effect cannot  be ruled out by this study[132].  

 Figure 3.3 displays the complex refractive index of NiO derived after 

spectroscopic ellipsometric measurements on O2-plasma treated 25 nm-thick NiO films 

coated glass/ITO substrates.  

 

Figure 3.3 Refractive index and extinction coefficient of O2-plasma treated 25 nm-thick 

NiO films on glass/ITO substrate. The inset shows optical transmission of O2-plasma 

treated 25 nm-thick NiO films on a glass/ITO substrate (black) and a bare glass/ITO 

substrate (grey). 
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 An EG of 3.7 eV (335 nm) was extracted from these measurements. This value is 

in good agreement with literature values [133]. A comparison of the transmittance 

between the 25-nm-thick NiO-coated glass/ITO and bare glass/ITO is shown in the inset 

of Figure 3.3. As revealed by the optical extinction coefficient spectra, k(λ), ALD NiO 

films display negligible absorption above 350 nm. Hence, reduced transmittance of the 

25-nm-thick NiO-coated glass/ITO can be ascribed not to absorption loss from the NiO 

layer, but to the optical interference effects resulting in an increased reflectance.  

 To examine the surface morphology, ITO and 25-nm-thick NiO-coated ITO films 

were studied by AFM. Figure 3.4 shows AFM images of a bare glass/ITO substrate 

(Figure 3.4 (a)) and 25-nm-thick NiO-coated glass/ITO substrates, before (Figure 3.4(b)) 

and after O2-plasma treatment (Figure 3.4(c)). The root-mean squared (RMS) surface 

roughness values derived from these images, with an area of 0.25 µm
2
, in layers of 

glass/ITO,  25-nm-thick NiO-coated glass/ITO substrates (as-deposited), and 25-nm-thick 

NiO-coated glass/ITO substrates (with 3 min O2-plasma treatment) are 4.7 nm, 4.4 nm, 

and 4.0 nm, respectively. As it is clear from these images, no significant changes related 

to the grain size and the film roughness between glass/ITO and NiO-coated glass/ITO 

were found.  
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Figure 3.4 AFM images (height) of (a) a bare glass/ITO substrate, (b) 25 nm-thick NiO 

films on a glass/ITO substrate, and (c) O2-plasma treated 25 nm-thick NiO films on a 

glass/ITO substrate. 

 

3.1.3 Characterization of Solar Cells Performance   

 To evaluate photovoltaic performance of PSCs with 25-nm-thick NiO-coated 

glass/ITO as the HCE, PSCs with the structure of glass/ITO/NiO/P3HT:IC60BA/Ca/Al 

were fabricated as shown in figure 3.5(a). PSCs with glass/ITO only shown in Figure 

3.5(b), PEDOT:PSS-coated glass/ITO displayed in Figure 3.5(c), and different 

thicknesses (6 nm and 13 nm) of NiO-coated on the glass/ITO but using the same 
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photoactive layer and ECE were also fabricated to compare their photovoltaic 

performance. 

 

 

Figure 3.5 Device structures of conventional P3HT:IC60BA solar cells with (a) ITO/NiO, 

(b) ITO only, and (c) ITO/PEDOT:PSS as the hole-collecting electrodes. 

 

 Figure 3.6(a) shows a comparison between the J-V characteristics under 

illumination measured in PSCs with O2-plasma treated NiO layers with different 

thicknesses. The PSCs with the 25-nm-thick NiO layer yielded VOC of 827 ± 8 mV, JSC of 

7.4 ± 0.2 mA/cm
2
, FF of 0.67 ± 0.03, and PCE of 4.1 ± 0.2 %. The PSCs with 6-nm-thick 

and 13-nm-thick NiO-coated glass/ITO showed slightly lower VOC values (746 ± 17 mV 

from 6-nm NiO and 753 ± 9 mV from 13-nm NiO) and FF values (0.64 ± 0.01 from 6-nm 

NiO and 0.64 ± 0.02 from 13-nm NiO). These lower values might be attributed to the 

non-conformal coverage of NiO on ITO. Such non-conformal coverage leads to a spatial 

distribution of areas with higher (NiO-coated) and lower (bare ITO) WF values across the 

surface. Despite the apparently similar WF values from the different thickness of the NiO 

layers, locally, the nanometer scale areas with lower WF will provide poor energy-level 

alignment with the IE of P3HT and consequently will result in a reduced VOC and FF [79]. 

Additionally, the PSCs having ITO-only HCE showed lower VOC and FF values than 

those of 25-nm-thick NiOX-coated ITO HCE. This poor photovoltaic performance arises 

from the small WF value of ITO compared with NiO.  
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Figure  3.6 Representative J-V characteristics under illumination for a P3HT:IC60BA-

based polymer solar cell with hole-collecting electrodes of (a) ITO only (closed square) 

and O2-plasma treated 6-nm-thick (open square),  13-nm-thick (open circle), and 25-nm-

thick (closed circle) NiO-coated ITO, (b) PEDOT:PSS-coated ITO (open circle) and O2-

plasma treated 25-nm-thick NiO-coated ITO (closed circle). 

 

 Figure 3.6(b) shows a comparison of the J-V characteristics of PSCs with O2-

plama treated 25-nm-thick NiO-coated glass/ITO and the widely used HCE, 

PEDOT:PSS-coated glass/ITO. The latter showed an VOC of 829 ± 6 mV, JSC of 7.2 ± 0.3 

mA/cm
2
, FF of 0.70 ± 0.01, and PCE of 4.2 ± 0.1 %. This comparison reveals that the 

NiOX-coated glass/ITO yields comparable hole collection to the PEDOT:PSS-coated 

glass/ITO.  

 Figure 3.7(a) presents photovoltaic performances of the PSC with 25-nm-thick 

NiO-coated glass/ITO before and after 3 minute of O2-plamsa treatment. Without O2-

plasma treatment, the PSCs showed poor J-V characteristics with a PCE of 0.4 ± 0.1 %. 

However, the PCE increased appreciably (more than 10 times) when the NiO film was 

O2-plasma treated. Interestingly, the values of JSC (4.2 ± 1.3 mA/cm
2
) and FF (0.21 ± 

0.02) of the PSCs with a 25-nm-thick NiO-coated glass/ITO without O2-plasma treatment 

are lower than those from PSCs using only ITO while both VOC values are in a similar 
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range. Similar VOC values are consistent with comparable values of WF measured in both 

types of HCEs (ITO/NiO: 4.7 ± 0.05 eV and ITO: 4.6 ± 0.02 eV).  However, the lower 

FF and JSC obtained in PSC with pristine NiO could be related its low conductivity.  

To probe more in depth the conductivity issues, RSA values from the PSCs with 25-nm-

thick NiO-coated glass/ITO before and after 3 minute of O2-plamsa treatment were 

extracted from J-V characteristics of the devices by fitting the equivalent circuit model 

(Eq. 1.8, rewritten in below) to experimental data. To compare the O2-plasma treated NiO 

with the PEDOT:PSS, a RSA value of the PSC with PEDOT:PSS was also extracted. 
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where RS is the series resistance, RP is the shunt resistance, J0 is the reverse saturation 

current density, A is the device area, e is the elementary charge, k is the Boltzmann’s 

constant, T is the temperature, n is the ideality factor of the diode, and Jph is the photo 

current density. It should be noted that the RSA values were obtained from the champion 

devices in all cases. The extracted RSA values from the PSCs before and after the O2-

plamsa treatment were 677 Ω cm
2
 and 5.4 Ω cm

2
, respectively.

 
This large difference in 

the RSA values before and after the O2-plamsa treatment can be attributed to both 

increased contact resistance caused by energy-level mismatching that induces the 

increased surface recombination and an increased conductivity of the NiO layer, itself. 

The increased conductivity leading to improved performance upon O2-plasma treatment, 

would be consistent with reports in the literature that indicate that p-doping of NiO 

occurs upon O2-plasma treatment [57,132]. Furthermore, the extracted RSA value from 

the PSCs with the ITO/PEDOT:PSS HCE was 4.2 Ω cm
2
. No big difference in RSA 

values between PSCs with the ITO/PEDOT:PSS and ITO/O2-plasma treated NiO HCEs 

was observed, as expected from the J-V characteristics. 
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Figure  3.7 Representative J-V characteristics under illumination for a P3HT:IC60BA-

based polymer solar cell with hole-collecting electrodes of (a) pristine 25-nm-thick NiO-

coated ITO (open circle) and O2-plasma treated 25-nm-thick NiO-coated ITO (closed 

circle), and (b) representative semi-log J-V characteristics for a P3HT:IC60BA-based 

polymer solar cell with hole-collecting electrodes of O2-plasma treated 25-nm-thick NiO-

coated ITO under illumination (closed circle) and in the dark (open circle). 

 

 Finally, Figure 3.7(b) shows semi-log J-V characteristics of the PSCs with the 25-

nm-thick NiO-coated glass/ITO HCE in the dark and under illumination.  The J-V 

characteristics in the dark reveal an excellent diode rectification and demonstrate a small 

leakage current. Table 1 summarizes the photovoltaic performance, averaged over five 

devices, of all PSCs evaluated. 

 

 

 

 

 

 

 

Table 3.1 Summary of the averaged
a
 device performance of P3HT:IC60BA-based 

polymer solar cells with bare ITO, O2-plasma treated 6-, 13-, and 25-nm-thick NiO-

coated ITO, bare 25 nm-thick NiO-coated ITO, and PEDOT:PSS-coated ITO as a hole-

collecting electrode. 
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Hole-collecting electrodes 
VOC 

(mV) 

JSC  

(mA/cm
2
) 

FF 
PCE 

(%) 

ITO only 428 ± 34  7.9 ± 0.4 0.49 ±0.01 1.7 ± 0.1 

ITO/NiO ( 6 nm, O2) 746 ± 17 7.4 ± 0.1 0.64 ± 0.01 3.5 ± 0.1 

ITO/NiO (13 nm, O2) 753 ± 9 7.2 ± 0.2 0.64 ± 0.02 3.5 ± 0.2 

ITO/NiO (25 nm, O2) 827 ± 8  7.4 ± 0.2 0.67 ±0.03 4.1 ± 0.2 

ITO/NiO (25 nm) 423 ± 35  4.2 ± 1.3 0.21 ±0.02 0.4 ± 0.1 

ITO/PEDOT:PSS 829 ± 6  7.2 ± 0.3 0.70 ±0.01 4.2 ± 0.1 
a
 Average was calculated over five devices 

 

 

3.1.4 Conclusions 

 A study of the properties of NiO films fabricated by ALD in the context of their 

use as hole-collecting interlayers in PSCs is described in this chapter. O2-plasma treated 

NiO films deposited on ITO display a WF value of 5.4 ± 0.02 eV, allowing NiO-coated 

ITO to act as an efficient HCE. The PSCs based on P3HT:IC60BA with the O2-plasma 

treated NiO-coated ITO HCE yield a PCE of 4.1 ± 0.2 % under simulated AM 1.5G 100 

mW/cm
2
 illumination, which is comparable to reference devices with PEDOT:PSS-

coated ITO HCEs.  

 The study shown in this chapter provides several new insights into the physical, 

electrical and optical properties of NiO-coated ITO for PSC applications.  All properties 

of the ALD-processed NiO such as a large WF value, a large EG of 3.7 eV and the 

conformal nature of ALD NiO films reflect that the NiO layer is very attractive for use as 

a hole-collecting interlayer in PSCs. However, to be an efficient HCE, the NiO-coated 

ITO requires O2-plasma treatment to increase its WF. The increase in WF of NiO-coated 

ITO when subjected to an O2-plasma treatment is correlated with the reduction of 

strength of peaks of the Ni(OH)2 and carbonaceous species from the surface of the as-
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prepared ALD NiO films. In addition, p-doping induced by the O2-plasma treatment 

seems to play an important role for the HCE by increasing conductivity of the NiO layer.   

Moreover, despite the similar WF values of NiO layers of varying thickness, non-

conformal coverage induces a spatial distribution of areas with higher (NiO-coated) and 

lower (bare ITO) WF values across the surface. This non-conformal coverage was found 

to give detrimental effects such as poor energy-level alignment of the NiO work function 

with the P3HT ionization potential, resulting in reduced VOC and FF. Based on this study, 

at least, a 25-nm-thick NiO should be formed on a ITO substrate to serve as an efficient 

HCE, avoiding the non-conformal coverage effect. 
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CHAPTER 4 

ELECTRON-COLLECTING INTERLAYERS 

 This chapter will focus on the electron-collecting interlayers for PSCs with 

inverted geometry. In such inverted structures, the WF of ITO is reduced to a value that is 

low enough to be used as an electrode-selective layer. Reductions of the WF of ITO have 

been achieved either by coating its surface with a layer of semiconducting material, 

typically metal oxides having a lower WF value such as Al2O3 [135], ZnO [67,68], TiOX 

[64,66], or an alkali metal salt, Cs2CO3 [75] generally deposited under vacuum or by 

spin-coating and post-fabrication thermal treatments, in the case of nano-particles. 

However, these ITO modification methods require vacuum deposition systems, which 

may not be compatible with high throughput fabrication methods, or require post thermal 

treatments at relatively high temperatures, which may not be compatible with flexible 

substrates. Hence, it is desirable to develop new methods that could be fabricated at lower 

temperatures, with environmentally friendly solvents and with large throughput 

fabrication methods.   

 Polymer-based surface modifiers containing simple aliphatic amide or amine 

groups, which substantially and universally reduce the WF of conductors including 

metals, transparent conductive metal oxides, conducting polymers, and graphene will be 

introduced. The WF reduction by the polymer surface modifiers comes from 

physisorption of the neutral polymer, which allows the modified conductors as efficient 

electron-collecting electrodes. These polymer surface modifiers are processed in air from 

solution, providing an appealing alternative to chemically reactive low−WF metals. 

 Two polymeric materials will be discussed. The first polymer is a poly(N-

vinylpyrrolidone) (PVP). Initially, the PVP was employed as the dispersant of titanium 

dioxide (TiO2) nanoparticles. An ITO coated with the TiO2 nanoparticles dispersed by the 

PVP served as an ECE of inverted PSCs. However, it was found that the PVP itself can 
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reduce the WF of ITO. Even though the PVP-modified ITO shows lowered WF than that 

of a bare ITO, it still required a post treatment such as illumination from an UV-light 

source or a solar simulator for being used as the ECE of the OSCs. These UV treatments 

relate to the WF of the ITO and will be also discussed in this chapter.  

 The second is polyethylenimine (PEI) derivatives. Two different types of the PEI 

derivatives, PEI ethoxylated (hereon will be referred to as PEIE) and branched PEI 

(hereon will be referred to as PEI) will be used as the surface modifiers. Despite of the 

similar WF reduction mechanism to that of the PVP, PEIE and PEI can provide further 

reduced WF to conductor surface than that from PVP, thus can serve as an efficient ECE 

without UV post-treatments. The chemical structures of PVP, PEIE, and PEI are shown 

in Figure 4.1. With this modification, various types of efficient inverted PSCs, including 

all-plastic solar cells, will be demonstrated in this chapter. 

 

 

 

 

Figure 4.1 Chemical structures of poly (N-vinylpyrrolidone) (PVP), polyethylenimine 

ethoxylated (PEIE), and branched polyethylenimine (PEI).   
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4.1 Titanium Dioxide (TiO2) Nanoparticles Dispersed in Poly (N-vinylpyrrolidone) 

(PVP) as the Electron-collecting Interlayers 

4.1.1 Introduction 

 Prior to use of PVP as a surface modifier, PVP has been used as a dispersant of 

the nanoparticles. This section will briefly describe how the dispersant turned into a 

surface modifier. As mentioned previously, many different materials have been used to 

form the electron-collecting interlayer in PSCs. Among them, titanium oxide (TiO2 or 

TiOX) has been widely used. Even though titanium oxide has been synthesized from 

various techniques, such as ALD, sol-gel method, CBD, etc., some of those techniques 

still require a high temperature sintering process, or a high vacuum process [136].  

 To avoid these issues, TiO2 nanoparticle films processed from an aqueous 

solution at a low-temperature was studied. However, nanoparticles are often aggregated 

in solution making necessary to add a surfactant to hinder nanoparticle agglomeration.  

PVP has been known as a good surfactant for dispersing nanoparticles. The TiO2 

dispersion by the PVP begins with grafting the dispersant PVP, which has amphiphilic 

nature caused by the highly polar amide and non-polar methylene groups, onto the 

hydrophilic TiO2 nanoparticles. Namely, the polar group of PVP is adsorbed onto the 

hydrophilic TiO2 nanoparticles. Then, the repulsive force created by the surface charge of 

each nanoparticle prevents them to agglomerate. Recently, a mixture of ZnO 

nanoparticles and PVP, referred to as ZnO:PVP nanocomposite, was applied to an 

electron-collecting interlayer and shown to lead to better film uniformity as well as a 

lower density of defects in the film than those of a ZnO layer [137]. 
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4.1.2 TiO2:PVP Layer Characterization 

 Figure 4.2 displays a comparison of AFM topographic images (height images-top, 

three dimensional images-bottom) from TiO2 and TiO2:PVP (1:1 by weight) on ITO/glass 

substrates.  

 

 

Figure 4.2 AFM images (top: height images, bottom: 3D images) of TiO2 (left) and 

TiO2:PVP (right) on glass/ITO substrates. 

 

 A noticeable difference was observed in morphology. Before mixing the TiO2 

nanoparticles with PVP, the dispersant, and TiO2 nanoparticles stuck together while well-

dispersed TiO2 nanoparticles were found with the use of PVP. WF values from these two 

substrates were also compared. The WF values of TiO2-coated and TiO2:PVP-coated ITO 

were found to be 4.47 ± 0.02 eV and 4.33 ± 0.02 eV, respectively. A HOPG sample (WF 

TiO2 and PVP mixed layerTiO2 only layer
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of 4.5 eV) and a bare ITO (WF of 4.65 ± 0.02 eV) were employed as references. All the 

WF values were averaged over three points. 

 XPS measurements were performed on TiO2:PVP (1:1, by weight (wt.))-coated 

the glass/ITO substrate to confirm the presence of the each surface component. Samples 

with specific ratios TiO2 and PVP were selected for the XPS study because, as will be 

shown later, they yield PSCs with the best performance. Figure 4.3 show a comparison of 

the XPS data obtained on a TiO2:PVP-coated glass/ITO substrate and on a bare glass/ITO 

substrate. The peaks around 400 eV (N,1S), and 460 eV (Ti,2P), clearly indicate the 

presence of PVP and TiO2.   

 

 

 

 

 

Figure 4.3 XPS spectrum of the N1s and Ti2p core level for ITO and ITO/TiO2:PVP 

surfaces.  

 

4.1.3 Characterization of Solar Cells Performance   

 To investigate the photovoltaic performance of PSCs with ECEs of TiO2 or 

TiO2:PVP-coated ITO/glass, inverted PSCs with device structures of ITO/TiO2 or 

TiO2:PVP/ P3HT:PC60BM/PEDOT:PSS(CPP)/Ag were fabricated. As a reference device, 

PSCs with ITO-only ECE also made with the same photoactive layer and HCE. The 

device structures are shown in Figure 4.4. To find the optimum blend ratio between PVP 
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and TiO2, PSC devices with ECEs of ITO coated with four different blend ratios 

PVP:TiO2: none, 0.5:1 (0.035 wt. %: 0.07 wt.%, total 0.105 wt.% in distilled water), 1:1 

(0.07 wt.%:0.07 wt.%, total 0.14 wt.% in distilled water), and 2:1 (0.14 wt.%:0.07 wt.%, 

total 0.21 wt.% in distilled water) were fabricated.   

 

 

Figure 4.4 Device structures of inverted P3HT:PC60BM solar cells with (a) TiO2 only, (b) 

TiO2:PVP, and (c) ITO only for the electron-collecting electrodes. 

 

 Figure 4.5 shows photovoltaic performance parameters of the PSCs, PCE, VOC, 

and FF as a function of blend ratio between PVP and TiO2. The parameters were 

measured after a 25-min treatment of solar simulator (AM 1.5G) irradiation because, as 

will be shown later, this treatment was found to improve the FF of the inverted PSCs.  

The photovoltaic performance of the PSCs was enhanced with increasing PVP 

concentration, up to the ratio of PVP to TiO2, 1:1, but device performance degraded for 

the ratio of 2:1. The presence of PVP is found to improve the device performance. 

Although no major differences are found between devices having PVP/TiO2 ratios of 

0.5:1 and 1:1, a clear decrease in performance is observed for devices with a 2:1 ratio. 

This decrease in performance may be attributed to the excessive concentration of PVP 
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which is known to be an insulator. Hereafter, the properties of PSCs with the ECE of the 

PVP:TiO2 (1:1) will be discussed.    

 

 

 

 

 

 

 

 

 

 

Figure 4.5 PCE, VOC, and FF of inverted P3HT:PC60BM solar cells with ITO/TiO2:PVP 

regarding various weight ratios between PVP and TiO2. 

 

 Figure 4.6 shows the J-V characteristics of PSC with the ITO/TiO2:PVP (1:1, by 

wt.) ECEs before and after the solar simulator treatment. The PSCs before the treatment 

showed an S-shaped kink in the J-V characteristics causing a low FF of 0.37, a small VOC 

of 490 mV, and a PCE of 1.39 %. These untreated PSCs were subjected to the continuous 

illumination, inside a N2-filled glove box, from the solar simulator. The S-shape kink 

disappeared within 10 minutes of the illumination treatment, and remained unchanged 

after up to 25 minutes of exposure. After illumination treatment, the PSCs with ECE of 

ITO/TiO2:PVP yielded an VOC of 592 ± 1 mV, a JSC of 8.3 ± 0.5 mA/cm
2
, a FF of 0.61 ± 

0.01 and a PCE of 3.0 ± 0.2 %. Note that an S-shape kink in the J-V characteristics of 

PSCs due to poor charge selectivity of an electrode is often observed. Namely, this 
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phenomenon is related to increased contact recombination owing to the insufficiently low 

(high)-WF of electron (hole)-collecting electrode. RSA values extracted from J-V 

characteristics displayed in Figure 4.6 by fitting them to equivalent circuit model with Eq. 

4.1 were 14.7 Ω cm
2
 (0 min of exposure), 4.9 Ω cm

2
 (2 min), 1.6 Ω cm

2
 (5 min), 1.2 Ω 

cm
2
 (10 min), 1.1 Ω cm

2
 (20 min), and 1.0 Ω cm

2
 (25 min). The reduction of RSA values 

depending on the exposure time also reflects the enhanced electron collection by the ECE. 

That is, the S-shape kink in case of the inverted geometry can disappear after UV or solar 

simulator treatment that reduces the WF or increase conductivity of ECE. In the section 

4.2, this effect will be discussed in detail.  

 

 

 

 

 

 

 

Figure 4.6 J-V characteristics under illumination for a P3HT:PC60BM-based polymer 

solar cell with electron-collecting electrodes of ITO/TiO2:PVP cells, as a function of light 

exposure time. 
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through the glass side (as PSC devices). The measured WF values by a Kelvin probe are 

summarized in Table 4.1.  

 The values of the WF (4.33 ± 0.02 eV) obtained from ITO/TiO2:PVP before the 

solar simulator treatment seems to be low enough to produce good electron selectivity, 

given the EA of PC60BM (4.1 eV) [67]. However, it is expected that although the 

TiO2:PVP layer appears to be homogeneous on the microscopic scale, it will not likely be 

fully conformal, and thus areas without TiO2:PVP on ITO would be exposed. A non-

conformal coverage would lead to a spatial distribution of areas with lower (TiO2:PVP-

coated) and higher (bare ITO) WF values across the surface. Therefore, regions with 

higher WF will offer poor electron-selectivity and consequently will show J-V 

characteristics with an S-shape kink. Upon solar simulator treatment, the electron-

selectivity of these areas improves as the WF of ITO decreases, leading to an enhanced 

electron collection of the entire electrode. 

 Another interesting observation from these WF measurements is that PVP itself 

contributes to the WF reduction. The WF values of ITO/TiO2 and ITO/TiO2:PVP were 

found to be 4.47 ± 0.02 eV and 4.33 ± 0.02 eV, respectively. This difference indicates 

that about 0.14 eV WF reduction can come from the PVP itself. Also, the presence of 

PVP was confirmed by an XPS study. Although PVP was thought to be solely a 

dispersant for nanoparticles, its role as a surface modifier to reduce the WF of ITO was 

discovered on this study.     
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Table 4.1 Summary of the averaged
a
 work function values of ITO only, TiO2-coated ITO, 

and TiO2:PVP (1:1 by weight)-coated ITO before and after solar simulator (AM 1.5G) 

treatment for 25 minutes. 

a 
Average was calculated over three points 

 To compare the photovoltaic performance among  PSCs with TiO2/PVP-coated 

ITO electrode, pure TiO2-coated ITO and bare ITO, two other inverted PSCs with a 

structure of glass/ITO/TiO2/P3HT:PC60BM/PEDOT:PSS/Ag and a structure of 

glass/ITO/P3HT:PC60BM/PEDOT:PSS/Ag were fabricated by following identical 

processing conditions, with the exception of the electron-collecting interlayers. To make 

a fair comparison of the above PSCs with those having a TiO2/PVP-coated ITO electrode, 

devices were subjected to 25 min of illumination under a solar simulator before 

measuring its electrical characteristics.   

 Figure 4.7 displays a comparison of the J-V characteristics of the three inverted 

PSCs, after the solar simulator treatment for 25 minutes under illumination. Table 4.1 

summarizes the photovoltaic performances, averaged over five devices, of all the PSCs 

cells evaluated. The PSCs with ITO only as ECEs showed a VOC of 522 ± 10 mV, a JSC of 

7.6 ± 0.2 mA/cm
2
, a FF of 0.48 ± 0.01 and a PCE of 1.9 ± 0.1 % while the PSCs with 

ITO/TiO2 as ECEs yielded a VOC of 564 ± 2 mV, a JSC of 7.7 ± 0.2 mA/cm
2
, a FF of 0.53 

± 0.01 and a PCE of 2.3 ± 0.1 %. 

 

Electron-collecting electrodes
Work function (eV) by Kelvin probe

Before treatment After treatment

ITO only 4.65 ± 0.02 4.45± 0.02 

ITO/TiO2 4.47 ± 0.02  4.26 ± 0.02 

ITO/TiO2:PVP 4.33 ± 0.02 3.99 ± 0.02 
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Figure 4.7 Representative J-V characteristics under illumination for a P3HT:PC60BM-

based polymer solar cell with electron-collecting electrodes of ITO only, TiO2-coated 

ITO, and TiO2:PVP(1:1 by weight)-coated ITO. 

 

 

Table 4.2 Summary of the averaged
a
 device performance of inverted P3HT:PC60BM  

solar cells with ITO only, TiO2-coated ITO, and TiO2:PVP (1:1 by weight)-coated ITO as 

an electron-collecting electrode. 

a
 Average was calculated over five devices 

 

 For PSCs with an ITO only ECE, in the absence of band-bending effects, even 

after the solar simulator treatment a relatively large energy level mismatch can be 

expected between the WF of the ITO (4.45 eV) and the EA (4.1 eV) of PC60BM [67]. 

Electron-collecting electrodes
VOC

(mV)

JSC

(mA/cm2)
FF

PCE

(%)

ITO only 522 ± 10 7.6 ± 0.2 0.48 ±0.01 1.9 ± 0.1

ITO/TiO2 564 ± 2 7.7 ± 0.2 0.53 ±0.01 2.3 ± 0.1

ITO/TiO2:PVP 592 ± 1 8.3 ± 0.5 0.61 ±0.01 3.0 ± 0.2



 86 

While these PSCs work, the small value of the FF (0.48) and VOC (522 mV) indicates that 

the electron-collecting properties of these electrodes is poor when compared with PSCs 

with the TiO2:PVP-coated ITO ECE, having a FF of 0.61 and VOC (592 mV). In the case 

of the PSCs with the TiO2 layer, there is a slight enhancement in all the photovoltaic 

parameters of the PSC performance compared to PSC devices with bare ITO ECEs, 

leading to 20% higher PCE than PSCs with bare ITO ECEs, but the performance is 

inferior to that of PSCs with the TiO2:PVP-coated ITO ECEs.   

 In addition to the use of PVP as a dispersant for TiO2 nanoparticles, it was 

observed that PVP also provides an additional contribution to the WF reduction of the 

TiO2/PVP-coated ITO ECE. A possibility that the PVP itself can reduce WF of ITO and 

thus serve as an electron-collecting interlayer was found through this study. A detailed 

study of the role of PVP as a surface modifier will be presented in the following section. 

 

4.1.4 Conclusions 

 Although TiO2 or TiOX has been used widely as the electron-collecting interlayer 

in inverted PSCs, synthesizing techniques for the TiO2 or TiOX, have shown some issues 

in their processing conditions (high processing temperature, vacuum process, etc.). This 

study provides a new way to synthesize the TiO2 nanoparticle films processed from an 

aqueous solution at a low-temperature in air. 

 The TiO2 dispersion by PVP begins with grafting the dispersant PVP, which has 

an amphiphilic nature caused by the highly polar amide and non-polar methylene groups, 

onto the hydrophilic TiO2 nanoparticles. The polar group of PVP is adsorbed onto the 

hydrophilic TiO2 nanoparticles. 
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 To achieve well-dispersed TiO2 nanoparticles in the aqueous solution, the 

amphiphilic polymer, PVP, was used as a dispersant. The PVP was able to coordinate 

onto and disperse TiO2 nanoparticles uniformly in films on top of ITO. More 

interestingly, the addition of PVP led to even larger reductions of the WF in TiO2:PVP-

coated ITO ECEs compared to TiO2-coated ITO ECEs. Even though the PVP was 

believed to solely be a dispersant for nanoparticles, its new role as a surface modifier to 

reduce the WF of ITO was discovered from this study.     

 The TiO2:PVP-coated ITO ECE was found to show good electron-collecting 

properties in inverted PSCs, after being exposed to light from a solar simulator for 10 min.  

The solar simulator treatment was shown to lead to reduction of the WF of ITO, TiO2-

coated ITO and TiO2:PVP-coated ITO electrodes. The need for the solar simulator 

treatment prior to optimum device operation may be related to the non-conformal 

coverage in the nanometer scale of the spin-coated layers used to coat the ITO surface.  
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4.2 Poly (N-vinylpyrrolidone) (PVP) as the Electron-collecting Interlayers 

4.2.1 Introduction 

 In the previous section, it was found that the PVP can serve not only as a 

dispersant, but also as a surface modifier. Even though surface modifications with 

polymeric materials are less common in the literature, electron-injection layer comprising 

of conjugated polymers and electron-collating interlayer with non-conjugated polymer 

have been proposed [138,139]. While frequently used electron-collecting interlayers such 

as metal oxides or alkali metal salt that require vacuum deposition systems or post 

thermal annealing at relatively high temperatures, polymer surface modifiers could be 

fabricated at lower temperatures from environmentally friendly solvents and be 

compatible with large throughput fabrication methods [64,66,67,74]. This section will 

focus on the role of PVP as the surface modifier that reduces the WF of ITO by up to 0.8 

eV. 

 The molecular structure of PVP shown in Figure 4.1 (also shown in the inset of 

Figure 4.8) reveals an amphiphilic nature of the PVP. The amphiphilic due to the highly 

polar amide group and the non-polar methylene groups in the backbone and in the ring 

allows it to be soluble in polar solvents such as water [140]. For this study, the PVP is 

first dissolved in distilled water with a concentration of 0.07 wt. %. Then, an ultrathin 

PVP layer was prepared on an ITO substrate by spin coating in ambient air.  

4.2.2 Poly (N-vinylpyrrolidone) Layer Characterization 

 The average thickness of the PVP layer, over nine points, was estimated to be 0.9 

± 0.1 nm by spectroscopic ellipsometry. To confirm the presence of PVP on ITO 

substrates, XPS measurement was conducted on a bare ITO and a PVP modified ITO by 

following the N1s peak of the PVP the In3d5 and the Sn3p3 of the ITO over nine points 
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across the substrate. A comparison of XPS spectra between PVP modified glass/ITO 

substrate and on a bare glass/ITO substrate is displayed in Figure 4.8 and the inset of the 

Figure 4.8. The detected N1s peak around 400 eV clearly reveals the presence of PVP 

(inset of Figure 4.8). This peak appeared from nine points on the surface consistently. 

However, as shown in Figure 4.8, the In3d5 and the Sn3p3 peaks were also found on both 

substrates.  

 

 

Figure 4.8 A survey of XPS spectra for ITO and PVP-modified ITO surfaces. The inset 

shows XPS spectra of the N1s core level for ITO and PVP-modified ITO surfaces, and 

the molecular structure of the PVP.   

 

 To investigate the change of surface morphology in PVP-modified ITO with 

respect to the thickness of PVP, phase and amplitude AFM images were taken. The 

images in the Figure 4.9 show a comparison of the phase and amplitude images of PVP-

coated samples with different PVP thicknesses. The amplitude images shown on the right 
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column in Figure 4.9 reveal a decreasing RMS surface roughness with increasing PVP 

thickness. The obtained RMS surface roughness value from the bare ITO was found to be 

5.0 nm, and 2.7 nm, 1.4 nm, and 0.8 nm from PVP layers with thickness values of 0.9 nm, 

4.0 nm, and 8.8 nm, respectively.  

 

Figure 4.9 AFM images (phase-left column, amplitude-right column) of the bare ITO, 

ITO/PVP (0.9 nm), ITO/PVP (4.0 nm), and ITO/PVP (8.8 nm). 

 

(b) ITO/PVP(0.9 nm)

(c) ITO/PVP(4.0 nm)

(d) ITO/PVP(8.8 nm)

(a) Bare ITO

500 nm
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 The phase images displayed in the left column of Figure 4.9 clearly reveal the 

surface distribution of PVP on the ITO surface. From the sample with 0.9 nm PVP-coated 

ITO substrates, non-conformal coverage of PVP on the ITO surface was found through a 

careful examination. However, these differences in two phases, ITO and PVP, were more 

clearly shown from the samples with 4.0 nm and 8.8 nm PVP-coated on the ITO surface. 

Also, the phase distribution shown in histograms of Figure 4.10 indicates the presence of 

a double-peak phase distribution in all PVP-coated ITO samples, and particularly for the 

4.0 nm and 8.8 nm PVP-coated ITO samples, producing additional clue of the non-

conformal coverage of PVP on the 0.9 nm PVP-coated ITO substrate. 

  

 

Figure 4.10 Histograms of the phase distribution measured by AFM on the bare ITO, 

ITO/PVP (0.9 nm), ITO/PVP (4.0 nm) and ITO/PVP (8.8 nm) substrates. 
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 The WF values of bare ITO and PVP-modified ITO substrates were measured by 

using UPS. UPS was conducted in ultra-high vacuum, utilizing the He I (21.22 eV) and 

He II (40.8 eV) radiation lines from a He discharge lamp. The position of the 

photoemission onsets determines WF values. The energy resolution on WF 

measurements was 0.15 eV. Figure 4.11 (a) displays the UPS-He I spectra in which a 

vacuum level shift has been caused by the PVP modification of ITO. This vacuum shift 

induced a WF reduction of ITO from 4.4 eV to 3.6 eV. 

 

 

Figure 4.11 (a) Onset of photoemission used to calculate the surface work function, (b) 

work function changing mechanism due to the dipole moment from PVP modification. 

 

 The origin of this reduction is related to the presence of the pyrrolidone groups on 

PVP, which have partial electron-donating properties. The physical or chemical 

adsorption of PVP onto the ITO surface is believed to induce a partial electron transfer 

from the pyrrolidone group to ITO, thus creating a surface dipole µ on the ITO surface. 
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This surface dipole lowers the electrostatic potential at the surface of ITO, effectively 

reducing its WF, as shown in Figure 4.11 (b) [141,142].  

 

4.2.3 Characterization of Solar Cells Performance   

 To investigate photovoltaic properties of PSCs with PVP modified ITO ECE, 

inverted PSCs with device   structures of ITO/PVP/P3HT:PC60BM/PEDOT:PSS(CPP)/ 

Ag were fabricated. Also, the photovoltaic properties of inverted PSCs with ITO/PVP 

ECE were compared with two reference cells: one with an ITO/ZnO (WF of 4.3 eV by 

Kelvin probe in air) ECE and other with a bare ITO ECE (WF of 4.7 eV by Kelvin probe 

in air). The device structures are shown in Figure 4.12.  

 

 

Figure 4.12 Device structures of inverted P3HT:PC60BM solar cells with (a) ITO/PVP, (b) 

ITO/ZnO, and (c) ITO only for the electron-collecting electrodes. 

 

 On pristine PSCs using ITO/PVP ECE, S-shape kinks were observed, leading to a 

poor device performance with a small FF of 0.33, small VOC of 437 mV, and low PCE of 

1.2%. Such S-shaped kinks in J-V characteristics have frequently emerged in metal-oxide 

Glass/ITO
ZnO

P3HT:PC60BM

(a) (b) (c)

Glass/ITO

P3HT:PC60BM

Glass/ITO
PVP

P3HT:PC60BM

Ag

PEDOT:PSS (CPP)

Ag

PEDOT:PSS (CPP)

Ag
PEDOT:PSS (CPP)
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modified ITO electrodes. It has been believed that the advent of these S-shape kinks 

relates to oxygen traps within the metal-oxide interlayer, which can be eliminated by UV 

exposure or by the application of a high electric field, leading to improvements in the 

conductivity of the interlayers. For example, it has been reported that the conductivity of 

films of ZnO and SnO2 is enhanced with a UV treatment [143]. However, this is not a 

plausible explanation in the case of the ITO/PVP ECE, because PVP is a non-conjugated 

polymer with good insulator properties. Interestingly, the S-shape kinks disappeared from 

the J-V characteristics after UV treatment in a N2-filled glove box, through the glass 

substrate, for at least 20 min as shown in Figure 4.13. After this minimum exposure, the 

PSC performance remains unchanged, with an averaged PCE of 3.2% ± 0.1% while the 

samples are stored in the N2-filled glove box.  

 

 

Figure 4.13 J-V characteristics under illumination for a P3HT:PC60BM-based polymer 

solar cell with electron-collecting electrodes of ITO/PVP, as a function of UV-exposure 

time. 
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 This process is also found to be reversible when samples are sequentially exposed 

to air and UV illumination, as shown in Figure 4.14. Namely, the S-shape kinks re-

appeared when the samples were exposed to ambient air and disappeared again with UV 

treatment.   

 

 

Figure 4.14 Reversible S-shape characteristics of P3HT:PC60BM-based polymer solar 

cell with electron-collecting electrodes of ITO/PVP with sequentially exposed to air and 

UV illumination 

 

 Here, it should be noted that the appearance of the S-shape is not directly related 

to the magnitude of the spatially averaged WF of the PVP-modified ITO ECEs. This WF 

is sufficiently low to collect electrons efficiently since inverted PSCs with an ITO/ZnO 

ECE, having a WF of 4.3 eV measured by a Kelvin-probe in air [67], show a PCE of 3.1% 

± 0.1%. As shown in Figure 4.15, since the absorption of the UV-radiation by the PVP 

layer is almost negligible, it is speculated that the observed evolution is related to ITO 

itself.  
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Figure 4.15 Refractive index and extinction coefficient derived from ellipsometric 

measurements on a PVP film deposited on a silicon wafer. In red, the normalized UV 

lamp emission used in the UV exposure experiments is also displayed as a reference. 

 

 Pristine inverted PSCs with an ITO-only ECE, having a WF of 4.4 eV measured 

by UPS and 4.6 eV measured with a Kelvin probe in air, were also found to exhibit S-

shape characteristics. That situation was improved after a 20 minute UV treatment, 

leading to a PCE of 1.8 ± 0.1 %.  A comparison of the J-V characteristics of these three 

types of PSCs is displayed in Figure 4.16 and its performance parameters summarized in 

Table 4.3.  
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Figure 4.16 Representative J-V characteristics under illumination for a P3HT:PC60BM-

based polymer solar cell with electron-collecting electrodes of ITO only, ZnO (28 nm)-

coated ITO, and PVP-coated ITO electrodes (including J-V characteristics in dark). 

  

Table 4.3 Summary of the averaged
a
 device performance of inverted P3HT:PC60BM  

solar cells with PVP-modified ITO, ZnO-coated ITO, and ITO only as an electron-

collecting electrode. 

a
 Average was calculated over five devices 

 

 In pristine PSCs with ITO only ECE, in the absence of band-bending effects, an 

energetic mismatch exists between the WF of ITO and the EA of PC60BM. This 

mismatching makes ITO a poor ECE since electron-hole recombination at this contact 

Electron-collecting electrodes
VOC

(mV)

JSC

(mA/cm2)
FF

PCE

(%)

ITO/PVP 584±2 8.97±0.16 0.60±0.01 3.2±0.05

ITO/ZnO 585±5 8.73±0.37 0.60±0.01 3.1±0.11

ITO only 494±7 7.80±0.35 0.47±0.01 1.8±0.09
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could become significant. The increased contact recombination in this case would then 

lead to a slow rate of electron collection, leading to a low FF. This has been suggested to 

lead to s-shape characteristics in PSCs [143-145]. Upon UV illumination of glass/ITO 

substrates through glass (e.g. glass facing the illumination source) inside a N2-filled glove 

box, it has been noticed that the WF of bare ITO can decrease from 4.6 eV to 4.3 eV.  

This reduction of the WF of the ITO would be sufficient to reduce the contact 

recombination; hence enhancing the electron-collection property of that electrode and the 

PCE. A similar test was also performed on PVP-modified ITO substrates and it showed a 

reduction of its WF from 4.3 eV to 4.0 eV upon UV exposure. This is a similar change 

than the one observed on bare ITO, suggesting that WF reduction upon UV illumination 

are related to changes in the WF of ITO itself.  

 To probe more in depth the influence of UV irradiation on the performance of 

PSCs, a separated study was performed. In this study, the appearance and disappearance 

of an S-shape kink was assumed to be related with an energetic mismatch between the 

WF of the ITO electrode and the relevant energy levels of the organic semiconductor in 

the photoactive layer of the PSC.  

 Two bilayer organic heterojunction-based solar cells with structures of 

ITO/copper phthalocyanine (CuPc)/C60/bathocuproine (BCP)/Al (S1) and ITO/C60/ 

CuPc/MoOX/Al (S2) were fabricated. The CuPc served as an electron-donor and the C60 

worked as an electron acceptor. The structure of the S1 has been previously reported in 

the literature [146] and showed efficient hole collection at the ITO electrode. Pristine S1 

devices showed good photovoltaic performance, with a VOC of 0.48 ± 0.01 V, a JSC of 4.6 

± 0.1 mA/cm
2
, a FF of 0.62 ± 0.01 and a PCE of 1.36 ± 0.03 %, averaged over 5 devices. 

However, the performance of S1 devices rapidly degrades upon continuous irradiation 

under a solar simulator. This degradation is characterized by the appearance of an S-

shaped kink in the J-V characteristics after the devices have been exposed to the solar 
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simulator for a few minutes. For instance, when a device was exposed to the light from 

the solar simulator for 45 min, the FF dropped to 0.36, the VOC dropped to 0.34 V, the JSC 

dropped to 3.7 mA/cm
2
, and the PCE dropped to 0.47% (Figure 4.17 (e)). Pristine S2 

devices displayed very poor photovoltaic performance with a very pronounced S-shaped 

kink. However, the performance of S2 devices rapidly improved as a function of 

exposure to illumination from a solar simulator. Within 5 min of exposure, the S-shaped 

kink completely disappeared, yielding a FF of 0.60, a VOC of 0.39 V, a JSC of 3.9 mA/cm
2
, 

and a PCE of 0.9% (Figure 4.17 (f)). 

 To investigate the origin of the S-shape characteristics of these PSCs, the WF of 

ITO was continuously monitored by a Kelvin probe under different exposure conditions, 

as described in Figure 4.17(a)-(d). WF value of a clean ITO is 4.66 eV (Figure 4.17). 

Independent glass/ITO substrates were exposed to light from either a UV lamp or the 

solar simulator, for a total period of 10 min. Similar to the treatment for the PSCs, 

glass/ITO substrates were exposed, inside a N2-filled glove box, through the glass side.  

 Figure 4.17 (a) shows that both UV treatment and solar simulator treatment lead 

to a decreased WF value of ITO from 4.66 eV to a value around 4.17 eV. Then, the 

treated glass/ITO substrates were exposed to two different atmospheres, as shown in 

Figure 4.17 (b): ambient air and an O2-rich atmosphere by placing the substrates in an O2-

filled vacuum oven. The WF of the glass/ITO substrates exposed to ambient air increased 

slowly to a value of 4.51 eV after 30 min. Likewise, the WF of the glass/ITO substrates 

exposed to the O2-rich atmosphere increase to a value of 4.61 eV after 30 min. The faster 

WF increase observed from the glass/ITO substrates exposed to the O2-rich atmosphere 

underscores the important role that O2 seems to play in the observed behavior. This 

process is also shown to be reversible when the glass/ITO are sequentially exposed to air 

and UV illumination, a behavior that is consistent with the appearance and disappearance 

of the S-shape characteristics of the PSCs with ITO/PVP ECE as shown in Figure 4.14. 
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Figure 4.17 WF of ITO with continuous treatments: (a) exposed to a 365 nm-peaked UV 

lamp (10 mW/cm
2
) or a AM 1.5G solar simulator (100 mW/cm

2
) in a N2-filled glove box 

and measured in the N2-filled glove box; (b) further exposed to air and measured in air, or 

exposed to O2 and measured in a N2-filled glove box; (c) further exposed to a 365 nm-

peaked UV lamp in a N2-filled glove box and measured in air; (d) further exposed to air 

and measured in air. The lines connecting the points are present to better indicate the 

observed trends. Energy diagram and corresponding J-V characteristics under 

illumination of (e) ITO/CuPc and S1 and (f) ITO/C60 and S2. The shaded area represents 

the range of ITO WF values with air or UV exposure. 
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 To figure out the role played by the use of different sources of illumination in 

producing the described changes, the optical properties of ITO were characterized. Figure 

4.18 displays refractive index (n) and extinction coefficient (k) derived from ellipsometric 

measurements on an 150 nm–thick ITO film and the linear absorption of the ITO layer on 

glass, calculated using the transfer matrix method. Because of the strong UV absorption 

of the glass substrate, the ITO shows a bell-shaped absorption spectrum, with a central 

peak at 324 nm, having a maximum absorbance of 8%, and a 50 nm full-width at half-

maximum. Given the spectral overlap between the light source’s emission (Figure 4.18 

(b)) and the ITO absorption spectrum, it is convenient to calculate the total (integrated) 

number of absorbed photons per unit time and area as, 

sourceITOT

T

ph

ITOTphITOsourceITO KI
I

I
AdIIAdA   

)(
)()(


          (4.1) 

, where ( )ITOA  is the absorbance of ITO; ( )phI  is the spectral photon irradiance in units of 

photons/(cm
2
snm); and 

TI is the total (integrated) irradiance of the light source in units of 

mW/cm
2
. For the UV lamp (spectrum shown in Figure 4.18 (b)), the overlap integral KITO-UVlamp, 

in equation (4.1), has a value of 3×10
13

 (photons/mW). Thus, the WF reduction observed for an 

exposure of 10 minutes at 10 mW/cm
2
 under a UV lamp can be correlated with the absorption of 

about 1.8×10
17 

photons/cm
2
 in ITO. A similar calculation for the solar simulator provides a KITO-

solarsimulator value of 7×10
12

 (photons/mW) and a total absorption of 4.2×10
17 

photons/cm
2
, at 100 

mW/cm
2
 for 10 minutes. Thus, the absorbed-photon dose provided by the UV lamp and the solar 

simulator is estimated to be similar, in good agreement with the very similar change of WF 

observed.  
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Figure 4.18 (a) Refractive index and extinction coefficient of ITO, (b) absorbance of ITO and 

glass, and emission spectrum of UV lamp used to illuminate the ITO samples to induce its work 

function change 

 

 As mentioned previously, the absorption of UV light has been related to the 

process of O2 adsorption and desorption in metal-oxides. On the other hand, it was also 

found that the WF of metal-oxides decreased after UV treatment and the decrease of WF 

correlated with enhanced photovoltaic performance of PSCs with the inverted geometry 

[69]. These previous reports are consistent with the observation described in this section 

and may suggest that a similar behavior could be applied to other metal-oxide films. A 

detailed process is described below.  

 Free electrons are trapped at the surface or grain boundaries of ITO by 

atmospheric O2 which leads to the formation of O2
-
 and a surface dipole. This surface 

dipole increases the electrostatic potential at the ITO surface and consequently induces an 

upward shift of the vacuum level. Finally, the shift of the vacuum level leads to increase 

of the WF of ITO up to 4.66 eV. On the contrary, under UV or solar simulator 

illumination, photo-generated holes in ITO can recombine with the adsorbed O2
-
 and 

promote the release of O2. Consequently, this process induces the disappearance of the 

surface dipole and to the decrease in the WF of ITO to a value of 4.3 eV.   
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 Figure 4.17 (e) and (f) displays a schematic representation of the energy levels at 

the ITO/semiconductor interfaces and the corresponding J-V characteristics on devices S1 

and S2, respectively. The range of ITO WF values is represented by the shaded area. 

Note that the energy levels shown are those measured on independent samples and do not 

reflect any interaction that may exist between the materials when the interface is formed. 

Using these levels as a guideline, it is straightforward to correlate the photovoltaic 

behavior of devices S1 and S2 with the changes of WF of ITO upon exposure to the solar 

simulator. For instance, for S1 it is clear that the energy mismatch between the WF value 

of ITO and the IE of CuPc (4.9 eV) [62] increases by the photon absorption in ITO 

(Figure 4.17(e)). The increased mismatch leading to the appearance of the S-shaped kink 

may reveal that holes are being collected at a lower rate, and that holes are being 

accumulated at the ITO/CuPc interface [142]. Conversely, in S2 a reduction of the WF of 

ITO will decrease the energy mismatch between the WF of ITO and the EA of C60 (4.1 

eV) [147]. Consequently, the rate of electron collection at these electrodes increases 

leading to the disappearance of the S-shape kink (Figure 4.17(f)). Upon exposing S2 

devices to air, the WF of ITO increases leading to the reappearance of the S-shaped kink 

in their J-V characteristics (Figure 4.17 (f)). 

 The potential mechanism described above can offer a plausible explanation for 

the phenomena seen in the PSC with ITO/PVP ECE. This is that in the nanometer scale, 

the non-conformal coverage of PVP on ITO causes a spatial distribution of areas with 

higher (bare ITO) and lower (PVP-covered regions) WF values across the surface. That is, 

even though the spatially averaged WF of the PVP-modified ITO provides values that 

would appear to be sufficiently low for electrons to be effectively collected, locally, the 

nanometer scale areas with higher WF will show poor electron-selectivity and 

consequently will lead to S-shape kinks in J-V characteristics. As WF of these areas 

decreases after UV treatment, the electron-selectivity would be enhanced, leading to an 
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improved electron collection at this electrode. Here, it should be noted that the WF values 

of PVP-modified ITO substrates, measured by a Kelvin probe, were found to be 4.30 eV, 

4.25 eV and 4.20 eV for PVP thicknesses of 0.9 nm, 4.0 nm and 8.8 nm, respectively. 

The small variations in WF reflect that not thickness variations, but non-conformal 

coverage is responsible for the observed effects.  

 

4.2.4 Conclusions 

 The amide containing water-soluble polymer, PVP was found to reduce the WF of 

ITO up to 0.8 eV. The physisorption or chemisorption of PVP onto the ITO surface was 

thought to induce a partial electron transfer from the pyrrolidone group in PVP to ITO. 

The partial electron transfer was believed to form of a surface dipole on the ITO, 

consequently resulting in the ITO WF reduction. Inverted PSCs using PVP-modified ITO 

ECEs were demonstrated. These devices were as efficient as inverted PSCs using 

ITO/ZnO (by ALD deposition) ECEs, provided they are exposed to UV-illumination. In 

addition, it was also found that the UV-illumination by itself can also induce a WF 

reduction of ITO through O2 desorption. 

 The use of the water soluble non-conjugated polymer for the electron-collecting 

interlayer is thought to be a big leap in the field of the polymeric electronic devices since 

it can be fabricated at lower temperatures from environmentally friendly solvents and is 

compatible with large throughput fabrication methods. However, despite the sufficiently 

lowered WF value of the ITO/PVP, without the UV treatment pristine PSCs showed poor 

photovoltaic performance with S-shape kinks in their J-V characteristics due to the 

inhomogeneous surface coverage of PVP on ITO.  Thus, follow-up research that 

discovers new materials with more effective WF reduction properties must be performed.  
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4.3 Polyethylenimine Derivatives as the Electron-collecting Interlayers 

 Before starting this section, it should be noted that the study shown in this section 

was mostly led by Dr. Yinhua Zhou.  

4.3.1 Introduction  

 In this section, another polymer-based surface modifier containing simple 

aliphatic amine groups will be introduced. This surface modifier is found to universally 

reduce the WF of a variety of conductors including metals, transparent conductive metal-

oxides, conducting polymers, and graphene by up to 1.7 eV. Unlike π-conjugated amine-

containing small molecules and polymers considered previously, the polymers discussed 

in this section are insulators with large band gap and should not be considered as charge 

injection layers but rather as surface modifiers. The polymer is physisorbed onto the 

conductor surface, and forms an ultrathin layer on the surface. The intrinsic molecular 

dipole moments induced by the neutral amine groups contained in such a polymer layer, 

and the charge-transfer character of their interaction with the conductor surface, lead to 

the WF reduction of a wide range of conductors. The polymer modifiers can be easily 

processed in air, from dilute solutions in eco-friendly solvents such as water or 2-

methoxyethanol.  

4.3.2 Polyethylenimine Derivatives Layer Characterization 

 Two polymer surface modifiers used in this section, polyethylenimine (PEI, 

branched) and polyethylenimine ethoxylated (PEIE) are shown in Figure 4.1. The high 

content of amine groups (primary, secondary, and tertiary) in the polymer structures 

yields high pH values in water and 2-methoxyethanol solutions. The measured pH values 

from these polymers in water and 2-methoxyethanol with a polymer concentration of 0.4 

wt.% are summarized in Table 4.4.  
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Table 4.4 pH values of PEIE and PEI in water and 2-methoxyethanol solutions. 

 

 

 

 To investigate WF change prior to and after the PEIE deposition on the 

conductor’s surface, UPS measurement under high vacuum and independent Kelvin 

probe  measurements in air were conducted. Figure 4.19 shows the results of UPS 

measurements on a series of conductors before and after deposition of 10-nm-thick PEIE 

layer; the spectra revealed WF reductions from 4.70 to 3.40 eV for Au, from 4.40 to 3.30 

eV for ITO, and from 4.95 to 3.32 eV for PEDOT:PSS (PH1000).  

 

Figure 4.19 Photoemission cut-off obtained via UPS for ITO, Au and PEDOT:PSS 

(PH1000) samples, with and without PEIE. 

Polymers Water 2-methoxyethanol

PEIE (0.4 wt.%) 10.3 10.1

PEI (0.4 wt.%) 10.5 10.3
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 Separate Kelvin probe measurements in air also showed WF reduction of metals 

oxides (ITO, FTO, ZnO), metals (Au, Ag and Al), as well as PEDOT:PSS PH1000 after 

PEIE deposition. Table 4.5 summarizes the WF values measured by Kelvin probe and 

UPS for several conductors modified with 10 nm-thick PEIE or PEI layers. Difference in 

WF values between the two techniques is likely due to differences in the measurement 

atmospheres.  

Table 4.5 Work function values of conducting materials with and without PEIE or PEI 

modifications measured by Kelvin probe in air and by UPS under vacuum.

 

 

 A study on the thermal stability of the WF of PEIE- and PEI-modified ITO 

substrates was conducted by Kelvin probe measurements in air. The WF of PEIE-

modified ITO substrates did not make any change until a temperature of 190 °C, allowing 

them to be compatible with the processing of printed electronic devices on plastic 

substrates (Figure 4.20 (a)). Typically, the processing temperatures for the printed 

electronic device are below 200 °C. For PEI-modified ITO substrates, any change in the 

WF was found until 150 °C (Figure 4.20 (b)). PEIE-coated ITO substrates also remain 

fairly stable under normal ambient conditions for more than 4 weeks. During that period, 

the variation in WF was less than 0.2 eV (Figure 4.20 (c)). This small variation in WF 

might be caused by contamination from the ambient air, not by the degradation of PEIE 

Conductors

Work function (eV)

By Kelvin prove in air By UPS under vacuum

Pristine w/ PEIE w/ PEI Pristine w/ PEIE w/ PEI

Metal 

oxides 

ITO 4.62 ± 0.06 3.60 ± 0.06 3.50 ± 0.06 4.40 3.30 3.27

ZnO 4.26 ± 0.06 3.28 ± 0.06 3.10 ± 0.06 3.96 3.55 3.17

FTO 4.68 ± 0.06 3.80 ± 0.06 3.60 ±0.06 - - -

Metals

Au 5.10 ± 0.10 3.90 ± 0.06 3.94 ± 0.06 4.70 3.40 -

Ag 4.60 ± 0.06 3.70 ± 0.06 3.60 ± 0.06 - - -

Al 3.40 ± 0.06 2.75 ± 0.06 - - - -

Polymer PEDOT:PSS 4.90 ± 0.06 3.58 ± 0.06 3.88 ± 0.06 4.95 3.32 3.16
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layer itself. Furthermore, PEIE or PEI solutions in distilled water are stable in air (i.e., 

remain effective agents for reducing the WF) for more than 1 year.   

 

Figure 4.20 Work function of (a) ITO/PEIE and (b) ITO/PEI after annealing at different 

temperatures on a hot plate in air for 30 min, (c) evolution of the work function of 

ITO/PEIE for different air exposure times. 

 

 To further investigate the energy levels of PEIE, such as EA and IE, IPES (Figure 

4.21 (a)) and UPS measurements (Figure 4.19) on PEIE-coated Au were performed. As 

mentioned in Table 4.5, the WF of PEIE on Au is 4.3 eV, and obtained EA and IE values 

from the IPES and UPS studies were 0.3 eV and 6.5 eV, respectively. An energy diagram 

of PEIE is illustrated in Figure 4.21(b). Unlike π-conjugated polymers that can show 

good electron-transporting properties [148], these results suggest that PEIE is likely to act 

as an insulator with a gap of 6.2 eV, and large barriers for both hole and electron 

injections.   
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Figure 4.21(a) IPES spectrum of 10-nm-thick PEIE layer on top of Au, (b) the energy 

levels of PEIE. 

 

 

Figure 4.22 PEIE thickness dependence of the work function of PEIE-modified ITO 

substrates. 

 

 The PEIE thickness (from 2 to 22 nm) dependent WF reduction on ITO was 

studied and a variation was less than 10 % (Figure 4.22). However, even if the thickness 

of the PEIE layer did not influence ΔWF, its insulating nature would cause thicker 
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polymer layers to adversely affect PSC performance.  The thicknesses of the PEIE layers 

were estimated by spectroscopic ellipsometry. 

 To explore the surface morphology of the PEIE-modified on ITO, amplitude and 

phase images were taken by AFM. As shown in Figure 4.23 (c)-(f), AFM measurements 

on PEIE-modified ITO reveal that a 10 nm-thick PEIE layer did not cover uniformly the 

ITO surface, but that islands formed are separated by areas with a much thinner PEIE 

coating. These PEIE islands could be easily washed away by subjecting the PEIE-

modified ITO substrate to a mild flow of running distilled water for 1 min (Figure (g) and 

(h)). After washing, WF change decreased by less than 0.1 eV. This observation indicates 

that only an ultrathin layer of PEIE is required to produce a large WF reduction and that 

the processes leading to such modifications are truly confined to the very surface of the 

conductor.  

 To investigate the binding strength between PEIE and the surface of a conductor, 

the WF of a PEIE-modified ITO substrate was monitored over time as a function of 

controlled washing cycles with water. Figure 4.24 displays the evolution of WF change 

when the substrates were subjected to a total of 50 min of mild washing conditions. After 

such a period of time, the WF change was less than 0.34 eV. The apparent resilience of 

the PEIE layer on the surface of ITO might at first glance point to a strong binding 

interaction between the polymer and the conductor. However, the WF reduction entirely 

disappeared after subjecting the PEIE-modified ITO substrate to a 50 min water wash in 

an ultrasonic bath (Figure 4.24, closed circles). This observation indicates that PEIE layer 

is physisorbed on the surface of the conductor, which would be consistent with the 

seemingly universal ability of PEIE to substantially reduce the WF of many different 

conducting materials (Table 4.5).  
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Figure 4.23 AFM image of ((a), (b)) ITO and ((c), (d)) ITO/PEIE in an area of 1 µm × 1 

µm and ((e), (f)) ITO/PEIE in a larger area of 5 µm × 5 µm, ((g), (h)) ITO with 1 min 

mild washing. Figures (a), (c), (e), (g) are amplitude images and (b), (d), (f), (h) are phase 

images. 
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Figure 4.24 Change in work function relative to bare ITO of ITO/PEIE after different 

washing conditions. 

 

  

Figure 4,25 (a) Change in work function relative to bare ITO upon modification from 

PEIE water solution, PEIE with HPF6 water solution and PEIE with NaOH water 

solution before (filled circle) and after (open circle) water washing, (b) N1s core level 

recorded via XPS on the same samples.  
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 To further investigate the nature of the interaction between PEIE and the 

conductor surface, the pH values of the original PEIE solution in water were modified by 

adding either fluorophosphoric acid (HPF6) or NaOH. PEIE layer was formed on ITO 

from solutions with pH values of 4.5, 7.1, 9.2, 10.3 or 13. Figure 4.25 (a) shows the 

change in WF value (ΔWF) induced prior to and after wash for one minute with running 

water. 

 Differences in the solution pH values were expected to mainly influence the 

degree of protonation of the amine groups in PEIE. The degree of PEIE protonation was 

followed with XPS by tracking the N1s peak position (Figure 4.25 (b)). When PEIE was 

processed from the most basic solution, ΔWF amounted to -0.92 eV and is related to the 

presence of neutral amine groups corresponding to the N1s peak at 399.8 eV (Figure 4.25 

(b)). The same N1s peak was present in the PEIE layers processed from a pH of 10.3 

solution that yields ΔWF of -0.97 eV. These results indicate that neutral amines groups 

are primarily involved in the interactions leading to the formation of the interface dipoles 

and the substantial changes in WF.  

 On the other hand, when the PEIE layers were processed from the more acidic 

solutions with a higher degree of protonated amines, smaller WF reductions were 

observed. In films processed from solutions with pH values of 7.1 and 4.1, the 

appearance of a second N1s peak at 402.5 eV (Figure 4.25 (b)) indicated the presence of 

protonated amines. After a 1-min water wash, with the exception of the PEIE layer made 

from the most basic solution (which was completely removed from the ITO surface), all 

layers showed similar ΔWF values around -0.86 eV. The XPS spectra of these layers 

show N1s peaks with a similar shape and a small shoulder at 402.5 eV. These results 

suggest that, in the case of PEIE, neutral amine groups are primarily responsible for the 

largest ΔWF observed. 
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4.3.3 Characterization of Solar Cells Performance   

 The PEIE-modified conductors for the low-WF ECEs were tested in a variety of 

PSCs geometries. PSCs were fabricated with PEIE-coated ITO, Ag, and PH1000 as the 

ECEs at the bottom of the devices to demonstrate their electron selectivity. In these cells, 

a blend of P3HT and IC60BA (1:1, wt. ratio) was employed as the photoactive layer. 

MoOX/Ag served as the high-WF HCEs. Device structures are shown in Figure 4.26. 

 

 

Figure 4.26 Device structures of inverted P3HT:IC60BA solar cells with (a) ITO/PEIE, (b) 

Ag/PEIE, and (c) PEDOT:PSS (PH1000)/PEIE for the electron-collecting electrodes. 

 

 Figure 4.27 (a) and (b) show the J-V characteristics of these solar cells in the dark 

and under illumination. In all cases, the J-V characteristics in the dark display a large 

rectification and small reverse saturation currents. This result reflects the excellent 

electron selectivity of the PEIE-modified ECEs. PSCs with PEIE-modified ITO ECE 

yielded a VOC of 0.81 ± 10 V, a JSC of 11.0 ± 0.8 mA/cm
2
, a FF of 0.66 ± 0.01, and a PCE 

of 5.9 ± 0.3%, upon average over 10 devices. Relatively large FF value from these PSCs 

also provides indirect evidence of the excellent electron selectivity of the PEIE-modified 

ITO ECE [69,142]. It should be also noted that PCE values from these PSCs are 
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comparable with that previously reported in other inverted PSCs with the same 

photoactive layer.   

 

 

 

Figure 4.27 Representative J-V characteristics (a) in dark and (b) under illumination for a 

P3HT:IC60BA-based polymer solar cell with electron-collecting electrodes of PEIE-

modified ITO, PEIE-modified Ag, and PEIE-modified PEDOT:PSS (PH1000) electrodes. 

 

 A study on the shelf air stability of inverted PSCs with the ECE of PEIE-modified 

ITO was performed (Figure 4.28). For a comparison, conventional PSCs with the same 

photoactive layer, but a different ECE of a Ca/Al were also fabricated and tested. The 

PCE from the inverted PSCs was found to remain nearly constant after 30 days in air and 

was still about 70% of its initial value after 102 days, while device performance of the 

conventional PSCs degraded completely within 10 days.   
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Figure 4.28 Device performance of solar cells with an inverted structure of 

glass/ITO/PEIE/P3HT: PC60BM/PEDOT:PSS/Ag (filled circle, averaged over 5 devices) 

and a conventional structure of  glass/ITO/PEDOT:PSS/P3HT:PC60BM/Ca/Al (open 

circle, averaged over 9 devices), kept in air in the dark for up to 102 days. 

 

 In the case of the PSCs that use PEIE-modified Ag (80 nm) ECE at the bottom of 

the device, light illumination goes through the MoOX (15 nm)/Ag (20 nm) HCE at the top 

of the device (Figure 4.26 (b)). In these devices, a relatively high FF of 0.60 is also 

measured but JSC was lower (5.5 mA/cm
2
) because of the low transmittance of the HCE 

at top of the device. As a result, the PCE was only 2.6%. PSCs with a PEIE-modified 

PEDOT:PSS (PH1000) ECE at the bottom of the device yielded a PCE of 3.5% 

(averaged over 5 devices), with a VOC of 0.79 V, a FF of 0.57, and a JSC of 7.6 mA/cm
2 

(Figure 4.26 (c)). The slightly lower FF value is attributed to the increased RS introduced 

by the relatively low conductivity of PH1000 (600 S/cm) compared to ITO or Ag, while 

the relatively small JSC is mainly caused by the lower transmittance of PH1000 [74]. 
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Table 4.6 summarizes the photovoltaic performances, averaged over ten devices, of all 

the PSCs evaluated. 

Table 4.6 Summary of the averageda device performance of inverted P3HT:IC60BA  solar 

cells with PEIE-modified ITO, PEIE-modified Ag, and PEIE-modified PEDOT:PSS 

(PH1000) as an electron-collecting electrode. 

a 
Average was calculated over ten devices 

 

 With the possibility to transform PEDOT:PSS into an efficient ECE upon 

modification, fully-polymeric solar cells on flexible substrates were fabricated; these 

highly flexible polymeric solar cells are fabricated in air on PES substrates using 

PEDOT:PSS as HCEs and PEI-modified PEDOT:PSS as ECEs. Figure 4.29 displays the 

J-V characteristics of the fully-polymeric solar cells in the dark and under illumination. 

The PSCs with PEI-modified PEDOT:PSS ECE showed excellent rectification in the 

dark. Under illumination, the PSCs with PEDOT:PSS/PEI ECE yielded an VOC of 0.80 V, 

a JSC of 7.1 mA/cm
2
, a FF of 0.52, and a PCE of 3.0 %, averaged over 7 devices. The 

fully polymeric solar cells show similar VOC to the PSCs with ITO/PEIE ECE (see Table 

4.6). The smaller FF compared with the PSCs with ITO/PEIE ECE is attributed to the 

increased series resistance introduced by the relatively low conductivity of PH1000 

compared to ITO or Ag (see Table 4.6), while the relatively small JSC was mainly 

attributed to the lower transmittance of PH1000 and absence of the light reflector. 

However, PSCs without PEI layer did not show any rectification behavior because work 

function of PH1000 and PEDOT-blend are similar (Figure 4.29 (b)). The symmetric WF 

Electron-collecting electrodes
VOC

(mV)

JSC

(mA/cm2)
FF

PCE

(%)

ITO/PEIE 810±10 11.0±0.8 0.66±0.01 5.9±0.3

Ag/PEIE (Top illumination) 820±10 5.5±0.8 0.59±0.02 2.6±0.2

PEDOT:PSS (PH1000)/PEIE 790±30 7.6±0.2 0.57±0.02 3.5±0.3
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of the two electrodes results in the symmetric J-V characteristics both in the dark and 

under illumination. 

 When a thick Ag layer (as a reflector) was placed behind the semitransparent 

fully-polymer solar cells, to make reflected light back into the photoactive layer, the JSC 

increased to a value of 8.2 mA/cm
2
, yielding a PCE of 3.4% (Figure 4.29 (c) and Table 

4.7). These values are comparable to those measured in a device that uses a MoOX/Ag 

HCE (see Table 4.6). Table 4.7 summarizes the photovoltaic performances, averaged 

over seven devices, of the evaluated fully polymeric solar cells with or without the Ag 

reflectors.  

Table 4.7 Summary of the averageda device performance of P3HT:IC60BA-based fully-

polymeric solar cells with or without Ag reflector.  

 
a
 Average was calculated over seven devices 

 

 Since the fully-polymeric PSCs only have polymer/polymer interfaces, good 

mechanical flexibility is expected. Figure 4.29 (d) shows the device performance of the 

fully polymeric devices with continuous bending averaged over three devices. The newly 

fabricated devices showed an average PCE of 2.55 %. After fixed on a radius of 5.4 mm 

and 3.9 mm for 30 min separately, devices exhibited an average PCE of 2.44 %. With 

continuous bending with radiuses of 6.3, 5.4 and 3.9 mm, 400 times for each, the average 

PCE was 2.40 %.  It should be noted that the bending test was done after the device 

fabricated and kept in glove box for two weeks. The slight change of PCE of devices 

indicates that the devices have excellent mechanical flexibility.   

Ag reflector
VOC

(mV)

JSC

(mA/cm2)
FF

PCE

(%)

No 800±20 7.1 ± 0.4 0.52±0.02 3.0±0.1

Yes 800±20 8.3 ± 0.5 0.52±0.02 3.4±0.2
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Figure 4.29 Representative J-V characteristics in dark (open circle) and under 

illumination (closed circle) for a P3HT:IC60BA-based fully-polymeric solar cell (a) with 

or (b) without PEI modification on PEDOT:PSS layer at the bottom of the cells (c) J-V 

characteristics under illumination for P3HT:IC60BA-based fully-polymeric solar cells 

with (red) or without (black) Ag reflector (d) Normalized PCE of fully-polymeric solar 

cells after continuous bending tests: Inset is a picture of bended cells. I: Newly fabricated, 

II: fixed on a roll with R = 5.4 mm, III: fixed on a roll with R = 3.5 mm, IV: bended 400 

times with R = 6.3 mm, V: bended 400 times with R = 5.4 mm, and VI: bended 400 times 

with R = 3.9 mm 

  

 Finally, a study on the UV irradiation effect on the photovoltaic performance of 

the PSCs with the ITO/PEIE ECE was performed. Pristine PEIE-coated ITO samples 

displayed a WF value of 3.7 eV. Inverted PSCs with a structure of 

ITO/PEIE/C60/CuPc/MoOX/Ag were fabricated. One question that was raised after 

performing such surface modifications was how the WF of the combined ITO/PEIE 
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modifier electrode would be changed as a function of UV and air exposure. Figure 4.30 

(a)-(d) display that the WF of the modified electrodes display a similar behavior to that 

observed in uncoated ITO electrodes (Figure 4.17 (a)-(d)). Also, it should be noted that 

PEIE has negligible absorption down to 300 nm, so absorption in this layer can be 

entirely neglected. Very interestingly, Figure 4.30 (a)-(d) shows that variations of the WF 

values of PEIE-coated ITO substrates remain below the minimum WF values of bare ITO 

under UV illumination and air exposure. Figure 4.30 (a)-(d) also shows that the change of 

the WF values induced by the UV illumination and air exposure are also reversible. As 

shown in Figure 4.30 (a) and (b) WF values of the ITO/PEIE electrode (3.5 eV – 3.7 eV) 

were smaller than the EA values of C60. Therefore a better chance to be less sensitive to 

the effects produced by the absorption of photons in ITO can be expected.  

 Figure 4.30 (e) displays the temporal evolution of the J-V characteristics of the 

inverted PSCs (ITO/PEIE/C60/CuPc/MoOX/Ag) under 100 mW/cm
2
 continuous 

illumination from a solar simulator (AM 1.5G). The PSCs before the solar simulator 

treatment yielded a VOC of 0.41 V, a JSC of 3.9 mA/cm
2
, a FF of 0.60 and a PCE of 0.94%. 

As expected, after 51 minutes of the solar simulator treatment, the PSCs showed similar 

device performance with a VOC of 0.41 V, a JSC of 3.7 mA/cm
2
, FF of 0.57 and PCE of 

0.86% to those before the treatment.  
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Figure 4.30 Work function of ITO/PEIE (filled square) with different treatments: (a) with 

simulated solar light exposure in a N2-filled glove box and measured in air; (b) with air 

exposure and measured in air; (c) with simulated solar light exposure in a N2-filled glove 

box and measured in air; (d) with air exposure and measured in air. (e) Energy diagram 

ITO/PEIE/C60 (band bending not considered when contact) where the shaded area 

represents the range of WF values of ITO/PEIE varying with air or UV exposure; 

Evolution of J-V curves under 100 mW/cm
2
 AM1.5 illumination of devices soaked under 

solar simulator for different time with an inverted structure of 

ITO/PEIE/C60/CuPc/MoOX/Ag. 
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4.3.4 Conclusions  

 This section demonstrated a universal approach to reduce the WF of various 

conductors by applying polymer surface modifiers, such as PEIE and PEI, that contain 

simple aliphatic amine groups . The polymer surface modification enables the fabrication 

of air-stable low WF electrodes at very low cost from environmentally friendly solvents. 

With this modification, various types of efficient single-junction PSCs, including fully-

polymeric solar cells, have been demonstrated. Besides the applications shown in this 

thesis, this polymer surface modification can be applicable to other applications with the 

further optimized specific properties of the polymers. Finally, this way should enable the 

mass production of low-WF electrodes from processes that are compatible with large-

area roll-to-roll manufacturing techniques, and consequently the commercialization of 

PSCs.  
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 CHAPTER 5 

CHARGE RECOMBINATION LAYERS 

 In this chapter, new approaches for charge recombination layers (CRLs) in PSCs 

with an inverted tandem geometry will be discussed. As mentioned in Chapter 1, two 

major losses of solar cells such as sub-band-gap transmission and the thermalization of 

charge carriers, and two limitations typically shown in organic semiconductors such as 

narrow absorption bands and poor charge carrier transport can be overcome by realizing 

tandem solar cells. Tandem solar cells contain several single-junction solar cells with 

different absorption ranges. Broader solar spectrum can be absorbed by tandem solar 

cells and thereby the PCE can be increased. Generally in tandem OSCs, two or more 

single-junction OSCs have been stacked through CRLs. In the case of all sub-cells 

connected in series for a tandem OSC, the VOC of all sub-cells can be added up, the JSC of 

the tandem cell is limited to the smallest Jsc generated in any of the sub-cells, and 

consequently the PCE can be increased.  

 To realize efficient tandem PSC, selecting photoactive materials with 

complementary absorption is essential to obtain a high JSC. Also, matching the photo-

generated current between sub-cells connected in series is necessary to maximize the JSC 

and consequently the PCE. In this thesis, two different polymers with different absorption 

ranges P3HT (EG=2.52 eV) and PBDTTT-C (EG=1.61 eV)) blended with fullerene 

derivatives (PC60BM or IC60BA) will be employed as bottom cells (the first light-

absorbing sub-cell) and top cells (the second light-absorbing sub-cell stacked on top of 

the bottom cell through a CRL) [49,149].  

 Another critical component to maximize the PCE of a tandem PSC is the CRL 

that connects two sub-cells in series. This layer allows holes to be collected, from one 

sub-cell, and be recombined with the electrons collected from the other sub-cell. 
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Therefore, the WF of one side of the recombination layer needs to be high enough to 

provide good energy level alignment with the IE of the donor material, in the adjacent 

sub-cell, for a hole to be collected effectively at that interface. The WF of the other side 

of the CRL should be low enough to provide adequate energy level alignment with the 

EA of the acceptor material, in the adjacent sub-cell, for an electron to be collected 

efficiently at that interface. In addition, the CRL should work as an efficient 

recombination center for collected electrons and holes. Furthermore, materials of a CRL 

are required to have low optical absorption in the spectral region of interest. From a 

practical perspective, in tandem solar cells wherein the top active layer is solution-

processed, the CRL also needs to be mechanically robust enough to prevent damage of 

the bottom cell and of the CRL itself during the processing of the top cell.  

 In this thesis, three different CRLs will be introduced. Since the tandem PSCs 

discussed in this chapter use the inverted geometry, the high-WF layer is deposited first 

on top of the bottom cell and the low-WF layer is made on top of the high-WF layer. The 

first CRL will be composed of PEIE-modified MoOX/Ag. In this CRL, the MoOX serves 

as a hole selective layer, and the Ag layer is required to provide a better electrical 

connection between top and bottom cells. Finally, modification of the MoOX/Ag with a 

polymeric surface modifier, PEIE, is found to further reduce the WF of MoOX/Ag and 

significantly improve the performance of this CRL. The second CRL will comprise of 

PEIE-modified MoOX/Al2O3:ZnO nanolaminates. The MoOX works as a hole-collecting 

layer. Differently from the previous CRL, the Al2O3:ZnO nanolaminates serves as the 

electron-collecting layer in this CRL. The surface modification with PEIE on the 

MoOX/Al2O3:ZnO nanolaminate improves the WF contrast leading to further enhanced 

the performance of tandem PSCs. The last CRL is made up with the conducting polymer 

PEDOT:PSS modified at one interface with PEIE. While the previous CRLs are made by 

stacking a low-WF layer on a high-WF layer, this CRL is realized by modifying one side 
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of a single layer. Furthermore, this CRL is made up with only polymeric materials and 

can be processed from solution. The PEDOT:PSS collects holes from the bottom cell and 

PEIE-modified side collects electrons from the top cells.  

 

  



 126 

5.1 Polyethylenimine Ethoxylated (PEIE)-Modified Molybdenum Oxide (MoOX) / 

Silver (Ag) as the Charge Recombination Layer 

5.1.1 Introduction  

 The CRL is an essential component to maximize the PCE of a tandem PSC. To 

date, a common approach to realize a CRL is to use a first layer comprising materials 

with a high-WF, typically MoOX or PEDOT:PSS, and a second layer comprising  a low-

WF metal such as Ca or a metal oxide such as ZnO. In some cases, an ultrathin (non-

continuous) layer of a metal such as Al or Ag is inserted between the first and second 

layers [116,117]. The use of a reactive metal such as Ca is not desirable in an inverted 

structure. On the other hand, the use of ZnO, having a WF of around 4.3 eV, may limit 

the number of acceptor materials for which it provides efficient electron collection [67].   

 In this section, the first use of PEIE in a CRL of inverted tandem PSC structure is 

introduced. The tandem PSC uses a PEIE (12 nm)-modified MoOX (6 nm)/Ag (1 nm) as a 

CRL. MoOX serves as a hole-collecting layer since it displays a large value of IE and is 

strongly n-doped by oxygen vacancies. The EA, WF, and IE are 6.7 eV, 6.9 eV, and 9.7 

eV, respectively [150]. These energy levels allow MoOx to efficiently collect holes from 

the bottom cell efficiently. The use of an ultrathin Ag layer has been claimed to provide 

better electrical connection between top and bottom cells [87,151]. The use of a polymer 

surface modifier, PEIE, induces a WF reduction on the Ag side of the MoOX/Ag layer, 

allowing the interface to serve as an efficient electron collecting layer in the CRL.  

 In this study, an analysis of the optical, electrical, and morphological properties of 

the CRL is conducted. An investigation of the photovoltaic performance of 

P3HT:PC60BM-based inverted tandem PSCs with this CRL is performed. The 

photovoltaic properties from the tandem PSCs are compared with those of single-junction 
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PSCs and tandem PSC with a CRL comprising only MoOX/Ag layer.  Finally, a shelf air 

stability study of the tandem PSC with the CRL of PEIE-modified MoOX/Ag is 

conducted.   

5.1.2 PEIE-modified MoOX/Ag Charge Recombination Layer Characterization 

 Figure 5.1(a) displays the refractive index and extinction coefficient of MoOX, Ag 

on MoOX and the Ag/PEIE composite obtained by spectroscopic ellipsometry. Figure 

5.1(b) shows a comparison of the measured transmittance of MoOX, MoOX /Ag and 

PEIE-modified MoOX /Ag films deposited on glass substrates and the simulated 

transmittance values using the refractive index values shown on Figure 5.1(a).  

 

 

Figure 5.1 (a) Refractive index and extinction coefficient of MoOX (6 nm) (thin solid 

line), Ag (1 nm) on MoOX (6 nm) (thin dotted line), and PEIE (12 nm)/Ag (1 nm) 

(nanoparticles) (thick solid line) (b) Optical transmission and absorptance of the MoOX (6 

nm) (open triangle, thin dotted line), MoOX (6 nm)/Ag (1 nm) (open circle, thin solid 

line), and MoOX (6 nm)/Ag (1 nm)/PEIE (12 nm) (open square, thick solid line) layer.  

 

 Interestingly, the refractive index profile of the Ag layer initially deposited on 

MoOX was derived assuming Bruggeman’s effective medium approximation [152]. This 

type of approximation describes clusters or interconnected domains of nanoparticles with 
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broad plasmon resonances, as shown in Figure 5.1(a). However, as PEIE is spin-casted 

onto the Ag layer, the refractive index of the PEIE/Ag layer resembles that of isolated 

nanoparticles with a much narrower and well defined plasmon resonance. The refractive 

index of this layer was derived assuming spherical nanoparticles and using a Maxwell-

Garnett approximation with an Ag fill factor of 0.14. It is clear from Figure 5.1(b) that 

both approximations yield very reasonable fits to the measured transmittance values.   

Hence, the spin-coating of PEIE has the effect of not only coating the Ag film underneath, 

but effectively changing the morphology of the Ag layer.  

 As a final remark on the optical properties of the CRL deposited on glass, the 

simulated absorptance of this layer is shown in Figure 5.1(b) along with the individual 

contributions to the absorptance coming from the MoOX layer and the composite layer 

comprising Ag nanoparticles coated by PEIE. This shows that the Ag/PEIE layer present 

a parasitic absorptance (since it is not expected to give rise to any current but to be 

converted into heat) within the visible spectral range in air, reaching a peak absorptance 

of 9% at 438 nm. When embedded in a tandem PSC, this absorption can be expected to 

increase at certain wavelengths because some amount of the optical field will bounce 

back from the reflective electrode in the cell. However, since light will go first through 

the front cell, as long as the front cell heavily absorbs in the same spectral range as the 

nanoparticle layer, the amount of light absorbed in this layer will likely be reduced. For 

tandem PSCs using the proposed CRL and optimum material combinations with 

complementary absorption spectra, the refractive index (n) values shown in Figure 5.1(a) 

could serve as a guideline for simulations of the optical field distribution in those cells. 

 The change in the WF of the CRL was followed via UPS under vacuum and a 

Kelvin probe measurement in ambient. As reference samples, 70-nm-thick Au-coated 

glass slides and glass/ITO substrates were employed for UPS and Kelvin probe 

measurements, respectively. Figure 5.1(a) presents the dependence of the WF on layers 
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comprising the CRL. The WF values of the Au-coated glass and the glass/ITO substrates 

were 5.1 eV (by UPS) and 4.6 (by Kelvin probe), respectively. After depositing the 6-nm-

thick MoOX layer, the WF of the Au-coated glass remained around 5.0 eV (by UPS) 

while that of the glass/ITO substrate jumped up to 5.25 eV (by Kelvin probe). These WF 

values are considerably lower than WF values shown from freshly made MoOX layers, 

which are usually higher than 6.5 eV [52].  The reason is that the present MoOX films 

were exposed to ambient air for significant periods of time, either for Kelvin probe 

measurements in ambient air at Georgia Tech. or during transfer to Princeton for UPS, 

and ambient air contaminated MoOX was found to exhibit the reduced WF value [56]. 

Yet, the important interface here is the buried MoOX interface contacting the P3HT of the 

bottom cell, and this interface presumably involves “clean”, unexposed, MoOX with a 

significantly larger WF. In any case, even the reduced WF of the MoOX is sufficiently 

high to produce effective hole-extraction from the donor polymer P3HT of the bottom 

cell, which has an IE of 4.7-4.9 eV [153] .  

 A 1-nm-thick Ag layer was found to produce no change of the WF with respect to 

a MoOX film deposited on a Au-coated glass sample (5.0 eV by UPS). Although this 

ultrathin Ag layer does not form a continuous film on top of MoOX layer, as confirmed 

by the optical characterization, it has been claimed to be required to provide a better 

electrical connection between the bottom and top cells [87,151].  

 In Chapter 4.3, it was found that the physisorption of neutral amine containing 

polymer, PEIE induces a WF reduction of large variety of conductors [62]. Consistent 

with previous observations, significantly reduced WF values, 3.6 eV (by UPS) and 3.8 

eV (by Kelvin probe), were achieved after the PEIE modification on MoOX/Ag layers. 

These WF values are sufficiently low to provide efficient electron selectivity since the 

EA of the PC60BM, is around 3.8 eV [153]. 
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Figure 5.2 (a) Work function of MoOX (6 nm), MoOX (6 nm)/Ag (1 nm), and MoOX(6 

nm)/Ag (1 nm)/PEIE (12 nm) layer on glass/ITO substrate by a Kelvin probe (blank 

column) and on glass/Au (70 nm) substrate by UPS (shaded column), (b) XPS data of 

MoOX (6 nm) (bottom), MoOX (6 nm)/Ag (1 nm) (middle), and MoOX (6 nm)/Ag (1 

nm)/PEIE (12 nm) layer (top). 

 

 To confirm the presence and surface homogeneity of MoOX, Ag, and PEIE at the 

CRL, an XPS measurement on glass/MoOX, glass/ MoOX /Ag, and glass/ MoOX 

/Ag/PEIE was performed. As shown in Figure 5.2(b), Ag core levels and some MoOX 

peaks were still observed even after the PEIE deposition. This is indicative that the PEIE 

layer is thin-enough for the X-rays to penetrate through it, or, those regions with high- 

and low-WF values may be present at the top surface of the CRL. 
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 The performance of inverted tandem PSCs with the structure of 

glass/ITO/PEIE/P3HT:PC60BM/MoOX/Ag/PEIE/P3HT:PC60BM/MoOX/Ag, as shown in 

Figure 5.3(a), was investigated.  To compare the photovoltaic performance, a single-
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and a tandem PSC with structure: glass/ITO/PEIE/P3HT:PC60BM/ 

MoOX/Ag/P3HT:PC60BM/MoOX/Ag were fabricated as reference cells.  

 

 

Figure 5.3 (a) Device structure of an inverted tandem P3HT:PC60BM solar cell with a 

charge recombination layer of PEIE modified MoOx/Ag layer and an inverted single-

junction P3HT:PC60BM solar cell.   

 

 Figure 5.4(a) shows a comparison between the J-V characteristics under 

illumination measured on these reference cells and on the inverted tandem PSCs with the 

novel CRL. Table 5.1 summarizes the photovoltaic performance, averaged over five 

devices, of all PSCs cells evaluated.  

 Reference single-junction PSCs showed a PCE of 2.8 ± 0.1 % with a VOC of 631 ± 

5 mV, a JSC of 7.0 ± 0.1 mA/cm
2
, and a FF of 0.63 ± 0.02. Reference tandem PSCs, 

without a PEIE modification on the MoOX/Ag layer, displayed a VOC  of 503 ± 31 mV 
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comparable to that of single-junction reference cells, indicating that the non-continuous 

Ag layer, by itself, does not provide adequate electron collection at the CLR. Hence, the 

reference tandem cell performs similarly to a single-junction cell with an increased RS, 

reflected by the smaller FF of 0.52 ± 0.06; and consequently shows a poor PCE of 1.1 ± 

0.3 %. In contrast, tandem PSCs with the CRL of a PEIE-modified MoOX/Ag show an 

enhanced photovoltaic performance with a VOC of 1042 ± 6 mV. Similar to prior results 

[87], these tandem PSCs achieve 83% of the ideal VOC value (the addition of the VOC of 

top and bottom cells). However, a high value of FF of 0.62 ± 0.01 (similar to single-

junction cells) allows these tandem PSCs to achieve a PCE of 2.1 ± 0.1 %. As is clear 

from these results, the main limitation on the performance of the tandem PSC is therefore 

the small JSC obtained by the use of the same photoactive layer for the top and bottom 

cells, and not the intrinsic properties of the CRL. Namely, by using the same thicknesses 

for the photoactive layers in the tandem and single-junction reference PSCs, the total 

absorption in both types of cells is expected to be very similar. However, the total 

absorption in the tandem cell is roughly split in half between the top and bottom cells. 

Consequently, the JSC generated in each subcell, thereby in the tandem cell, is roughly 

half (3.2 mA/cm
2
) of the JSC generated in a single-junction reference cell (7.0 mA/cm

2
). 

This issue can easily be overcome by employing photoactive layers with complementary 

absorption spectra for the bottom and top cells. 

 Although the use of the ECE of Ca/Al at the top of devices has been found to lead 

to tandem PSCs with high values of VOC and FF, the limited environmental stability of Ca 

or LiF/Al constitutes a limitation for the environmental stability of PSCs in general [62]. 

Figure 5.4(b) displays the ambient air stability of tandem PSCs with PEIE modified 

MoOX/Ag CRL. None of the photovoltaic performance parameters of the tandem PSCs, 

VOC, JSC, FF, and PCE, show any significant degradation when exposed to air for more 

than 140 hours. 
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Table 5.1. Summary of the averaged
a
 device performance of inverted single-junction and 

tandem P3HT:PC60BM-based solar cells with MoOX/Ag/PEIE and MoOX/Ag as a charge 

recombination layer.  

a 
Average was calculated over five devices 

 

 

Figure 5.4 (a) Representative J-V characteristics under illumination for inverted 

P3HT:PC60BM-based solar cells with a single-junction structure (triangle), a tandem 

structure with MoOX/Ag/PEIE (closed circle), and a tandem structure with MoOX/Ag 

(open circle), (b) PCE (%, square), fill factor (circle), JSC (mA/cm
2
,triangle), and VOC (V, 

star) change of inverted tandem P3HT:PC60BM-based solar cells with a MoOX/Ag/PEIE 

charge recombination layer as a function of ambient air exposure time   
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Single-junction 631 ± 5 7.0 ± 0.1 0.63 ± 0.02 2.8 ± 0.1

Tandem (MoOX/Ag/PEIE) 1042 ± 6 3.2 ± 0.1 0.62 ± 0.01 2.1 ± 0.1

Tandem (MoOX/Ag) 503 ± 31 4.0 ± 0.7 0.52 ± 0.06 1.1 ± 0.3
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5.1.4 Conclusions 

 Tandem cell geometries provide a potential solution to PSCs with high PCE. 

Inverted tandem PSCs studied in this section provided a proof-of-principle demonstration 

of the effectiveness of the PEIE-modified MoOx/Ag as a CRL. In particular, the 

importance of the WF contrast of CRLs was presented. Modification of bilayers of 

MoOx/Ag with PEIE was found to significantly improve the performance of these CRLs. 

The improvement was assigned to a significant reduction of the Ag WF by 1.5 eV with 

PEIE. The tandem cells yielded a VOC of 1042 mV (83% of the addition of the VOC of top 

and bottom cells) and a FF of 0.62, comparable to those of single-junction cells (0.63) 

under simulated AM 1.5G, 100 mW/cm
2
 illumination. 

 However, the smaller than expected VOC is an indication that the CRL will still 

need further optimization. A way to optimize the CRL will be to replace the ultrathin Ag 

layer with an electrically conductive and optically transparent material. In one hand, this 

material should provide a more uniformly covered MoOX layer, and on the other hand, 

should not produce a large surface roughness, which is typical of non-continuous metal 

layers.  

 Lastly, no significant degradation of photovoltaic performance parameters was 

seen with more than 140 hours in ambient air, revealing that the inverted geometry 

avoiding the use of reactive low-work function metal electrodes are attractive for the air 

stability of PSC  

  

  

  



 135 

5.2 Polyethylenimine Ethoxylated (PEIE)-Modified Molybdenum Oxide (MoOX) / 

Aluminum Oxide (Al2O3):Zinc Oxide (ZnO) Nanolaminate as the Charge 

Recombination Layer 

5.2.1 Introduction  

 Even though the CRL discussed in Chapter 5.2 exhibited efficient charge 

recombination properties in the tandem PSCs, it still has rooms for improvement. In 

particular, the low-WF component of the CRL comprising PEIE-modified ultrathin Ag 

layer in the CRL needs to be replaced with a film that provides uniform coverage, 

electrically high conductivity, and optical transparency. In addition, photoactive layers of 

the bottom and top cells should be substituted by two different materials with 

complementary absorption ranges. In this section, an inverted tandem PSC with a new 

low-WF component in the CRL and two photoactive layers with different absorption 

range is introduced.  

 To date, the most efficient inverted tandem PSCs have employed ZnO as the low-

WF component in the CRL [89,111]. However, the electrical properties of ZnO, such as 

conductivity, differ depending on processing methods. For example, tandem PSCs with 

CRL containing ZnO nanoparticles, have shown S-shape kinks in the J-V characteristics 

due to the relatively low conductivity of the ZnO layer [154]. Among different processing 

methods, ALD provides one of the most reliable methods to consistently produce ZnO 

layers of high quality and presumably with larger conductivities than obtained by other 

methods [67,78,154,155]. The electrical conductivity of the ZnO layers processed by 

ALD is around 2×10
2
 S/cm [67,78]. Recently, the Kippelen research group demonstrated 

that ALD-processed Al2O3:ZnO nanolaminate can display even higher conductivity 

values up to  1×10
3
 S/cm and have optical transparency higher than 80 % in visible range. 

Nanolaminate films also retains a WF value  of 4.0 ± 0.2 eV (by UPS) which is similar to 
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WF value of ZnO (3.96 eV by UPS) [78]. Hence, using the Al2O3:ZnO nanolaminate  in 

the CRL can minimize the effects of having low conductivity values in its electron-

collecting side. Moreover, since the ALD process can provide well-controlled layer-by-

layer growth of highly conformal and uniform films, the use of an Al2O3:ZnO 

nanolaminate layer can resolve the issues induced by the ultrathin Ag in the PEIE-

modified MoOX/Ag CRL such as large surface roughness and reduced optical 

transparency [67,78]. As shown in Chapter 4.3, a surface modification with PEIE can 

provide a WF reduction of many different metal oxides including ITO, FTO, and ZnO. In 

particular, WF of ZnO decreased from 3.96 eV to 3.55 eV (by UPS) after the PEIE 

modification. The PEIE modification of Al2O3:ZnO nanolaminate could provide a lower 

WF value, and presumably lead to better electron-collection than that of Al2O3:ZnO 

nanolaminate only electron-collecting layer.      

 The CRL discussed in this section comprises a first layer of MoOX followed by a 

second layer of Al2O3:ZnO (1:20) nanolaminate and a third layer of PEIE. Similarly to 

the role of the MoOX in the PEIE-modified MoOX/Ag CRL, the MoOX here also works as 

a hole-collecting layer. The PEIE-modified Al2O3:ZnO nanolaminate serves as an 

electron-collecting layer.  

 To maximize the JSC of tandem PSC, it is necessary to select two sets of 

photoactive materials having complementary absorption. In addition, the two photoactive 

layers need to generate similar currents when distributed in the tandem cell geometry. 

The tandem PSC discussed in this section uses a large EG donor polymer of P3HT (EG = 

2.52 eV) [149] mixed with IC60BA and a small EG donor polymer of PBDTTT-C 

(EG=1.61 eV) [49] blended with PC60BM as the photoactive layers for the bottom  cell 

and the top cell, respectively.  
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    In this study, an analysis of the optical, electrical, and morphological properties 

of the CRL comprising MoOX/Al2O3:ZnO nanolaminate/PEIE is conducted. An 

investigation of the photovoltaic performance of P3HT:IC60BA and PBDTTT-

C:PC60BM-based inverted tandem PSCs with the CRL is performed. A comparison of the 

photovoltaic properties of the tandem PSCs with those of two independent single-

junction PSCs (having P3HT:IC60BA or PBDTTT-C:PC60BM photoactive layers), and 

three independent tandem PSCs, with different CRLs (MoOX, PEIE-modified MoOX/ZnO, 

or MoOX/Al2O3:ZnO) is conducted.    

 

5.2.2 PEIE-modified MoOX/Al3O3:ZnO nanolaminate Charge Recombination Layer 

Characterization 

 An XPS study was performed by following the Mo3d peak to study the growth of 

the Al2O3:ZnO nanolaminate on MoOX. Figure 5.5 shows a comparison of the XPS data 

obtained on none, 3, 5, and 10 nm-thick Al2O3:ZnO nanolaminates deposited on 

glass/ITO/PEIE/P3HT:IC60BA/MoOX substrates. The Mo3d peak intensities are shown to 

decrease as the thickness of the Al2O3:ZnO nanolaminates increases. This indicates a 

gradual increase of the coverage of the Al2O3:ZnO nanolaminate on MoOX.  

Disappearance of the Mo3d peaks from the 10-nm-thick Al2O3:ZnO nanolaminate  

sample clearly  shows that the MoOX layer is fully covered by the Al2O3:ZnO 

nanolaminate. Hence, at least 10-nm-thick Al2O3:ZnO nanolaminate is necessary to yield  

a uniform coverage of  the MoOX layer.  Hereafter, the 10-nm-thick Al2O3:ZnO 

nanolaminate will be considered in this study.      
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Figure 5.5 XPS spectra of the Mo3d core level for MoOX (closed square), 

MoOX/Al2O3:ZnO nanolaminates: 3 nm (open square), 5 nm (closed circle), and 10 nm 

(open circle) on glass/ITO/PEIE/P3HT:IC60BA substrates     

  

 Another XPS measurement was performed to confirm the presence of each layer 

in the CRL. For this XPS study, a glass substrate was used, rather than the 

glass/ITO/PEIE/P3HT:IC60BA/MoOX substrates, to ease the identification of the nitrogen 

core level of PEIE. XPS studies on MoOX films reveal the characteristic presence of the 

Mo3p3 and Mo3p1 peaks (Figure 5.6 (a)). Upon deposition of the Al2O3:ZnO 

nanolaminate, the Zn2p3 and Zn2p1 peaks appear on the XPS traces (Figure 5.6 (b)) as 

the Mo3d peak disappears from the survey (Figure 5.6 (d)), revealing good coverage and 

uniformity of the Al2O3:ZnO nanolaminates layer. Finally, the N1s peak from the amine 

groups in PEIE was easily detected (Figure 5.6 (c)). In this case, however, the Zn2p peak 

remained visible in the XPS surveys, revealing either the ultrathin nature of the PEIE 

layer or the non-uniform coverage of the PEIE layer. 
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Figure 5.6 XPS spectra of (a) glass vs. glass/MoOX, (b) glass/MoOX vs. 

glass/MoOX/Al2O3:ZnO nanolaminate, (c) glass/MoOX/Al2O3:ZnO nanolaminate vs. 

glass/MoOX/Al2O3:ZnO nanolaminate/PEIE, and (d) survey of glass, glass/MoOX, 

glass/MoOX/Al2O3:ZnO nanolaminate, and glass/MoOX/Al2O3:ZnO nanolaminate/PEIE. 

 

 The topographic characterization of MoOX, MoOX/Al2O3:ZnO nanolaminate, and 

MoOX/Al2O3:ZnO nanolaminate/PEIE  films was conducted by AFM using 

glass/ITO/PEIE/P3HT:IC60BA substrates.  AFM images of the surface of the different 

CRLs are shown in Figure 5.7. The surface roughness (RMS) values of the MoOX, 

MoOX/Al2O3:ZnO nanolaminate, and MoOX/Al2O3:ZnO nanolaminate/PEIE films were 

3.7, 3.2, and 0.6 nm, respectively. These results show that PEIE planarizes the surface of 
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the MoOX/Al2O3:ZnO nanolaminate. The reduction of the surface roughness induced by 

PEIE modification is speculated to aid the electron selectivity of this interface [64]. 

 

 

Figure 5.7 AFM images (height) of (a) glass/ITO/P3HT:IC60BA, (b) 

glass/ITO/P3HT:IC60BA/MoOX (20 nm), (c) glass/ITO/P3HT:IC60BA/MoOX (20 

nm)/Al2O3:ZnO nanolaminate (10 nm), (d) glass/ITO/P3HT:IC60BA/MoOX(20 

nm)/Al2O3:ZnO nanolaminate (10 nm)/PEIE. 

 

  

 Figure 5.8 shows average values (over three spots in the sample) of the WF 

obtained in a MoOX, MoOX/Al2O3:ZnO nanolaminate, and MoOX/Al2O3:ZnO 

nanolaminate/PEIE films deposited on ITO/glass substrates. For the WF studies, an 

ITO/glass substrate was used since the WF measurement by a Kelvin probe requires a 

conductive substrate. As a reference, the WF of clean ITO is included and shown to have 
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P3HT:IC60BA/MoOX/Al2O3:ZnO/PEIEP3HT:IC60BA/MoOX/Al2O3:ZnO

P3HT:IC60BA P3HT:IC60BA/MoOX
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a value of 4.7 ± 0.05 eV. The MoOX layer presented a WF of 5.3 ± 0.05 eV. After the 

deposition of the Al2O3:ZnO nanolaminate film the bilayer displayed a WF of 4.4 ± 0.03 

eV. After spin coating the PEIE layer, the WF of the trilayer presented a value of 3.8 ± 

0.05 eV. Using these values as a reference, it is expected that the MoOX layer can provide 

good hole selectivity since its WF is larger than the IE of P3HT (5.1 eV). Therefore, 

reasonable device performance can be expected with the use of this CRL. This is because 

the WF of the Al2O3:ZnO nanolaminate layer is similar to that of ZnO and ZnO, despite 

having a WF that is larger than the EA of PC60BM (3.8 eV- 4.3 eV) [67,78], has been 

found to provide adequately efficient electron collection when employed in inverted 

single-junction PSC, and in the CRL of tandem PSC. However, the reduction of WF 

obtained by the introduction of the PEIE layer will be shown to play an important role in 

optimizing the CRL and the performance of the tandem PSC [71] .   

 

Figure 5.8 Work functions of glass/ITO (reference), glass/ITO/MoOX, 

glass/ITO/MoOX/Al2O3:ZnO nanolaminate, and glass/ITO/MoOX/Al2O3:ZnO 

nanolaminate/PEIE by kelvin probe. 
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5.2.3 Characterization of Solar Cells Performance   

 Figure 5.9(a) displays the general device geometry of inverted tandem PSC 

introduced in this work. The photoactive layer of the bottom cell is a blend of P3HT and 

IC60BA. The photoactive layer of the top cell is a mixture of PBDTTT-C and PC60BM. 

Thicknesses of the photoactive layers of bottom and top cells were around 180 nm and 90 

nm, respectively. The absorptance of two independent photoactive layers with 

P3HT:IC60BA and PBDTTT-C:PC60BM deposited on glass substrates is displayed in 

Figure 5.9(b). The absorptance of the P3HT:IC60BA film is strong in the range between 

350 and 660 nm, which primarily arises from the π-π* transition in P3HT and only shows 

minor contributions from IC60BA in the UV range. In PBDTTT-C:PC60BM films, two 

relatively strong absorption bands near 400 nm appear due to PC60BM and at 660 nm due 

to PBDTTT-C. Therefore, the tandem PSC absorbs light from the visible range to the 

near-infrared (near-IR), up to around 800 nm. 

 

Figure 5.9 (a) Device structure of an inverted tandem P3HT:IC60BA (bottom cell) and 

PBDTTT-C:PC60BM (top cell) solar cell with a charge recombination layer of PEIE 

modified MoOX/Al2O3:ZnO nanolaminate, (b) Absorptance of independent films of 

P3HT:IC60BA and PBDTTT-C:PC60BM deposited on glass substrates.  
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 In this study, two single-junction PSCs and four tandem PSCs are introduced. The 

detailed device structures are described below: 

Inverted single-junction PSCs:  

 Glass/ITO/PEIE/P3HT:IC60BA/MoOX/Ag (SB) 

 Glass/ITO/Al2O3:ZnO nanolaminate/PEIE/PBDTTT-C:PC60BM/MoOX/Ag (ST) 

Inverted tandem PSCs: 

 Glass/ITO/PEIE/P3HT:IC60BA/MoOX/Al2O3:ZnO nanolaminate/PEIE/PBDTTT-

C:PC60BM/MoOX/Ag (T1) 

 Glass/ITO/PEIE/P3HT:IC60BA/MoOX/Al2O3:ZnO nanolaminate/PBDTTT-

C:PC60BM/MoOX/Ag (T2) 

 Glass/ITO/PEIE/P3HT:IC60BA/MoOX/ZnO/PEIE/PBDTTT-

C:PC60BM/MoOX/Ag (T3) 

 Glass/ITO/PEIE/P3HT:IC60BA/MoOX/PBDTTT-C:PC60BM/MoOX/Ag (T4) 

 

 The J-V characteristics of 18 tandem PSCs of the devices T1 were measured to 

exhibit its reproducibility. As shown in Figure 5.10, devices T1 exhibit a VOC = 1460 ± 

14 mV, a JSC = 8.2 ± 0.2 mA cm
-2

, a FF = 0.58 ± 0.02, and a PCE = 6.9 ± 0.2%, averaged 

over 18 devices. The photoactive area of these devices was around 0.1 cm
2
, but was 

determined accurately under a microscope for each individual device to extract their 

photovoltaic parameters. However, it should be noted that fringing effects caused by the 

highly conductive Al2O3:ZnO nanolaminate layer could impact the accuracy of the 

characterization of the photovoltaic parameters. A second batch of devices T1 was 

characterized by using a 0.092 cm
2
 aperture to define the active area. These, type T1 

PSCs exhibited a PCE of 6.5 ± 0.1 % with a VOC = 1481 ± 15 mV, a JSC = 7.1 ± 0.1 mA 

cm
-2

, and a FF = 0.62 ± 0.01. This second batch of devices T1 yielded very comparable 

VOC values to the first batch of devices T1. Slightly smaller JSC, and consequently PCE 



 144 

values, resulted from the improved accuracy of the characterization protocol used. 

Despite the small differences, when taken together these results underscore the high 

performance of the recombination layer and the good reproducibility of T1 type devices. 

 

Figure 5.10 J-V characteristics under illumination of 18 devices T1. Note that the active 

area was around 0.1 cm
2
 and determined accurately under a microscope for each 

individual device.  

 

 A comparison of the J-V characteristics under illumination and the semi-log |J|-V 

characteristics in the dark of devices SB, ST, and T1 is shown in Figure 5.11 (a) and (b). 

Devices SB displayed a PCE value of 4.7 ± 0.2 % with VOC = 809 ± 4 mV, JSC = 8.2 ± 0.1 

mA cm
-2

, and FF = 0.68 ± 0.03 while devices ST displayed a PCE value of 6.4 ± 0.1 % 

with VOC = 677 ± 4 mV, JSC = 15.3 ± 0.1 mA cm
-2

, and FF = 0.62 ± 0.01.  It is 

noteworthy that the VOC of devices T1 is statistically identical to the sum of the VOC of 

two single cells (devices SB, ST). The photovoltaic performance parameters, averaged 

over 5 devices of each type, are summarized in Table 5.2. 
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Figure 5.11 (a) Representative J-V characteristics under illumination for SB (open 

squares), ST (open circles), and T1 (closed squares), (b) Representative |J|-V 

characteristics in the dark for SB (open squares), ST (open circles), and T1 (closed 

squares), (c) EQEs of T1 with 520 nm light bias (closed square) and with 750 nm light 

bias (closed circles), SB (open circles), and ST (open squares), and (d) Representative J-

V characteristics under illumination for T1 (closed squares), T2 (open squares), T3 

(closed circle), and T4 (open circles). 

 

 A comparison of the EQE spectra of two single-junction cells (devices SB and ST) 

and a tandem cell (devices T1) is shown in Figure 5.11 (c). The EQE spectra of the 

devices SB and ST are in good agreement with the absorptance spectra of the individual 

photoactive layers used in SB and ST, as shown in Figure 5.9 (b). Devices SB and ST 

showed maximum EQE values of around 66 % around 520 nm and around 67 % around  

680 nm, respectively. The EQE spectrum of an individual sub-cell in a tandem cell 

geometry can also be extracted, and compared with that of single cells, if the devices are 
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illuminated with monochromatic light of constant intensity during the EQE measurement. 

By illuminating devices T1 with light at 520 nm  the  bottom sub-cell can operate around 

the maximum power point while the top sub-cell present small absorption and photo-

current; thus allowing for the EQE of top-subcell to be measured and compared with the 

values derived from device SB. Likewise, if device T1 is illuminated with light at 750 nm,  

the EQE of the  bottom sub-cell can be acquired and compared with that of device ST. As 

expected, the EQE of the two subcells in device T1 closely follows the spectral shape of 

the single cells and demonstrate that T1 can harvest photons up to 800 nm. 

Table 5.2 Summary of the averaged photovoltaic performance parameters from single-

junction (SB and ST) and tandem solar cells (T1, T2, T3, and T4). Averages taken over 5 

devices for SB, ST, T1, T2, and T4, and 3 devices for T3. 

 

 

 

 Figure 5.11(d) shows the EQE spectra of two single-junction cells (SB and ST) 

and the tandem cell (T1). The EQE spectra of the SB and ST are in good agreement with 

the absorptance spectra of the photoactive layers of the SB and ST shown in Figure 

5.9(b). The SB and ST showed their maximum EQEs of around 66 % around the 

wavelength of 520 nm and around 67 % around the wavelength of 680 nm, respectively. 

Types
VOC

(mV)

JSC

(mA/cm2)
FF

PCE

(%)

SB 809 ± 4 8.2 ± 0.1 0.68 ± 0.03 4.7 ± 0.2

ST 677 ± 4 15.3 ± 0.1 0.62 ± 0.01 6.4 ± 0.1

T1 1481 ± 15 7.1 ± 0.1 0.62 ± 0.01 6.5 ± 0.1

T2 1410 ± 23 6.5 ± 0.1 0.58 ± 0.01 5.4 ± 0.3

T3 1439 ± 11 6.7 ± 0.2 0.52 ± 0.01 5.0 ± 0.2

T4 619 ± 13 6.4 ± 0.3 0.45 ± 0.02 1.8 ± 0.2
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The application of a light bias was used to extract the EQE spectrum of an individual sub-

cell from the tandem cell. With 520 nm of light bias, the SB can operate around the max-

power point while the ST has negligible absorption, and thus the EQE of the ST can be 

obtained. Likewise, with 750 nm of light bias, the EQE of the SB can be acquired. The 

EQE of the T1 revealed that the T1 can harvest photons up to 800 nm and the bottom and 

top cells of the T1 can contribute separately. 

 Finally, to see the effect of each layer at the CRL, the photovoltaic performances 

of four tandem PSCs, devices T1, T2, T3, and T4, were compared (Figure 5.11(d)). First, 

it is found that in the absence of an electron-collecting material in the CRL, devices T4 

(MoOX CRL), two sub-cells in a tandem cell geometry act as a single cell. Devices T4 

show PCE values of 1.8 ± 0.2 % with VOC of 619 ± 13 mV, JSC of 6.4 ± 0.3 mA cm
-2

, and 

FF of 0.45 ± 0.02. In the absence of PEIE, devices T2 (MoOX /Al2O3:ZnO CRL) display 

PCE values of 5.4 ± 0.3 % with VOC of 1410 ± 23 mV, JSC of 6.5 ± 0.1 mA cm
-2

, and FF 

of 0.58 ± 0.01. The RSA and RPA values obtained from the J-V characteristics of T2 were 

3.1 ± 0.3 Ω cm
2
 and 1100 ± 91 Ω cm

2
, respectively. The performance of T2 is worse than 

that of devices T1, which as previously reported reach PCE values of 6.5 ± 0.1 %. with 

VOC of 1481 ± 15 mV, JSC of 7.1 ± 0.1 mA cm
-2

, FF of 0.62 ± 0.01.  For devices T1, RSA 

and RPA are found to have values of 2.8 ± 0.2 Ω cm
2
 and 1124 ± 28 Ω cm

2
, respectively, 

which are very similar to those values found in devices T2. This demonstrates that the 

presence of PEIE in the CRL of devices T1 does not introduce parasitic resistances to the 

cell but significantly improves the PCE value by 20% by increasing the values of VOC, 

JSC and FF. Although a detail description of the effects of PEIE in PSCs has not yet been 

fully understood it is speculated that the increased value of VOC in devices T1 induced by 

the presence of PEIE can arise by considering two effects: first that PEIE yields a 

significant reduction of the WF of the nanolaminate film, by 0.6 eV, bringing the value of 

the low-WF side of the CRL closer to the reported value of the EA (3.8 eV- 4.3 eV) [47] 
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of PC60BM; and second that PEIE could potentially reduce trap-assisted recombination at 

the metal-oxide surface [71]. Both effects are believed to contribute to an improved 

electron collection efficiency by reducing recombination losses close to the CRL 

interface and would lead to increased VOC, JSC and FF values, as seen when comparing 

values in devices T1 to those found in devices T2. 

 Lastly, giving the extensive use of ZnO as the low-WF layer in CRL reported in 

the literature, it is interesting to compare the performance of devices T3, comprising 

MoOX/ZnO/PEIE as the CRL, with that of devices T1, comprising a MoOX/Al2O3:ZnO 

nanolaminates/PEIE CRL.  Devices T3 show PCE values of 5.0 ± 0.2 % with VOC of 

1439 ± 11 mV, JSC of 6.7 ± 0.2 mA cm
-2

, and FF of 0.52 ± 0.01. The extracted RSA and 

RPA values from the J-V characteristics of device T3 were 3.6 ± 0.2 Ω cm
2
 and 619 ± 8 Ω 

cm
2
, respectively. Here, the WF of both electron-collecting surfaces in the CRL is 

expected to be very similar in both types of devices [71]. Indeed, difference of VOC values 

between devices T1 and T3 is only by 3%, while difference of the JSC is by 6% and that 

of the FF is by 19%. It is believed that these differences come in part from the smaller 

electrical conductivity of ZnO compared to that of Al2O3:ZnO nanolaminates [78]. – 

inducing a larger series resistance in devices T3. While the exact origin of the much 

improved RPA values in device T1 compared to values in devices T3 is unclear, 

according to previous reports  [156,157], this can be ascribed to the improvement in the 

barrier properties of ALD nanolaminates compared to single-material ALD layers, 

leading to a CRL that chemically and mechanically more robust. 
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5.2.4 Conclusions   

 This section shows a new CRL for efficient inverted tandem PSCs. The CRL 

comprises a PEIE-modified bilayer of MoOX/Al2O3:ZnO nanolaminates. Unlike the 

tandem PSC discussed in the previous section, the PSC demonstrated in this section uses 

two active layers with complementary absorption ranges, P3HT:IC60BA and PBDTTT-

C:PC60BM. This tandem PSCs displayed a PCE up to 6.5 % and almost perfectly 

summed VOC from the sub-cells. 

 The CRL introduced here has several advantages. First, the use of the Al2O3:ZnO 

nanolaminate which has a higher electrical conductivity than that of ZnO, results in a 

lower RsA, consequently providing about 6 % of JSC increase  and 19 % of FF increase. It 

should be noted that to date the most efficient inverted tandem PSCs have used ZnO as 

the electron collecting component in the CRL. Furthermore, the Al2O3:ZnO nanolaminate 

yields an  increased RPA that might be related to improved barrier properties from ALD 

nanolaminates than single-material ALD layers. In addition, the PEIE modification 

increases the WF contrast of the CRL by 0.6 eV, resulting in enhanced VOC of the tandem 

PSC by 20 % than that of a tandem PSC without PEIE modification. Moreover, 

presumably, reduced trap-assisted recombination at the metal-oxide surface induced by 

the PEIE modification leads to increased electron selectivity.  

 However, further research related to device performance and processing methods 

is still needed. The photoactive layers employed in the bottom and top cells have a 

relatively big overlap in their absorption ranges. With new polymers utilizing the solar 

spectrum more efficiently, enhanced tandem device performance with this CRL is 

expected. Also, new techniques that can reduce processing time and cost are required. 

The fabrication processes of the MoOX (thermal evaporation) and the Al2O3:ZnO 

nanolaminate (ALD) are done under vacuum and take a relatively long time (MoOX: 
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more than 6 hours, Al2O3:ZnO nanolaminate: more than 3 hours). Despite their efficient 

charge collecting performance, these methods are still challenging. Thus, more cost-

effective and less time-consuming fabrication methods such as solution processing should 

be considered. 

 

 

 

  



 151 

5.3 Polyethylenimine Derivatives Modified PEDOT:PSS as the Charge 

Recombination Layer 

5.3.1 Introduction  

 To date, some of low-WF components such as LiF, Ca, etc. and high-WF 

components such as MoOX, etc. in CRLs in tandem PSCs need to be prepared in high 

vacuum [94,97,116,117,158,159]. More recently, all-solution processed CRLs such as 

PEDOT:PSS/ZnO [111,112] for the inverted geometry, and ZnO/PEDOT:PSS [103] and 

PFN/TiO2/PEDOT:PSS [90] for the conventional geometry have been successfully 

applied to the tandem PSCs. Even though these all solution processable CRLs are highly 

desirable for large-area roll-to-roll manufacturing of PSCs, the use of crystalline 

inorganic materials may induce additional challenges regarding the mechanical flexibility 

of the PSCs. Furthermore, the use of PEDOT:PSS in combination with metal oxides with 

WF around 4.3 eV for the CRLs may not provide sufficiently high WF contrast between 

top and bottom interfaces of the CRL, which limits the range of photoactive materials 

that can be employed for realizing tandem PSCs.  

 As mentioned in Chapter 4.3, the PEIE or PEI can universally reduce the WF of 

conductors, including metals, metal oxides, conducting polymers and graphene [62].  

Based on this discovery, PEIE-modified ITO, Ag and PEDOT:PSS (PH 1000) have been 

demonstrated as efficient ECEs (Chapter 4.3) in single-junction PSCs, and PEIE-

modified MoOX/Ag/PEIE (Chapter 5.1) and MoOX/Al2O3:ZnO nanolaminates (Chapter 

5.2) have been shown to work as efficient CRL in tandem PSCs. Furthermore, all-

polymeric solar cells with a PEDOT:PSS HCEs and a PEI-modified PEDOT:PSS ECE 

has been introduced (Chapter 4.3). 
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 Building upon these principles, this section demonstrates the use of conducting 

polymer PEDOT:PSS modified at one interface with PEIE as a simple, solution-

processable all-polymeric CRL for inverted tandem PSC. In such CRL, the presence of a 

strong surface dipole induced by the PEIE leads to large WF contrast between the two 

opposite interfaces of the CRL in contact with the bottom and top cells in a tandem PSC 

where the sub-cells are connected in series. The surface of the PEDOT:PSS displays a 

high-WF of 4.9 eV, whereas the top surface shows a low-WF of 3.6 eV.  

 In this section, an analysis of electrical and optical properties of the CRL of PEIE-

modified PEDOT:PSS (PH 1000) is conducted. An investigation of photovoltaic 

performance of P3HT:PC60BM and PBDTTT-C:PC60BM-based inverted tandem PSCs 

with the CRL is performed. This is the same photoactive layers used in Chapter 5.2. A 

comparison of the photovoltaic properties of the tandem PSCs with those of two 

independent single-junction PSCs with P3HT:IC60BA or PBDTTT-C:PC60BM as the 

photoactive layers. Finally, investigation on photovoltaic performance of the inverted 

tandem PSCs with CRLs of PEI (branched PEI)-modified either highly conductive 

PEDOT:PSS (PH 1000) or lowly conductive (AI 4083) is performed.       

 

5.3.2 PEIE-modified PEDOT:PSS Charge Recombination Layer Characterization 

 WF measurement by a Kelvin probe conducted on PEIE (10 nm)-modified 

PEDOT:PSS (PH1000) electrodes reveals that the WF of PEDOT:PSS (PH1000) 

decreases from 4.9 eV to 3.6 eV after the PEIE modification. Also, as demonstrated in 

Chapter 4.3, the thermally-annealed PEDOT:PSS (PH1000) layer is robust enough to 

avoid being dissolved by the aqueous PEIE solution. Hence, this chemical robustness as 

well as the large WF contrast in presented from the two opposite surfaces of the PEIE-

midifed PEDOT:PSS make them very attractive for their use as a CRL. Furthermore, the 
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very low WF shown from the PEIE-modified interface should enable this CRL to work 

effectively with a wider range of acceptor materials, having even smaller EAs than 

typically-used fullerene derivatives.  

 The measured complex refractive index values (N = n + ik) of PEDOT:PSS 

(PH1000) and PEIE are shown in Figure 5.12.  PEDOT:PSS (PH1000) displays complex 

refractive index dispersion characteristics that indicate its metallic nature. Namely, within 

the visible spectral region, the extinction coefficient (k) follows a spectral dispersion that 

is typical of a “free”-electron contribution, monotonically increasing with wavelength. 

Correspondingly, the refractive index (n) values are below 1 within this region. In 

contrast, PEIE shows the typical spectral dispersion for a lossless material (Cauchy 

dispersion characteristics) within the visible spectra.  

 

 

Figure 5.12 Refractive index (n) and extinction coefficient (k) spectra of  PEDOT:PSS 

(PH1000) and PEIE films.  
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 Simulations of the JSC of the P3HT:PC60BM and PBDTTT-C:PC60BM-based 

tandem PSCs were conducted to help out the selection of the thicknesses of the 

photoactive layers.  Figure 5.13 (a) displays a simulation of the dependence of JSC on the 

thicknesses of the photoactive layers.  

 

 

Figure 5.13 (a) Simulated JSC generated in a P3HT:IC60BA and PBDTTT-C:PC60BM-

based tandem PSC as a function of the thicknesses of the photoactive layers. (b) 

Simulation of the absoprtance in a tandem solar cell with optimized geometry and a 

breakdown of the individual contributions of the P3HT/IC60BA (wine), PH1000(blue), 

PEIE (black) and PBDTTT-C/PC60BM (green) layers. 

 

 From these simulations, the JSC reaches an optimum value, around 8.0 mA/cm
2
, 

when the thicknesses of the P3HT:IC60BA and PBDTTT-C:PC60BM layers are around 

220 nm and 80 nm, respectively. As shown in Figure 5.13 (b), in a tandem PSC with 

these photoactive layer thicknesses, a breakdown of the individual layer contributions to 

the total absorptance of the tandem cell shows that the PH1000 layer contributes less than 

4.5% to the total absorptance of the tandem cell for wavelengths smaller than 800 nm. 
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From this optical simulation result, it was found that the contribution from the CRL to the 

total absorptance in the tandem cell is negligible. 

 

5.3.3 Characterization of Solar Cells Performance   

 In this section, two single-junction PSCs and three tandem PSCs are discussed. It 

should be noted that the single-junction PSCs have the same device structures to those of 

single-junction PSCs introduced in Chapter 5.2, but they were newly fabricated for this 

study. Also, T1, T2, and T3 are different tandem PSCs from the tandem PSCs studied in 

Chapter 5.2. The detailed device structures are described below and shown in Figure 

5.14(a)-(c) and Figure 5.16 (a) and (b): 

Inverted single-junction PSCs:  

 Glass/ITO/PEIE/ PBDTTT-C:PC60BM /MoOX/Ag (SB) (Figure 5.13 (a)) 

 Glass/ITO/PEIE/ P3HT:IC60BA /MoOX/Ag (ST) (Figure 5.13 (b)) 

Inverted tandem PSCs 

 Glass/ITO/PEIE/P3HT:IC60BA/PEDOT:PSS (PH1000)/PEIE/PBDTTT-

C:PC60BM/MoOX/Ag (T1) (Figure 5.13 (c)) 

 Glass/ITO/PEIE/P3HT:IC60BA/PEDOT:PSS (PH1000)/PEI/PBDTTT-

C:PC60BM/MoOX/Ag (T2) (Figure 5.15 (a)) 

 Glass/ITO/PEIE/P3HT:IC60BA/PEDOT:PSS (AI4083)/PEI/PBDTTT-

C:PC60BM/MoOX/Ag (T3) (Figure 5.15 (b)) 
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Figure 5.14 Device structures of inverted single-junction (a) ST and (b) SB, and tandem 

PCS (c) T1.   

  

 Figure 5.15 shows a comparison of the J-V characteristic ((a) under illumination 

and (b) in the dark) of T1 and corresponding single-junction PSCs containing 

P3HT:IC60BA (SB) and PBDTTT-C:PC60BM (ST) photoactive layers. Device 

performance is summarized in Table 5.3. For single-junction cells, SB shows average 

values of VOC of 820 mV, a JSC of 8.8 mA/cm
2
 and a FF of 0.63, resulting in a PCE of 4.5% 

(averaged over 20 devices). From SB, extracted RSA and RPA values from J-V 

characteristics are 2.9 Ω cm
2
 and 2500 Ω cm

2
, respectively. ST shows average values of 

VOC of 671 mV, a JSC of 15.2 mA/cm
2
 and a FF of 0.57, resulting in a PCE of 5.9 % 

(averaged over 25 devices).  From ST, extracted RSA and RPA values are 1.8 Ω cm
2
 and 

500 Ω cm
2
, respectively. These results validate that the photoactive layers work 

reasonably well with the selected electrodes (ITO/PEIE and MoOX/Ag).  
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Figure 5.15 Representative J-V characteristics for SB (open squares), type ST (open 

circles), and type T1 (closed squares) (a) under illumination and (b) in the dark.  

Table 5.3 Summary of the averaged photovoltaic performance parameters from single-

junction (SB averaged over 20 devices and ST averaged over 25 devices) and tandem 

solar cells (T1 averaged over 25 devices). 

 

 As for tandem PSCs, T1 shows averaged values of VOC of 1480 mV, a JSC of 7.4 

mA/cm
2
, a FF of 0.68 and a PCE of 7.5 % (averaged over 5 devices). For T1, RSA and 

RPA are found to have values of 3.3 Ω cm
2
 and 3790 Ω cm

2
, respectively. The champion 

tandem cell achieved a VOC of 1458 mV, a JSC of 7.2 mA/cm
2
, and a high FF of 0.73, 

yielding a PCE of 8.5%. This result shows that the VOC of tandem PSCs is the sum of the 

VOC of the bottom and top cells; with no loss observed. This indicates that the energy 

alignment between the WF of the PH1000 interface and the IE of P3HT and of the PEIE-

modied PEDOT:PSS (PH1000) interface and the EA of PC60BM is good enough to allow 

for the alignment of the quasi-Fermi levels of the bottom and top cells. The tandem PSCs 
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SB 820± 10 8.8 ± 0.4 0.63 ± 0.01 4.5 ± 0.2

ST 671 ± 2 15.2 ± 0.8 0.57 ± 0.03 5.9 ± 0.3

T1 1480 ± 20 7.4 ± 0.4 0.68 ± 0.04 7.5 ± 0.7
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exhibit higher averaged FF (0.68) than both of the single-junction PSCs, 0.63 and 0.57, 

respectively. This performance can be analyzed using an equivalent circuit model with 

the following equation given below (Eq. 1.8 is rewritten.) 
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where RS is the series resistance, RP is the shunt resistance, J0 is the reverse saturation 

current density, A is the solar cell area, e is the elementary charge, k is Boltzmann’s 

constant, T is the temperature, n is the ideality factor of the diode, and Jph is the 

photogenerated current density. First, it is worth noting that in the absence of RS and for 

an infinite RP, an upper-limit for the FF, FF0 is defined by Eq. 5.2 (Eq. 1.11 is rewritten.) 
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where vOC = eVOC/nkT. FF0 yields values of 0.67, 0.62, and 0.74 for devices SB, ST, and 

T1, respectively. Namely, in the absence of RS and for infinite RP, a tandem cell will 

display a higher fill factor than any of the single-junction cells due to the increased VOC. 

In devices T1, the extrated ideality factor n of 4.5 has a higher value which could reduce 

FF0, however, this effect is not as strong as the increase arising from the higher value of 

VOC. The extracted n values of SB and ST are 3.7 and 3.6, respectively. In devices, the FF 

is reduced by the values of RS and RP normalized to the characteristic resistance defined 

as RCH = VOC/(JSCA). After incorporating the normalized series resistance by following Eq. 

5.3, rS =RS /RCH, the fill factor (FFS) yields values of 0.64, 0.60, and 0.72 for devices SB, 
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ST, and T1, respectively. Furthermore, with the additional incorporation of the 

normalized shunt resistance, rP =RP /RCH, the fill factor (FFSP) yields values of 0.63, 0.56, 

and 0.69 for devices SB, ST, and T1, respectively, consistent with the measured values, 

validating the effectiveness of the model in this case and the parameters derived from it. 

The equivalent circuit model provides a plausible explanation for the large fill-factor 

observed.  

 It is also worth mentioning that no S-shaped kinks were observed in the J-V 

characteristics under illumination (Figure 5.15 (a)), which further confirms the efficient 

recombination of carriers at the PEDOT:PSS (PH1000)/PEIE CRL. This observation is 

different from previous reports of tandem PSCs with CRL of TiO2/Al/PEDOT:PSS[97] 

or ZnO/PEDOT:PSS[103] where S-shaped kinks were observed in the J-V characteristics 

which could be removed when the tandem PSCs are exposed to UV illumination. As 

discussed in Chapter 4, single-junction PSCs wherein the WF of the ECE is well matched, 

or ideally smaller, than the EA of the acceptor in the bulk hetrojunction photoactive layer, 

leads to PSCs that are insensitive to the UV treatment. Also, it was found that the effects 

induced by the UV exposure to PSCs containing metal-oxide layers, are related with a 

WF reduction of such metal oxides. When these metal-oxides are served as ECEs, the 

reduction of their WF leads to a better matching with the EA of the acceptor and 

consequently enhance the device performance.  With the use of PEIE or PEI (shown 

later)-modified PEDOT:PSS for a CRL, the achieved WF of 3.6 eV at the PEIE-modified 

interface is ideal to produce efficient electron-collecting interfaces which are less 

sensitive to changes on the energy levels of the materials at that interface. The good 

electron selectivity of the PEIE-modified electrodes (ITO and PH1000) in the tandem 

PSCs here is also attested by the high rectification shown in the J-V characteristics 

acquired in the dark (Figure 5.15 (b)) on pristine devices, without the help of the UV-

illumination. 
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 While PEDOT:PSS (PH1000)/PEIE is demonstrated to be an efficient  CRL for 

the tandem PSC, CRLs comprising PEDOT:PSS (PH1000)/PEI (branched) (T2) and a 

lowly conductive PEDOT:PSS (AI 4083)/PEI (T3) have been applied to inverted tandem 

PSCs with the same photoactive layers. The device structures of both cases are displayed 

in Figure 5.16. The PSCs with PEDOT:PSS (PH1000)/PEI CRL operate similarly to or 

slightly worse than those with PEDOT:PSS (PH1000)/PEIE with a averaged  PCE of 

7.1 %. This is consistent with the fact that  both PEIE and PEI can yield WF reductions 

(with PEIE: 3.58 eV, with PEI: 3.88 eV measured by a Kelvin probe) of PEDOT:PSS 

(PH1000) as shown in Chapter 4.3. However, the tandem PSCs (T3) with a CRL of 

PEIE-modified PEDOT:PSS (AI 4083) showed poor device performance with an 

averaged VOC of 1414 mV, JSC of 6.6 mA/cm
2
, FF of 0.46, and PCE of 4.3 %. These 

lower values might be attributed to the lower conductivity of PEDOT:PSS (AI 4083, 

electrical conductivity: 10
-3

 S/cm) layer than that of PDEOT:PSS (PH 1000, electrical 

conductivity: 600 S/cm) [62,160]. This low conductivity of the PEDOT:PSS may 

increase the RS of the device which leads to low FF and JSC, and consequently reduce the 

PCE. Device performance is summarized in Table 5.4.    
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Figure 5.16 Device structures of inverted tandem (a) type T2 PSC and (b) type T3 PSC.   

Table 5.4 Summary of the averaged
a
 photovoltaic performance parameters from tandem 

solar cells (T2 and T3). 

a
Averaged over four devices 

 

5.3.4 Conclusions   

 This section shows inverted tandem PSCs using an all-polymeric CRL of the 

PEIE-modified PEDOT:PSS (PH 1000). High PCE up to 8.5 % and large FF of 0.73 were 

achieved from the PSCs (T1) with the photoactive layers of P3HT:IC60BA and PBDTTT-

(a)

Glass/ITO

PEIE

P3HT:IC60BA

PEDOT:PSS (PH 1000)

PEIE

PBDTTT-C
:PC60BM

Ag
MoOX

(b)

Glass/ITO
PEIE

P3HT:IC60BA

PEDOT:PSS (4083)

PEIE

PBDTTT-C
:PC60BM

Ag

MoOX

Types
VOC

(mV)

JSC

(mA/cm2)
FF

PCE

(%)

T2 1490± 10 7.6 ± 0.4 0.63 ± 0.01 7.1 ± 0.4

T3 1414±52 6.6 ± 0.2 0.46 ± 0.06 4.3 ± 0.8
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C:PC60BM. The device performance results validate the PEIE-modified PEDOT:PSS 

(PH1000) film as an excellent candidate as a CRL for highly efficient tandem PSCs. 

 Several factors make it very attractive as a CRL. First, a large WF contrast of 1.3 

eV between the two opposite surfaces of the CRL result in excellent hole and electron 

collecting properties from the bottom and top cells. Next, while previously reported 

CRLs in tandem PSCs commonly comprised a combination of a low-WF and a high-WF 

components (layers), the CRL shown here is made up with a single layer of PEDOT:PSS 

modified at one interface with PEIE that showed adequate robustness for the fabrication 

of tandem PSCs from solution processes. This modified single layer of the CRL induced 

small absorption losses from the CRL, leading to an increased number of photons 

absorbed by the top cell. As a result, the tandem PSCs were able to yield the almost 

optimum JSC value that was calculated from optical simulations.  

 With this CRL, higher PCE will be achieved if donor polymers with a broader and 

more complementary spectral absorption are employed in the tandem PSC. Furthermore, 

the fully solution processing and flexibility of the polymer CRL are compatible with roll-

to-roll fabrication for large-area low-cost applications 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions   

  

 OSC technologies have been the subject of active research and development over 

the past decades. Due to their ability to be processed at low temperature over large areas 

at potentially low cost, OSCs have experienced accelerated development in recent years 

and have the potential to spawn a new generation of products with thin and flexible form 

factors. However, in spite of steady progress in performance, there are many challenges 

and concerns about PCE and stability that must be resolved before this emerging 

technology can unleash its full potential. In particular, OSCs with the conventional 

structure that include low-WF metals, such as LiF/Al and Ca/Al, at the top electrode 

suffer from device instability due to the air sensitive low-WF top electrodes. Recently, 

OSCs with inverted structures, in which the top electrode is a relatively high-WF metal to 

collect holes, have been proposed and developed with better air stability and comparable 

PCE to conventional OSCs. However, OSCs with a tandem structure in which more than 

two individual cells with complementary absorption ranges are stacked through a CRL 

are desirable for the realization of highly efficient solar cells by covering the emission 

spectrum of the sun more effectively. In this dissertation, many efforts were geared 

towards improving the performance of the PSCs (polymer-based OSCs). In particular, 

extensive research has been conducted to overcome the issues in PSCs by studying 

charge-collecting interlayers of single-junction and CRLs of tandem PSCs. 

 This dissertation discussed several charge-collecting interlayers, one hole-

collecting interlayer, NiO, and three electron-collecting interlayers, TiO2:PVP, PVP, and 

PEIE. Although the role of the NiO (hole-collecting) was opposite to the others (electron-
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collecting), these all were deposited on ITO to modify the WF of ITO to serve either as a 

HCE (conventional geometry) or ECE (inverted geometry). The NiO was processed by 

ALD and the other electron collecting interlayers were deposited by solution spin casting. 

 The goal of the conducted research with the charge-collecting interlayers was to 

investigate the origin of the WF evolution and the effect of WF values on the device 

performance. A rule of thumb is that the WF of the HCE has to be sufficiently high 

(higher than IE of donor) and that of ECE must be sufficiently low (lower than EA of 

acceptor) to maximize the charge-collection efficiency and the VOC of PSCs.  

 In the case of NiO, the pristine NiO-coated ITO had an initial WF value of 4.7 ± 

0.05 eV, and the WF value was not high enough to serve as a HCE in PSCs with P3HT 

(IE: 4.7-5.0 eV) as the donor [47,153]. Thus, P3HT:IC60BA-based PSCs made with 

pristine NiO yielded poor photovoltaic performance with small FF and a low VOC. 

However, subsequent O2-plasma treatment further increased the WF up to 5.4 ± 0.02 eV 

as well as the conductivity of NiO, turning NiO-coated ITO into an efficient HCE. The 

XPS study showed that the origin of the WF increase after the O2-plasma treatment was 

related to the reduction of the strength of peaks of the Ni(OH)2 and carbonaceous species 

from the surface of the as-prepared ALD NiO films. Also, p-doping resulting from the 

O2-plasma treatment could not be ruled out as a cause for the device performance 

improvement. After the O2-plasma treatment, PSCs showed PCE of 4.1 ± 0.2 % with 

about two times increased VOC and three times increased FF. Finally, non-conformal 

coverage of NiO on ITO showed detrimental effect on device performance. Despite the 

similar WF values NiO layers with different thickness, non-conformal coverage can 

cause a spatial distribution of areas with higher (NiO-coated) and lower (bare ITO) WF 

values across the surface. Thus, conformal coverage of the charge-collecting interlayer on 

the conductor surface should be achieved for better device performance.  

 Similarly to the hole-collecting interlayers, the sufficiently low-WF value of 

electron-collecting interlayers was important to collect electrons effectively. In addition 
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to the proper WF value, air stability is another key issue in electron-collecting interlayers 

since the reactive low-WF component often causes quick device degradation in air. In 

this dissertation, low-WF ECEs were introduced by modifying the surface of a conductor 

with a non-conjugated amine containing polymer. The ECEs have good air stability and 

sufficiently low WF. Also they could be achieved by using a simple and large throughput 

method at low temperature (< 120 °C) with environmental friendly solvents.  

 The first polymer surface modifier discussed in this dissertation was PVP. 

Initially, PVP was used as a dispersant for TiO2 nanoparticles. As a dispersant, PVP was 

able to coordinate onto and disperse TiO2 nanoparticles uniformly in films on top of ITO. 

An ECE comprising ITO coated with TiO2 nanoparticles dispersed into PVP was 

employed in inverted PSCs and P3HT:PC60BM-based PSCs yielded a PCE of 3.0 ± 0.2% 

after exposing the PSCs for 25 min under a 100 mW/cm
2 
AM 1.5 G solar illumination.    

 The more important thing which was discovered from this study is that not only 

can the PVP help with the dispersion of the TiO2 nanoparticles, but it can lead to even 

larger reductions of the WF in TiO2:PVP-coated ITO ECEs (4.33 ± 0.02 eV) compared to 

TiO2-coated ITO electrodes (4.47 ± 0.02 eV), and consequently to inverted PSCs with 

enhanced photovoltaic performance. From this discovery, it was found that pure PVP 

itself can induce a reduction of its WF up to 0.8 eV of ITO, allowing it to act as an ECE.  

The WF reduction induced by the PVP was found to originate from the electron-donating 

properties of pyrrolidone groups in PVP. That is, the physical or chemical adsorption of 

PVP onto the ITO surface was speculated to induce a partial electron transfer from the 

pyrrolidone group to the ITO, thus creating a surface dipole µ on the ITO surface. This 

surface dipole was thought to decrease the electrostatic potential on the surface of the 

ITO, effectively reducing its WF. This discovery provided a noticeable improvement in 

ECEs. So far, a reduction of the WF of conductors (in this dissertation, mostly ITO) to 

allow them to function as ECEs has been obtained by coating surface of ITO with a layer 

of semiconducting material, typically metal oxides [67,69] having a lower WF value, an 
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alkali metal salt [75] commonly fabricated under vacuum or by spin-coating and post-

fabrication thermal treatments, in the case of nano-particles. However, these ITO 

modification methods need to be processed under vacuum, which may not be compatible 

with high throughput fabrication methods, or are in need of post thermal treatments at 

relatively high temperatures, which may not be compatible with flexible substrates. 

However, the polymer surface modification can be processed in air by spin-coating at low 

temperature, and provide similar WF reduction on the ITO surface.   

 Even though the use of PVP surface modification yielded a lowered WF value of 

ITO that was close to the EA of the acceptor material, it was found that further UV 

treatment was required due to the inhomogeneous surface coverage. Also, due to the 

insulating nature of the PVP, it was impossible to increase the thickness of the PVP like 

what was done for NiO layer. Hence, even if the polymer surface modification with the 

PVP provided an efficient way for realizing ECEs, using the only PVP for the surface 

modification still needs more improvements.  

 Another polymer surface modifier, PEI derivatives (PEI, PEIE), could overcome 

the issues of the PVP.  These PEI derivatives, which are neutral polymers and contain 

simple aliphatic amine groups, were shown to provide universal WF reduction of many 

different conductors, including metals, transparent conductive metal oxides, conducting 

polymers, and graphene, by up to 1.7 eV. The mechanism for WF reduction by these 

polymers was found to be similar to that of the PVP. That is, the WF reduction arises 

from physisorption of such polymers onto the conductor surface, which form an ultrathin 

layer on the surface. The intrinsic molecular dipole moments created by the neutral amine 

groups contained in the polymer surface modifiers and the partial charge-transfer 

character of their interaction with the conductor surface induce WF reduction for a wide 

range of conductors. Therefore, many different types of low-WF ECEs such as ITO/PEIE 

(WF: 3.60 ± 0.06 eV), PEDOT:PSS/PEIE (WF: 3.58 ± 0.06 eV), Ag/ECE (WF: 3.70 ± 

0.06 eV), etc. were successfully realized. These polymer surface modifiers are processed 
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in air from solution, providing an appealing alternative to chemically reactive low-WF 

metals. With ECEs made from the PEIE modification, various types of efficient single-

junction PSCs, including all-polymeric solar cells, have been demonstrated. 

P3HT:IC60BA-based PSCs with PEIE-modified ITO ECE yielded PCE of 5.9 ± 0.3 %, 

and fully polymeric solar cells with the same photoactive layer showed PCE of 3.4 ± 

0.2 %.  

 This surface modification was also employed in CRLs of inverted tandem PSCs. 

The large WF contrast in a CRL of tandem cell is very important. The WF of one side of 

the CRL should be high enough to collect holes in the adjacent sub-cell effectively, and 

the WF of the other side of the CRL needs to be low enough to collect electrons in the 

adjacent sub-cell efficiently. In this dissertation, two different high WF materials, MoOX 

(WF values of 5.3 ± 0.05 eV) and PEDOT:PSS (WF values of 4.9 ± 0.06 eV) served as 

hole-collecting layers in CRLs. And the PEIE modification was used to either reduce the 

WF of high-WF materials or provide further reduced WF of low-WF materials for the 

electron-selective interface.  

 The first CRL studied here was composed of PEIE-modified MoOX/Ag. The 1-

nm-thick Ag layer was shown to provide a better electrical connection between the top 

and bottom cells. In this CRL, the PEIE modification on the MoOX/Ag was found to 

provide WF reduction of MoOX/Ag from 4.8 ± 0.03 eV to 3.8 ± 0.01 eV, and 

consequently was used as the electron-selective interface. The CRL in the PSCs was 

shown to serve as a good recombination center for holes from the bottom cell and 

electrons from the top cell. While tandem PSCs without the PEIE modification in the 

CRL worked in essence as a single-junction cell with an increased RS, PSCs having the 

PEIE-modified MoOX/Ag CRL showed an improved photovoltaic performance with 

increased VOC (83% of the ideal VOC value) and a high value of FF similar to single-

junction cells. However, the small JSC due to the use of the same P3HT:PC60BM 

photoactive layer for the top and bottom cells limited the PCE of the tandem PSCs. In 
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addition to the enhanced device performance of the tandem PSCs, the inverted structure 

resulted in excellent air stability for exposure to ambient air for more than 140 h. 

However, the lack of optimized VOC and JSC from the tandem PSCs suggested that further 

study of the CRL and photoactive layers should be performed. Also, the deposition of the 

1-nm-thick Ag with a thermal evaporator is challenging, thus another easy way to form 

the Ag layer or a new material that replaces the Ag layer should be considered.    

 The secondly discussed CRL was composed of PEIE-modified MoOX/Al2O3:ZnO 

nanolaminates. In this CRL, a different electron-selective layer, Al2O3:ZnO 

nanolaminates was deposited on the MoOX by ALD. Unlike the non-continuous Ag layer 

in the first CRL, the Al2O3:ZnO nanolaminate provided highly conformal and uniform 

films over the MoOX layer, which could enhance not only the charge selectivity but also 

the VOC of the tandem PSC. In addition, the use of the highly conductive Al2O3:ZnO 

nanolaminate (1×10
3
 S/cm) [78] instead of the widely used electron-selective layer ZnO 

(2×10
2
 S/cm) led to enhanced photovoltaic performance with higher FF (19%) and JSC 

(6%) when compared to those of the PSC with the ZnO due to lower RSA of the 

Al2O3:ZnO nanolaminate. However, the VOC values difference between the two tandem 

PSCs were only by 3%, and it can be ascribed to similar WF values of PEIE-modified 

ZnO and Al2O3:ZnO nanolaminate. Lastly, the PEIE modification to the 

MoOX/Al2O3:ZnO nanolaminate enlarged the WF contrast, leading to further enhanced 

performance of tandem PSCs with increased VOC. Moreover, even though the exact origin 

of the increased RPA after PEIE modification is unclear, the PEIE layer is believed to 

improve barrier properties of Al2O3:ZnO nanolaminate. This tandem PSC used two 

photoactive layers with different absorption ranges (P3HT:IC60BA and PBDTTT-

C:PC60BM). The tandem PSCs could absorb light from the visible range to the near-IR, 

resulting in higher JSC of 7.1 ± 0.1 mA/cm
2 

compared to the JSC (3.2 ± 0.1 mA/cm
2
) from 

the previous tandem PSCs with same photoactive layers for bottom and top cells. 

However, there are still some issues with the proposed CRL, such as the crystalline 
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nature of Al2O3:ZnO nanolaminate limiting the mechanical flexibility of the PSCs, which 

needs to be resolved. 

 Lastly, the CRL consisting of the conducting polymer PEDOT:PSS (PH 1000) 

modified at one interface with PEIE was discussed. This was the first CRL made with 

fully polymeric materials and realized with a single PEDOT:PSS (PH 1000) layer with 

the surface modification. This CRL showed a large WF contrast between its two opposite 

surfaces, very small absorption losses and enough robustness to allow the fabrication of a 

top cell from solution processing. The photoactive layers P3HT:IC60BA and PBDTTT-

C:PC60BM were applied to the tandem PSC containing the PEIE-modified PEDOT:PSS 

CRL. Interestingly, in this tandem PSCs, a higher FF of 0.68 than those of single-junction 

cells (bottom cell (FF: 0.63) and top cells (FF: 0.57)) was achieved, even though it has 

been generally known that a FF of tandem cell is lower than single-junction cell due to 

presumably increased RS induced from two photoactive layer connected in series. 

However, this result clearly demonstrated that the increase in VOC from the tandem 

geometry influences more effectively on FF than the impact induced by the increased RS, 

and thus higher FF can be achieved. The photoactive layers of the bottom and top cells, 

however, still have some overlaps in their absorption range. Thus, provided donor 

polymers with a broader and more complementary spectral absorption are used in this 

tandem PSC, higher PCE will be obtained.  

 In short, surface modification with the polymeric materials discussed in this 

dissertation turns out to be an efficient way to provide air-stable low WF-electrodes for 

PSCs. This approach should allow the mass production of low-WF electrodes from 

processes that are compatible with the large-area roll-to-roll manufacturing techniques 

needed for the commercialization of low-cost, organic-based photovoltaic devices. 
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6.2 Recommendations for Future Work   

  This section provides several recommendations for future work. 

 First, in Chapter 3 the PCE of the PSC with the ITO/NiO HCE increased 

appreciably (more than 10 times) after O2-plasma treatment of the NiO layer. Although it 

was assumed that one of the possible mechanisms behind this was the occurrence of p-

doping of NiO film upon O2-plasma treatment, no systematic study was performed on the 

p-doping effect. Also, even though a similar study on the solution-processed NiO layer 

was conducted by others in the research community [57,132], no research has been 

performed on the ALD-processed NiO layer yet. Thus, research on the doping effect and 

mechanism in ALD-processed NiO from the O2-plasma treatment is recommended to 

further deepen understanding of the increased electrical conductivity of the NiO layer and 

the improved PCE of the PSC with the ITO/NiO HCE. Another recommendation for the 

PSCs with ITO/NiO HCE is the use of polymers with larger IE than that of the P3HT 

(4.65 eV – 5.0 eV) [47,149] used in this study. The WF of ITO/NiO with O2-plasma 

treatment was around 5.4 eV. Hence, the polymers with larger IE than that of P3HT are 

capable of PSC with the ITO/NiO HCE, and consequently larger VOC can be achieved. 

The maximum VOC of the OSCs is commonly determined by the difference between the 

IE of the donor polymer and the EA of the acceptor material.  

 Secondly, in Chapter 4, it was shown that electrons could be injected from 

semiconductors to electrodes though the PEIE, although the PEIE was an insulator. Even 

though either tunneling or thermionic injection was assumed as the mechanism behind 

this charge transport, detailed studies of this were not conducted. Research on the charge 

transport of such modifiers is worth conducting. In addition, the polymer surface 

modification with either PVP or PEI derivatives was applied only for PSCs with inverted 

geometry. However, this surface modification may also be applicable to PSCs with 

conventional geometry. In a PSC with conventional geometry, the use of low-WF 

materials such as Ca, LiF, etc., on top of the PSC has shown to cause device instability in 
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air. The use of inverted geometry has been considered as one method of avoiding this 

issue. However, this stability issue can also be resolved by replacing the reactive 

materials with the air stable polymeric surface modifier at the top of the conventional 

PSCs, so that finally an air-stable PSC with conventional geometry will be achieved.    

 Finally, even though the PEIE-modified CRL shown in Chapter 5.3 exhibited an 

excellent charge recombination property in the tandem PSC, the comparatively low JSC 

extracted from the tandem PSCs still left lots of room for improvement due to the 

relatively large overlap of absorption ranges between two polymers used, P3HT and 

PBDTTT-C. In order to take full advantage of this CRL, donor polymers with a broader 

and more complementary spectral absorption should be used in the tandem PSCs. Thus, it 

is worth fabricating tandem PSCs with new polymers to utilize the solar spectrum more 

efficiently. Finally, the tandem PSCs discussed in this thesis were made on a rigid 

substrate, glass/ITO. However, the fully polymeric CRL should be compatible with 

flexible tandem PSCs. Realizing fully polymeric tandem PSCs with the PEIE-modified 

PEDOT:PSS should be worthwhile.           
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