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ABSTRACT

This paper presents a cost modelling system for lean product and process development to support

proactive decision making and mistake elimination at the design stage. The foundations of the

system are based upon three lean product and process development enablers, namely: Set-Based

Concurrent Engineering, Knowledge-based Engineering, and mistake proofing (Poka-yoke). The

development commenced with an industrial field study of eleven leading European industries

from the aerospace, automotive, telecommunication, medical and domestic appliance sectors.

Based on the requirements of industrial collaborators, the developed system comprises six

modules: value identification, manufacturing process / machines selection, material selection,

geometric features specification, geometric features and manufacturability assessment, and

manufacturing time and cost estimation. The work involved the development of a feature-based

cost estimation method for the resistance spot welding process. The developed system was

finally validated using an industrial case study.

The developed system has the capability to provide estimates related to product cost and

associated values concurrently, facilitate decision making, eliminate mistakes during the design

stage, and incorporate ‘customer voice’ during a critical decision making stage.

Key words: Lean product development; Cost Modelling; Set-Based Concurrent Engineering;

Knowledge-based Engineering; Mistake proofing (Poka-yoke).
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1 INTRODUCTION

Current socio-technical effects of global competition have forced companies to develop

additional competitive product development strategies in order to deliver more innovative

products that meet customer expectations in a shorter lead time, with less cost, high quality, and

a quick response to market changes. Since 70% of product cost is committed in the design phase

(Shehab and Abdalla, 2001); the product development team therefore considers this phase

critically and puts special measures in place to avoid mistakes or unforeseen circumstances that

could cause a hindrance to the successful manufacture of artefacts.

One of the current measures used by industry is to equip designers with cost estimation

capabilities which allow for manufacturing cost estimation during the design phase. Some of cost

estimation systems discussed in literature include those of Bouaziz et al. (2006); Chayoukhi et al.

(2009); Cicconi et al. (2010); Masmoudi et al. (2007); Quintana and Ciurana (2011); and Shehab

and Abdalla (2002b). These systems focus on providing manufacturing cost estimations for

designers. It is worth stating that in such a dynamic environment, where the customer demands

and needs are constantly changing, companies need to adhere to this change by capturing and

channelling customer requirements into their product design process. Therefore, a cost

estimation system should be capable of supporting designers to optimise manufacturing cost

while considering other important factors such as manufacturing time, product quality, crash

strength, etc. Incorporating a lean thinking approach into the cost estimation system will

overcome limitations in previously developed systems. Lean thinking is a philosophy that aims

to both enhance value and reduce waste. Lean manufacturing and lean enterprise have been

developed for the shop floor and top management respectively. Today, researchers and

practitioners are striving to develop principles, models and methodologies for lean product and

process development (Kennedy et al., 2008; Mascitelli, 2004; Morgan and Liker, 2006; Sobek

and Liker, 1998; Sobek et al., 1999; Ward, 2007).

Cranfield University is leading a LeanPPD (Lean Product and Process Development) project

which is funded by the European Union (EU-FP7) (www.leanppd.eu). The project aims to
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develop a new model for European companies which goes beyond lean manufacturing to ensure

the transformation of enterprise into lean environment (Al-Ashaab et al., 2010).

This research work investigates aspects related to the LeanPPD (Lean Product and Process

Development) project which aims to develop a new cost model of manufacturing cost estimation

that enables designers to take the right decisions and avoid mistakes at the product development

design stage. This paper has been structured as follows; Section 2 outlines the literature review

of research conducted in the areas of lean product and process development, and cost estimation

systems. Section 3 describes the research methodology. Section 4 presents the developed system.

Section 5 explains the system scenario; whereas, the system implementation and benefits are

outlined in Section 6. The system validation is presented in Section 7. Finally, the overall

conclusions are discussed in Section 8.

2 RELATED WORK

Lean product and process development is a systematic approach to the development of products

and their associated production processes in a knowledge-based continuous improvement

environment, which focuses on the creation of value, and results in the reduction of waste. This

is achieved through enhancing a stream of activities, so that decisions are made based on

acquired knowledge. Lean product and process development encompasses a number of enablers

or building blocks (Al-Ashaab et al., 2010; Khan et al., 2011b); however, this research work

deals with only three enablers, namely Set-Based Concurrent Engineering, Knowledge-based

Engineering, and mistake proofing (Poka-yoke). These enablers have been chosen carefully after

a literature review and field study. Only those enablers which have a major impact on lean

product and process development have been selected; and also have the potential to be adopted

into a cost estimation system.

Set-Based Concurrent Engineering is the process of exploring alternative ideas by considering a

set of design space instead of a single design solution (Morgan and Liker, 2006; Sobek et al.,

1999; Ward, 2007). In this method, designers communicate explicitly to develop sets of design

solutions on the basis of their preferences. As the design progresses, they eliminate the inferior

sets of design to narrow down the design space and finally reach a single acceptable solution
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(Khan et al., 2011a; Ward, 2007). Set-Based Concurrent Engineering includes a number of tools

namely checklists, trade-off curves, and a matrix for communicating alternatives. Checklists are

employed to reduce the conflict and mistakes among functional teams, trade-off curves are used

to support design optimisation through visualisation, and the matrix for communicating

alternatives is applicable to sort out alternative designs through conversation with all

stakeholders (Sobek et al., 1999). Set-Based Concurrent Engineering has a number of

advantages; for example, it helps to identify more design solutions, reduces communication

requirement with suppliers, improves concurrency in functional departments, eliminates work

delays and increases trust in working relationships (Ward et al., 1995).

Knowledge-based engineering is the use of advanced dedicated software tools to capture

(acquire) and re-use product and process engineering knowledge (Curran et al., 2009; Skarka,

2007; Stokes, 2001). Knowledge is represented in a variety of forms including object oriented,

trees, rules, frames, semantic networks, procedural knowledge, logic and statistical knowledge

(Tammineni et al., 2009). Lean product and process development emphasises creating a

knowledge-based continuous improvement environment for surviving and growing faster than

competitors (Morgan and Liker, 2006). This environment is developed through several ideals

such as checklists, quality matrices, learning focus problem solving, hansei events, and a know-

how database. The checklist is one of the more widely applicable tools, maintained to identify

feasible design space, remove the conflict between functional groups and identify the product

manufacturability (Sobek et al., 1999; Ward et al., 1995). Checklists include functionality (e.g.,

minimum acceptable sheet thickness for laser welding), manufacturability (e.g., capability of the

lathe machine to turn the specific component at the required surface speed), government

regulation, and reliability (Sobek et al., 1999).

Mistake proofing (Poka-yoke) has evolved from lean manufacturing. Its objective is to avoid the

passing of defective product downstream and eliminate the risk that undetected defects end up in

the customer's hand (Kremer and Fabrizio, 2005). Jamaludin (2008) defines mistake proofing as

a device or practice that aims to prevent the error causing the defects. Mistake proofing has a

number of advantages, i.e. it reduces the redesign, rework and repair requirements; removes the
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inspections necessity; minimises the defect rates; and reduces lengthy documentation (Mital et

al., 2008).

Cost in the product development design phase is estimated using two different methods, i.e.

design-for-cost and design-to-cost (Shehab and Abdalla, 2001). In the former, engineering

processes are used to reduce the life cycle cost of a product; whereas in the latter, the design is

required to satisfy certain identified cost targets. Traditionally, there are two types of cost

estimation methods; first sight cost estimate, and detailed cost estimate (Roy, 2003). In the first

method, a considerable amount of experience is mandatory to have an accurate cost; whereas, the

second method requires a substantial amount of data. Shehab and Abdalla (2001) classified the

cost estimation methods as intuitive, parametric, analogical and analytical. The selection of a

suitable cost estimation method is considered to be a very difficult job. It depends on data

availability, estimator's experience and the required precision level of estimation Therefore,

Niazi et al. (2006) categorise cost estimation methods based on qualitative and quantitative data.

Qualitative methods are applicable at the early stage of product design and for a rough estimate,

since a limited amount of data is available in this stage. Quantitative methods on the other hand,

are suitable for detailed estimation because of the large amount of data available.

A number of initiatives have been taken by several authors to develop the methods and systems

for estimating the manufacturing cost during early design stage; however, most of these systems

are concerned with cost estimation without considering lean product and process development.

Although they do consider some aspects of lean product and process development enablers, they

do not, however, follow the lean principles. Furthermore, most of these systems employ either

single or only two enablers; therefore, the advantages of their combined effects are still

unforeseen. For example, Feng and Zhang (1999) developed a method of manufacturing cost

estimation. The key focus is manufacturability identification in order to eliminate mistakes in

estimation. Chan and Lewis (2000), and Shehab and Abdalla (2002b) developed a knowledge-

based system to estimate product cost. The system provides decision making support related to

material and manufacturing processes selection. The knowledge-based cost estimation system

developed by Bouaziz et al. (2006) helps to decrease the estimation time, and to improve the

quality of estimation by removing uncertainties. Masmoudi et al. (2007) and Chayoukhi et al.
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(2009) developed welding cost estimation systems to compare the cost of alternative welding

processes. Mauchand et al. (2008) proposed a knowledge-based system to assist product

designers in estimating the manufacturing cost at the conceptual design stage. Cost reduction and

optimum requirement achievements are the main objectives of the proposed tool. The cost

estimation system developed by Quintana and Ciurana (2011) facilitates the selection of a

suitable manufacturing process on the basis of product and machine characteristics.

2.1 Limitations of existing cost methods and models

1. As previously explained, cost estimation systems and models apply to either design-for-cost

or design-to-cost (Shehab and Abdalla, 2001). In either case, previously developed methods

and models are highly recommendable if the targets are achieved with one proposed design.

However, the same method becomes entirely distorted with a higher number of revisions.

2. A number of developed systems and models provide a decision making support related to

material and manufacturing processes selection (Chayoukhi et al., 2009; Djassemi, 2008; Er

and Dias, 2000; Esawi and Ashby, 2003; Mauchand et al., 2008). However, the decisions are

based only on cost, whereas other product values such as product weight, quality, and

performance are mostly ignored. In other words, direct or indirect customer values are

ignored in the decision making process.

3. Although previously developed systems help designers to compare alternative designs

(Chan, 2003; Shehab and Abdalla, 2002a, 2002b), they do not propose the best design

option. Solution conversion is one of the key steps in the set-based concurrent engineering

process, as it focuses on eliminating the weak solution. In the conceptual design stage, the

number of meetings held to finalise the design option can be minimised if a method is

provided to designers that help them to identify the strongest solution.

4. Inappropriate assumptions at the conceptual design stage lead to incorrect cost estimates,

which may lead to higher development costs and loss of market share. Although a number of

authors (Chan, 2003; Feng and Zhang, 1999; Ou-Yang and Lin, 1997) focus on product

manufacturability identification at the early design stage, these systems do not highlight the

importance of analysing the companies’ current manufacturing capabilities. In addition,

these systems do not take into consideration the mistakes which could be made by designers.
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By identifying these errors at the design stage, there is the possibility of developing precise

estimates along with a fool-proof design.

The current literature on lean product and process development indicates that Set-Based

Concurrent Engineering, Knowledge-based Engineering, and mistake proofing (Poka-yoke) are

important lean enablers that support the feasibility and identification of design space, remove

conflict among functional groups, and eradicate errors in a knowledge-based environment.

Additionally, literature on manufacturing cost estimation highlights that the main tendency

focuses on supporting designers during conceptualisation without taking into consideration lean

product and process development principles. Although, they may apply instances of Knowledge-

based Engineering; however, other supporting lean enablers such as Set-Based Concurrent

Engineering, and mistake proofing (Poka-yoke) should be incorporated into cost estimation. In

identifying this research potential, a cost modelling system for lean product and process

development has been developed in order to address the shortcomings of current cost estimation

systems.

3 RESEARCH METHODOLOGY

The research methodology is composed of four phases, as presented in Figure 1. It commenced

with understanding cost estimation within lean product and process development. A literature

survey was performed on manufacturing cost estimation at the design phase, and philosophy and

current findings on lean product and process development. The survey results identified enablers

for both cost estimation systems, and lean product and process development, as explained in

section 2. The key focus in phase 2 was the identification of industrial cost estimation practices

and challenges. For this purpose, a field study was carried out with eleven different European

industries including aerospace, automotive, telecommunication, medical and domestic

appliances. A total number of 40 face to face interviews via semi structured questionnaires and

focus groups were carried out to identify the current industrial practices. The findings were used

to establish the foundations for developing a more tangible cost estimation system. A cost

modelling system for lean product and process development was developed in phase 3. The

system was further refined through feedback from industrial collaborators within the LeanPPD

project. The system was developed in C# 3.0 within .NET Framework and Microsoft SQL Server
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2008. Finally the validation of the system was carried out using an industrial case study, as

presented in phase 4.

Figure 1: Research methodology

4 THE DEVELOPED SYSTEM

The developed system provides a number of design values for designers to promote more

accurate decisions during the concept generation stage. Applying Poka-yoke principles, it further

enhances the design by reducing design mistakes through predefined assessment criteria.

Additionally the system has been developed to allow for the selection of the most adequate

materials and manufacturing processes. The overall architecture of the developed system consists

of a set of lean enablers, six modules, a user interface, and a CAD solid modelling system, as

shown in Figure 2. Further descriptions of the system components are outlined below.

4.1 Lean enablers

4.1.1 Knowledge-based Engineering for cost estimation system

A hybrid knowledge representation technique was implemented for the development of the

knowledge-based system for costing. Furthermore, both an object oriented and a rule-based

system were applied for material and associated values identification, manufacturing

process/machine selection, manufacturing cost estimation and process parameters generation.

Examples of these rules are shown below:
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Material and related properties identification rule

If

(The component required hardness is 75Bhn) AND

(The component density is 2.67 x 103) AND

(Additional rule)

Then

(Material MAT-AL$$ is selected) AND

(Selected material thermal conductivity is 205 W/mK ) AND

(Selected material tensile strength is 76 MPa ) AND

(Selected material maximum service temperature is 130°C ) AND

(Selected material minimum service temperature is -273°C ) AND

(Additional rule)

Where MAT-AL$$ is Aluminium alloys (cast)

Figure 2: Architecture of the developed system
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Manufacturing process selection rule

If

(The component material is Low Carbon Steel) AND

(The part feature is a hole) AND

(The diameter of the hole is <= 3mm) AND

(The tolerance of the hole <=0.005mm) AND

(Additional rule)

Then

(D001 and M005 are suitable machines available in the manufacturing facility)

D001 is a drilling machine and M005 is a CNC milling machine

Process parameters generation rule

If

(The component material is low carbon steel) AND

(The part thickness is 0.51 mm) AND

(Machine selected is resistance spot welding) AND

(Additional rule)

Then

(Weld current is 8.51A) AND

(Weld time is 7 cycles) AND

(Hold time is 7 cycles) AND

(Squeeze time is 7 cycles)

4.1.2 Set-Based Concurrent Engineering

During the development of the system, a systematic Set-Based Concurrent method was taken

into consideration. In addition, a method to eliminate any weak solution was proposed. The Set-

Based Concurrent Engineering method includes: (i) explore customer and company values and

give them preferences; (ii) identify the target of each value through experts’ judgement, past

experience, analysis, experimentation and/or testing; (iii) develop multiple alternative solutions

concurrently; (iv) apply minimum constraints to find the compatibility of alternatives, and finally

(v) narrow down the alternatives gradually to reach the final solution.
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In the first step of a Set-Based Concurrent Engineering method, the designer must be aware of

customer and company values, and their preferences. The system has the capability to generate

the estimates for nine values, namely product cost, manufacturing time, production volume,

product weight, product hardness, thermal conductivity, maximum service temperature,

minimum service temperature, and tensile strength. Designers are required to assign a preference

from 1 to 10 for each value.

In the second step, the designer is required to input the targets against each value. For example, if

the crash strength of the final product is greater than 75 (MPa), then the proposed material is an

excellent option; however, if the crash strength is less than 50 (MPa), then the proposed material

will be unacceptable and therefore rejected.

In the system, four target ranges were set into the system, namely excellent, acceptable, marginal

and unacceptable. Each target range is denoted by a special graphical visual and target

intermediator (Table 1). The target intermediator is simply a conversion number, which has been

introduced here to compare targets with estimated results. For example, if the estimated result of

crash strength is greater than 75 (MPa), i.e. excellent, then the target intermediator of crash

strength will be assigned number 10. Value preferences and target intermediators collectively

facilitate the elimination of a weak solution. Further examples of target ranges have been

provided in Section 7.

The third step of Set-Based Concurrent Engineering is the development of multiple alternative

solutions concurrently. In this step, the designer is expected to develop alternative concepts and

provide inputs into the system. To represent the output of multiple solutions, a matrix for

communicating alternatives has been employed. In step four, Poka-yoke rules were developed to

identify the compatibility of proposed materials and manufacturing processes.
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Targets and graphical visuals Target range Target intermediator
Excellent-☺ Defined by designer (See Set-Based Concurrent 

Engineering method: Step 2)
10

Acceptable-● Defined by designer  7 
Marginal-▲ Defined by designer  3 
Unacceptable-x Defined by designer 0

Table 1: Target range and associated target intermediator

The final step of Set-Based Concurrent Engineering is the reduction of solution space through

the elimination of weak solutions. In the developed system, a quantification method has been

proposed to eliminate the inferior solution. In this method, each solution is quantified into a

single readable number, named the quantification number, as follows; Let n be the total number

of values and m be the total number of solutions; P1, P2, …, Pn be the customer and company

preferences for the values V1, V2, …, Vn respectively; Tm1, Tm2,…, Tmn be the resultant target

intermediator for each value estimate; and Q1, Q2,…, Qm be the quantification numbers against

each solution. The following relation (equation 1) can then be applied to calculate the

quantification number.
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The solution with the lowest quantification number will be the weakest solution and will be

eliminated prior to the remaining solutions. A case study to illustrate the above explained

concept is presented in Section 7.

4.1.3 Poka-yoke (mistake proofing)

The objective of Poka-yoke in the developed system is to avoid mistakes in product design and

development. For this purpose, rules have been developed to assess geometric features and

machine availability at the manufacturing facility, and to make a manufacturability assessment.

The geometric features assessment rule is given as follows:
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Geometric features assessment rule

If

(The sheet thickness is > 0.5mm) AND

(The sheet thickness is < 0.6mm) AND

(Material is Low Carbon Steel) AND

(Manufacturing process is resistance spot welding) AND

(Spot spacing is <= 10mm)

Then

(Spot space design is within range, Minimum recommended spot space is 10mm)

4.2 System modules

The system is composed of six modules to generate a systematic cost estimation process for lean

product and process development. Each module is developed to support several lean product and

process development enablers. These modules are described in detail in the following section.

4.2.1 Value identification module

In order to narrow down the solutions, this module provides a list of values for the designer. The

designer is required to select the values according to the requirements and is obliged to input the

preferences and targets of each value. In total nine values have been identified and integrated

into the system, such as product cost and manufacturing time. The list of values has been

explained in Section 4.1.2. This list was established from interaction with industry. The system

has been structured to generate the results of all nine values. The values can be populated

according to requirement.

The value identification module facilitates the Set-Based Concurrent Engineering concept, where

the designers communicate explicitly to develop sets of design solutions on the basis of their

preferences. These sets help the designers to make the right decisions by eliminating weaker

solutions.
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4.2.2 Manufacturing process / machines selection module

After the identification of values, designers provide manufacturing process information. This is

an important element of the system, because sometime more than one manufacturing process can

be suited to a specific part/assembly, e.g. friction welding, electron beam welding, furnace

brazing or diffusion brazing. Therefore designers have to select the precise manufacturing

process within the acceptable cost boundary. This module is linked to the machine database,

which not only helps to identify the manufacturing process(es) capability in the downstream

manufacturing facility, but also facilitates in locating the most suitable machine(s).

The manufacturing process / machines selection module supports two lean product and process

development enablers, namely Knowledge-based Engineering, and mistake proofing. Rules have

been developed to identify the suitable manufacturing processes and designate particular

machines available on the manufacturing shop floor. All the machines’ information is stored in the

machine database (see Table 2).

Machine name Machine

ID

Machine

Efficiency (%)

Power of machine

(KWh)

Maximum

travel in X axis

Maximum

travel in Y axis

Maximum

travel in Z axis

Milling Machine D001 90 35 230mm 75mm 150mm

Drilling Machine M001 75 25 200mm 75mm 75mm

Table 2: An example of the machine database

4.2.3 Material selection module

An appropriate material is selected on the basis of part geometry, tolerances, strength, and

physical and mechanical properties. The material selection module is coupled with the material

database and Cambridge Engineering Selector (CES) software. Table 3 describes an example of

a material database. The designer can specify his/her own material, select the material from the

system or choose the material from CES software. In case the designer selects the material from

the system, information related to material properties, such as material hardness, thermal

conductivity, and tensile strength, is provided. The system also allows the designers to select the

material from CES or specify their own material details by inserting material information such as

density and unit cost.
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Table 3: An example of the material database (Cambridge Engineering Selector (CES) software)

Knowledge-based Engineering and Set-Based Concurrent Engineering are facilitated by a

material selection module, which supports appropriate material selection and identification of

associated material properties from the database. These values present a solution space to take

the right decisions; for example, the designer can evaluate alternative materials on the basis of

material cost, environmental impact, crash strength and manufacturing time.

4.2.4 Geometric features specification module

In this module, the designer specifies the component features information from the CAD file into

a geometric features database. This information includes feature name, shape, length and width.

An example of a geometric features database of a resistance spot welding process is shown in

Table 4.

Feature

ID

Feature

name

Feature

type

Dim. Type Value

(mm)

Edge

distance

(mm)

Resistance

spot

spacing

(mm)

Seam

length

(mm)

Seam

spacing

(mm)

No of

resistance

spots

SW1001 Resistance

spot Weld

Weld Length

Width

Thickness

150

25

0.6

5 5 15 10 06

Table 4: An example of the geometric feature database of a resistance spot welding

Material

name

Material

ID

Hardness

Bhn

Bulk

modulus

(GPa)

Density

(Kg/m3)

Thermal

conductivity

(W/mK)

Tensile

strength

(MPa)

Maximum

service

temperature

(oC)

Minimum

service

temperature

(oC)

Aluminium

alloys (cast)

MAT-

AL$$

40 63 2.67x103 205 76 130 -273

Steel,

Low carbon

MAT-

SLC$$

100 158 7.8x103 50 310 344 -68
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The system has been developed to support designers in the conceptual and detailed design stages.

During the conceptual design, since only a small amount of information is available, special

measures have therefore been taken to deal with this situation. The designer has to input

minimum geometric features information, whereas, the rest of the information is generated on

the basis of rules stored in the geometric features database. For example, if the designer selects

resistance spot welding (See Table 4); he/she needs to input length, width and thickness. The

remaining information, such as edge distance and resistance spot spacing, is generated through

the rules stored in the system. However, in the detailed design stage, the designer is required to

input complete geometric information.

4.2.5 Geometric features and manufacturability assessment module

Once the designer provides geometric features information for a specific subassembly, the

system applies assessment rules to uncover the subassembly’s manufacturability. In addition,

geometric features assessment rules have also been provided to identify that the product has been

designed within the recommended range.

This particular module is grounded on mistake proofing and Knowledge-based Engineering

enablers. Furthermore, features are assessed using Poka-yoke principles and enable the designer

to rectify the design at the early development stage. For example, the minimum recommended

sheet thickness for a particular manufacturing process is 3.3mm; if the designer specifies a

thickness less than this recommended number, the system generates an error message and offers

a suitable value suggestion. Poka-yoke rules in Section 4.1.3 and the case study in Section 7

demonstrate the above explained concept in detail.

4.2.6 Manufacturing time and cost estimation module

In the manufacturing time and cost estimation module, a feature-based cost estimation method

has been employed to estimate the manufacturing time and cost for suitable manufacturing

processes and materials. Manufacturing cost has been divided into material, labour and

equipment running costs. In this module, the designer is allowed to identify high cost and time

consumption features.



17

5 SYSTEM SCENARIO

The developed system supports the designers in both the conceptual and detailed design stages.

In the conceptual design stage, it helps decision making, whereas, in the detailed design stage, it

facilitates the design assessment to eliminate mistakes in product design. Figure 3 describes the

working capability of the system, which is divided into three options.

Figure 3: Application of the developed system

Option 1: The system offers decision support to compare alternative materials at the conceptual

design stage.

Option 2: The system provides decision support to compare alternative manufacturing processes

at the conceptual design stage.

Option 3: The system helps to assess the design mistakes and estimates the manufacturing and

total cost of product along with other values in the detailed design stage.

The scenario of the cost estimation process for the conceptual and detailed design stages is

illustrated in Figure 4. For the conceptual design, the estimation process follows the five steps of

Set-based Concurrent Engineering which have been explained in Section 4.1.2. In step 1 (See

Figure 4), the system prompts the designer to choose the values from a comprehensive option

list. The designer selects the values and specifies his/her preferences. In the 2nd step, the designer

is required to input the targets of each value. Examples of values, values preferences and their

targets have been provided in Table 5. In step 3, he/she constructs a conceptual part model, and

specifies alternative manufacturing processes, alternative materials and complete CAD model

information. Once the information has been provided, the system examines each feature for its
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compatibility by applying the Poka-yoke (mistake proofing) rules stored in the knowledge

database in step 4. These Poka-yoke rules help to identify the machines’ availability at the

manufacturing facility, and make a manufacturability assessment. If the feature does not

accomplish the Poka-yoke criteria, then the system prompts the designer to modify the part

model. Further explanation of Poka-yoke is available Section 4.1.3. Once each feature is found to

be suitable for manufacturing, the system generates an estimate of manufacturing time, cost and

all other values required by the designer. Steps 3 and 4 (Figure 4) are repeated until

manufacturability, manufacturing cost and other required values of the entire product are

estimated. After that the system displays the matrix for communicating alternatives to express

the output of all values. Finally, in step 5, a solution narrowing down method (quantification

method) has been put in place to eliminate the weak solution. Section 4.1.2 presents a detailed

explanation of the quantification method.

Once the strong solution is selected in the conceptual design stage, it is further developed by the

designer in the detailed design stage. Final details, CAD/CAM model, FEA (finite element

analysis) tests, and assembly and product structure are finalised in the detailed design stage. The

developed system helps the designer to identify design mistakes and give detailed estimates in

this stage. It is important to note that the system generates the estimates for cost along with the

other eight values explained in Section 4.1.2. The estimation process is composed of four steps in

total, out of which steps 1 and 2 are similar to the conceptual design stage. In step 1 (Figure 4),

required values and their preferences are provided by the designer, whereas in step 2, each

value’s target is supplied. In step 3, the designer specifies the material, manufacturing process

and CAD model information. After providing detailed information, the system applies Poka-

yoke principles to detect any design mistakes in step 4 (Figure 4). An example of Poka-yoke

assessment rules has been provided in Section 4.1.3. Once the product is identified as mistake

proof, manufacturing time, cost and all required values are estimated.
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Figure 4: System scenario
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6 SYSTEM IMPLEMENTATION AND BENEFITS

This system has been designed to provide users with an integration environment for the cost

estimation of multiple applications. It is an end-to-end and service-oriented application based on

.NET enterprise application server technologies. The system offers full interoperability with Java

enterprise and Oracle servers. This application is developed in C# 3.0 within the .NET

Framework and Microsoft SQL Server 2008. The user interface design concentrates on building

a client-side application using Windows Forms to meet the industrial user's requirements. The

MS SQL server database is employed to design and build up rules and knowledge.

The system provides a number of benefits, as it enables the designers to incorporate lean thinking

into the cost estimation. It also allows for the consideration of downstream manufacturable

process information at an early upstream stage of the design and as a result the designer performs

the process concurrently and makes decisions quickly. Moreover, the system helps to avoid

mistakes during the product features design, material and manufacturing process selection, and

process parameters generation; hence it guides towards a mistake proof product development.

The main feature of the system in addition to manufacturing cost estimation is the Set-Based

Concurrent Engineering support. The system provides a number of design values for alternative

design concepts to identify the feasible design region.

7 SYSTEM VALIDATION

The system has been validated through a case study with one of the industrial partners involved

in the LeanPPD project. The core business of this industrial partner is the development and

manufacture of steel structures and entire seats for vehicles (Figure 5). The company has its

development and manufacturing facilities in Europe, India and China. The collaborative research

with the industrial partner showed that they currently had an unformalised cost estimation

method; hence they greatly relied on experts’ judgement. The majority of the decisions made

were based on company values without any customer involvement which resulted in customer

dissatisfaction. Therefore, it was the company’s desire to incorporate customer values into the

system in order to enhance decision making. The company was researching for new materials

suitable for seat manufacture in order to address some of the challenges they were encountering.

The company was also facing challenges due to incorrect product design. Resistance spot
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welding is a key process to join seat assemblies; however, the designers had assigned the wrong

number of spots on 50% to 80% of the components. The wrong design had caused a huge impact

on product cost, production volume and required weight. Therefore, the company was keen to

apply Poka-yoke principles to eliminate mistakes during the early design stage. A sample of four

assemblies was selected to validate the system.

First of all, the company product development process was laid down as shown in Figure 6. In

the concept development stage the company develops a rough CAD model followed by an FEA

(finite element analysis) with a crash test simulation. Once the crash test is approved, the

company develops the initial quotation to win the project, whereas, in the detailed design stage, a

detailed CAD model, CAE stamping modelling, fine FEA, and tolerance checks are performed

before releasing the CAD drawing. In the conceptual design stage, the company was interested to

compare alternative designs with aluminium alloy and low carbon steel in order to identify the

best material. In addition, the company was looking at the quotation development. In the

detailed design stage, the company would like to be able to identify design mistakes before

estimating the manufacturing and total cost of product along with other values.

Figure 5: Structure of a seat
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Figure 6: Product development process in the case study company

To validate the system for the conceptual design stage, the first step was the identification of

values, as explained in system scenario (Section 5). The company has identified five core values:

product weight, tensile strength, product cost, maximum service temperature, and production

volume. The values preferences and their targets are presented in Table 5. After that the required

product information was input into the system which includes: alternative materials,

manufacturing process (resistance spot welding) and CAD model geometric features

information. The system applied the manufacturability assessment rules to find the materials’

capability and generates estimates for manufacturing time and cost. Figure 7 demonstrates the

snapshot of the developed system. The time and cost analysis of resistance spot welding has been

explained in the next section.

Value Company
value

Customer
Value

Preferences Targets
Excellent

☺ 
Acceptable

●
Marginal

▲
Unacceptable

x
Product weight
(Kg)

Yes Yes 10 Less than
3.0 Kg

3.0 Kg to
4.5 Kg

4.5 Kg to
6.0 Kg

Greater than
6.0 Kg

Tensile strength
(MPa)

Yes Yes 9 Greater
than

100MPa

75MPa to
100MPa

50MPa to
75MPa

Less than
50MPa

Product cost (£)
Yes Yes 7 Less than

£59.0
£59 to £61 £61 to

£63
Greater than

£63
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Maximum
service
temperature(oC)

Yes Yes 7 Greater
than

150oC

100oC to
150oC

75oC to
100oC

Less than
75oC

Production
volume (Units
per day)

Yes No 7 Greater
than 400
units per

day

350 to 400
units per

day

300 to
350 units
per day

Less than
300 units per

day

Table 5: Values, value preferences and targets

Figure 7: Snapshot of the developed system

7.1 Time analysis of resistance spot welding

Resistance spot welding manufacturing time includes squeeze time, weld time and hold time,

along with part setup and part removal time (Aslanlar, 2006; Xu and Zhai, 2008); where squeeze

time is the time period between the preliminary electrode force application on the work and the

initial current application, weld time is the time when the current actually passes through the

electrode and melts the parts to join them together, and hold time is the time required to solidify

and chill the part. In order to obtain the desired weld, the weld current should be prolonged until

the electrode obtains the desired level. Figures 8a and 8b show the times for one weld and 'n'

number of welds respectively. Similarly, equations (2-3) estimate the welding time for one and

'n' number of welds respectively.
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Fig 8a: Resistance spot welding time for one weld (Adapted from Aslanlar, 2006 and Xu and Zhai, 2008)

Fig 8b: Resistance spot welding time for “n” welds, n=3

7.2 Welding cost estimation

Predicting the welding cost mainly depends on the major cost drivers associated with the

manufacturing process. A comprehensive literature review was conducted to identify these cost

drivers. Special attention was made to categorise drivers related to welding processes; Table 6

presents these drivers. Material cost, labour cost, and equipment running cost are major drivers

in welding cost estimation. For resistance spot welding, the equipment running process was

further studied in detail and the following cost drivers were identified, namely power
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consumption, part holding and electrode movement costs. Once the cost drivers were fixed, a

cost was designated to each driver.

Material cost:

The material cost Cmt for resistance spot welding may be estimated as follows (Shehab and

Abdalla, 2001).

Cmt = V ρCm (4)

Where V is the component volume in m3, ρ is the material density in Kg/m3, Cm is the material

unit price in £/Kg.

Researcher

Cost
drivers

(Ye et al.,

2009)

(Chayoukhi et al.,

2009)

(Ravisankar et al.,

2006)

(Brinke,

2002)

(Feder, 1993)

as explained

by (Schreve,

1997)

(Benyounis et

al., 2008)

Material Material

cost

Material cost Part,

geometry

and material

Part, volume

and density

Labour Labour cost Labour cost Labour cost

Equipment

running cost

Equipment

cost

Electrode

consumption cost

Electrode cost Equipment

cost

Equipment

cost

Equipment

cost

Gas consumption

cost

Shielding gas

Electric energy /

power consumption

cost

Power cost

Welding post

consumption cost

Filler metal cost

Table 6: Cost drivers for manufacturing process (welding process)

Labour cost

The labour cost is the function of time required to complete the process multiplied by the labour

unit cost. It can be calculated through the following expression (Ye et al., 2009).

C୪ୠ = C୪ × ∑ Lb୧�× T୧

୧ୀଵ (5)
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Where Clb represents the labour cost in £, Cl is the labour unit cost in £/hr, Lbi is the number of

labours in ith operation and Ti stands for the process time in ith operation.

Power consumption cost

In resistance spot welding, energy is consumed to weld the parts. Energy consumption depends

upon weld time, welding power, machine efficiency and number of resistance spots. The

following expression represents the power consumption cost in resistance spot welding (Klansek

and Kravanja, 2006).

(6)

Where Cpow denotes the power consumption cost of the electrode in £, Cp represents the unit

energy price in £/KWh, Iweld is the weld current in KA, Vweld is the welding voltage in volts, ηweld

is the welding machine efficiency, Tweld is the weld time and n is the number of spots.

Part holding cost

In resistance spot welding, energy is consumed to hold the parts. It depends upon the holding

force requirement, total holding time, holding equipment efficiency and number of spots. Part

holding cost is estimated using the relation below.

(7)

Where Chold expresses the part holding cost in £, Cp is the unit energy price in £/KWh, Pequip is

the power of the holding equipment in KW, ηhold is the holding equipment efficiency, Tsq is the

squeeze time, Tweld is the weld time, Thold is the hold time and n represents the total number of

spots.

Electrode movement cost

Energy in resistance spot welding is also consumed during the electrode movement time and

depends upon electrode/robot speed, distance covered by robot, i.e. total distance between spots,

and equipment efficiency. The following equations (8-9) can be applied to estimate the electrode

movement cost.
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Where Celec_m denotes the electrode movement cost in £, Cp is the unit energy price in £/KWh,

Prob is the power of the robot or electrode in KW, ηrob is the robot efficiency, d∑ is total distance

covered by the robot, di is the distance between each spot and v is the velocity of the robot.

Setup and part removal cost

Setup and part removal costs and times are crucial in the mass production environment. These

times include the times required to adjust the tooling and programme the robot. The times for

different jigs and fixtures can be calculated and placed in the database to obtain a more accurate

cost estimation.

Once the time and cost of all assemblies were estimated, the system calculated all values

requested. The summary of results is expressed in Figure 9. The matrix for communicating

alternatives (Table 7) was also developed to evaluate low carbon steel and aluminium alloy.

Figure 9: Summary of results
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Material Low carbon steel Aluminium alloy
Product weight (Kg) ▲ ☺ 
Tensile strength (MPa) ☺ ● 
Product cost (£) ☺ ▲ 
Maximum service temperature(oC) ☺ ● 
Production volume (Units per day) ▲ ☺ 

Legend: Excellent-☺=10, Acceptable-● = 7, Marginal-▲ = 3, Unacceptable-x = 0 

Table 7: Matrix for communicating alternatives

Finally relation (1) was applied to generate the quantification number of each design solution

(See equation 10). It can be seen from the result that the low carbon steel has the lowest

quantification number, therefore it was eliminated. Since the aluminium alloy is the only

remaining solution, it can therefore be selected as the best solution and the estimated cost can be

used for the quotation.

ቂ
3 10 10 10 3

10 7 3 7 10
ቃx

⎣
⎢
⎢
⎢
⎡
10
9
7
7
7 ⎦
⎥
⎥
⎥
⎤

= ቂ
281
303

ቃ= 
Low carbon steel
Aluminium alloy

൨ (10)

To validate the system for the detailed design stage, it was explained earlier that the company

focuses on the application of the Poka-yoke (mistake proofing) principle in their design facility.

The system scenario explained in Section 5 was followed step by step, i.e. values, value

preferences, value targets, CAD model, material and manufacturing process information were all

provided in sequence. Since the manufacturing process was resistance spot welding, the design

mistakes related to sheets overlap, edge distance, spot spacing and total number of spots were

therefore identified. The example of Poka-yoke related to overlap has been provided in Figure

10. Once all the mistakes were captured, manufacturing time, cost and all required values were

estimated accordingly.
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Figure 10: Application of Poka-yoke

After the adoption of the developed system, the company has gained a number of tangible

benefits (Table 8). These benefits truly represent the advantages of cost estimation for lean

product and process development.

Before After
Design mistake 50%-80% 5-10%
Cost estimation time 25 days 12-15 days
Internal meetings to finalise design 4-6 2-3
Quotation response time 3 months 1 month

Table 8: Tangible benefits obtained after the adoption of the developed system

8 CONCLUSIONS

A novel cost estimation system for lean product and process development has been presented in

this research paper. The system is developed in C# 3.0 within .NET Framework and Microsoft

SQL Server 2008. The system is composed of a user interface, three lean enablers, namely Set-

Based Concurrent Engineering, Knowledge-based Engineering, and mistake proofing (Poka-

yoke), six modules, and a knowledge database.
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A user friendly environment assists designers to easily input the data into the system and analyse

the results. The narrow down mechanism proposed in the Set-Based Concurrent Engineering

process helps the designers to narrow down the solutions space by eliminating the weak solution.

Poka-yoke principle-based rules have been implemented to eliminate mistakes in both the

conceptual and detailed design stages. In the conceptual design stage, the system eliminates

mistakes in manufacturability, materials and manufacturing process selection, whereas, in the

detailed design stage, product design mistakes are also eliminated.

The developed system has the capability to: (i) provide estimates related to product cost and

associated values concurrently; (ii) facilitate decision making by narrowing down the alternative

solution gradually; (iii) eliminate mistakes at the design stage, and (iv) incorporate customer

voice in the decision making. The system has been validated through an industrial case study.

The results obtained through the case study have shown an improvement in terms of product cost

and associated values estimation, decision making, mistakes elimination, and quotation response

time. The work is a part of on-going lean product and process development (LeanPPD) project,

which aims to develop a new cost model that enables designers to make the right decisions and

avoid mistakes at the product development design stage. There is a need to incorporate tools such

as trade-off curves into the current system capability which could then be used to make sound

judgements based on mathematical justification through graphic visuals.
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