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SUMMARY

In this thesis we are concerned with the design and analysis of practically

efficient pool based and stream based active learning algorithms for the problem of

binary classification. The novelty of this work is that we view active learning from

the lens of sequential analysis, which allows us to borrow well established tools from

stochastic optimization and multi-armed bandits. In Chapter 1 we discuss the impor-

tance of active learning in machine learning and survey some important techniques

that have been proposed in active learning literature. We briefly review the stochastic

mirror descent algorithm in Chapter 2 and state some important results that are used

in the future chapters. In Chapter 3, we provide a generic pool based active learning

framework, that will form the basis of our pool based algorithms in Chapters 3, 4. In

Chapter 3, we provide an efficient pool based active learning algorithm called UPAL

for the class of linear hypothesis that uses importance sampling to construct unbiased

estimate of the risk of a hypothesis. We show that UPAL learns a hypothesis which

is an exponentially weighted average of different linear hypothesis. An experimental

evaluation demonstrates good performance of UPAL over other competing pool based

active learning algorithms. In the second half of this chapter we introduce another

pool based active learning algorithm called SGD-AL that uses the stochastic gradi-

ent descent algorithm, followed by Euclidean projections onto a L2 ball. SGD-AL

uses importance sampling to obtain unbiased estimates of the gradient. We establish

excess risk guarantees for SGD-AL, which prove that SGD-AL does just as well as a

passive learning algorithm for the class of linear hypothesis of bounded L2 norm.

In Chapter 4, we view the problem of active learning from the multi-armed bandit

lens. By making an explicit analogy between active learning and multi-armed bandits,

xiii



we are able to devise a pool based active learning algorithm, called LCB-AL, that

utilizes lower confidence bounds and self-concordant barrier type regularizer. Experi-

mental evaluation demonstrate better performance of LCB-AL over UPAL and other

competing algorithms.

In Chapter 5, we consider the problem of learning a convex aggregation of a given

set of classification models. We propose a stream based active learning algorithm,

called SMD-AMA, that uses a stochastic mirror descent algorithm, with the entropy

regularizer, to minimize an unbiased estimate of the risk of a convex aggregation.

We establish excess risk guarantees of our algorithm, and perform an experimental

comparison with a passive learner and other competitive active learning algorithms.

Our experimental results show that in certain cases, SMD-AMA achieves the same

accuracy as a passive learning algorithm but by querying less than 13% of the total

available labels.
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CHAPTER I

INTRODUCTION

Machine learning techniques have become popular in many fields such as Astronomy,

Physics, Biology, Chemistry, Web Search, Finance. With the availability of large

amounts of data, and computation, newer machine learning algorithms, and applica-

tions have been discovered. A very popular subclass of machine learning problems fall

under the category of supervised learning problems. Classification and regression are

the two most popular problems in supervised learning, where the learner is provided

with labeled data, and is required to predict the labels of unseen points. In the case

of classification problems, these labels are discrete, whereas in regression problems

the labels are continuous.

Supervised learning critically relies on the presence of labeled data. The cost

of obtaining labels for different data points depends on the problem domain. For

example, in Astronomy it is easy to get access to tons and tons of unlabeled data.

A prime example is the Fermi Gamma-ray Space telescope1 that intends to study

various phenomena in astrophysics by performing an all sky survey. One can easily

expect that such a scientific endeavour would require collecting lots of data. However,

obtaining labels for the gathered data is usually hard. In biological problems such

as gene sequencing, labeling data is tedious and requires Ph.D. level expertise. In

problems of speech recognition, while hours of speech data is easily available, labeling

speech utterances is tedious, and requires language expertise. For example [95] report

that annotating at word level can take more time than the length of the actual audio

itself. Similarly, for problems of information extraction from web documents, locating

1http://en.wikipedia.org/wiki/Fermi_Gamma-ray_Space_Telescope
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entities and relations, can take half-hour or more even for simple documents [85,

83]. In such cases, a natural question that arises is, that can we learn with limited

supervision?

1.1 Learning With Limited Supervision

Active Learning (AL) and semi-supervised learning are two machine learning paradigms

that have emerged in response to the problem of absence of labeled data. In a typical

active learning scenario we assume that we have access to a labeling oracle O, which

when provided as an input x ∈ X sampled from the underlying marginal distribution

DX , provides us with the label y ∈ Y , sampled from P[Y |X = x]. In the case of binary

classification, which is what we will be interested in this thesis, Y = {−1,+1}. Vari-

ous flavours of AL have been proposed in the past, namely membership query (MQ)

based algorithms, stream based algorithms and pool based algorithms. All these three

kinds of AL algorithms query the oracle O for the label of the point, but differ in

the nature of the queries. In MQ based algorithms the active learner can query for

the label of any point in the input space X , but this query might not necessarily

be from the support of the marginal distribution DX . With human annotators, MQ

algorithms might work poorly as was demonstrated by Lang and Baum [11]. Lang

and Baum studied the problem of MQ based learning for handwritten digit recog-

nition, and observed that the annotators were faced with the awkward situation of

labeling semantically meaningless images. Stream based AL algorithms [30, 14, 29]

sample a point x from the marginal distribution DX , and decide on the fly whether to

query O for the label of x. Stream based AL algorithms tend to be computationally

efficient, and appropriate when the underlying distribution changes with time. Pool

based AL algorithms [68] assume that one has access to a large pool P = {x1, . . . , xn}

of unlabeled i.i.d. examples sampled from DX , and given budget constraints B, the

maximum number of points they are allowed to query, query the most informative set

2



of B points. Both pool based AL algorithms, and stream based AL algorithms over-

come the problem of awkward queries, which MQ based algorithms face. In this thesis

we shall work in the pool and stream setting for the binary classification problem.

1.2 Active Learning as a Sequential Analysis Problem

A lot of algorithms have been proposed and designed for active learning (see Sec-

tion 1.3 for a brief overview of past approaches to active learning). To our knowledge,

there has been almost no work up until now that has been successful in designing an

active learning algorithm, that is computationally efficient, both in theory and prac-

tice, and also has provable guarantees. In this thesis, we intend to bridge the gap

between theory and practice of active learning for binary classification problems. We

do this by making connections between the problem of active learning and sequential

analysis. Sequential analysis aims at reducing the number of samples required for re-

liable statistical inference by using sequentially, and adaptively collected data rather

than using “passively” collected data. Classically sequential analysis has encompassed

problems such as sequential hypothesis testing [94, 9, 86], sequential estimation [41],

stochastic approximation [61], stochastic adaptive control [60] and multi-armed ban-

dits (MAB) [79, 2, 6]. The aim of this thesis is to show that active learning is

also a member of this family, and one could use techniques that have been

classically used in sequential analysis to design algorithms for the prob-

lem of active learning which are computationally efficient and also have

theoretical guarantees. With the sequential analysis viewpoint in mind, we design

four algorithms for active learning in binary classification problems. The advantage

of such a sequential viewpoint is that it allows us to build practically efficient algo-

rithms, with provable guarantees on the excess risk of the learned hypothesis, which

also have good empirical performance. All of our four proposed algorithms are

1. Easier to implement, and practically more efficient than version space based
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approaches, which are considered to be the state-of-art in theoretical active

learning literature.

2. Well grounded and principled as they rely on established ideas from literature

in sequential analysis such as multi-armed bandits, bandit linear optimization,

and stochastic convex optimization.

1.3 Related Work

A lot of active learning algorithms have been proposed in the past, and [83] provides a

very comprehensive survey of different techniques. In this thesis, we shall review only

the most popular active learning strategies that have been proposed in the literature.

1. Uncertainty sampling based strategies. This is perhaps the most well

known, and the most commonly used querying strategy [63]. The idea is to

query a point whose label we are most uncertain about. For example, when

actively learning SVMs, a simple uncertainty sampling based strategy would be

to query for the label of a point which is closest to the SVM hyperplane [89].

In the case of active learning with probabilistic models techniques such as mar-

gin sampling [82], entropy based sampling [84] have been proposed; which fall

into the general framework of uncertainty based sampling strategies. A funda-

mental problem with most algorithms that fall in this framework is that, the

queried samples end up being from a very different distribution than the target

distribution. For example, if we were actively learning SVMs, then the strat-

egy of querying points close to the decision boundary would yield a sampled

distribution which will be concentrated mostly close to the decision boundary.

However, the target distribution can be very different, which can lead to a large

generalization error.
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2. Query-By-Committee framework. The query-by-committee (QBC) frame-

work was initially proposed by Seung et al. [37]. They considered a Bayesian

setting where, the target hypothesis is drawn from a known prior distribution.

They designed a stream based AL algorithm, which for each unlabeled point

in the stream, draws two hypothesis from the posterior distribution over the

hypothesis space and queries for the label of the point, only if the two sam-

pled hypothesis disagree on the label of the point. Non-Bayesian approaches

to QBC have also been implemented in various forms via the use of ensemble

based methods [66, 70], and probabilistic models [69].

3. Version space based algorithms. Cohn, Atlas, and Ladner [30] proposed

a simple AL algorithm 2 in the stream setting. The algorithm maintains a

hypothesis space, that is consistent with all the labels seen till now, and queries

for the label of the point, if there exist two hypothesis that do not agree on the

label of the current point. For the pool setting, Gonen et al. [43] introduced a

version space based active learning algorithm, called ALuMa, for learning half

spaces under the margin assumption. They provide a guarantee on the ratio

of number of labels queried by ALuMa, to the number of queries that will be

required by an optimal active learning algorithm in the worst case. This ratio

scales as O(d ln( 1
γ
)), where γ is the true margin. ALuMA is a greedy algorithm,

that maintains a version space consistent with previously labeled points, and

queries a point that in the worst case, over its label, leads to a new version space

of smallest volume. The major drawback of both CAL and ALuMA are that

they are both not robust to cases when the data is not separable. Modifications

of the CAL algorithm have been proposed that can handle non-separable data

gracefully. Roughly speaking, given a hypothesis space H, that needs to be

2This algorithm has commonly been called as the CAL algorithm in active learning literature
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actively learned, modified CAL type algorithms, henceforth called version space

algorithms, maintain a current version space, Hi ⊆ H of the hypothesis space,

the error rate of whose members is not very large. Calculation of upper bounds

on the error rates of different hypothesis can be done via the use of standard VC

bounds [93]. They then query points from the disagreement region of Hi, i.e.

those set of points in X , on whose label, hypothesis from Hi disagree on. The

algorithms of Dasgupta et al. [31],Hsu [52], Balcan et al. [7], Hanneke [46], and

Koltchinskii [59] fall in this category, and proceed via explicitly or implicitly

maintaining a version space. Version space type algorithms have yielded strong

theoretical guarantees on the excess risk of the learned hypothesis [47], and the

number of labels required to be queried to attain this error rate. The first version

space based algorithm with label complexity guarantees was the A2 algorithm.

This analysis has been generalized by the pioneering work of Hanneke [44], via

the concept of disagreement coefficient.

4. Importance weighted based active learning strategies. Importance weight-

ing for sample bias correction is a standard technique in many machine learning

applications [6, 87, 88]. For stream based AL, an importance weighted algo-

rithm was first proposed by Beygelzimer et al. [14], and later extended to the

pool based setting by Ganti et al. [39, 40]. In a typical importance-weighted

strategy in the stream setting, each point that has been sampled from the un-

derlying distribution, is assigned a probability, p, of being queried. If the point

is queried, then the importance weight of this point is set to 1
p
, otherwise the

importance weight is set to 0. The importance weighted sample is then used for

training with a standard passive learning algorithm. One of the most attrac-

tive features of importance weighted strategies is that the importance weighted

sample provides an unbiased estimator of the loss of a hypothesis, not only for

the hypothesis class that was chosen for generating the importance-weighted
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sample, but also for any other different hypothesis class that might be used for

training in the future, with this importance-weighted sample. This is in contrast

to the previously listed strategies where, the queried data is strongly tied to the

hypothesis class that was used to actively query the data. As a result an actively

queried dataset, generated using one hypothesis class via importance weighted

strategies, can now be employed in the future with a different hypothesis class

without the problem of sampling bias.

5. Active learning with convex loss functions. Beygelzimer et al. [14] in-

troduced the importance-weighting technique for stream based active learning,

and designed an active learning algorithm, called IWAL (loss-weighting). IWAL

(loss-weighting) uses convex loss functions that are commonly used in passive

learning. To study the label complexity of active learning with convex losses,

they introduced a new problem dependent quantity called generalized disagree-

ment coefficient, which is a direct generalization of disagreement coefficient, and

a property of loss function called loss asymmetry, which for differentiable losses

is upper bounded by the ratio of maximum absolute value of derivative of the

loss function to the minimum absolute value of derivative of the loss function.

The authors analyzed the label complexity of IWAL (loss-weighting) in terms

of the generalized disagreement coefficient, and loss asymmetry. However, their

analysis is loose, and for certain losses such as hinge loss, squared loss does not

yield meaningful results. Hanneke and Yang [45] introduced a version space

based algorithm, which uses convex risk minimization procedures, to obtain

the intermediate version space. In contrast to typical version space based al-

gorithms (as mentioned in our bullet point 3), the algorithm of Hanneke and

Yang, is provably efficient for most reasonable hypothesis spaces, as it solves a

convex optimization problem. In practice though, the algorithm can be practi-

cally inefficient, as it requires explicitly maintaining the current version space,
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via convex inequalities.

6. Stochastic convex optimization and active learning. There has been

some preliminary work [76, 77] connecting stochastic convex optimization and

active learning. The main result has been that the rates for active learning

in 1-dimension match those of stochastic convex optimization, if the Tsybakov

noise condition [92] is satisfied, and if the marginal distribution is uniform on

the interval [0, 1]. However, this work is still pretty much preliminary.

7. Adaptive submodularity and Active Learning. Golovin and Krause [42]

introduced the notion of adaptive submodularity, an extension of the notion of

submodularity from sets to adaptive policies. For the problem of pool based

active learning, the authors introduced an adaptive submodular objective func-

tion, for which they suggested a greedy algorithm, whose computational com-

plexity scales linearly with the size of the hypothesis class. Such ideas, are

appropriate when the size of the hypothesis class is finite, and we want to de-

tect the optimal hypothesis. Almost always, the size of our hypothesis class is

infinite, and we do not want to precisely detect the best hypothesis. Instead,

we want to find a hypothesis whose excess risk w.r.t. the best hypothesis in the

hypothesis class is small.

8. Other Strategies. Many other strategies, than the ones mentioned above,

have been proposed. Settles [83] provides a comprehensive survey of various

other strategies, and we encourage the interested reader to take a look at this

survey.

1.4 Summary of Contributions

In Chapter 3, we first design a generic pool based active learning framework. An active

learning algorithm, operating in this framework proceeds in rounds, and in each round
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performs two steps. In the first step, we place a sampling distribution over the pool,

from which we sample one point, and query for the label of the point. The sampling

distribution, in each round, depends on our current hypothesis and all the points in

the pool. By the use of importance weights, we are able to derive importance weighted

estimators of the risk of a hypothesis, which are provably unbiased estimators of the

risk. In the second step, using these unbiased estimators of risk, we update our

current hypothesis.

We introduce two pool based active learning algorithms called UPAL, and SGD-

AL, that operate in the generic framework mentioned in the above paragraph. UPAL

uses sampling in proportion to the conditional entropy of the label distribution, and

a model 3 update procedure that solves an ERM problem minimizing the importance

weighted risk over the given hypothesis class. In the case of UPAL, we show that for

the class of potentially unbounded norm linear hypothesis, and squared loss, UPAL

learns a hypothesis that is similar to an exponentially weighted average hypothesis.

We analyze the statistical efficiency of UPAL with the squared loss, for a regression

problem, where the response y, for any x, sampled for the underlying marginal dis-

tribution belongs to [−1, 1]. We make the additional assumption that the underlying

regression model is linear. Under these conditions, we analyze the number of labeled

and unlabeled samples required for exact recovery of the linear model. To our knowl-

edge UPAL is the first active learning algorithm, proposed in the literature, that uses

an importance weighting scheme in the pool based setting. In the second part of the

chapter, we consider the problem of pool based active learning, when the hypothesis

class is the set of linear hypothesis of bounded norm, i.e. H = {h ∈ Rd : ||h|| ≤ R}.

For this class, we design a new active learning algorithm called SGD-AL, that uses

stochastic gradient descent, along with projections to update the current hypothesis.

3We shall use the words model and hypothesis interchangeably throughout the thesis. Similarly,
model class and hypothesis class will be used interchangeably throughout the thesis.
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With a carefully designed probability distribution, we show that the final hypoth-

esis outputted by SGD-AL is no worse than a passive learner (see Theorem 8 in

Chapter 3).

In Chapter 4, we use ideas from the literature of MAB to design an algorithm that

works in the generic pool based AL framework, introduced in Chapter 3. We provide

an equivalence between the MAB problem and AL. We do this by identifying what

is the conceptual role of the arms, and the loss signal in a MAB problem. We then

show that, for the AL problem, one could think of the different hypothesis as arms of

a MAB, and the label information obtained by querying the oracle, as providing an

implicit reward signal. Once this analogy is made clear, we use standard techniques

from MAB literature such as lower-confidence bounds, barrier type regularization

to design a pool based active learning algorithm called LCB-AL. Via the Bernstein

inequality for martingales, we construct high probability lower confidence bounds on

the risk of a hypothesis. We use minimization of the lower confidence bound over the

hypothesis space to update our current model, and sample points from the pool as

per a sampling distribution, that falls out of analyzing the role of queried labels as an

implicit loss signal. We show via experiments, that LCB-AL achieves good accuracy

by querying for a lot fewer labels than what passive learning algorithms would do.

In Chapter 5, we consider the problem of convex aggregation of a given set of

models. In the classical problem of learning a convex aggregation [71], we are given

models f1, . . . , fM , and labeled training data. Using this data, one is required to learn

a convex aggregation of models, that does as well as the best convex aggregation of

models. Precisely, given a margin based loss function L(·), we are interested in

procedures which output a convex combination θ̂ ∈ ∆M , where ∆M = {θ ∈ RM
+ :∑M

j=1 θj = 1} is the M − 1 dimensional probability simplex, such that

EL

(
y

M∑
j=1

θ̂jfj(x)

)
≤ min

θ∈∆M

EL

(
y

M∑
j=1

θjfj(x)

)
+ δn,M , (1)
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where δn,M > 0 is a small quantity that goes to 0 as n → ∞. We consider an

active variant of this problem, where instead of being given fully labeled data, we

are allowed to query an oracle for the labels of the data. Working in the streaming

setting, we propose a slight variant of the stochastic mirror-descent algorithm, called

SMD-AMA that uses uncertainty sampling type strategy to actively learn a convex

combination of the given models. We establish excess risk guarantees for the convex

aggregate returned by SMD-AMA, to be of the order of O

(√
log(M)
T 1−κ

)
, where T is the

length of the stream, and κ > 1
2

is an algorithm dependent parameter, that trade-off

the number of labels queried, and the excess risk. Large κ leads to a smaller lower

bound on the number of queries made, but a larger upper bound on the excess risk

of the convex aggregate returned by SMD-AMA (see Theorem 12 in Chapter 5). We

demonstrate experimentally, that our active learning algorithm, in most cases, has an

error rate comparable to that of a passive learning algorithm, even though we query

far fewer labels than passive learning does. For certain datasets, the label savings can

be as much as 87%.
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CHAPTER II

A PRIMER ON MIRROR DESCENT ALGORITHM

Chapters 3 and 5 introduce the SGD-AL and AMA-SMD algorithms respectively,

which rely on an implementation of the stochastic mirror descent algorithm. In this

chapter we shall introduce the mirror-descent algorithm, and the stochastic mirror

descent algorithms, and state a few results which shall be used later on. We intend to

keep this chapter as brief as possible, as it is very standard. Some excellent references

from where we took most of the material in this chapter are [12] and [19] (See also

the numerous references in [19]).

2.1 Mirror Descent Algorithm

The gradient descent algorithm is perhaps the most popular first order optimization

techniques in convex optimization. Given a convex function f : Rd → R, consider

the unconstrained convex optimization problem: min f(x). Gradient descent is an

iterative algorithm, which starts at an arbitrary point x1 in the domain of f , and

performs the following updates for t ≥ 1

xt+1 ← xt − ηt∇f(xt).

∇f(xt) is the gradient to the function f at the point xt. When the function is not

differentiable everywhere, then one can use any subgradient in the place of gradient. ηt

is called the step size. By using appropriate step sizes, one can guarantee convergence

of gradient descent algorithms to an optima x∗ of f(x) [17].

For the case of constrained convex optimization problems of the form minx∈X f(x),

where X is a closed convex subset of the domain of f , the gradient descent algorithm

along with Euclidean projection onto the constraint set, is a good first order convex
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optimization method.

The mirror descent (MD) algorithm, which was first introduced by Nemirovsky

and Yudin [73], is a first order algorithm for convex optimization, which can be seen as

an extension of the gradient descent algorithm to non-Euclidean geometry. Before we

dive into the details of the mirror-descent algorithm we shall need a few definitions.

Definition 1. Given a convex function R, the conjugate is another function R∗ :

dom(R∗)→ R defined as

R∗(y) = sup
x∈X
〈x, y〉 − R(x). (2)

Definition 2. Let V : X → R be strictly convex, and continuously differentiable on

int(X). The Bregman divergence corresponding to V is a function DV : X×int(X)→

R defined as

DV (x1, x2) = V (x1)− V (x2)− 〈∇V (x2), x1 − x2〉 (3)

Definition 3. A function V : X → R is Legendre if

1. V is strictly convex and continuously differentiable on the interior of X.

2. ||∇V (x)|| → ∞ as x→ bd(X), where bd(X) is the boundary of X.

There are two ways to view the mirror descent algorithm. We shall call them

primal-dual viewpoint, and the proximal viewpoint.

2.1.1 Primal-Dual Viewpoint

In order to implement a mirror descent algorithm one needs to specify a convex

function R : X → R, which is strongly convex w.r.t. a chosen norm || · ||. We assume

that the objective function f is Lipschitz continuous w.r.t. the chosen norm. We start

with an iterate x1 ∈ arg minx∈X R(x). For t ≥ 1, we generate the following sequence

of iterates

1. x̃t+1 = ∇R∗(∇R(xt)− ηt∇f(xt)).
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2. xt+1 = arg minx∈X DR(x, x̃t+1).

The second step of the above algorithms guarantees that the next iterate xt+1 belongs

to the constraint set X.

2.1.2 Proximal Viewpoint

The primal-dual viewpoint that was sketched in the previous section is very unin-

tuitive. The role of the strongly convex function R is unclear. A very clear under-

standing of the mirror-descent method is obtained by looking at it from the lens of

proximal algorithms. It is well known that the iterates of a gradient descent algo-

rithm for solving a convex optimization problem can be seen as solving the following

optimization problem

xt+1 = arg min
x∈X
〈∇f(xt), x− xt〉+

1

2ηt
||x− xt||2. (4)

By convexity of f , g(x)
def
= f(xt) + 〈x− xt,∇f(xt)〉 is an under approximation of the

function f(x) everywhere. Equation 4 tries to minimize a lower bound of f(x), by

considering the subgradient of f at xt, without going too far off from the current

iterate xt. An equivalent interpretation for mirror-descent algorithm can be provided

as follows. Iterate xt+1 is the solution to the optimization problem

xt+1 = arg min
x∈X
〈x− xt,∇f(xt)〉+

1

2ηt
DR(x, xt). (5)

Beck and Teboulle showed that if R is a strongly convex, Legendre function, then

the iterates of MD algorithm are the same as the iterates generated by solving the

optimization problem given in Equation 4. This is enlightening as it tells us that

mirror-descent is like a gradient descent algorithm, but uses the geometry induced

by a strongly convex function R. If R(x) = 1
2
||x||2, then we recover the projected

gradient descent algorithm. . A common way of using the mirror descent algorithm is

to choose an appropriate norm || · ||, and a regularization function R which is strongly

convex w.r.t. the chosen norm. For example,
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1. If X = ∆M , the M − 1 dimensional simplex, then a popular choice of R is the

entropy regularizer, defined as R(x) = −
∑M

i=1 xi log(xi). R(x) is 1-strongly

convex w.r.t. || · ||1 norm.

2. Consider the following example [19]. Suppose X = {Q ∈ Rd×d : Q � 0}. Define

the norm || · || as ||x|| =
√
xTQx, and take the regularizer R(x) = 1

2
xTQx. R(x)

is 1-strongly convex w.r.t. the defined norm.

A very popular way of using the mirror descent algorithm is with specific kinds

of regularization functions which are barriers, and Legendre type. A barrier type

regularization function means that R(x) =∞, for x /∈ X. Strongly convex, Legendre

type regularizers have some nice properties. These properties are well known(e.g. see

pages 297-298 of [26]).

Lemma 1. If R : X → X is a strongly convex, Legendre function, then

1. (∇R)−1 = ∇R∗.

2. DR(x1, x2) = DR∗(∇R(x2),∇R(x1)).

3. R∗∗ = R, i.e. the conjugate of the conjugate is the function itself.

4. For all x ∈ X and y, z ∈ int(X), we have

DR(x, y) +DR(y, z) = DR(x, z) + 〈x− y,∇R(z)−∇R(y)〉. (6)

This result has been called as the three point equality.

2.1.3 Stochastic Mirror Descent Algorithm

The Mirror descent algorithm has also been extended to solve stochastic optimization

problems [72], and online learning problems [19]. Given a stochastic optimization

problem: minx∈X{f(x)
def
= EωF (x;ω)}, stochastic mirror descent algorithm assumes

that we have access to a stochastic gradient oracle, which when provided with a point
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x ∈ X, provides us with g(x;ω), which is an unbiased estimate of the gradient of f

at x, i.e, Eωg(x;ω) = ∇f(x). Mirror descent now proceeds in similar fashion to one

shown in Section 2.1.1 , but, in iteration t, now uses g(xt;ω) instead of ∇f(xt). In

the case of online optimization, g(xt;ω) is built by using the current data sample that

we see during the online learning process.
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CHAPTER III

UNBIASED POOL BASED ACTIVE LEARNING

ALGORITHMS

3.1 Introduction

In the problem of binary classification one has a distributionD on the domain X×Y ⊆

Rd×{−1,+1}, and access to a sampling oracle, which provides us with i.i.d. labeled

samples S = {(x1, y1), . . . , (xn, yn)}. The task is to learn a classifier, which predicts

well on unseen points. In this chapter we address the problem of pool based active

learning, where instead of being given a collection of labeled examples, S, we are

now given an unlabeled pool P of examples sampled from the underlying marginal

distribution, DX , on X . We also have access to a labeling oracle O, which when

provided as an input a point xi ∈ P , provides a label yi ∈ {−1,+1} sampled from

P[yi|xi]. In the pool based active learning scenario it is common to think of being

given a budget, B, of the maximum number of points for which we can query oracle O

for the labels of points. As mentioned in Section 1.1 of Chapter 1 pool based active

learning, and stream based active learning are perhaps the most natural settings

under which active learning problems can be studied.

3.1.1 Contributions and outline of this chapter.

1. We introduce a generic pool based active learning framework, and introduce

two algorithms namely UPAL and SGD-AL that operate in this framework.

2. UPAL uses a) a sampling distribution which is in proportion to the conditional

entropy of the label distribution, and b) an empirical risk minimization proce-

dure that minimizes an importance weighted estimate of the risk over a linear
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hypothesis class to update the model. While unbiased estimators of risk have

been used in stream based AL algorithms [14], no such estimators have been

introduced for pool based AL algorithms. We provide an unbiased estimator of

the risk of a hypothesis, by using the idea of importance weights introduced for

AL in Beygelzimer et al. [14].

3. In Theorem 2 (Section 3.3.1) we show that, for the squared loss, and when

H = Rd, UPAL outputs a hypothesis that is equivalent to an exponentially

weighted average of all the hypothesis in the hypothesis class. Such exponen-

tially weighted average techniques have been utilized in both online learning

with experts [26], and in the design of the EXP4 algorithm for the MAB prob-

lem with expert advice [6]. Hence, UPAL can be seen as pruning the hypothesis

space, in a soft manner, by placing a probability distribution that is determined

by the importance weighted loss of each classifier on the currently labeled part

of the pool.

4. In Section 3.4, we analyze the UPAL algorithm, with squared loss, for a regres-

sion problem, where the response y, for any x, sampled from the underlying

marginal distribution belongs to [−1, 1]. We make the additional assumption

that the underlying regression model is linear. Under these conditions, we an-

alyze the number of labeled and unlabeled samples required for exact recovery.

Our proof employs some results from random matrix theory regarding eigenval-

ues of sums of random matrices [50, 51, 91].

5. In Section 3.7, we provide a thorough empirical analysis of UPAL comparing it

to a batch mode active learning algorithm, which we shall call as BMAL [48],

and a simple active learning algorithm, that in each round chooses a random

point from the pool, and queries its label. We also empirically demonstrate the

scalability of UPAL over BMAL on the MNIST dataset. When provided with
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a large budget, UPAL is up to seven times faster than BMAL.

6. While the hypothesis class,H = Rd, is powerful, it is less widely used in practice.

Often times, one implements a learning algorithm with some sort of regularizer,

e.g. SVMs minimize empirical hinge loss with the squared norm regularizer,

or one explicitly constraints the hypothesis space to be a bounded subset of a

metric space. When H = {h ∈ Rd : ||h|| ≤ R}, we propose in Section 3.9, a

different pool based active learning algorithm called SGD-AL, which performs

active learning via stochastic gradient descent, followed by Euclidean projec-

tions onto an L2 ball. For SGD-AL, we establish excess risk guarantees and

show that SGD-AL is no worse than a passive empirical risk minimization pro-

cedure.

3.2 A Generic Pool Based Active Learning Framework

We introduce a generic pool based active learning framework, which will be used to

design pool based active learning algorithms. A correct active learning algorithm

needs to take into account the fact that the points it has queried might not reflect

the true underlying marginal distribution. This problem is similar to the problem

of dataset shift [75], where the train and test distributions are potentially different,

and the learner needs to take into account this bias during the learning process. One

approach to this problem is to use importance weights, where during the training

process instead of weighing all the points equally the algorithm weighs different points

differently. In order to use importance weights in our framework, in each round we

perform two steps. In the first step, we put a sampling distribution over the pool.

This distribution depends on the current model, and the points in the pool. In the

second step, we sample a single point from the distribution with replacement, and

query for the label of the point, and using importance weighted estimators of the

risk, update our current model. As mentioned in Section 1.3, importance weights
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help create unbiased estimators of the risk of a hypothesis, and allow reuse of data

with a different hypothesis class.

Algorithm 1 Generic Pool Based Active Learning Framework (Input: P =
{x1, . . . , xn, }, Budget B, Labeling Oracle O.)

1. Start with an initial hypothesis.
while Not run out of budget do

2. Place a sampling distribution over P . This sampling distribution depends on
the current hypothesis, and the points in P .
3. Sample a point from this distribution, with replacement, query for the label of
the sampled point, and update the current hypothesis using importance weighted
estimators.

end while

3.3 Design of the UPAL Algorithm

UPAL algorithm operates in the above framework, by proceeding in rounds, where

in each round t, we put a probability distribution {pti}ni=1 on the entire pool P , and

sample one point from this distribution. As mentioned before, we shall sample with

replacement, where a point xi, if queried in some round, is put back in the pool P ,

and is available for requerying in the future rounds. If the point, sampled in round

t, was queried in one of the previous rounds 1, . . . , t − 1 then its queried label from

the previous round is reused, else the oracle O is queried for the label of the point.

One could avoid requerying points, but this leads to somewhat more complicated

expressions for our risk estimator. Hence, for simplicity of exposition we shall allow

re-querying of points in this paper. Denote by Qt
i ∈ {0, 1} a random variable that

takes the value 1 if the point xi was queried for its label in round t and 0 otherwise.

In order to guarantee that our estimate of the error rate of a hypothesis h ∈ H is

unbiased we use importance weighting, where a point xi ∈ P in round t gets an

importance weight of
Qti
pti

. Notice that by definition E[
Qti
pti
|pti] = 1. We formally prove

that importance weighted risk is an unbiased estimator of the true risk. Let Dn denote

a product distribution on (x1, y1), . . . , (xn, yn). Also denote by Q1:t
1:n the collection of
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random variables Q1
1, . . . , Q

1
n, . . . , Q

t
n. Let Zt

i
def
= yiQ

t
i. Let R(h)

def
= Ex,yL(yhTx) We

shall make the following independence assumption:

Assumption 1. If xi has not been queried up until the start of round t, then

pti⊥⊥yi|x1:n, Z
1:t−1
1:n .

Theorem 1. Let L̂t(h)
def
= 1

nt

∑n
i=1

∑t
τ=1

Qτi
pτi
L(yih

Txi), where pτi > 0 for all τ =

1, . . . , t. Then, for any t ≥ 1

EZ1:t
1:n,x1:n

L̂t(h) = R(h). (7)

Proof.

EZ1:t
1:n,x1:n

L̂t(h) = EZ1:t
1:n,x1:n

1

nt

n∑
i=1

t∑
τ=1

Qτ
i

pτi
L(yih

Txi)

= EZ1:t
1:n,x1:n

1

nt

n∑
i=1

t∑
τ=1

EQτi ,yi|Z1:τ−1
1:n ,x1:n

Qτ
i

pτi
L(yih

Txi) (8)

= EZ1:t
1:n,x1:n

1

nt

n∑
i=1

t∑
τ=1

L(yih
Txi) (9)

= R(h).

In the above proof, we used Assumption 1 along with the fact that E[
Qti
pti
|pti] = 1

to get to Equation 9, from Equation 8. The theorem guarantees that as long as the

probability of querying any point in the pool in any round is non-zero, L̂t(h) will

be an unbiased estimator of R(h). The critical question to answer is, how does one

come up with a probability distribution on P in round t? To solve this problem

we resort to probabilistic uncertainty sampling, where the point whose label is most

uncertain as per the current hypothesis, hA,t−1, gets a higher probability mass. The

current hypothesis is simply the minimizer of the importance weighted risk in H, i.e.

hA,t−1 = arg minh∈H L̂t−1(h). For any point xi ∈ P , to calculate the uncertainty of

the label yi of xi, we first estimate η(xi)
def
= P[yi = 1|xi] using hA,t−1, and then use the
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entropy, H(p)
def
= −p ln(p)− (1−p) ln(1−p) of the label distribution of xi to calculate

the probability of querying xi. The estimate of η(·) in round t, depends both on the

current active learner hA,t−1, and the loss function. In general it is not possible to

estimate η(·) with arbitrary convex loss functions. Hence, to estimate η(·) we use

properties of the loss function. It is well known that standard loss functions such as

exponential loss, logistic loss, squared loss, modified squared loss, Huber loss which

are used in classification are also proper losses for probability estimation. Steps 4, 11

of Algorithm 2 depend on the loss function L(·) being used. If we use the logistic loss

i.e., if L(yhTx) = ln(1+exp(−yhTx)) then η̂t(x) = 1
1+exp(−hT x)

. In case of squared loss,

η̂t(yh
Tx) = min{max{0, hTx}, 1}. Similar expressions can be derived for other losses

too (see, for example, Section 4 in [96]). Since the loss function is convex, and the

constraint set H is convex, the minimization problem in Step 11 of the Algorithm 2

is a convex optimization problem.

3.3.1 The case of squared loss

It is interesting to look at the behaviour of UPAL in the case of squared loss where

L(yhTx) = (1 − yhTx)2. If not mentioned, we shall denote by hA the hypothesis

returned by UPAL at the end of T rounds. We now show that the prediction of hA

on any x, is simply the exponentially weighted average of predictions of all h in H,

on x.

Theorem 2. Let,

zi
def
=

T∑
t=1

Qt
i

pti
Σ̂z

def
=

n∑
i=1

zixix
T
i

vz
def
=

n∑
i=1

ziyixi c
def
=

n∑
i=1

zi.

Define w ∈ Rd as

w =

∫
Rd exp(−L̂T (h))h dh∫
Rd exp(−L̂T (h)) dh

. (10)

Assuming Σ̂z is invertible we have for any x0 ∈ Rd, wTx0 = hTAx0.
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Algorithm 2 UPAL (Input: P = {x1, . . . , xn, }, Margin based loss function L(·),
Budget B, Labeling Oracle O, κ ≥ 0)

1. Set unique queries=0, hA,0 = 0, t = 1.
while unique queries ≤ B do

2. Set Qt
i = 0 for all i = 1, . . . , n.

for x1, . . . , xn ∈ P do
3. Set ptmin = 1

ntκ
.

4. Calculate η̂t(xi) = P[y = +1|xi, hA,t−1].

5. pti
def
= ptmin + (1− nptmin) H(η̂t(xi))∑n

j=1H(η̂t(xj))
.

end for
6. Sample a point (say xj) from pt.
if xj was queried previously then

7. Reuse its previously queried label yj.
else

8. Query oracle O for its label yj.
9. unique queries ← unique queries+1.

end if
10. Set Qt

j = 1.

11. hA,t = arg minh∈H
∑n

i=1

∑t
τ=1

Qτi
pτi
L(yih

Txi).

12. t← t+ 1.
end while
13. Return hA

def
= hA,t

Proof. By elementary linear algebra one can establish that

hA = Σ̂−1
z vz (11)

L̂T (h) = (h− Σ̂−1
z vz)

T Σ̂z(h− Σ̂−1
z vz). (12)

Using standard integrals we get

Z
def
=

∫
Rd

exp(−L̂T (h)) dh = exp(−c− vTz Σ̂−1
z vz)

√
πd
√

det(Σ̂−1
z ). (13)

In order to calculate wTx0, it is now enough to calculate the integral

I
def
=

∫
Rd

exp(−L̂T (h)) hTx0 dw.

To solve this integral we proceed as follows. Define I1 =
∫
Rd exp(−L̂T (h)) hTx0 dh.
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By simple algebra we get

I =

∫
Rd

exp(−hT Σ̂zh+ 2hTvz − c) hTx0 dh (14)

= exp(−c− vTz Σ̂−1
z vz)I1. (15)

Let a = h− Σ̂−1
z vz. We then get

I1 =

∫
Rd
hTx0 exp

(
−(h− Σ̂−1

z vz)
T Σ̂z(h− Σ̂−1

z vz)
)

dh

=

∫
Rd

(aTx0 + vTz Σ̂−1
z x0) exp(−aT Σ̂za) da

=

∫
Rd

(aTx0) exp(−aT Σ̂za) da︸ ︷︷ ︸
I2

+

∫
Rd
vTz Σ̂−1

z x0 exp(−aT Σ̂za) da︸ ︷︷ ︸
I3

.

Clearly I2 being the integrand of an odd function over the entire space evaluates to

0. To calculate I3 we shall substitute Σ̂z = SST , where S � 0. Such a decomposition

is possible since Σ̂z � 0. Now define z = STa. We get

I3 = vTz Σ̂−1
z x0

∫
exp(−zT z) det(S−1) dz (16)

= vTz Σ̂−1
z x0 det(S−1)

√
πd. (17)

Using equations (15, 16, 17) we get

I = (
√
π)dvTz Σ̂−1

z x0 det(S−1) exp(−c− vTz Σ̂−1
z vz). (18)

Hence we get

wTx0 = vTz Σ̂−1
z x0

det(S−1)√
det(Σ̂−1

z )
= vTz Σ̂−1

z x0 = hTAx0,

where the penultimate equality follows from the fact that det(Σ̂−1
z ) = 1/ det(Σ̂z) =

1/(det(SST )) = 1/(det(S))2, and the last equality follows from equation 11.

Theorem 2 is instructive. It tells us that assuming that the matrix Σ̂z is invertible,

hA is the same as an exponentially weighted average of all the hypothesis in H. This

also allows us to interpret UPAL as pruning the hypothesis space in a soft way via
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exponential weighting, where the hypothesis that has suffered larger cumulative loss

gets lesser weight. Exponential weighted average techniques have been utilized in

both online learning with experts [26], and in the design of the EXP4 algorithm

for the MAB problem with expert advice [6]. Another point worth noting is that

optimization problem as shown in step 11 of Algorithm 2 is over the entire hypothesis

space, and is a convex optimization problem as our loss function is convex. This

leads to a computationally efficient procedure. In contrast, implicit and explicit

version spaced algorithms, rely either on restricting hypothesis spaces, or the use of

error-minimization oracles. Both these procedures, are in theory, computationally

inefficient in the worst case, as they require minimization of 0-1 loss, which is known

to be a computationally hard problem [58].

3.4 Exact Recovery By UPAL for Certain Regression Prob-
lems

In this section we perform a statistical analysis of UPAL for certain regression prob-

lems. Specifically, we shall analyze UPAL when run with squared loss on a noiseless

regression problem, where our oracle O, will now instead return the response value

y for any query x chosen from the pool P . We shall make the following additional

assumptions

Assumption 2. Σ
def
= E[xxT ] is invertible.

Assumption 3. ||xi|| ≤ X a.s.

Assumption 4. y = βTx a.s., and y ∈ [−1,+1].

Assumption 2 is required to guarantee that there is a unique minimizer of the

expected squared loss. Assumption 3 is just a boundedness assumption of the input

domain. Assumption 4, says that the underlying model is linear with the response

values bounded in the range of [−1,+1].
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The motivation for using the squared loss is that it leads to closed form solution

for hA, which can then be easily analyzed using some results from random matrix

theory [50, 51, 91].

Our main result is that under Assumptions 2-4, given enough unlabeled data, and if

UPAL is run with the squared loss, and κ = 1/2, then with high probability over the

sample and the randomness in sampling, hA = β.

Theorem 3. Suppose Assumptions 1- 4 hold. Then for T ≥ T0,δ, n ≥ max(n0,δ, n1,δ),

κ = 1/2, with probability at least 1− 5δ, UPAL exactly recovers the vector β.

Before we dive into the details of the proof, we would like to present a sketch of

the proof of theorem.

Proof Sketch.

1. We first establish in Lemma 2 that conditioned on the matrices Σ̂z, Σ̂ being

invertible (Σ̂ is the empirical covariance matrix) the hypothesis hA returned by

UPAL is β.

2. Once we have established this simple result, in Lemmas 3, 4, we establish con-

ditions for the matrices Σ̂z, Σ̂ to be invertible

We will require the following notation in addition to what has been used in Theorem 2

γ0
def
= max

(
X√

λmin(Σ)d
, 1

)
.

n1,δ
def
= 4608d2γ4

0(d ln(5) + ln(2/δ)) +
6dγ2

0

d ln(5) + ln(2/δ)

n0,δ
def
= 8γ2

0d ln(d/δ).

T0,δ
def
=

324X8 log2(d/δ)

(λmin(Σ))4
+

18λmax(Σ)

λmin(Σ)
ln(d/δ).

Also denote by Et[·]
def
= EQt1:n|Z1:t−1

1:n ,x1:n
[·], and Σ̂

def
= 1

n

∑n
i=1 xix

T
i be the empirical co-

variance matrix.
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Lemma 2. Suppose Assumptions 1-4 hold. Then, if matrix Σ̂z is invertible, we get

hA = β.

Proof.

hA = Σ̂−1
z vz = Σ̂−1

z

n∑
i=1

ziyixi = Σ̂−1
z Σ̂zβ = β,

where in the first step we used the fact that hA is the active learner outputted by the

algorithm after T rounds, and in the third equality we used Assumption 4.

Lemma 2 makes use of the assumption that Σ̂−1
z is well defined. The next lemma

establishes conditions under which this matrix is invertible. The key tool is a result

regarding the spectra of random matrices. In particular we shall be using the matrix

Bernstein bound and the matrix Chernoff bound, which are stated next.

Theorem 4. (Matrix Bernstein bound [50]) Let M1 . . . ,Mn be symmetric valued ran-

dom matrices. Suppose there exist b̄, σ̄ such that for all i = 1, . . . , n

Ei[Mi] = 0

λmax(Mi) ≤ b̄

λmax

(
1

n

n∑
i=1

Ei[M2
i ]

)
≤ σ̄2,

almost surely, then

P

[
λmax

(
1

n

n∑
i=1

Mi

)
>

√
2σ̄2 ln(d/δ)

n
+
b̄ ln(d/δ)

3n

]
≤ δ.

Theorem 5. (Matrix chernoff bound [91, 50]) Let v1, . . . vn be random vectors such

that, for some b ≥ 0

E[||vi||2|v1, . . . , vi−1] ≥ 1, and ||vi|| ≤ b,

for all i = 1, . . . , n, almost surely. For all δ ∈ (0, 1),

P

[
λmin

(
1

n

n∑
i=1

viv
T
i

)
< 1−

√
2b2

n
ln(d/δ)

]
≤ δ. (19)
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Theorem 6. (Eigenvalue bounds of a sum of rank-1 matrices [64]) Let r1, . . . rn be

random vectors in Rd such that, for some γ > 0,

E[rir
T
i |r1, . . . , ri−1] = I

E[exp(αT ri)|r1, . . . , ri−1] ≤ exp(||α||2γ/2) ∀α ∈ Rd.

For all δ ∈ (0, 1),

P

[
λmax

(
1

n

n∑
i=1

rir
T
i

)
> 1 + 2εδ,n ∨ λmin

(
1

n

n∑
i=1

rir
T
i

)
< 1− 2εδ,n

]
≤ δ,

where

εδ,n = γ

(√
32(d ln(5) + ln(2/δ))

n
+

2(d ln(5) + ln(2/δ))

n

)
.

We will also need Weyl’s inequalities (see Chapter 3 of [49]).

Theorem 7. Let A,B be positive semi-definite matrices. Then

λmax(A) + λmin(B) ≤ λmax(A+B) ≤ λmax(A) + λmax(B)

Proposition 1. For any arbitrary α ∈ Rd, under assumption A1 we have

E[exp(αTΣ−1/2x)] ≤ 5 exp

(
3dγ2

0 ||α||2

2

)
. (20)

Proof. From Cauchy-Schwarz inequality, we get

−||α||γ0

√
d ≤ −||α|| ||Σ−1/2x|| ≤ αTΣ−1/2x ≤ ||α|| ||Σ−1/2x|| ≤ ||α||γ0

√
d. (21)

Also E[αTΣ−1/2x] ≤ ||α||γ0

√
d. Using Hoeffding’s lemma we get

E[exp(αTΣ−1/2x)] ≤ exp

(
||α||γ0

√
d+
||α||2dγ2

0

2

)
(22)

≤ 5 exp(3||α||2dγ2
0/2).

Lemma 3. With probability at least 1− δ, each the following two inequalities hold

1. λmin(Σ̂) ≥ 1
2
λmin(Σ) > 0 for n ≥ n0,δ.
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2. λmax(Σ̂) ≤ 3
2
λmax(Σ) for n ≥ n1,δ.

Proof. Let J
def
=
∑n

i=1 Σ−1/2xix
T
i Σ−1/2. To prove the first part we shall now use the

matrix Chernoff inequality. In order to do so, we first need an upper bound on the

quantity ||Σ−1/2x||. By the definition of matrix norms, ||Σ−1/2x|| ≤ X||Σ−1/2|| ≤
X√

λmin(Σ)
= γ0

√
d. We then get with probability at least 1− δ

λmin(J/n) ≥ 1−
√

2dγ2
0 ln(d/δ)

n
≥ 1/2 (23)

for n ≥ n0,δ. Now by the definition of J = nΣ−1/2Σ̂Σ−1/2, we get

λmin(Σ̂) =
1

λmax(Σ̂−1)

=
1

nλmax(Σ−1/2J−1Σ−1/2)

=
1

n||Σ−1/2J−1Σ−1/2||

≥ 1

n||Σ−1/2|| ||J−1|| ||Σ−1/2||

=
1

n
λmin(Σ)λmin(J)

≥ λmin(Σ)

2
,

where in the last line we used equation 23. To prove the second part we pro-

ceed as follows: Notice that E[Σ−1/2xix
T
i Σ−1/2] = I. From Proposition 1 we have

E[exp(αTΣ−1/2x)] ≤ 5 exp(3||α||2dγ2
0/2). By using Theorem 6 we get with probabil-

ity at least 1− δ:

λmax(J) = λmax

(
1

n

n∑
i=1

(Σ−1/2xi)(Σ
−1/2xi)

T

)

≤ 1 + 6dγ2
0

[√
32(d ln(5) + ln(2/δ))

n
+

2(d ln(5) + ln(2/δ))

n

]
. (24)
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For n ≥ n0,δ, we get

λmax(Σ̂) =
1

n
λmax(Σ1/2JΣ1/2)

≤ 1

n
λmax(Σ)λmax(J)

≤ 3nλmax(Σ)

2n

where in the last step we used Equation 24. Therefore, λmax(Σ̂) ≤ 3λmax(Σ)
2

. This

finishes our proof.

We are now ready to establish conditions for the inverse of Σ̂z to exist.

Lemma 4. For T ≥ T0,δ, n ≥ max{n0,δ, n1,δ}, and κ = 1/2, with probability at least

1− 4δ we have λmin(Σ̂z) ≥ nTλmin(Σ)/12 > 0, and hence Σ̂z is invertible.

Proof. The idea is to use the matrix Bernstein bound to get a lower bound on

λmin(Σ̂z). Let M ′
t

def
=
∑n

i=1
Qti
pti
xix

T
i , so that Σ̂z =

∑T
t=1M

′
t . Now EtM ′

t = nΣ̂. De-

fine R′t
def
= nΣ̂−M ′

t , so that EtR′t = 0. We shall apply the matrix Bernstein inequality

to the random matrix
∑
R′t. To do so we need upper bounds on λmax(R′t) and

λmax( 1
T

∑T
t=1 EtR′2t ). Let n ≥ n1,δ. Using Lemma 3 we get with probability at least

1− δ,

λmax(R′t) = λmax(nΣ̂−M ′
t)

≤ λmax(nΣ̂)

≤ 3nλmax(Σ)

2
def
= b2. (25)
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λmax

[
1

T

T∑
t=1

EtR′2t

]
=

1

T
λmax[

T∑
t=1

Et(nΣ̂−M ′
t)

2] (26)

=
1

T
λmax(−n2T Σ̂2 +

T∑
t=1

Et
n∑
i=1

Qt
i

(pti)
2
(xix

T
i )2) (27)

=
1

T
λmax(−n2T Σ̂2 +

T∑
t=1

n∑
i=1

1

pti
(xix

T
i )2) (28)

≤ 1

T
λmax(

n∑
i=1

T∑
t=1

1

pti
(xix

T
i )2) (29)

≤ n
√
Tλmax(

n∑
i=1

(xix
T
i )2) (30)

≤ n
√
T

n∑
i=1

λ2
max(xix

T
i ) (31)

≤ n2
√
TX4 def

= σ2
2. (32)

Equation 27 follows from Equation 26 by the definition of M ′
t and the fact that

in any given round only one point is queried, i.e for a given t and i 6= j we get

Qt
iQ

t
j = 0. Equation 28 follows from Equation 27 by using the fact that Et[Q

t
i|pti] = 1.

Equation 29 follows from 28 by Weyl’s inequality and the fact that Σ̂ � 0. To obtain

Equation 30 from Equation 29 we substituted ptmin
def
= 1

n
√
t

in place of pti. Finally the

remaining set of inequalities follow because of Assumption 3 , and the fact that if p

is a vector then λmax(ppT ) = ||p||2.

Using Theorem 4 we get with probability at least 1− δ,

λmax(
1

T

T∑
t=1

R′t) ≤
√

2σ2
2 ln(d/δ)

T
+
b2 ln(d/δ)

T
. (33)

This implies that,

λmax(nΣ̂− 1

T

T∑
t=1

M ′
t) ≤

√
2σ2

2 ln(d/δ)

T
+
b2 ln(d/δ)

T
, (34)

and hence by Theorem 7

λmin(nΣ̂)− 1

T
λmin

(
T∑
t=1

M ′
t

)
≤
√

2σ2
2 ln(d/δ)

T
+
b2 ln(d/δ)

T
. (35)
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Rearranging the inequality and substituting for σ2, b2 as calculated in equations 25,

32, we get

λmin(
T∑
t=1

M ′
t) ≥ nTλmin(Σ̂)−

√
2T 3/2n2X4 ln(d/δ)− 3nλmax(Σ) ln(d/δ)

2
. (36)

By union bound the above stochastic inequality holds with probability at least 1 −

3δ. Finally using Lemma 3 to stochastically lower bound the quantity λmin(Σ̂) by

λmin(Σ)/2, and applying union bound once again we get the desired result.

3.4.1 Proof of Theorem 3

For n ≥ n0,δ from Lemma 3, with probability 1− δ, Σ̂ is invertible. For T ≥ T0,δ, n ≥

n1,δ, from Lemma 4 the matrix Σ̂z becomes invertible with probability at least 1−4δ.

Conditioned on the invertibility of Σ̂, Σ̂z, we know from Lemma 2, that we can recover

β exactly. Summing up all the failure probabilities via union bound we get the desired

result.

3.5 Discussion of Theorem 3

From Theorem 3, we have the following data requirements

1. UPAL needs at least max(n1,δ, n0,δ) unlabeled samples.

2. UPAL needs at least T0,δ = O
(
X8 log2(d/δ)

λ4min(Σ)
+ λmax(Σ)

λmin(Σ)
log(d/δ)

)
labeled samples.

3. A passive learning algorithm, such as an ERM procedure that solves the problem

minw
∑n

i=1(yi − wTxi)2, would need n0,δ labeled samples. This is because, we

know that for an ERM procedure, exact recovery is achieved once Σ̂ is invertible.

From Lemma 3, we know that Σ̂ is invertible, with high probability, once we

have at least n0,δ samples.

We shall now make appropriate assumptions, and see how the label complexity of

UPAL matches with that of a passive learning algorithm. Suppose, the following two
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conditions are satisfied

λmax(Σ)λ3
min(Σ)

log(d/δ)
= O(1). (37)

X√
λmin(Σ)d

≤ 1. (38)

Under the second condition, we have γ0 = 1. Now, let us examine the ratio
T0,δ
n0,δ

. This

ratio tells us how many more labeled samples are required by UPAL when compared

to an ERM procedure. Under the conditions stated in Equations 37, 38, we get

T0,δ

n0,δ

= O

(
log(d/δ)

dγ2
0λ

4
min(Σ)

)
= O

(
log(d/δ)

dλ4
min(Σ)

)
= O(d log(d/δ)).

Hence under conditions given by Equations 37, 38, the ratio of the number of la-

bels queried by UPAL to that of an ERM procedure is bounded from above by

O(d log(d/δ)). This result is somewhat disappointing, as it says that UPAL might

end up requiring more labels than a passive learning algorithm. In Section 3.9 we

shall show how one can derive a stochastic gradient descent inspired active learning

algorithms, which performs no worse than a passive learning algorithm. One last

comment worth mentioning is that UPAL needs max(n1,δ, n0,δ) unlabeled samples. It

is easy to see that n1,δ > n0,δ. This basically means that we need a larger number of

unlabeled samples than an ERM procedure would need. The need for extra unlabeled

samples can be explained as follows. Notice that in the proof of Theorem 3, we needed

to lower bound λmin(Σ̂z). Establishing a lower bound on Σ̂z in turn requires us to

establish an upper bound on λmin(Σ̂) (see Lemmas 3, 4). The second part of Lemma 3

shows that if we have n1,δ unlabeled samples, then the empirical covariance matrix Σ̂,

satisfies λmax(Σ̂) ≤ 3
2
λmax(Σ). This is the precise reason why our unlabeled sample

complexity is larger than the unlabeled sample complexity of an ERM procedure. 1

1For the ERM procedure that we described above, the unlabeled sample complexity is same as
the labeled sample complexity, as all the sampled points come with their labels.
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3.6 Related Work

Zhao et al. [97] consider the problem of active learning with expert advice, for the

binary classification problem. Given a sequence of unlabeled examples, x1, x2, . . .,

each of the experts makes a prediction in [0, 1] for each example. The forecaster,

which is the active learning algorithm, combines the predictions of these experts to

make a forecast on the current point. After making a forecast, the forecaster has

a choice of whether to query for the label of the example. Zhao et al., analyze

two forecasters, namely a greedy forecaster, and an exponentially weighted average

forecaster, and provided upper bounds on the regret measured only on those rounds

in which the forecaster makes a query. However, such regret bounds are not very

useful, as they do not consider into account those rounds, where the active forecaster

did not issue a query.

An interesting line of work [32, 74, 27] known as selective sampling, deals with

active learning in the adversarial setting, where the unlabeled points are generated

by an adversary, and the label may also be adversarial, or may be stochastic. All

the above three cited papers, assume a linear model, and use the regularized least

squares estimator as the base learning algorithm. They then estimate the margin of

the current point as per the regularized least squares estimate and query a point if

the estimated margin is small.

3.7 Experimental results

We implemented UPAL, a standard passive learning (PL) algorithm, a variant of

UPAL called RAL (in short for random active learning), and a batch model active

learning algorithm described in [48], which we shall call as BMAL, all using logistic

loss, in MATLAB. The choice of logistic loss was motivated by the fact that BMAL

was designed for logistic loss. Our matlab codes were vectorized to the maximum

possible extent so as to be as efficient as possible. RAL is similar to UPAL, but in
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each round samples a point uniformly at random from the currently unqueried pool.

However, it does not use importance weights to calculate an estimate of the risk of

the classifier. The purpose of implementing RAL was to demonstrate the potential

effect of using unbiased estimators, and to check if the strategy of randomly querying

points helps in active learning.

BMAL algorithm was introduced by Hoi et al. [48]. In their paper, they were able

to show superior empirical performance of BMAL over other competing pool based

active learning algorithms, and this is the primary motivation for choosing BMAL

as a competitor pool based AL algorithm for our experimental study. BMAL, like

UPAL, also proceeds in rounds and in each iteration selects k examples by minimizing

the Fisher information ratio between the current unqueried pool and the queried pool.

However, a point once queried by BMAL is never requeried. In order to tackle the

high computational complexity of optimally choosing a set of k points in each round,

the authors suggested a monotonic submodular approximation to the original Fisher

ratio objective, which is then optimized by a greedy algorithm. At the start of round

t + 1, when BMAL has already queried t points in the previous rounds, BMAL, in

order to decide which point to query next has to calculate for each potential new

query a dot product with all the queried points. Such a calculation when done for

all possible potential new queries takes O((n − t)t) time. Hence if our budget is B,

then the total computational complexity of BMAL is
∑B

t=1 O(t(n − t)) = O(nB2).

Note that this calculation does not take into account the complexity of solving a

regularized empirical risk minimization problem in each round after having queried

a point. In order to further reduce the computational complexity of BMAL in each

round we restrict our search, for the next query, to a subsample of the current set of

unqueried points. We set the value of pmin in step 3 of algorithm 1 to 1
nt

. In order to

avoid numerical problems we implemented a regularized version of UPAL where the

term λ||w||2 was added to the optimization problem shown in step 11 of Algorithm
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1. The value of λ is allowed to change as per the current importance weight of the

pool. We ran all our experiments on the MNIST dataset (3 Vs 5), henceforth called

MNIST 2, and datasets from UCI repository namely Statlog, Abalone, Whitewine.

All the datasets were scaled to be in the box [−1, 1]d. Figure 1 shows the performance

of all the algorithms on the first 300 queried points. On the MNIST dataset, on an
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Figure 1: Empirical performance of passive and active learning algorithms.The x-axis
represents the number of points queried, and the y-axis represents the test error of
the classifier. The subsample size for approximate BMAL implementation was fixed
at 300.

average, the performance of BMAL is very similar to UPAL, and there is a noticeable

gap in the performance of BMAL and UPAL over PL, and RAL. Similar results were

2The dataset can be obtained from http://cs.nyu.edu/~roweis/data.html. We first per-
formed PCA to reduce the dimensions to 25 from 784.
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also seen in the case of Statlog dataset, though towards the end the performance of

UPAL slightly worsens when compared to BMAL. However, UPAL is still better than

PL, and RAL.

Active learning is not always helpful and the success story of AL depends on the

match between the marginal distribution and the hypothesis class. This is clearly

reflected in Abalone where the performance of PL is better than UPAL at least in the

initial stages and is never significantly worse. UPAL is uniformly better than BMAL,

though the difference in error rates is not significant. However, the performance of

RAL is significantly worse. Similar results were also seen in the case of Whitewine

dataset, where PL outperforms all AL algorithms. UPAL is better than BMAL most

of the times. Even here one can witness a huge gap in the performance of RAL over

PL, BMAL and UPAL.

The uniformly poor performance of RAL signifies that querying uniformly at ran-

dom does not help. On the whole UPAL and BMAL perform equally well, and we

show via our next set of experiments that UPAL has significantly better scalability,

especially when one has a relatively large budget B.

3.7.1 Scalability results

Each round of UPAL takes O(n) plus the time to solve the optimization problem

shown in step 11 in Algorithm 1. A similar optimization problem is also solved

in the BMAL problem. If the cost of solving this optimization problem in step

t is copt,t, then the complexity of UPAL is O(nB +
∑T

t=1 copt,t), where T ≈ B,

while BMAL takes O(nB2 +
∑B

t=1 c
′
t,opt) where c′t,opt is the complexity of solving

the optimization problem in BMAL in round t. For the approximate implementa-

tion of BMAL that we described if the subsample size is |S|, then the complexity

is O(
∑B

t=1 |S|t +
∑B

t=1 c
′
t,opt) = O(|S|B2 +

∑B
t=1 c

′
t,opt). For our implementations, in

order to get accurate results, we let the size of |S| grow in proportion to n.
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Table 1: Comparison of UPAL and BMAL on MNIST data-set of varying training
sizes, and with the budget being fixed at 300. The error rate is in percentage, and
the time is in seconds.

Sample size UPAL BMAL
Time Error Time Error

1200 65 7.27 60 5.67
2400 100 6.25 152 6.05
4800 159 6.83 295 6.25
10000 478 5.85 643.17 5.85

In our first set of experiments we fix the budget B to 300, and calculate the

test error and the combined training and testing time of both BMAL and UPAL for

varying sizes of the training set. All the experiments were performed on the MNIST

dataset. Table 1 shows that with increasing sample size UPAL tends to be more

efficient than BMAL, though the gain in speed that we observed was at most a factor

of 1.8.

In the second set of scalability experiments we fixed the training set size to 10000,

and studied the effect of increasing budget. We found out that with increasing budget

size the speedup of UPAL over BMAL increases. In particular when the budget was

2000, UPAL is approximately 7 times faster than BMAL. All our experiments were

run on a dual core machine with 3 GB memory.

Table 2: Comparison of UPAL on the entire MNIST dataset for varying budget size.
All the times are in seconds unless stated, and error rates in percentage.

Budget UPAL BMAL Speedup
Time Error Time Error

500 859 5.79 1973 5.33 2.3
1000 1919 6.43 7505 5.70 3.9
2000 4676 5.82 32186 5.59 6.9

3.8 Pool Based Active Learning via a Stochastic Gradient
Descent Algorithm

In Section 3.3, we introduced the UPAL algorithm, that utilizes unbiased estimate

of the risk, via importance weighting, to perform active learning. In UPAL, our
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hypothesis class is a large class of unbounded linear hypothesis, i.e. H = Rd. In this

section, we look at the problem of active learning hypothesis of bounded L2 norm. Our

hypothesis class is H = {h ∈ Rd : ||h|| ≤ R}. For this hypothesis class, we introduce

a somewhat different active learning algorithm, SGD-AL 3. SGD-AL operates in the

pool based active learning framework that was introduced in Section 3.2. Working

in this framework, the model updates are done via a stochastic gradient descent step

procedure, on the objective function EL(y〈h, x〉), followed by a projection onto the L2

ball. The probability distribution, in each round, is chosen in such a way, that the sum

of divergences between consecutive iterates obtained during the stochastic gradient

descent procedure stays small. This guarantees that, the excess risk of the hypothesis,

outputted by the algorithm at the end of T rounds, w.r.t. any hypothesis in H is

no worser than a passive learning algorithm, that performs one pass of stochastic

gradient descent over T labeled examples. The updates of SGD-AL are given by the

formula

ht+1 ← ΠR

(
ht − η

n∑
i=1

Qt
i

pti
L′(yi〈ht, xi〉)yixi

)
,

where ΠR(v) is the projection of vector v onto an origin centered L2 ball of radius R.

3.9 Excess risk bounds for SGD-AL

We now establish an excess risk guarantee for the hypothesis outputted by SGD-AL,

after T rounds.

Theorem 8. Suppose |L′(z)| ≤ Gmax <∞, for all z ∈ [−X,X]. Let 0 ≤ pmin <
1
n

be

chosen such that, for all i = 1, . . . , n, t = 1, . . . , T, pti > pmin. If we run Algorithm 3

with η = 2R
nXGmax

√
(1−npmin)

T
, and for hA returned by SGD-AL after T rounds, for any

3SGD-AL stands for Stochastic Gradient Descent based Active Learning
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Algorithm 3 SGD-AL Input: P = {x1, . . . , xn}, Loss function L(·), Rounds of
algorithm T , Labeling Oracle O, pmin ≥ 0, η > 0.

1: Set h1 = 0.
2: for t = 1 : T do
3: for xi ∈ P do
4:

ȳi =

{
yi if xi was queried in any one of the rounds 1, . . . , t− 1

arg max
y∈{−1,+1}

|L′(y〈ht, xi〉)| otherwise (39)

5: end for
6: Assign probability distribution: pti = pmin + (1−npmin)|L′(ȳi〈ht,xi〉)|∑n

j=1|L′(ȳj〈ht,xj〉)|
, and sample a

point, say x, from the distribution pt.
7: if x was not queried in the past then
8: Query O for the label y of x.
9: else

10: Reuse the label of x.
11: end if
12: gt ←

∑n
i=1

Qti
pti
L′(yi〈ht, xi〉)yixi

13: ht+1 ← ΠR(ht − ηgt).
14: end for
15: Return hA = h1+...+hT

T
.

h ∈ H, we have,

EL(yhA(x)) ≤ EL(y〈h, x〉) + 2XRGmax

√
1

T (1− npmin)
+

2XRGmax

√
2√

n
+

3√
n
.

Notice that SGD-AL in step 6, puts a probability distribution on the pool in

proportion to the absolute value of the derivative of the loss. If pmin = 0, then if for a

certain point xi ∈ P , L′(ȳi〈ht, xi〉) = 0, then pti = 0. This is problematic, because our

theorem uses the unbiased property of certain importance weighted estimators (see

lemma 5), and this unbiased property is not satisfied if pti = 0. To get around this

situation we use pmin > 0, so that any point in the pool is queried with a probability

of at least pmin. However, for certain losses such as logistic loss, and exponential loss,

|L′(ȳi〈ht, xi〉| is always greater than 0. For such losses we can take pmin = 0. In turn,

the impact of pmin is minimal in Theorem 8. One could choose an extremely small
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pmin, so that 1
1−npmin

≈ 1. We need the following piece of notation.

∆n,H
def
= E sup

h∈H
|EL(y〈h, x〉)− 1

n

n∑
i=1

L(yi〈h, xi〉)|

Lemma 5. For hA returned by SGD-AL after T rounds, and for any h ∈ H, we have

EL(yhA(x))− EL(y〈h, x〉) ≤ 1

nT

n∑
i=1

T∑
t=1

E
Qt
i

pti

(
L(yi〈ht, xi〉)− L(yi〈h, xi〉)

)
+ ∆n,H

≤ 1

nT

n∑
i=1

T∑
t=1

E
Qt
i

pti
〈L′(yi〈ht, xi〉)yixi, ht − h〉+ ∆n,H,

where the expectation is w.r.t. all the random variables.

Proof. Since H is convex, and h1, . . . , hT ∈ H, hence, hA = h1+...+hT
T

also belongs to

H. Hence, our algorithm is a proper learning algorithm. Because of the convexity of

| · | function, we get

|EL(y〈ht, x〉)−
1

n

n∑
i=1

EL(yi〈ht, xi〉)| ≤ E|EL(y〈ht, x〉)−
1

n

n∑
i=1

L(yi〈ht, xi〉|

≤ E sup
h∈H
|EL(y〈h, x〉)− 1

n

n∑
i=1

L(yi〈h, xi〉)|

def
= ∆n,H. (40)

With this we can bound EL(yhA(x)) as

EL(yhA(x))
(a)

≤ 1

T

T∑
t=1

EL(y〈ht, x〉)

(b)

≤ 1

nT

n∑
i=1

T∑
t=1

EL(yi〈ht, xi〉) + ∆n,H

(c)
=

1

nT

n∑
i=1

T∑
t=1

E
Qt
i

pti
L(yi〈ht, xi〉) + ∆n,H. (41)

Inequality (a) follows from Jensen’s inequality, inequality (b) follows from equation 40,

and equality (c) follows from the fact that Et
Qti
pti

= 1.

For any fixed hypothesis h in H, if pti > 0, then by our Assumption 1, we have

the following unbiasedness property

EL(y〈h, x〉) =
1

nT

n∑
i=1

T∑
t=1

E
Qt
i

pti
L(yi〈h, xi〉). (42)
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Putting together Equations 41, 42 we get

EL(yhA(x))− EL(y〈h, x〉) ≤ 1

nT

n∑
i=1

T∑
t=1

E
Qt
i

pti

(
L(yi〈ht, xi〉)− L(yi〈h, xi〉)

)
+ ∆n,H.

With this we obtain the first inequality in the statement of lemma 5. To obtain the

second inequality, we simply use the fact that our loss function L is convex, and hence

the subgradient at a point is an under-estimate of the function. This gets us,

n∑
i=1

Qt
i

pti

(
L(yi〈h, xi〉)− L(yi〈ht, xi〉)

)
≤

n∑
i=1

Qt
i

pti
〈L′(yi〈ht, xi〉)yixi, ht − h〉.

Lemma 5 bounds the expected excess risk as a sum of two terms. The rest of

the proof for Theorem 8 requires us to upper bound each of these terms individu-

ally. Bounding ∆n,H is fairly straightforward and utilizes standard techniques from

empirical process theory, such as symmetrization and Talagrand’s contraction lemma.

Lemma 6.

∆n,H ≤
2√
n

+
2XRGmax

√
2√

n
.

Proof. Let L̃(·) = L(·) − 1. Note that L̃(0) = 0, and L̃ is Lipschitz with Lipschitz

constant Gmax. Let ε1, . . . , εn be i.i.d. Rademacher random variables independent of
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our data, and sampling scheme. We have,

∆nH
def
= E sup

h∈H
|EL(y〈h, x〉)− 1

n

n∑
i=1

L(yi〈h, xi〉)|

(a)

≤ 2

n
E sup
h∈H
|

n∑
i=1

εiL(yi〈h, xi〉)|

=
2

n
E sup
h∈H
|

n∑
i=1

εiL̃(yi〈h, xi〉) + εi|

(b)

≤ 2

n
E sup
h∈H
|

n∑
i=1

εiL̃(yi〈h, xi〉)|+
2

n
E

n∑
i=1

|εi|

(c)

≤ 2

n
E sup
h∈H
|

n∑
i=1

εiL̃(yi〈h, xi〉)|+
2

n

√√√√E(
n∑
i=1

εi)2

(d)
=

2

n
E sup
h∈H
|

n∑
i=1

εiL̃(yi〈h, xi〉)|+
2√
n

(e)

≤ 2Gmax

n
E sup
h∈H
|

n∑
i=1

εiyi〈h, xi〉|+
2√
n

(f)

≤ 2XRGmax

√
2√

n
+

2√
n

where inequality (a) follows from standard symmetrization arguments, inequality (b)

follows from triangle inequality, inequality (c) follows from the simple fact that for

any random variable X, E|X| ≤
√
EX2. Equality (d) follows from the fact that

Eε2i = 1,Eεiεj = 0, for i 6= j. Inequality (e) follows by Talagrand’s contraction

lemma, and finally inequality (f) uses an upper bound on the Rademacher process

indexed by functions in H (see Theorem 1 in [55]).

Lemma 7. For hA returned by SGD-AL, and for any h ∈ H, we have

EL(yhA(x))− EL(y〈h, x〉) ≤ 1

nTη

(
2R2 +

η2

2

T∑
t=1

||gt||2
)

+ ∆n,H.

Proof. Since ht+1 = ΠR(ht − ηgt), hence we get

||ht+1 − h||2 ≤ ||ht − ηgt − h||2 = ||ht − h||2 + η2||gt||2 − 2η〈ht − h, gt〉. (43)

Rearranging the above equation, we get

〈ht − h, gt〉 ≤
1

2η
||ht − h||2 −

1

2η
||ht+1 − h||2 +

η2

2η
||gt||2. (44)
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Replacing for the definition of gt, and summing up over all t = 1 . . . , T , we get

n∑
i=1

T∑
t=1

〈ht − h,
Qt
i

pti
L′(yi〈ht, xi〉)yixi〉 ≤

1

2η
||h1 − h||2 +

η

2

T∑
t=1

||gt||2. (45)

Using Lemma 5 and Equation 45 we get

EL(yhA(x))− EL(y〈h, x〉) ≤ 1

nT

n∑
i=1

T∑
t=1

E
Qt
i

pti
〈L′(yi〈ht, xi〉)yixi, ht − h〉+ ∆n,H

≤ 1

nηT

(
2R2 +

η2

2
E

T∑
t=1

||gt||2
)

+ ∆n,H.

Lemma 8.
∑T

t=1
η2

2
E||gt||2 ≤ X2η2G2

maxn
2T

2(1−npmin)
.

Proof. By definition of gt, we get

η2E||gt||2
(a)
= η2E

[ n∑
i=1

||Q
t
i

pti
L′(yi〈ht, xi〉)yixi||2+ (46)

�
�
�
�
��>

0∑
i 6=j

Qt
iQ

t
j

ptip
t
j

L′(yi〈ht, xi〉)L′(yj〈ht, xj〉)〈xi, xj〉
]

(47)

To obtain (a), we used the fact that, in any round t, only one point can be queried,

and hence for all i 6= j, Qt
iQ

t
j = 0. By substituting the expression of pti as suggested

in Algorithm 3, in Equation 47, we get

η2E||gt||2 ≤ η2E
n∑
i=1

(L′(yi〈ht, xi〉))2||xi||2

pmin + (1−npmin)|L′(ȳi〈ht,xi〉)|∑n
j=1 |L′(ȳj〈ht,xj〉)|

≤ η2E
n∑
i=1

(L′(yi〈ht, xi〉))2||xi||2
(1−npmin)|L′(ȳi〈ht,xi〉)|∑n

j=1 |L′(ȳj〈ht,xj〉)|

= η2X2E
n∑
i=1

(L′(yi〈ht, xi〉))2

(1− npmin)|L′(ȳi〈ht, xi〉)|

n∑
j=1

|L′(ȳj〈ht, xj〉)|

(d)

≤ η2X2n2G2
max

1− npmin

.

Summing up over all t = 1, 2, . . ., and dividing by two, we get the desired result.

3.9.1 Proof of Theorem 8

Proof. From Lemma 7, and Lemma 8 we know that

EL(yhA(x))− EL(y〈h, x〉) ≤ 2R2

nηT
+

ηnX2G2
max

2(1− npmin)
+ ∆n,H. (48)
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Set η = 2R
nXGmax

√
1−npmin

T
, to get

EL(yhA(x))− EL(y〈h, x〉) =
2RXG√

T (1− npmin)
+ ∆n,H.

Replacing for the expression of ∆n,H as provided by Lemma 6, we get the required

result.

3.9.2 Comparison to passive learning.

From standard results in statistical learning theory [16], we know that excess risk of a

passive, empirical risk minimization (ERM) procedure, that gets to see the labels of all

n points, is ∆n,H, whose order is provided by Lemma 6 to be O( 2√
n

+ 2XRGmax

√
2√

n
). This

basically shows that SGD-AL, when run for T = n rounds, achieves the same excess

risk as an ERM. This guarantees that we are at least as good as passive learning.

3.10 Discussion

In this chapter we introduced a general pool based active learning framework that

proceeds in rounds, sampling points from the pool, and uses importance weights

to update the current hypothesis. We proposed two algorithms in this framework,

namely UPAL and SGD-AL. For UPAL we showed good empirical performance and

its ability to scale both with higher budget constraints and larger dataset sizes. We

analyzed UPAL under certain statistical assumptions, and established both labeled,

and unlabeled sample complexity of the algorithm. In the second part of the chapter,

we established excess risk guarantees for SGD-AL, and showed that the excess risk is

no worser than a passive learning algorithm.

An important open problem is to be able to establish excess risk guarantees for

UPAL under much weaker conditions. A potential approach is to exploit the expo-

nential weighted average interpretation of UPAL, as shown in Section 3.3.1. This

interpretation allows us to use PAC-Bayes type of inequalities for the hypothesis re-

turned by UPAL. However, we would need some special PAC-Bayesian inequalities in
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order to handle the fact that the loss of a hypothesis at a certain point could be po-

tentially infinite, if the norm of the hypothesis is infinite. To our knowledge there has

not been any work yet on deriving PAC-Bayesian inequalities for unbounded random

variables. Another theoretically interesting question is to calculate how many unique

queries are made after T rounds of UPAL. This problem is similar to calculating the

number of non-empty bins in the balls-and-bins model commonly used in the field of

randomized algorithms, when there are n bins and T balls, with the different points

in the pool being the bins, and the process of throwing a ball in each round being

equivalent to querying a point in each round. However since each round is, unlike

standard balls-and-bins, dependent on the previous round we expect the analysis to

be more involved than a standard balls-and-bins analysis. For SGD-AL it would be

useful to provide label complexity guarantees.

3.11 Bibliographic Notes

The UPAL algorithm and its analysis was published at AISTATS 2011 [39] under the

title of “UPAL: Unbiased Pool Based Active Learning”.
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CHAPTER IV

ACTIVE LEARNING FROM THE MULTI-ARMED

BANDIT LENS

4.1 Introduction

In Chapter 3, we introduced a generic pool based active learning framework, and

proposed two learning algorithms, namely UPAL and SGD-AL, in this framework. In

this chapter, we build on the proposed framework, and propose an AL algorithm by

building a bridge between the multi-armed bandit world and active learning world.

By carefully constructing an analogy between active learning (AL) and multi-armed

bandits (MAB), we utilize ideas such as lower confidence bounds and barrier type reg-

ularization, commonly used in the multi-armed bandit and bandit online optimization

community, to design a new AL algorithm called LCB-AL 1.

4.2 Motivation

In Chapter 3, we showed that the UPAL algorithm under certain conditions, learns a

hypothesis, which is an exponentially weighted average of the different hypothesis in

the hypothesis class. Hence, UPAL algorithm can be seen as an algorithm that learns

with expert advice, where the experts are the different hypothesis. In this chap-

ter we view the problem of active learning from the lens of exploration-

exploitation trade-off. The concept of exploration-exploitation is central to various

problems in decision making under uncertainty. This concept is perhaps best illus-

trated in the problem of multi-armed bandits [13]. The MAB problem is a B round

game, where in a generic round t, the player has to pull one among k arms of a

1LCB-AL stands for Lower Confidence Bounds based Active Learning
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multi-armed bandit. On doing so the player suffers a loss Lt. The player does not

get to know the loss he would have suffered if he had pulled a different arm. The

goal of the player is to minimize the cumulative loss suffered over B rounds. In each

round the player needs to resolve the dilemma of whether to explore an arm which

has not been pulled in the past, or whether to exploit the knowledge of the cumula-

tive losses of the arms that have been pulled in the past. We provide a pool based,

sequential AL algorithm called LCB-AL, which is motivated by applying algorith-

mic ideas from the problem of multi-armed bandits to the problem of AL. In order

to do so we build a bridge between the MAB problem and AL problem, providing

an equivalence between the arms of a MAB problem, and the hypothesis in H, and

mitigating the problem of absence of an explicit loss signal in AL. Establishing this

analogy is not very straightforward, but once done allows us to readily use tools such

as lower confidence bounds [5], and self-concordant barrier type regularization [1, 18]

in the design of LCB-AL. To our knowledge, our work is one of the first in trying to

use bandit type ideas for active learning, and we strongly believe that one can build

extremely practical, yet very simple and scalable algorithms by understanding the

interplay between multi-armed bandits and active learning.

4.2.1 Contributions and Outline of this chapter

1. In Section 4.3, we take the first steps towards building an analogy between

MAB and AL. This inspires us to use a very successful algorithm from the MAB

literature, based on confidence bound, for the problem of AL. In Section 4.3.2

we show how our algorithm overcomes the problem of absence of an explicit loss

signal in active learning problems.

2. The lower confidence bound algorithm requires us to build a lower confidence

bound on the risk of any hypothesis in the hypothesis class. We accomplish

this, in Section 4.4, via Bernstein type inequalities for martingales.
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3. In Section 4.7, we compare LCB-AL to other active learning algorithms on

various datasets.

Notation. Let H = {h ∈ Rd : ||h|| ≤ R} be a convex set in Rd. By h(x), we shall

mean the inner product 〈h, x〉. Let L : R→ R+ be a continuous, convex loss function

of the margin yh(x). We shall assume that our domain X is bounded, in the sense

that, for all x in X , ||x|| ≤ X. This in turn guarantees that, for all h in H, x in X ,

L(·) is at most some Lmax <∞. For example, for squared loss, Lmax = (1+XR)2, for

logistic loss Lmax = log(1 + eRX), for hinge loss Lmax = 1 +XR, and for exponential

loss Lmax = eXR. Let R(h)
def
= EL(yh(x)) be the risk of a hypothesis h ∈ H.

4.3 Towards an analogy between Multi-armed bandits and
Active Learning

In active learning, the goal is to find a hypothesis h ∈ H with low risk by using as

little labeled data as possible. In other words, we want to quickly estimate the risk

of different hypothesis, and discard suboptimal hypothesis. In MAB, the goal of the

player is to design a strategy, that minimizes the cumulative loss suffered by the player

over the length of the game. If the player knew the arms with the smallest possible

cumulative loss, then the optimal strategy would be to pull this arm in each and

every round. Hence, in MAB the player wants to quickly detect the (near) optimal

arm to pull. Looking from the lens of MAB, it is now natural to think of AL problem

as a MAB problem, where the arms of the MAB are the different hypothesis in H.

While this is a good connection to start with, there are two issues that still need to

be resolved, which we shall state now.

1. In the MAB problem, in each round we pull an arm of the MAB. If the different

hypothesis in H, were thought to be equivalent to the different arms of the

MAB, then how do we decide which “hypothesis to pull”.
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2. In the MAB problem, the player gets to see an explicit loss signal at the end

of each round. However, in AL there is no such explicit loss signal, instead the

feedback that is received is the label of the queried point x. Hence, the next

question that arises is how could one use the label information as some kind of

a loss signal? The following subsections attempt to resolve these issues.

4.3.1 Which hypothesis to pull?

A very popular approach in MAB to mitigate the exploration-exploitation trade-off

is via the use of lower confidence bounds (LCB) [6, 5, 3, 20] 2. In the LCB approach,

at the end of round t, for each arm a in the set of arms, we build a lower confidence

bound, LCBt(a) for the cumulative loss the player would have suffered, in hindsight,

had he pulled arm a for the first t rounds. The choice of arm at+1 to be pulled in

the next round, i.e. round t + 1 is the solution to the optimization problem at+1 ∈

arg min LCBt(a). Such lower confidence bounds can be derived via concentration

inequalities [6, 4], and are generally expressed as LCBt(a)
def
= L̂t(a)−U(L̂t(a)), where

L̂t(a) is an estimate of the cumulative loss of arm a, the player would have suffered

had he pulled a each time for the first t rounds, and U(L̂t(a)) is some measure of

uncertainty (typically variance) of the cumulative loss of a, at the end of round t.

The reason behind the success of confidence bounds in the MAB problem can be

explained by the fact that LCBt(a) captures both the knowledge of the cumulative

loss, via L̂t(a), as well as the uncertainty in this estimate, via U(L̂t(at)). By pulling

the arm at+1 in round t+ 1 of our MAB algorithm, and by updating our estimate of

the cumulative loss of arm at+1, our updated estimate L̂t+1(at+1) is a better estimator,

as U(L̂t+1(at+1)) is potentially smaller than U(L̂t(at+1)).

One could use a similar technique even in AL. If one had some kind of a LCB

2Traditionally in the bandit literature, researchers have used upper confidence bounds. Since,
we are dealing with losses and not rewards, it is useful for our purpose, to rename this as lower
confidence bounds.
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on the risk of each hypothesis, then we could equate pulling a hypothesis as solving

the optimization problem ht+1 ∈ arg minh∈H LCBt(h), where LCBt(h) is the lower

confidence bound on the risk of h ∈ H. An LCB for R(h) can be obtained by

utilizing the labeled data gathered over the run of the algorithm. We shall show how

to do this in Section 4.4.

4.3.2 Absence of a loss signal in AL

When an arm is pulled in the MAB setting, the player suffers a loss, and this loss is

used to update the LCB of the chosen arm. However, in AL there is no such explicit

loss signal. One might come up with a proxy loss signal for the active learning

problem, which can then be used to update the lower confidence bound of all the

hypothesis in H. However, by examining the conceptual role played by the loss

signal, we avoid having to come up with a proxy for loss signal. The utility of the

loss signal when the arm at is pulled in round t of the MAB problem is two folds.

Firstly, to update the cumulative loss of at, and secondly to decrease the uncertainty

in the estimate of the cumulative loss of at. In AL, when a certain point is queried

for its label, then this label information can be utilized to improve the error estimate

of ht, as well as other hypothesis. Hence, it makes sense to query O for the label of

some point x in P , such that its label information maximally reduces the variance

of the estimate of risk of ht. Hence, by conceptually viewing label information as a

mechanism to reduce the variance of the risk estimate of different hypothesis, we have

a disciplined way of deciding which points to query. Table 3 summarizes the analogy

between AL and MAB.

Table 3: The analogy between MAB and AL that is used as a guiding principle for
the design of LCB-AL.

MAB AL
Arms. Hypothesis.

Loss signal on pulling an arm Sampling distribution designed to reduce
helps improve cumulative loss estimates. variance of risk estimates of hypothesis.
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4.3.3 Rough outline of LCB-AL.

With the ideas developed in the previous section, we now introduce a new pool based

active learning algorithm called LCB-AL (see Algorithm 4). LCB-AL is designed

in the generic framework that was introduced in Section 3.2. In this generic frame-

work, we update our hypothesis by minimizing the lower confidence bound over the

hypothesis space. In order to construct lower confidence bounds on the risk of h,

we use importance weighting along with Bernstein type inequalities for martingales.

The problem with such importance weighted estimators is that they have very high

variance. In order to tackle the high variance of importance weighted estimators, we

use self-concordant barrier type regularization [1, 18]. As a result, in each round (see

step 14 of algorithm 4) we solve the optimization problem

ht+1 ∈ arg min
h∈H

LCBt(h) +R(h),

where R(h) is a self-concordant barrier type regularization of H. For our choice of

H = {h ∈ Rd : ||h|| ≤ R}, R(h) = − log(R2 − ||h||2). Using ht we induce a sampling

distribution over the pool P , at the start of round t (see step 4 of algorithm 4). As

discussed in section 4.3.2, the probability distribution is such that it minimizes the

(conditional) variance of the estimate of risk of ht, given the information gathered

from the previous t− 1 rounds. We shall make this step clear in Section 4.5.

4.4 Risk Estimates and Confidence Bounds

We begin with the notation that will be required to develop our confidence bounds.

Let pti be the probability of querying xi in round t, and Qt
i ∈ {0, 1} be the random

variable which takes the value 1, if xi was queried in round t, and 0 otherwise. Hence

E[Qt
i|pti] = 1. For convenience, we shall denote by Q1:t

1:n the collection of random

variables Q1
1, . . . Q

t
1, . . . , Q

1
n, . . . , Q

t
n. Let Zt

i
def
= yiQ

t
i. Denote by x1:n the collection of

random variables x1, . . . , xn. Also let [x]+ = max{x, 0}.
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Algorithm 4 LCB-AL Input: P = {x1, . . . , xn}, Loss function L(·), Budget B,
Labeling Oracle O, pmin ∈ (0, 1

n
)

1: Set h1 = 0, t = 1.
2: while num queried ≤ B do
3: for xi ∈ P do
4:

ȳi =

{
yi if xi was queried in one of the previous rounds

sgn(ht(xi)) otherwise
(49)

5: pti ← pmin + (1− npmin) L(ȳiht(xi))∑
xi∈P

L(ȳiht(xi))
.

6: end for
7: Sample a point (say x) from the probability vector pt.
8: if x was not queried in the past then
9: Query O for the label y of x.

10: num queried← num queried + 1
11: else
12: Reuse the label of x.
13: end if
14: Solve: ht+1 = arg minh∈H LCBt(h) + λtR(h).
15: t← t+ 1
16: end while
17: Return hB.

We shall make the following independence assumption, that we made in Chapter 3

(Assumption 1).

Assumption. If xi has not been queried up until the start of round t, then pti⊥⊥yi

given x1:n, Z
1:t−1
1:n .

4.4.1 Constructing lower confidence bounds

For any hypothesis h ∈ H, define L̂t(h)
def
= 1

nt

∑n
i=1

∑t
τ=1

Qτi
pτi
L(yih(xi)). L̂t(h) is an

unbiased estimator of the risk of the hypothesis h, as shown in Chapter 3. Let

Qt
def
= {xi ∈ P|

∑t
τ=1 Q

τ
i > 0}, and Fτ

def
= σ(x1:n, Z

1:τ
1:n) be the smallest sigma algebra

that makes the random variables x1:n, Z
1:τ
1:n measurable. Clearly F1 ⊂ . . . ⊂ Ft form

a filtration. Utilizing the unbiased estimator L̂t(h), along with a Bernstein type

inequality for martingales allows us to construct lower confidence bounds for R(h).

For simplicity we shall assume that |H| <∞. While this is definitely not true for the
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setting where H is the space of linear hypothesis with bounded L2 norm, one could

in practice, obtain a “good” approximation, H′ from H, by taking H′ to be a very

fine grained cover of H. With this assumption, the following theorem establishes a

lower confidence bound on the risk of hypotheses in H.

Theorem 9. Let |H| <∞. With probability at least 1− |H|δ(2 +T log(T/e)), for all

h ∈ H, 4 ≤ t ≤ T , and δ < 1/e, we have

R(h) ≥
[
L̂t(h)−2

t
log(1/δ)Lmax

(
1+

1

npmin

)
− 4

nt

√
Vt log(1/δ)−

√
L2

max log(1/δ)

2n

]
+

where,

Vt
def
=
∑
i=1:n
τ=1:t

Qτ
i

(pτi )
2
L2(yih(xi)) −

(∑
Qt

L(yih(xi)
))2

+
L2

max

√
2t log(1/δ)(n− 1)
√
pmin

. (50)

In order to prove Theorem 9, we need the Azuma-Hoeffding inequality, and Bern-

stein inequality for martingale difference sequences.

Theorem 10. [Azuma-Hoeffding inequality] Let M1,M2, . . . be a martingale differ-

ence sequence w.r.t a filtration F1 ⊂ F2 ⊂ . . .. If for each i ≥ 1, |Mi| ≤ ci. Then,

P
[
|

n∑
i=1

Mi| ≥ ε
]
≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
.

Theorem 11 (Bernstein inequality [10]). Let M1, . . . ,Mt be a martingale differ-

ence sequence (MDS), w.r.t. the filtration F1 ⊂ . . . ⊂ Ft, with |Mτ | ≤ b. Let

VτMτ
def
= V(Mτ |Fτ−1), and σ2 def

=
∑t

τ=1 VτMτ . Then we have, for any δ < 1/e, and

t ≥ 4, with probability at least 1− δ log(t)

t∑
τ=1

Mτ < 2 max{2σ, b
√

log(1/δ)}
√
log(1/δ).

4.4.2 Proof of Theorem 9

The proof proceeds via application of Theorems 10 and 11 to appropriately defined

martingale difference sequences. Let,

Mτ
def
=

1

n

n∑
i=1

Qτ
i

pτi
L(yih(xi))−

1

n

n∑
i=1

L(yih(xi)). (51)
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Utilizing the independence assumption, it is easy to see that E[Mτ |Fτ−1] = 0. Hence

M1, . . . ,Mt form a martingale difference sequence w.r.t. the filtration F1, . . . ,Ft,

where Fτ
def
= σ(x1:n, Z

1:τ
1:n), is the smallest sigma algebra that makes random variables

x1:n, Z
1:τ
1:n measurable. In order to apply Theorem 11, to the above martingale differ-

ence sequence, we need estimates for the sum of conditional variances, and the range

of |Mτ |. From Equation 51 and the triangle inequality we get

|Mτ | ≤
1

n
|

n∑
i=1

Qτ
i

pτi
L(yih(xi))|+

1

n
|

n∑
i=1

L(yih(xi))|

≤ Lmax

(
1 +

1

npmin

)
. (52)

To bound the sum of conditional variances we proceed as follows. Let,

σ2 def
=

t∑
τ=1

E[M2
τ |Fτ−1]

(a)
=

t∑
τ=1

1

n2
E
[ Qτ

i

(pτi )
2
L2(yih(xi)) +

2

n

∑
i 6=j

Qτ
iQ

τ
j

pτi p
τ
j

L(yih(xi))L(yjh(xj))︸ ︷︷ ︸
=0

−
( n∑
i=1

L(yih(xi))
)2

|Fτ−1

]
=

1

n2

t∑
τ=1

n∑
i=1

L2(yih(xi))

pτi︸ ︷︷ ︸
I1

− 1

n2

( n∑
i=1

L(yih(xi))
)2

︸ ︷︷ ︸
I2

. (53)

A simple lower bound on I2 is

Î2
def
=

1

n2

(∑
Qt

L(yih(xi)
)2

. (54)

We now proceed to construct an upper bound on I1. Let,

Î1
def
=

1

n2

t∑
τ=1

n∑
i=1

Qτ
i

(pτi )
2
L2(yih(xi)).

Define

Jτ
def
=

1

n2

n∑
i=1

Qτ
i

(pτi )
2
L2(yih(xi))−

1

n2

n∑
i=1

1

pτi
L2(yih(xi))

55



Once again utilizing our independence assumption, we conclude that J1, . . . Jt form

an MDS w.r.t. the filtration F1, . . . ,Ft. Applying Theorem 10 to this MDS, we get

with probability at least 1− δ

|
t∑

τ=1

Jτ | ≤
L2

max

√
2t log(1/δ)

n2

√
n− 1

pmin

. (55)

Hence, from equations 54 and 55, we get with probability at least 1− δ,

σ2 ≤ 1

n2

∑
i=1:n
τ=1:t

Qτ
i

(pτi )
2
L2(yih(xi))−

(∑
Qt

L(yih(xi)
))2

+
L2

max

√
2t log(1/δ)(n− 1)
√
pmin

. (56)

For any fixed h ∈ H, and fixed t ≤ T , we can apply Theorem 11, to our martingale

difference sequence Mt. Finally via Hoeffding inequality we get an upper bound on

| 1
n

∑n
i=1 L(yih(xi))− R(h)| for a fixed h ∈ H, t ≤ T . Applying the union bound over

all hypothesis in H, and t ≤ T we get the desired result.

Specification of LCBt(h). Theorem 9 provides us with an expression for LCBt(h).

This allows us to set

LCBt(h)
def
=
[
L̂t(h)− 4

nt

√
log(1/δ′)Vt−

2

t
log(1/δ′)Lmax

(
1+

1

npmin

)
−
√
L2

max log(1/δ′)

2n

]
+
,

(57)

where Vt is shown in Equation 50, and δ′ = δ
|H|(2+T log(T/e))

.

4.5 Query probability distribution in each round of LCB-
AL

The only thing that is left to be motivated in LCB-AL, is the choice of probability

distribution in steps 3-5. As explained in section 4.3.2, we want to use a sampling

distribution, such that the conditional variance of the risk estimate L̂t(ht) is mini-

mized. We shall now show how the sampling distribution should be designed in order

to achieve this goal. Let ∆n ⊂ Rn
+ be the n− 1 dimensional probability simplex. Let

Vt(·) denote the variance, conditioned on x1:n, Z
1:t−1
1:n . Let pt

def
= (pt1, . . . , p

t
n) ∈ ∆n. At
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the start of round t, the desired sampling distribution, pt should satisfy

pt = arg min
p̃t∈∆n

Vt

[ 1

nt

∑
i=1:n
τ=1:t

Qτ
i

p̃τi
L(yiht(xi))

︸ ︷︷ ︸
L̂t(ht)

]

= arg min
p̃t∈∆n

n∑
i=1

EtL2(yiht(xi))

p̃τi

Solving the above optimization problem yields the simple solution pti ∝
√

EtL2(yiht(xi)).

If xi ∈ Qt−1, then the label yi is known and hence, we let pti ∝ L(yiht(xi)). If

xi /∈ Qt−1, then since yi is yet unknown, we let pti ∝ L(|ht(xi)|). This is equivalent

to taking yi to be equal to sgn(ht(xi)) (see steps 3-5 of algorithm 4). This scheme

encourages querying points which have small margin w.r.t the current classifier, ht,

or points which have already been queried for their label, but on which the current

hypothesis, ht suffers a large loss. In any round, the minimum probability of querying

any point is pmin. This guarantees that L̂t(h) is an unbiased estimator of risk of h.

4.6 Related Work

To our knowledge, there have been few papers bridging the world of active learning

and MAB. [8] proposed a meta-active learning algorithm called COMB. COMB was

an implementation of the EXP4 algorithm for MAB with expert advice, where the

different active learning algorithms are the various “experts” and the different points

in the pool are the arms of the MAB. Briefly, in each round, each of the experts

suggest a sampling distribution on the pool. COMB maintains an estimate of the error

rate of each expert, takes into account the expert suggestions, and uses exponential

weighting to come up with a sampling distribution on the pool. In order to estimate

the error rate of each of the experts, the authors proposed a proxy reward function of

querying a point in terms of the entropy of label distribution of the unlabeled pool,

induced by the classifier obtained on the labeled dataset gathered by COMB till the

current iteration. In a way, the concept of reward seems inevitable in their formulation
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because the unlabeled points in the pool are treated as arms of the MAB. In contrast,

we think of the arms of the bandit as the different hypothesis, and querying a data

point, as the process of improving our estimate of the risk of the different hypothesis.

Hence, we bypass the need for an explicit reward signal, yet utilize MAB ideas for

AL.

The problem of active learning in multi-armed bandits was investigated by Car-

pentier et al. [23]. Here the authors assume that they are in the stochastic multi-armed

bandit scenario, and on pulling a certain arm, we get a loss sampled from the loss

distribution of the arm. The authors suggest a lower confidence bound algorithm to

estimate, in a sample efficient way, uniformly well the average loss of all the arms.

4.7 Experiments

We implemented LCB-AL in MATLAB, and compared it with UPAL, BMAL [48],

and a passive learning (PL) algorithm that minimizes the squared norm regularized

logistic loss. As mentioned before, our hypothesis set is H = {h ∈ Rd : ||h|| ≤ R},

whose self-concordant barrier is R(h) = − log(R2 − ||h||2) [1], where R > 0 was

provided as an input to LCB-AL. For our implementation of LCB-AL, we used a

slightly different definition for LCBt(h), than the one proposed in equation 57. Let

LCB′t(h)
def
= L̂t(h)− Ct

√
V ′t , (58)

where

V ′t
def
=
∑
i=1:n
τ=1:t

Qτ
i

(pτi )
2
L2(yih(xi))−

(∑
Qt

L(yih(xi)
))2

.

The definition of LCB′t(h) is almost similar to the one suggested by Equation 57 except

that the terms 2
t

log(1/δ′)Lmax(1+ 1
npmin

), and
√

L2
max log(1/δ′)

2n
in LCBt(h) were dropped

(as they are independent of h), and the term
L2
max

√
2t log(1/δ)(n−1)

pmin
, was dropped from

Vt, as it is independent of h. Note that LCBt(h) is larger than LCB′t(h), and hence
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LCB′t(h) is a valid lower confidence bound of R(h). Finally, motivated by Sauer-

Shelah lemma, we replace |H| in δ′ term by nd. Ct, and λt in all our experiments were

set to

√
log(t)

10
, and 100nt(∑n

i=1

∑t−1
τ=1

Qτ
i
pτ
i

)1/3 respectively. We used minFunc 3 to solve all of

our optimization problems. We used the same datasets that were used in Chapter 3,

namely MNIST (3 Vs 5), Statlog, Whitewine, Abalone. Since, UPAL and LCB-AL

are randomized algorithms, on each dataset, we ran them 10 times each, and report

averaged measurements. For all of our experiments, we used a separate held-out test

dataset, to calculate test error. For our passive learner, we provided the learning

algorithm with incremental data, trained the learner and report the results on the

held out test dataset.

4.7.1 Experimental comparisons of different algorithms

Figure 2 shows the test error of the hypothesis obtained, corresponding to the number

of unique queries made to the oracle, by each algorithm. Table 4 shows the error rate

on the test set, of each algorithm, once the budget is exhausted. On three of the

datasets, namely MNIST, Abalone, and Statlog, utilizing an active learner is better

than a passive learner. On MNIST, the performance of LCB-AL and UPAL are

nearly equal as far as the final test error goes, and both are better than BMAL.

On Abalone, LCB-AL is better than both BMAL and UPAL, while on Statlog the

final error achieved by BMAL is better than UPAL, and also LCB-AL, though the

difference between LCB-AL and BMAL is pretty narrow. On Whitewine, passive

learner is better than any of the active learners. In order to gain an insight into

how well each of the learning algorithm learns with each query to the oracle, we

also report the cumulative error rate of each algorithm, summed over all the queries

in Table 4. Even on this measure, LCB-AL and UPAL are better than BMAL on

MNIST, Abalone and Whitewine datasets, with an largest difference being in the case

3minFunc can be downloaded from http://www.di.ens.fr/~mschmidt/Software/minFunc.

html
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of Abalone and Statlog.
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(a) MNIST (3 vs 5)
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(c) Statlog
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Figure 2: Error rate of different learning algorithms with the number of queries made
to the oracle.

4.7.2 Comparing UPAL with LCB-AL

From our first set of experiments it looks like UPAL is just as good as LCB-AL if

not any better. e.g. on the MNIST dataset, there is almost no difference between

LCB-AL and UPAL. Since, both LCB-AL and UPAL are randomized algorithms it

makes sense to measure the fluctuations in the performance of both the algorithms.

Table 5 gives the standard deviation of the cumulative error rate over all the runs for

both LCB-AL and UPAL. It is clear that the standard deviation of the cumulative
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Table 4: Comparison of various active learning algorithms and passive learner on
various datasets.In this table we report both the error rate of each learner after it has
exhausted its budget, as well as the cumulative error rate for each learning algorithm.

Dataset LCB-AL UPAL BMAL PL
MNIST 0.0808 33.27 0.0809 32.75 0.0958 34.89 0.0918 40.08
Abalone 0.2604 83.49 0.2747 86.60 0.2695 86.21 0.2766 93.60
Statlog 0.0354 12.59 0.0433 14.97 0.0330 11.33 0.05 18.06

Whitewine 0.2771 86.30 0.2682 86.21 0.2665 86.95 0.2517 80.94

Table 5: Standard deviation of the cumulative error rate of LCB-AL and UPAL on
different datasets.

Dataset LCB-AL UPAL
MNIST 3.8604 5.0132
Abalone 2.6512 2.6869
Statlog 0.7944 1.6691

Whitewine 2.4097 2.9992

error rate for LCB-AL is uniformly smaller than that of UPAL over all datasets, and

the difference in the standard deviations is largest for the MNIST dataset. This can

be explained by the fact that, the unbiased estimator of risk used in UPAL is a high

variance estimator, and hence not a reliable estimator of the risk of a hypothesis.

In LCB-AL, by utilizing lower confidence bounds, and a self-concordant barrier type

regularizer, we are able to tackle the high variance of our estimator, and at the

same time harness the variance for exploration in the hypothesis space. In fact, a

similar phenomenon occurs even in the MAB setting, where algorithms built only

on unbiased estimators, such as EXP3 [6], achieve optimal performance only on an

average, whereas algorithm using confidence bounds such as EXP3.P achieve optimal

performance with high probability.

4.8 Conclusions and Discussion

We proposed LCB-AL a multi-armed bandit inspired pool based active learning algo-

rithm. By viewing the problem of active learning as quickly detecting the hypothesis

with (near) optimal risk, we view the problem of active learning as similar to a MAB
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problem with the arms being the different hypothesis. By building lower confidence

bounds on the risk of each hypothesis we are able to perform exploration in the hy-

pothesis space. By conceptually investigating the role of a loss signal in MAB, we

are able to design a sampling distribution from which we sample the points to be

queried. Experimental results suggest that our algorithm is both more accurate, and

also more stable than competing active learning algorithms.

An important property of LCB-AL that is worth investigating is that what is the

excess risk of the hypothesis returned by LCB-AL as a function of n, B? This would

also imply an upper bound on the budget, B that would be required in order to

guarantee an excess risk of ε. The hard part of this analysis is the fact that, because

of the use of lower confidence bounds, the resulting optimization problem that we

solve at each stage of LCB-AL, is a non-convex optimization problem. One could

relax the non-convex expression for LCBt(h) as provided by Equation 57, to another

non-convex expression, but one which is a difference of convex functions, as follows

LCB
′′

t (h) = L̂t(h)− 4

nt

√
log(1/δ′)

∑
i=1:n
τ=1:t

Qτ
i

(pτi )
L(yih(xi))−

4

nt
log(1/δ′)

(∑
Qt

L(yih(xi)
)
,

where δ′ = δ
|H|(2+T log(T/e))

. Using the fact that z+ ≥ z, and
√
· is sub-additive, we can

easily show that LCBt(h) ≥ LCB
′′

t (h), and hence LCB
′′

t (h) is a valid lower confidence

bound on R(h), with probability at least 1 − δ′. As mentioned, a nice property of

LCB
′′

t (h) is that it is a difference of convex functions, and hence efficient algorithms

exist [62] that guarantee convergence to a critical point.

Another extension of this work could be to investigate how different concentration

inequalities can be utilized to give different lower confidence bounds for the risk of

a hypothesis. This has proved to be an attractive idea in the MAB setting and it is

generally accepted that tighter concentration inequalities lead to better algorithms

for MAB [3, 80]. We expect something similar to happen even in active learning

problems.
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CHAPTER V

ACTIVE MODEL AGGREGATION VIA STOCHASTIC

MIRROR DESCENT

5.1 Introduction

In Chapters 3 and 4, we primarily looked at active learning in the setting when we are

given a class of models H, and we are required to return one model from this class.

In this chapter, we consider active learning in the ensemble framework, where we are

given a collection of models, and we want to actively learn a model, which does not

necessarily belong to the model class. To make this precise, we assume that we are

given a collection of models, B = {b1, . . . , bM}, and we want to learn a model in the

convex hull of B. Learning in the convex hull of models has been of interest both in

machine learning and approximation theory. Ensemble methods [33, 81] are methods

that combine a large number of simple models to learn a single powerful model.

Boosting algorithms such as AdaBoost [35], and LogitBoost [38] can be viewed as

performing aggregation via functional gradient descent [67]. The key idea here is

minimization of a convex loss, exponential loss in the case of AdaBoost, and logistic

loss in the case of LogitBoost, via a sequential aggregation of models in F . In the

case of boosting, the set of base models are weak learners, and by aggregating the

models we aim to boost the learning capabilities of the final aggregated model. The

problem of model aggregation for regression models was first proposed by Nemirovski

et al. [71]. Given a collection of models, B = {b1, . . . , bM}, Nemirovski [71] outlined

three problems of model aggregation, namely, model selection, convex aggregation

and linear aggregation. In this chapter we are interested in actively learning

a convex aggregation of models for the binary classification problem. Given
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a convex, margin based loss function L : R→ R+, we want a procedure that outputs

a model, f(x) =
∑M

j=1 βjbj(x) in the convex hull of B, whose excess risk, when

compared to the best model in the convex hull of B satisfies the inequality

EL(y〈β, b(x)〉) ≤ min
θ∈∆M

EL(y〈θ, b(x)〉) + δT,M ,

where 〈, 〉 is used to denote the dot product, b(x)
def
= [b1(x), . . . , bM(x)] ∈ {−1,+1}M ,

and δT,M > 0 is a small remainder term that goes to 0 as T →∞, and the expectation

is w.r.t. all the random variables involved. In order to construct such a β vector we

assume that we have access to an unlabeled stream of examples x1, x2, . . ., drawn i.i.d.

from the underlying distribution P defined on X .

Juditsky et al. [54] studied the above problem of learning the best convex aggre-

gation of models, under the assumption that one has access to a stream of labeled

examples sampled i.i.d. from the underlying distribution. They introduced an on-

line, stochastic mirror descent algorithm for the problem of learning the best convex

aggregation of models. We shall call their method SMD-PMA 1. They showed that

by making one pass of the stochastic mirror descent algorithm, and by averaging the

iterates obtained after each step of the algorithm, the resulting convex aggregate has

excess risk of O

(√
log(M)
T

)
, where M is the number of models being aggregated, and

T is the number of samples seen in the stream. Essentially, SMD-PMA is a slight

modification of the stochastic mirror descent algorithm, applied to the stochastic

optimization problem

min
θ∈∆M

EL(y〈θ, b(x)〉).

Since the constraint set is a simplex, the entropy regularizer was used in SMD-PMA.

The stochastic mirror descent procedure is followed by an averaging step, that allows

the authors to obtain excess risk bounds.

1SMD-PMA stands for Passive Model Aggregation via Stochastic Mirror Descent
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5.1.1 Contributions.

In this chapter, we are interested in learning convex aggregation of models, with

the help of actively labeled data. We consider a streaming setting, where we are

given unlabeled points x1, x2, . . . and an oracle O. The oracle O, when provided

as an input x in P , returns a label y ∈ {−1,+1} ∼ P[Y |X = x]. We present

an algorithm which is essentially a one-pass, stochastic mirror-descent based active

learning algorithm, called SMD-AMA 2, which solves the stochastic optimization

problem minθ∈∆M
Ex,y[L(y〈θ, b(x)〉)]. Since we are dealing with simplex constraints,

we use the entropy function as the regularization function in our stochastic mirror

descent algorithm. In round t of SMD-AMA, we query for the label of point xt, with

probability pt. This allows us to construct an unbiased stochastic sub-gradient of

the objective function at the current iterate. If the length of the stream is T points,

then SMD-AMA returns the hypothesis b̂T
def
= 〈θ̂T , b〉, where b : X → {−1,+1} is

defined as b(x) = [b1(x), . . . , bM(x)]T . We show that the excess risk of the hypothesis

b̂T , w.r.t. the best convex aggregate of models, scales with the number of models

as
√

log(M), and decays with the number of points, T , as 1
T 1−κ , where κ > 1/2

is an algorithmic parameter. The mild dependence on the number of models, M ,

allows us to use a large number of models, which is desirable when we are learning

convex aggregation of models. This chapter is organized as follows. In Section 5.2, we

introduce our algorithm SMD-AMA. In Section 5.3 we present an excess risk bound

for the hypothesis returned by our active learning algorithms. Section 5.4 reviews

related work, and Section 5.5 compares our proposed algorithm to a passive learning

algorithm, and a previously proposed ensemble based active learning algorithm.

2Stochastic Mirror Descent Based Active Model Aggregation
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5.2 Algorithm Design

Before we can jump into the details of SMD-AMA, we shall build some ground work

leading to the algorithm.

5.2.1 Preliminaries

SMD-AMA is essentially a slight variant of SMD algorithm. In order to fully specify

a SMD algorithm, we need to know a way to calculate unbiased estimates of the

gradient to the stochastic objective function, and we need to specify a Legendre,

barrier regularization function corresponding to the constraint set. As we mentioned

before our stochastic optimization problem is

min
θ∈∆M

EL(〈θ, b(x)〉). (59)

Standard analysis of stochastic mirror descent algorithm, assumes that we have ac-

cess to a stochastic (sub)gradient oracle which provides an unbiased estimate of the

gradient of the objective function at any point in the domain. A naive application of

the stochastic mirror descent method to our optimization problem 59 would require,

in each iteration, to obtain a stochastic subgradient of EL(y〈θ, b(x)〉). In iteration t,

if the current iterate is θt−1, then a stochastic subgradient of f(θ) at θ = θt−1 is given

by

∇f(θt−1) = L′(yt〈θt−1, b(xt)〉)ytb(xt), (60)

where L′(·) is the subderivative of L at the given argument. If in round t, we decided to

query for the label of the point xt, then one can calculate the stochastic subgradient

using Equation 60. However, if we decided not to query for the label of xt, then

the stochastic subgradient, which depends on the unknown label yt of xt, cannot be

calculated. While one could, in such a case, consider the stochastic subgradient to

be the zero vector, this is no longer an unbiased estimate of the subgradient. This is

problematic, as the classical analysis of stochastic mirror descent, assumes that one
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has access to unbiased estimates of the subgradient of the objective function. In order

to counter this problem we use the idea of importance sampling.

Importance weighted subgradient estimates: In order to use importance

weights, we assume that in round t, a point xt is queried with probability pt. Suppose

Qt is a {0, 1} random variable, which takes the value 1, if xt was queried, and takes the

value 0 if xt was not queried. Let Zt
def
= ytQt. Let Z1:t−1 be the collection of random

variables Z1, . . . , Zt−1. We shall make the following independence assumption, similar

to Assumption 1 first presented in Chapter 3.

Assumption 5. pt⊥⊥yt|xt, x1:t−1, Z1:t−1,

Consider the following importance-weighted stochastic subgradient

gt
def
=
Qt

pt
L′(yt〈θt−1, b(xt)〉)ytb(xt).

We have the following fairly simple proposition.

Proposition 2. Under Assumption 5 we have,

Ext,yt [gt|x1:t−1, Z1:t−1] = ∇Ex,y[L(y〈θt−1, b(x)〉)|x1:t−1, Z1:t−1] (61)

Proof.

Ext,yt [gt|x1:t−1, Z1:t−1] = Ext,yt
[
Qt

pt
L′(yt〈θt−1, b(xt)〉)ytb(xt)|x1:t−1, Z1:t−1

]
= ExtEQt,yt

[Qt

pt
L′(yt〈θt−1, b(xt)〉)ytb(xt)|x1:t−1, Z1:t−1, xt

]
(a)
= EL′(yt〈θt−1, b(xt)〉)ytb(xt)
(b)
= ∇Ex,y[L(y〈θt−1, b(x)〉)|x1:t−1, Z1:t−1].

In Equality (a) we used our Assumption 5, and the fact that EQt|x1:t−1,Z1:t−1,xt
Qt
pt

=

1. In Equality (b) we used the fact that our data is i.i.d., and hence xt, yt is indepen-

dent of x1:t−1, y1:t−1. Proposition 2 says that gt provided by Equation 5.2.1 provides

an unbiased estimate of the gradient of the objective function in Equation 59.
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Before we dive into the details of SMD-AMA we shall need a few notations, and

terminology, that are relevant for the explanation of the our algorithm. Most of this

exposition is standard and is taken from [54]. Let E = `M1 , be the space of RM

equipped with `1 norm. Let E∗ = `M∞ be the corresponding dual space, equipped with

the `∞ norm.

Definition 4. Let ∆M ⊂ E, be the simplex, and let V : ∆M → R be a convex

function. For a given parameter β, the β conjugate dual of V is the convex function

V ∗β : E∗ → R, defined as

V ∗β (ξ) = sup
θ∈∆M

[〈ξ, θ〉 − βV (θ)].

This definition is the same as the definition of conjugate function that was first

stated in Chapter 2, except with an additional parameter β. The role of β will be

clarified in Section 5.2.3. Finally, in order to fully specify a SMD algorithm, we need a

regularization function. Since our constraint set is a simplex, we shall use the entropy

function defined as

R(θ) =


−
∑M

j=1 θj log(θj) if θ ∈ ∆M

∞ otherwise

as our regularization function.

5.2.2 Design of SMD-AMA.

We now have all the ingredients of our algorithm in place. The algorithm proceeds

in a streaming fashion, looking at one unlabeled data point at a time. Step 4 of

SMD-AMA, calculates the probability of the point being labeled +1 by the current

convex aggregate, and this calculation is used in Step 5 to calculate the probability

of querying the label of xt. Notice that the probability of querying a point, in round

t, is always at least εt > 0. Value of εt is set in Step 3. Step 7 calculates the

importance weighted gradient, which is used in Step 9 to calculate the new iterate
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θt. By straightforward Calculus, one can show that Step 9, leads to the following

iteration

θt,j ∝ exp(−ξt,j/β),

where ξt,j is the jth component of the vector ξt. In Step 4, we use properties of the

loss function in order to estimate p+
t . It is well known that standard loss functions

such as exponential, logistic, squared loss, modified squared loss, Huber loss, which

are used in classification, are also proper losses for probability estimation [96, 21,

78]. Hence, given the loss function, via standard formulae it is easy to estimate

the conditional probability P[Yt = 1|Xt = 1]. For instance, if one were to use the

squared loss L(yz) = (1 − yz)2, then our estimate for p+
t is given by the formula

max
(
0,min

(
1+z

2
, 1
))

. Similarly for other losses, estimates for the probability of label

being +1 can be calculated ( e.g see Section 3 in [96]). In our case, the value of z, in

round t, is given by 〈θt−1, b(xt)〉, and hence if we were to use the squared loss, then

p+
t = max

(
0,min

(
1+〈θt−1,b(xt)〉

2
, 1
))

.

Algorithm 5 SMD-AMA (Input: A margin based loss function L, Labeling Oracle
O, Parameters 1 ≥ κ > 1

2
, β0 > 0)

1. Initialize θ0 = [ 1
M
, . . . , 1

M
]T , ξ0 = [0, . . . , 0], t = 1

for t=1,. . . do
2. Receive xt.
3. Set εt = t1−2κ

4. Estimate p+
t = P[Yt = 1|X = xt, θt−1]

5. Calculate pt = 4p+
t (1− p+

t )(1− εt) + εt.
6. Query the label of xt with probability pt.
7. Set gt = Qt

pt
L′(yt〈θt−1, b(xt)〉)ytb(xt).

8. Set ξt ← ξt−1 − gt.
8. Update βt = β0(t+ 1)κ.
9. Calculate θt = ∇R∗βt(ξt).
10 t← t+ 1.

end for
11. Return θ̂T =

∑T
t=1 θt
T

.

SMD-AMA, like stochastic mirror descent, performs gradient descent in the dual

space, and at each round generates the primal variable via the β conjugate of R. If

70



pt is set to 1, then we recover the SMD-PMA algorithm of Juditsky et al.

5.2.3 Difference Between Stochastic Mirror Descent and SMD-PMA

The primary difference between SMD-PMA and stochastic mirror descent is in the

way the primal variables are generated. While in SMD-PMA βt changes with t,

in stochastic mirror descent, β0 = β1 = . . . = βt . . . is fixed to a constant that

depends on the length of the data stream. As we saw in Chapter 2, in the standard

implementation of stochastic mirror descent, β parameter is not used. Instead a step

size η is used. In contrast, SMD-AMA, never uses a step size, but instead uses a β

parameter, that roughly behaves as inverse of step size. The advantage of using a

variable βt, is that we are able to obtain excess risk guarantees without even knowing

the length of the data stream.

5.3 Excess Risk analysis

Theorem 12. Let B = {b1, . . . , bM} be a collection of basis models, where for each

x ∈ X , bj(x) ∈ {−1,+1}. For any x in X , let b(x) = [b1(x), . . . , bM(x)]T . Let,

R(θ)
def
= EL(y〈θ, b(x)〉). Then, for any T ≥ 1, and any θ ∈ ∆M , when SMD-AMA is

run with the parameter β2
0 =

L2
φ

log(M)2κ+1(κ)
, where κ > 1/2, then the convex aggregation,

θ̂T , returned by the SMD-AMA algorithm after T rounds, satisfies the following excess

risk inequality

ER(θ̂T ) ≤ R(θ) + T κ−1

√L2
φ2κ+1 log(M)

κ

 .

Proof of Theorem 12 proceeds via the following lemma.

Lemma 9. For any θ ∈ ∆M , and for any T ≥ 1, we have

T∑
t=1

〈θt−1 − θ,∇R(θt−1) ≤ βTR(θ) +
T∑
t=1

||gt||2∞
2βt−1

−
T∑
t=1

〈θt−1 − θt,∆t(θt−1)〉.

The above lemma was first established in [54]. We shall not provide the proof, as

it follows almost verbatim from the proof of Proposition 2 in [54]).
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5.3.1 Proof of Theorem 12

Let R(θ)
def
= EL(y〈θ, b(x)〉). By definition,

θ̂T =

∑T
t=1 θt−1

T
.

Since L is a convex function, hence by Jensen’s inequality

ER(θ̂T )− ER(θ) ≤
∑T

t=1 ER(θt−1)− ER(θ)

T
(62)

Since R(θ) is a convex function of θ, hence we can use the subgradient to build an

under-approximation to get

R(θt−1)−R(θ) ≤ 〈∇R(θt−1),−θ + θt−1〉. (63)

Putting together Equations 62, 63 we then get

ER(θ̂T )− ER(θ) ≤
∑T

t=1 E〈∇R(θt−1), θt−1 − θ〉
T

≤ 1

T

[
βT log(M)− E

T∑
t=1

〈θt−1 − θ, gt −∇R(θt−1)〉+ E
T∑
t=1

||gt||2∞
2βt−1

]
.

In the above set of inequalities, to obtain the second inequality from the first we used

Lemma 9. Since our data stream is drawn i.i.d. from the input distribution, hence

Egt −∇R(θt−1) = 0. This gets us

ER(θ̂T )− ER(θ) ≤ E〈∇R(θt−1), θt−1 − θ〉
T

≤ 1

T

[
βT log(M) + E

T∑
t=1

||gt||2∞
2βt−1

]
(a)

≤ 1

T

[
βT log(M) +

T∑
t=1

E
L2
φ

2ptβt−1

]
(b)

≤ βT log(M)

T
+

L2
φ

2Tβ0

T∑
t=1

1

t1−κ

(c)

≤ β0(T + 1)κ log(M)

T
+
L2
φT

κ−1

2β0κ
(d)

≤ 2κβ0T
κ log(M)

T
+
L2
φT

κ−1

2β0κ

≤ 2T κ−1

√
L2
φ2κ+1 log(M)

κ
.
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Inequality (a) was obtained by using the fact that E[Qt
pt

] = 1, and by approximat-

ing |L′(yi〈θ, b(xi)〉)| ≤ Lφ. Inequality (b) was obtained by substituting for βt−1 the

expression β0t
κ, and upper bounding 1

pt
with 1

εt
. This completes the proof.

5.4 Related Work

Madani et al. [65] considered the problem of active model aggregation, where given

many models one has to choose a single best model from the collection. They model

the problem as the coins problem, where a player is provided with a certain number

of flips, and is allowed to flip coins until the budget runs out, after which the player

has to report the coin which has the highest probability of turning up heads. A rein-

forcement learning approach, to the same problem, was taken in [57]. In this chapter,

we are dealing with a more complicated problem of choosing the best model from

the convex hull of a given set of models. Mamituska and Abe [66] combine the ideas

of Query-by-committee, and boosting to come up with an active learning algorithm,

where the current weighted majority is used to decide which point to query next. In

order to obtain a weighted-majority of hypothesis, the authors suggest using ensem-

ble techniques such as boosting and bagging. Trapeznikov et al. [90] introduced the

ActBoost algorithm, which is an active learning algorithm in the boosting framework.

Particularly, ActBoost works under the weak learning assumption [36], which assumes

that there is a hypothesis with zero error rate, in the convex hull of the base classi-

fiers. Under this assumption, the authors suggest a version space based algorithm,

that maintains all the possible convex combinations of the base hypothesis that are

consistent with the current data, and queries the labels of the points, on which two

hypothesis in the current convex hull, disagree. By design, the ActBoost algorithm

is very brittle. In contrast, we do not make any weak learning assumptions, and

hence avoid the problems that ActBoost might face when weak learning assumption

is not satisfied. Active learning algorithms, in the boosting framework, have also been
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suggested by [53], but they do not admit any guarantees, and are somewhat heuristic.

5.5 Experimental Results

We implemented SMD-AMA, along with SMD-PMA, and the QBB algorithm [66].

As mentioned before, QBB is an ensemble based active learning algorithm, which

builds a committee via the AdaBoost algorithm. QBB works in an iterative fashion.

In round t, QBB runs the AdaBoost algorithm, on the currently labeled dataset St,

with the collection of models B, to get a boosted model ht. A boosted model is of the

form ht(x) =
∑M

j=1 αj,tbj(x), where αj,t > 0, for all j = 1, . . . ,M . To choose the next

point to be queried, QBB generates a random sample of R points from the current set

of unqueried points. Suppose this random sample is Ct. To choose the next point to

be queried, we look for that point in Ct, whose margin w.r.t. ht is the smallest. We

then query for the label of this point. This process is repeated until some condition

is satisfied (typically until a budget is exhausted).

5.5.1 Experimental Setup.

We used decision stumps along different dimensions, and with different thresholds,

to form our set of basis models B. A decision stump is a weak classifier that is

characterized by a dimension j, and a threshold θ, and classifies a point x ∈ Rd as

sgn(xj − θ), where xj is the jth dimension of x. For all our experiments, we used 80

decision stumps along each dimension 3. We make our set, B, symmetric by adding

−b to B, if b ∈ B. Unless otherwise mentioned, the choice of κ is set to 0.65 for all of

our SMD-AMA experiments. We report results on some standard UCI datasets.

3Using more decision stumps yielded insignificant improvement in test error, but increased com-
putational complexity by a large amount
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Figure 3: Comparison of the test error between SMD-AMA and SMD-PMA with the
number of points seen. All results are reported by averaging over 10 repetitions of
our experiments. The loss function used is the squared loss.

5.5.2 Comparison with Passive Learning

Our first set of experiments compare SMD-PMA to SMD-AMA. We run both SMD-

AMA and SMD-PMA on our datasets, and use the hypothesis outputted by these

algorithms, at the end of each round, to classify on a test dataset. In Figure 3, we

plot the test error rate of both the algorithms with the number of points seen in the

stream. Note that while SMD-PMA gets to see the label of each and every point,

SMD-AMA gets to see only those labels which it queries. We used the squared loss

function for SMD-AMA, and SMD-PMA. Finally, since SMD-AMA is a randomized

algorithm, we report results averaged over 10 iterations. From Table 6, it is clear

that for all datasets but Whitewine, both SMD-AMA and SMD-PMA attain almost

the same error rate, after finishing a single pass through the stream. Figure 3 shows

how the test error changes for SMD-PMA and SMD-AMA with the number of points

seen in the stream. While in the case of Abalone, and Statlog, SMD-AMA quickly
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Table 6: Comparison of the test error between SMD-AMA and SMD-PMA, and
number of queries made by SMD-AMA on different datasets. All results are for
the hypothesis returned by the algorithms at the end of the stream. All results are
reported by averaging over 10 repetitions of our experiments.

Dataset SMD-AMA SMD-PMA Number of Queries Fraction Queried
Abalone 0.2889 0.2922 440.2 0.1317
Statlog 0.0491 0.0520 2984 0.6728
MNIST 0.1496 0.1442 931.6 0.0932
Whitewine 0.3075 0.2864 406.8 0.1351
Magic 0.2166 0.2171 2450 0.2146
WDBC 0.0938 0.0973 112 0.2469
Redwine 0.2933 0.2911 540 0.5625

Table 7: Comparison of the test loss between SMD-AMA and SMD-PMA for the
hypothesis returned by the algorithms at the end of the stream. All results are
reported by averaging over 10 repetitions of our experiments. The loss function used
is the squared loss.

Dataset SMD-AMA SMD-PMA
Abalone 0.7992 0.7611
Statlog 0.3242 0.3396
MNIST 0.5517 0.5381
Whitewine 0.7894 0.7361
Maigc 0.6315 0.6305
WDBC 0.3178 0.2933
Redwine 0.7455 0.7660

catches up with SMD-PMA (and in fact slightly surpasses SMD-PMA), in the case of

MNIST, the difference between SMD-AMA and SMD-PMA closes only after having

seen about 80% of the stream. In the case of Whitewine, SMD-PMA is uniformly

better than our active learning algorithm, SMD-AMA. The difference in error rates,

between SMD-PMA and SMD-AMA, at the end of the stream is about 1.32%. In the

case of Magic, Redwine datasets, the difference in performance of SMD-AMA and

SMD-PMA is negligible. On WDBC, SMD-PMA initially does better than SMD-

AMA, but after having queried the labels of sufficient number of points, SMD-AMA

does just as well as SMD-PMA.

The number of queries made in Abalone, MNIST, and Whitewine is less than 14%
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of the length of the stream, which implies that we do as well as passive learning, for

Abalone, and MNIST, at the expense of far fewer labels. In the case of Statlog, and

Redwine datasets the number of queries made is comparatively larger, about 67.28%,

and 56.25% of the size of the dataset respectively. On Magic and WDBC the fraction

of queries made is less than 25% of the number of training points in the dataset.

In Table 7, we report the loss on the test data, of SMD-AMA, SMD-PMA at

the end of the data stream. Figure 4 reports the test loss of both the algorithms

with the number of samples seen in the stream. Note that while test error is always

between 0 and 1, the test loss can be larger than 1. For instance, in Figure 4 (d),

the loss can be as large as 1.16. In fact for the convex aggregation model that we

consider in this chapter, and with the squared loss, the maximum loss can be as

large as maxz∈[−1,1](1 − z)2 = 4. The purpose of these experiments was to examine

how the difference between the test loss suffered by SMD-AMA, and SMD-PMA,

changes with the number of points seen in the stream. In the case of Statlog, and

MNIST the difference in losses is generally smaller than in the case of Abalone and

Whitewine, and on Magic, Redwine, and WDBC datasets SMD-AMA generally has

suffers slightly smaller loss than SMD-PMA. However, since the scale for test loss is

larger than 1, these results seem to imply that both SMD-AMA and SMD-PMA have

almost similar rates of decay for the test loss.

5.5.3 Number of Queries Vs Number of Points Seen

Figure 5 shows how the number of queries made by SMD-AMA scale with the number

of points seen in the steam on all the four datasets. This scaling is almost linear in the

case of Statlog. This was expected, given the fact that on Statlog, we query the labels

of almost 65% of the points in the stream. However, in the case of Abalone, MNIST,

and Whitewine, the scaling seems to be sublinear. Based on these experimental

results, we expect that on Magic, and WDBC datasets, the scaling of the number of
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Figure 4: Comparison of the test loss of SMD-AMA and SMD-PMA with the num-
ber of points seen. All results are reported by averaging over 10 repetitions of our
experiments. The loss function used is the squared loss.
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Figure 5: The number of queries made by SMD-AMA as a function of the number
of data points seen. On the x-axis is the number of points seen, and on the y-axis is
the number of labels requested.
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queries w.r.t. the number of points to be sublinear; while on the Redwine dataset,

like Statlog dataset, we expect this scaling to be linear.

5.5.4 Effect of Parameter κ.
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Figure 6: The plots in the top row show the test error of SMD-AMA (on y-axis), at
the end of the stream, as a function of the parameter κ (on the x-axis). The bottom
two plots show the number of queries made (on y-axis) as a function of the parameter
κ (on the x-axis).

The effect of parameter κ, can be studied as follows. Step 3 of SMD-AMA, sets

the value of εt to t1−2κ. From Step 5 of SMD-AMA, it is clear that pt ≥ εt. Hence

the average number of queries scales faster than
∑T

t=1 t
1−2κ. This implies that,

E[Number of Queries] =


Ω(T 2−2κ) if 1

2
≤ κ < 1

Ω(log(T )) if κ = 1.

Theorem 12 says that the excess risk of SMD-AMA has an upper bound that scales

as O(T κ−1). Hence from this discussion we know that large κ leads to a smaller lower

bound on the expected number of queries made, but a larger upper bound on the

excess risk. Figure 6 demonstrates the trade-off between test error and the number
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Table 8: Comparison of the error rate of QBB and SMD-AMA for a given budget.

Dataset Budget Error rate of SMD-AMA Error rate of QBB
Abalone 441 0.2889 0.3293
Statlog 2984 0.0491 0.0407
MNIST 932 0.1496 0.1756

Whitewine 398 0.3075 0.3543
Redwine 540 0.2933 0.3146
WDBC 115 0.0938 0.0796
Magic 2450 0.2166 0.2499

of label queries made by SMD-AMA by changing parameter κ. As we can see from

these plots, larger κ lead to small number of queries, but a larger test error. On the

other hand, when we choose a small value of κ, the number of queries made is large,

but the test error is small. We expect similar results to hold true for other datasets

too.

5.5.5 Comparison with QBB

In contrast to SMD-PMA and SMD-AMA, QBB is a pool based active learning al-

gorithm, and not a stream based active learning algorithm. Hence, QBB has access

to the entire set of unlabeled data points, and in each round can choose one data

point to query. In order to provide a fair comparison of QBB and SMD-AMA, we

used the number of queries made by SMD-AMA from our first set of experiments,

as a budget parameter for the QBB algorithm, and report the error rate of the hy-

pothesis returned by SMD-AMA, and QBB at the end of the budget. It is clear from

Table 8 that, for all the datasets except Statlog, and WDBC, QBB is significantly

inferior to SMD-AMA under the given budget constraints. For the Statlog dataset,

the test error of SMD-AMA and QBB are comparable, and we guess this is because

the number of training points queried by SMD-AMA, which is given as a budget

parameter to our QBB experiments, is a very large fraction of the size of the dataset.

On the WDBC dataset, we believe that it might be possible to obtain better results
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for both SMD-AMA, and SMD-PMA by carefully fine-tuning the step size used in

the mirror-descent step.

5.6 Conclusions and Discussions

In this chapter we considered active learning of convex aggregation of classification

models. We presented a stochastic mirror descent algorithm, which uses importance

weighting to obtain unbiased importance weighted stochastic gradients of a convex

risk function. We established excess risk guarantees of the resultant convex aggrega-

tion outputted by SMD-AMA w.r.t. the best possible convex aggregate. Experimen-

tal results show that SMD-AMA produces as good error rates as a passive learning

algorithm while querying substantially fewer number of points. In particular for some

datasets we were able to achieve error rates on par with passive learning by using only

13% of the data that a passive learner would use. This work can be extended in many

directions, some of which are stated below

Improved rates for excess risk. Our bound on the excess risk is seemingly

pessimistic. SMD-PMA is known to attain excess risk rates of O(
√

log(M)
T

), while

in our case the excess risk is of the order O(

√
log(M)

T 1−κ ). Our experimental results

from Section 5.5 seem to suggest that the test loss of the hypothesis returned by

SMD-AMA, and SMD-PMA are very close. Basing on this experimental evidence,

we conjecture that it might be possible to provide a sharper bound on the excess risk

of SMD-AMA.

5.7 Bibliographic Notes

This chapter is currently under submission at AISTATS 2014.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis, we designed active learning algorithms by using ideas from sequential

analysis. By using the stochastic mirror-descent algorithm, we designed pool based,

and stream based active learning algorithms with provable excess risk guarantees.

We showed how one could connect the problem of active learning to the problem of

multi-armed bandits, which facilitates transfer of ideas such as confidence bounds,

and barrier type regularizers commonly used in the bandit and online optimization

to active learning. We shall now mention a few problems of interest.

6.0.1 Stronger connections between Active Learning and Problems in
Sequential Analysis.

We believe that there is tremendous potential for ideas from multi-armed bandits, and

various other extensions of multi-armed bandits such as contextual bandits, bandit

optimization to be used for active learning problems. Most of these algorithms are

very simple, efficient and hence should be useful in designing simple, efficient active

learning algorithms.

6.0.2 Active Learning for Regression problems.

All the contributions in this thesis are geared towards active learning for the binary

classification problem. There has been work for active learning in regression problems

both on the algorithmic side [28, 34] and on the complexity side [24]. However, to our

knowledge, the sequential lens to active learning that we have taken in this thesis,

has not been used for active learning in regression problems. A seemingly related

problem to active regression is that of efficient global optimization, where we minimize

an unknown function f by using as few observations f(x) as possible. For efficient
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global optimization, where exploration-exploitation trade-off enters the picture, a well

known heuristic is expected-improvement. Bull [22] analyzed asymptotic properties

of this algorithm under certain conditions. While it is tempting to equate active

regression problem to global optimization problem by saying that in both the cases

we are trying to learn a model in a certain model class that minimizes expected

squared loss, it is important to understand that the queries in global optimization are

far more powerful, as we can ask for the evaluation of f at any point x. In contrast

in regression problems under the distributional setting, we can ask the label for only

those data points which have been sampled from the underlying distribution.

Use of Robust Estimators in Active Learning. A recurrent theme in our

work has been the use of importance sampling, which was used to build importance

weighted estimate of the risk of a hypothesis. A major problem with such impor-

tance weighted estimators is that they have high variance. Derivation of importance

weighted estimators of risk, which have small variance, seems to be an interesting

avenue to pursue. An interesting approach would be to use ideas similar to the ones

used in the field of robust estimation such as winsorized mean [15] and Catoni’s M

estimator [25].

Active Learning under specific statistical assumptions. It is of tremendous

practical and theoretical interest to design active learning algorithms, which are both

computationally efficient, and also label efficient, under certain special assumptions on

the data generating process. For example, we now know that the class of single index

models can be efficiently learned [56], both from the statistical and computational

viewpoint in the passive learning setting. How can we learn such models in a label-

efficient, and computational, and statistically efficient way. Similarly, how can we

design active learning algorithms for learning additive models.
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tradeoff using variance estimates in multi-armed bandits,” Theoretical Computer

Science, vol. 410, no. 19, pp. 1876–1902, 2009.

[5] Auer, P., Cesa-Bianchi, N., and Fischer, P., “Finite-time analysis of the

multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–256, 2002.

[6] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R., “The non-

stochastic multiarmed bandit problem,” SIAM Journal on Computing, vol. 32,

no. 1, pp. 48–77, 2002.

[7] Balcan, M., Beygelzimer, A., and Langford, J., “Agnostic active learn-

ing,” JCSS, vol. 75, no. 1, 2009.

84



[8] Baram, Y., El-Yaniv, R., and Luz, K., “Online choice of active learning

algorithms,” The Journal of Machine Learning Research, vol. 5, pp. 255–291,

2004.

[9] Barnard, G., “Sequential tests in industrial statistics,” Supplement to the

Journal of the Royal Statistical Society, vol. 8, no. 1, pp. 1–26, 1946.

[10] Bartlett, P., Dani, V., Hayes, T., Kakade, S., Rakhlin, A., and

Tewari, A., “High-probability regret bounds for bandit online linear optimiza-

tion,” COLT, 2008.

[11] Baum, E. and Lang, K., “Query learning can work poorly when a human

oracle is used,” in IJCNN, 1992.

[12] Beck, A. and Teboulle, M., “Mirror descent and nonlinear projected sub-

gradient methods for convex optimization,” Operations Research Letters, vol. 31,

no. 3, pp. 167–175, 2003.

[13] Berry, D. A. and Fristedt, B., Bandit Problems: Sequential Allocation of

Experiments. Monographs on Statistics and Applied Probability, London: Chap-

man & Hall, 1985.

[14] Beygelzimer, A., Dasgupta, S., and Langford, J., “Importance weighted

active learning,” in ICML, 2009.

[15] Bickel, P. J., “On some robust estimates of location,” The Annals of Mathe-

matical Statistics, vol. 36, no. 3, pp. 847–858, 1965.

[16] Boucheron, S., Bousquet, O., and Lugosi, G., “Theory of classification:

A survey of some recent advances,” ESAIM: P&S, vol. 9, pp. 323–375, 2005.

[17] Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge Univer-

sity Press, 2004.

85



[18] Bubeck, S., Cesa-Bianchi, N., Kakade, S., and others, “Towards min-

imax policies for online linear optimization with bandit feedback,” in Annual

Conference on Learning Theory, pp. 41–1, Microtome, 2012.

[19] Bubeck, S., “Introduction to online optimization,” Lecture Notes, 2011.

[20] Bubeck, S. and Cesa-Bianchi, N., “Regret analysis of stochastic and non-

stochastic multi-armed bandit problems,” arXiv preprint arXiv:1204.5721, 2012.

[21] Buja, A., Stuetzle, W., and Shen, Y., “Loss functions for binary class

probability estimation and classification: Structure and applications.” 2005.

[22] Bull, A., “Convergence rates of efficient global optimization algorithms,” The

Journal of Machine Learning Research, vol. 12, pp. 2879–2904, 2011.

[23] Carpentier, A., Lazaric, A., Ghavamzadeh, M., Munos, R., and Auer,

P., “Upper-confidence-bound algorithms for active learning in multi-armed ban-

dits,” in Algorithmic Learning Theory, pp. 189–203, Springer, 2011.

[24] Castro, R., Willett, R., and Nowak, R., “Faster rates in regression via

active learning,” Advances in Neural Information Processing Systems, vol. 18,

p. 179, 2006.

[25] Catoni, O., “Challenging the empirical mean and empirical variance: a devia-

tion study,” in Annales de l’Institut Henri Poincaré, Probabilités et Statistiques,
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