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Executive Summary 

Casting is a metal forming process: Pouring the melt metal into a desired shaped mould wait 

it solidifies. It is often used to manufacture complex parts, which are too expensive or time 

consuming to produce by other methods. However, casting probably is one of the most 

challenging manufacturing process. It is a highly technical engineering process requiring 

deep scientific understanding. A typical modern casting process contains six different stages, 

which named as melting, alloying, moulding, pouring, solidification and finishing 

respectively.  At each stage, high level and precision of process control is required. Casting 

process also is one of the most energy intensive manufacturing processes. The metal melting 

consumes over half of the energy in a casting process. Therefore, the expenses on the casting 

process has been a significant concern due to the rising of the energy prices. 

A new casting process, CRIMSON (Constrained Rapid Induction Melting Single Shot Up-

casting), has been developed by teams from Cranfield University and the N-TEC Ltd. It can 

improve the energy efficiency of a casting process without reducing the quality. The process, 

firstly, uses the rapid induction furnace to melt just enough metal for one single casting; then 

transfer the molten charge to a computer controlled counter gravity casting platform. Finally, 

the highly controlled metal flow is pushed into the mould to finish the pouring and 

solidification. Such process reduces the defect generation and energy consumption by rapid 

melting, minimum holding and smooth filling of the mould.  

Since the CRIMSON process is a relatively new casting production process. The main 

objective of this dissertation is to validate the CRIMSON process by different approaches. 

Firstly, the concept of the sound casting running system design and the principle of the novel 

CRIMSON process has been introduced. Secondly, Flow3D (A comprehensive, general-

purpose computational fluid dynamics software) has been used to investigate the filling 

patterns of the novel CRIMSON process and the gravity sand casting process. Thirdly, life 

cycle assessment (LCA) method  has been used in this project to review the energy 

consumption of the conventional casting sector and the novel CRIMSON process. The 

inventory data was used to assess the environmental impacts of the both casting processes. 

Moreover, this project investigated the productivity of the CRIMSON process. The 

productivity of the CRIMSON process for certain range of the casting product has been 

investigated and compared with the conventional casting process. Finally, the cost of the 
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CRIMSON process has been estimated. The total variable cost of the CRIMSON process was 

investigated and compared with the conventional casting process as well.  

Key conclusions can be addressed as below: 

 Because of the geometry requirement, the gravity poured running system cannot avoid 

generating double oxide film defect during the filling. 

 For the CRIMSON process, all the important parameters (such as temperature, time, 

and velocity) are under control. The piston only needs to move at low speed to 

guarantee the liquid metal is delivered smoothly and the double oxide films are not 

formed or entrapped. 

 The material flow and the embedded energy of the casting making can be evaluated 

by the lift cycle inventory data collection method. The embedded energy of the sand 

casting is about 55 MJ/kg. However, to consider the recycling and reusing the internal 

material, the energy burden of the CRIMSON and the conventional sand casting are 

16 MJ/kg and 18 MJ/kg respectively. Considering the energy burden for saleable 

casting, the CRIMSON process consumes 230 MJ/kg to make saleable casting; the 

conventional process consumes 449 MJ/kg to make saleable casting. 

 By using the collected inventory data, the environmental impact assessment can be 

carried out for both the casting process. The results indicate that the CRIMSON 

process is environmental friendly compared with the conventional sand casting 

process.  

 A complete foundry model was developed in order to investigate the productivity of 

the CRIMSON process. The WITNESS simulation tool was used to assess the 

productivity investigation. For casting size less than 2 kg, the conventional sand 

casting process is productive. However, as the casting size increases, the CRIMSON 

process becomes more productive.  

 Cost estimation also carried out for the CRIMSON process. The total variable cost of 

the casting process was investigated. It was found that the most expensive variable 

cost is the raw material cost, which can be 80% of the total variable cost. Furthermore, 

it is concluded that the CRIMSON process has less variable cost compared with the 

conventional sand casting process under most of the circumstances. 
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Chapter 1 Introduction  

1 Background  

Despite years of decline in traditional, high volume foundries, the UK remains in ahead light 

metal alloy casting and investment casting, especially in the aerospace and automotive 

sectors (Jolly, 2010). As a result, foundry engineers in these sectors normally view the quality 

of the casting product as the most important factor. According to author’s knowledge, only 

few investigation or optimisation of the energy efficiency of the casting process has ever been 

performed with a view to reducing energy consumption in a light alloy foundry. This research 

project works with several different light alloy foundries to quantify and model their energy 

usage. The results are then compared with the novel Constrained Rapid Induction Melting 

Single Shot Method (CRIMSON) to identify opportunities for reductions in energy usage in 

the foundry industry. This project is aimed at the light metal industry in general but the bulk 

of the work focuses on the production of aluminium alloy.  

2 Aim  

The aim of this PhD study is to quantify and model achievable energy savings when using a 

novel single shot casting process compared with traditional foundry processes.  

3 Objectives 

 Assessing the energy required to heat bulk metal, maintain it at temperature and 

transfer into the mould  

 Measuring the energy input for the equivalent casting using CRIMSON melting 

 Estimating the energy of quality, e.g., measuring waste/scrap metal that can be re-

melted from the traditional and CRIMSON methods 

 Developing a model of foundry processes using the information gathered above, such 

that a practical tool can be developed for use by foundry staff to assess energy usage 

for a range of casting types and foundry processes.  
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4 Research Outline and Outcome 

1. Stage One: Literature review. 

       Outlines: 

 Review on typical casting defects in a casting product 

 Review on the mechanisms of casting defects 

 Review on concept of good casting running system design 

 Review on the energy usage of a conventional casting foundry and the novel 

CRIMSON process 

 Review on the current energy saving method  

       Outcome: 

 Understanding typical casting defects and their mechanisms of formation 

 Understanding the theories used to design the sound casting running system and be 

able to design good casting running to minimise casting defects 

 Understanding how energy is used in a conventional casting foundry and be able to 

calculate the energy consumption 

 Understanding how energy is used in the novel CRIMSON method and be able to 

calculate the energy consumption 

 

2. Stage Two: Using a numerical simulation tool to compare the conventional gravity 

sand casting process with the novel CRIMSON process. Using the advantages of the 

CRIMSON process, design the casting running system for an investment casting 

running system for a partner foundry.  

       Outlines: 

 Use casting simulation package for validation, Flow3D
®
 
1
or MAGMA5

2
 

 Design and optimise a gravity poured sand casting running system 

 Establish the gravity sand casting filling model based on real pouring conditions  

 Establish the CRIMSON filling model based on experiment data and real pouring 

conditions 

                                                 
1
 Flow science: http://www.flow3d.com/index.html 

2
 MAGMASOFT

®
: http://www.magmasoft.com/en/ 

http://www.flow3d.com/index.html
http://www.magmasoft.com/en/
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 Use the combination of Flow3D and Magmasoft 5 to design and optimise the 

CRIMSON runner  

 Work with the factory to validate the design  

 

       Outcome: 

 Be able to use of Flow3D and Magmasoft 5 establish simulation for filling and 

solidification 

 Be able to design a sound casting running system using running system design 

concept 

 Developing the CRIMSON running system design guidelines, which can be used as a 

standard CRIMSON running system design guide 

 

3. Stage Three: Using the Life Cycle Assessment (LCA) method, investigate the 

environmental impact of using the CRIMSON process.  

       Outlines: 

 Investigating the energy and material consumption of sand mould making process  

 Using multiple recycling methods to investigate the energy consumption and material 

recycling  

 Using the Life Cycle Inventory analysis to collect the energy and material 

consumption of the casting process 

 Using the SimaPro Life Cycle Assessment simulation package to assess the 

environmental impact of the casting process 

   Outcome: 

 Understanding the methods of material and process selection during construction of 

sand moulds 

 Be able to calculate the energy consumption of the process of sand mould 

construction 

 Be able to calculate the energy consumption of the casting process  

 Be able to calculate the energy consumption of the casting process under recycling 

 Be able to develop an LCA model for environmental impact assessment  
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4. Stage Four: Develop a complete foundry model to investigate the productivity of the 

CRIMSON process.  

   Outline: 

 Developing a survey to investigate the cycle time for different casting operations  

 Applying  lean thinking such as value stream mapping (VSM) to develop a foundry 

model  

 Use the process simulation package WITNESS to investigate the productivity of the 

casting process under a range of conditions  

Outcome: 

 Be able to identify waste within the process 

 From the investigation results, be able to choose the suitable casting process for 

specific casting products  

 

5. Stage Five: Develop a complete foundry model to estimate the cost of the casting 

production.  

      Outline:  

 Choose an appropriate cost estimation method to investigate the total production costs  

 Use the process simulation package WITNESS to investigate the production time of 

the casting process under different variables  

       Outcome:  

 Understand the differences between different cost estimation methods  

 Develop a cost estimation spreadsheet to integrate all variables  

 Identify those variable most influential on total production cost  

 Identify methods that could possibly reduce the cost of production  
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Chapter 2 Literature review  

2.1 Modern Casting 

Casting is the name of the manufacturing process of pouring molten metal into a mould and 

then allowing it to solidify. It is often used to manufacture complex parts, which are too 

expensive or too time consuming to produce by other methods. The casting methods used in 

this project will be introduced briefly below. 

2.1.1 Sand casting method 

Sand casting is a casting process that uses an expendable sand mould. The mould is normally 

made from a sand and clay mixture. It can be used in ferrous and non-ferrous foundries. 

Although it requires significant quantities of sand, it remains the most cost-effective casting 

method. Owing to the easy operational feature of gravity pouring, most sand castings are 

poured by this method. Therefore, the sand casting process is the most widely used casting 

method throughout the world; over 70% of all cast products are made by this method (Rao, 

2010). 

2.1.2 Investment casting process 

Investment casting is a metal-forming process that uses expendable patterns. This is a 

standard casting technique and is used widely to produce high quality parts. The investment 

casting process was developed from the lost wax process, which was invented at the 

beginning of the Bronze Age (Jolly, 2002). Since then, copper, silver or bronze metals have 

been used in this process to produce artistic products or jewellery. During World War 2, 

because of the urgent military demands burdening the industry, the lost wax process provided 

a shortcut for producing complete geometry and near net shape precision (IndiaMART, 2012) 

(NPC, nd). Nowadays, the lost wax process is known as the investment casting process. Its 

accuracy, versatility and integrity tie it to the aerospace industry and subsequently, to other 

high quality engineering components. A single crystal compressor blade for a gas turbine is 

one of the best examples of the use of the investment casting process (Jolly, 2002). The 

process is shown schematically in figure 2.1 (PREVAIL, 2012) 
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Figure 2-1 Investment casting process. Photo comes from PREVAIL casting LTD 

2.1.3 The novel CRIMSON casting process 

For the purpose of improving casting quality within the light metal casting industry and 

related energy issues, the researchers and engineers from the Birmingham university, 

Cranfield University and a local company called N-Tec LTD., co-invented CRIMSON, a 

patented up-casting method (Jolly, 2010). The CRIMSON method uses a rapid induction 

furnace to melt just enough metal for a single mould rather than bulk melting used in 

traditional processing (Figure 2.2). The molten metal is then transferred to a computer-

controlled platform to complete the counter-gravity up filling (Figure 2.3)  (Dai, et al., 2010).  

 

Figure 2-2 Schematic of the constrained melting furnace (Jolly, 2010) 
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Figure 2-3 Photograph of the CRIMSON up-casting facility (Jolly, 2010) 

Figure 2-2 shows the constrained melting unit of the CRIMSON process. The furnace melts 

the correct amount of metal for a single-shot casting. During the melting, the proximity of the 

lid helps achieve fast melting and precision. Thus, the molten metal has less chance to react 

with the atmosphere to form an oxide film or to absorb hydrogen; and degassing and drossing 

become unnecessary processes in this casting process. Figure 2-3 shows the up-casting 

facility used in the CRIMSON process. This up-casting facility is attached to a computer-

controlled servo-motor, which offers precise control of the filling to any desired level. Thus, 

quiescent and turbulence-free filling can be achieved, which reduces the generation of defects 

during this stage and ultimately, reduces the quantity of scrap (Campbell, 2004).  

2.2 Casting defects 

Casting is possibly the most challenging manufacturing process. In fact, it is a highly 

technical engineering process requiring significant scientific understanding. A typical modern 

casting process contains six different sub-processes: melting, alloying, moulding, pouring, 

solidification and finishing (Campbell, 2004). At every stage, the accuracy of process control 

is very strict.  

To demonstrate how easily a defect can form, an example of porosity is introduced. Casting 

has suffered a poor reputation mainly because of small holes within the castings; which are 

known as porosity. There are many reasons for porosity to appear in the casting. In many 

foundries, the melting process is achieved in an open environment. For aluminium foundries, 
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the highly active molten metal not only reacts with oxygen (Eq. 1) but it also reacts with 

water vapour (Eq. 2) in the air. As the reaction equations show, hydrogen then decompose as 

nascent hydrogen in the molten metal. As a result, the degassing, refining, reduction of the 

hydrogen content and modification of the composition are essential (BCS, 2005). If the 

drossing and degassing are not applied, the nascent hydrogen can remain in the molten metal 

until the solidification stage, whereupon, because of the different solubilities in the liquid and 

solid states, it diffuses from the melt causing the problem of porosity.  

   4Al+3O2 =2Al2O3                                                                                                            Equation 1                                                            

  2Al +3H2O=Al2O3+6H                                                                                              Equation 2                               

Secondly, the mould design is very important. It needs to be well vented during the filling, it 

has to control the velocity of the filling metal and it has to supply sufficient metal for feeding 

during solidification; otherwise, filling and solidification defects will occur, leading to 

porosity problems within the casting. The details of pouring and solidification defects will be 

introduced in later in the review. 

Many factors can cause porosity defects: composition of the alloy, temperature of the melt 

and mould, velocity of the filling and the quality of the mould/die, etc. Only if the process is 

correct at every single step can a sound and reliable casting be produced. This example has 

already indicated how easily porosity can occur. Later on, different mechanisms for the 

formation of porosity will be introduced in detail. Porosity is only one kind of defect in 

casting products; other serious casting defects that can occur will be introduced later. In the 

following review, casting defects are divided into two categories: pouring defects and 

solidification defects.  

2.2.1 Pouring defects in casting 

Once the liquid metal exceeds a critical velocity during filling, surface turbulence of the 

liquid flow usually leads to entrainment defects, including air entrainment, bubble damage 

and double oxide films (DOFs). These defects reduce the reliability of the castings 

significantly.  

2.2.1.1 Air entrainment 

Bubbles can become entrained into castings in many different ways. The most common is 

due to the impingement mechanism of the metal stream against a solid surface or other liquid 

metal. The base of the pouring basin and the down-sprue are the most common places for air 
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entrainment (Jolly, 2002). Typically, these places are areas in which there is a combination of 

the impingement of the metal stream on the mould surface and on the pool of liquid metal in 

the running system (Figure 2-4).  

 

Figure 2-4 Impingement at the bottom of the down-sprue 

Figure 2-4 shows the impingement at the bottom of the down-sprue but it also indicates the 

occurrence of a phenomenon called Vena Contracta, which is where the liquid reduces in 

cross-sectional area as it falls (Falkovich, 2011). As a result, the shape of the down-sprue has 

to be tapered. There are two reasons for this arrangement. First, the tapered shape is more 

likely to match the falling metal stream as it experiences the Vena Contracta phenomenon. 

The liquid metal can then be constrained easily inside the down-sprue. Secondly, the tapered 

shape can fill the down-sprue more quickly; otherwise, low pressure is experienced in the 

down-sprue, which sucks more air into the running system (Jolly, 2002).  

2.2.1.2 Bubble damage 

Once bubbles have been sucked or entrapped into the running system, the story does not end. 

Owing to their buoyancy, the bubbles will float up. As mentioned before, oxide films can be 

formed when in contact with air. Thus, the air bubbles react with the surrounding liquid metal 

as they pass through it, which causes channels, the surfaces of which are coated with a layer 

of oxide film. Because there is no residual liquid on the surface of the oxide film, there is no 

adhesiveness on the surface of the oxide film; therefore, the channel never heals. Because of 

the pressure of the liquid metal, each channel may collapse and leave a ‘star-shaped’ oxide 

and these oxide channels quickly form a complex mesh, although in some instances, this 

mesh can block the movement of other bubbles (Campbell, 2004). Thus, hollow structures 

can be formed inside the casting products, which weaken its performance (Figure 2-5).  
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Figure 2-5 Bubble trail generation, movement and trail collapse mechanisms in liquid metals (Divandari, 2001) 

2.2.1.3 Oxide film 

When liquid metal comes into contact with air, oxides are formed on its surface. In the case 

of aluminium, the oxide is solid, continuous, forms extremely rapidly and is difficult to break 

up. In aluminium casting, oxide films derive mainly from two sources: melt preparation, and 

filling. Oxide films from the melting process can be called ‘old’ oxide films because of the 

long duration of oxidation. Some of this kind of oxide film can be removed easily in the melt 

preparation stage (drossing). On the other hand, oxide films that form during the filling 

process can be termed ‘young’ oxide films. These types of film are usually very thin because 

of the short time of the reaction. As the filling time for a casting is normally less than 60 

seconds, the thickness of oxide films is normally between 0.01 and 0.1 µm (Campbell, 1991) 

(Reilly, 2010). During an entraining event, parts of the thin layer of oxide film can easily 

become detached and spread into the bulk liquid. Figure 2-6 displays a surface entrainment 

event at the filling stage. Owing to the mechanism of surface turbulence, the surface oxide 

film breaks and folds on itself before becoming entrapped within the bulk liquid. In many 

cases, the oxide film is a layer of dry film. Therefore, the fragments of folded double oxide 

film cannot bond with each other and leave a gap in between. Eventually, these randomly 

sized defects can act as sites for pore initiation in the solidification stage, or for crack 

initiation in the final casting product (Green & Campbell, 1994).  
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Figure 2-6 Surface entrainment event (Campbell, 1991) 

 

2.2.1.4 Double oxide film (DOF) 

As discussed in the previous section, DOF is a defect caused by surface turbulent flow during 

filling, which leads to the action of folding. For film-forming metals such as aluminium alloy, 

the folding action breaks the surface oxide film and it folds on itself. Eventually, the folded 

films will become entrained into the bulk liquid due to the surface turbulent flow and 

function as cracks in the casting. Back waves, bubble entrapment, colliding fluid fronts and 

both plunging and rising jets during the filling can cause the entrainment of DOFs into the 

bulk liquid (Reilly, 2009). 

The generation of DOF is via a folding-in action, which means that not only air can become 

entrapped between the films but other inclusions can be trapped as well. Campbell (2004) 

summarised six different entrapments between oxide films, as shown in Figure 2-7. 

 

Figure 2-7 Schematic of entrainment defects: (a) a new DOF; (b) bubbles entrained as an integral part of the DOF; (c) 

liquid flux trapped in a DOF; (d) surface debris entrained with the DOF; I sand inclusions entrained in the DOF; (f) 

an entrained old film containing integral debris (Campbell, 2004) 
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Generally, DOFs entrapped with inclusions (cases c, d, e and f in Figure 2-7) are quite ‘inert’ 

in the liquid casting. The only problem for these defects may relate to the porosity during the 

solidification stage. Oxide films with inclusions may work as solid impurities that initiate gas 

pore nucleation. The details of this nucleation can be found in Campbell’s book (2004). This 

review focuses only on the problems caused by new films and films with air inside.  

Figure 2-7a shows a new DOF that is only few nanometres thick (this is why DOFs are 

invisible to most inspection methods). It has been mentioned already that this kind of DOF 

can reduce the mechanical properties of the casting. The most harmful DOF defect is shown 

in Figure 2-7b. Once air has become entrapped within the DOFs, the combination of the DOF 

and bubble damage can be observed in the casting.  

Pouring the liquid metal into the pouring basin generates huge amounts of DOFs due to the 

plunging jet mechanism (Reilly, 2010). Air can then become trapped within the DOFs during 

this chaotic filling pattern. The effect of the DOFs depends on the sizes of the entrapped air 

bubbles. Small bubbles of air entrapped between films can cause porosity defects in the 

casting products. Because of the enclosed air, the density of the DOF is quite similar to that 

of aluminium (the oxide is slightly heavier than pure aluminium). Thus, it can travel easily 

within the metal stream to any random location. This is why the porosities observed are 

scattered within the casting. On the other hand, it is a different matter if the bubble inside the 

film exceeds 5 mm in diameter. Similar to the bubble damage discussed before, the bubble 

will float up due to buoyancy effects. Owing to this powerful buoyancy, large bubbles are 

found rarely inside casting products, because their buoyancy can drive them through any 

barriers and they quickly escape from the upper surface of the casting. However, large bubble 

oxide films can damage other oxide films and can bend or break dendrite meshes in partially 

solidified regions. Finally, the passage of the bubble leaves a trail through the casting, which 

never heals up.  

2.2.2 Solidification defects 

Solidification is the phenomenon of phase change during which a liquid turns into a solid as 

its temperature is lowered below its freezing point. It is a very important stage of the casting 

process and requires very precise control. Normally, porosity, shrinkage, hot tears and cracks 

can occur during the solidification stage. The following text will explain the details of these 

defects.  
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2.2.2.1 Porosity  

Porosity is a very complex defect that occurs during the solidification stage. Generally, it can 

be divided into two types: that caused by gas and that caused by solidification shrinkage. 

Porosity caused by gas can be subdivided into three further classes: that caused by turbulent 

flow during the pouring stage, that caused by gas diffusing from the molten metal on freezing 

and that due to the sand core or mould blow when in contact with the molten metal. 

Shrinkage porosity can also be subdivided into two different categories: macroporosity and 

microporosity. The formation of each type of porosity will be discussed later. 

2.2.2.1.1 Gas porosity 

Air entrapment 

The entraining mechanism, caused by surface turbulence during the filling stage has been 

explained earlier. The chaotic surface turbulence entraps air into the liquid with random sizes. 

However, it transpires that pores formed by air entrapment fall into the size range of 0.5 to 5 

mm. To reduce air entrapment during filling, the solution almost certainly relies on the design 

of the casting running system. 

Gas precipitation 

This type of porosity defect is due to the gas that dissolves out from solution in the liquid 

metal. In the case of aluminium, hydrogen is the main type of gas precipitated. Gas pores are 

normally within the range of 0.05 to 0.5 mm in diameter and are located 1 or 2 mm under the 

surface of the casting (Campbell, et al., 1994).  

In most cases, solidification starts from the mould/metal interface because of the greater 

contact and the higher temperature gradient (Campbell, 2004). Therefore, the solidified metal 

at this early stage of the process often forms a planar freezing front (Campbell, 2004). As the 

solidifications starts, the solution is reduced and thus, a ‘snowplough’ build-up of solute 

occurs. When the solidification front progresses beyond 1–2 mm, the solute reaches the 

critical level of solubility for liquid aluminium (Campbell, et al., 1994) and hydrogen in 

solution precipitates from the liquid. However, as the metal has been solidified at front. 

Hydrogen has no way to escape and forms gas pores (Figure 2.8). 
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Figure 2- 8 Schematic of the progress of gas precipitation at the dendrite arm space (Campbell, et al., 1994) 

Gas coming from cores 

The final type of the gas defect is blowholes (named by Campbell) from sand cores 

(Campbell, 2004). As the heat diffuses into the core, the gas present in the core expands and 

attempts to escape. In addition, the resin binders inside the core start to decompose and 

generate additional gas. The sizes of this type of gas pore are the biggest of all the gas 

porosity defects. The final sizes of the blowholes can vary from 10 to 100 mm in diameter 

(Campbell, et al., 1994). Because time is required to transfer heat into the core, the blowholes 

normally occur during the latter stages of the casting. Therefore, the position of the blowholes 

is usually several millimetres below the uppermost surface of the casting (Campbell, et al., 

1994).  

2.2.2.1.2 Shrinkage porosity 

The volume of molten metal is considerably greater than that of the solidified metal that is 

ultimately produced. This phenomenon raises several problems for founders; one of which is 

shrinkage porosity. In general, shrinkage can be described as atoms becoming rearranged 

from a rather open ‘randomly close-packed’ form, to a regular crystalline array of 

significantly denser packing (Campbell, 2004). During the solidification process, if the 

feeding is insufficient to compensate the volume shrinkage of the casting, then shrinkage 

porosity may occur inside the casting product. Depending on the size of the shrinkage 

porosity, it can be subdivided as macro- or microporosity. 
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2.2.2.2 Hot tears 

A hot tear is another serious defect that can occur in castings and it is perhaps the most 

important factor defining a casting’s performance (Green & Campbell, 1994). Once it occurs, 

the casting has to be returned for repair or rejected as scrap. A hot tear is a ragged, branching 

crack defect in casting products. During the solidification process, the linear contraction of 

the casting pulls the grains and dendrites apart. A true crack will form if there is insufficient 

feeding to fill the increased volume. Normally, hot tears are located at hot spots and heavily 

oxidised failure surfaces (Reilly & Jolly, 2009).  

2.2.2.3 Cold cracks 

The final type of solidification defect is a cold crack. Compared with hot tearing, the cold 

crack emphasises the different nature of the failure: it occurs below the temperature of the 

solidus. Whereas a hot tear exhibits a ragged and branching form, the cold crack is straighter 

and smoother (Campbell, et al., 1994). Because it happens below the solidus temperature, it 

builds up residual stress to tear the material. Reducing stress concentration can prevent cold 

cracks.  

2.2.3 Summary 

Most pouring and solidification defects have been introduced. For the pouring process, the 

fluid behaviour is very important. Chaotic filling can cause air entrapment, bubble damage 

and DOF entrapment, which can lead subsequently to problems, such as a poor surface finish 

and gas porosity. For the solidification process, sufficient feeding is essential, because 

inadequate feeding may lead to shrinkage porosity and hot tears occurring in the casting 

products. Based on this review, the sound casting running system design will be presented in 

chapter 3. All the casting products comparisons that will be shown later on are produced by 

those sound casting running systems.  

2.3 Energy during casting process 

2.3.1 Current situation  

The modernisation of the world economy has benefited from energy derived from fossil fuels, 

such as oil, gas, and coal. The conflicts that have happened in the Middle East, The Gulf and 

Africa have affected the fossil energy configuration and distribution and the price of fossil 

fuel may be expected to rise continually. From the projection provided by the Department of 
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Energy and Climate Change (DECC, October 2012), the oil price will increase from $115 per 

barrel to $135 per barrel during the period of 2012 to 2030, i.e., the price may go up by at 

least 15%. It is expected to be the same for other resources; gas prices may go up by 20% and 

the cost of coal may increase by 16% during the same period. Sadly, the fossil fuel price and 

inflation are often seen as being connected in a cause and effect relationship (Investopedia, 

2013). The inflation follows same direction as the fossil fuel price moves up or down. 

Therefore, the inflation will keep increase as the fuel price increase. No doubt that the energy 

and raw material price will keep increase as well. 

In addition to the issue of price, the use of energy derived from fossil fuels results in an 

environment impact. The combustion of fossil fuel to generate electricity, provide heat or to 

drive a car generates sulphuric, carbonic and nitric acids, which result in acid rain (Anon., 

n.d.). Burning coal also generates significant quantities of coal ash, which may cause health 

problems for people (Klopffer, 1997). Most importantly, burning fossil fuels generate huge 

amounts of carbon dioxide (a greenhouse gas), which is considered a key trigger of global 

climate change. 

Reducing emissions of greenhouse gases has become a major international imperative. Since 

the early 1990s, environmental legislation and international environment agreements have 

expanded greatly, driving global environmental policy changes. In December 1997, the 

Kyoto Protocol was announced in Kyoto (UNFCCC, 2013). Under this protocol, the 

developed countries committed themselves to reducing their emissions of carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O) by 6% to 8% compared with their 1990 levels 

by the period of 2008–2012 (Yih-Liang, et al., 2007). Irrespective of international protocols, 

some countries also established their own standards to manage energy and emission issues. 

For example, the Clean Air Act 1993 was announced by the United Kingdom to reduce air 

pollution nationally (Legislation, 2013).  

Regardless of the energy price or of the environmental issues, the energy efficiency of a 

product during its lifetime is becoming increasingly important. Generally, the heavier a 

product is, the greater the energy required to move it. During the lifetime of a product, the 

total energy consumption is higher for heavier products than lightweight products. Therefore, 

lightweight materials are becoming increasingly popular in industrial sectors. In particular, in 

the automotive and aerospace industries, aluminium and other light alloy metals are used 

widely. Thus, aluminium is becoming increasingly important for industrial sectors.  
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A survey carried out by MODERN CASTING  (Dahlouist, 2011) in 2011 confirmed that 

aluminium is the dominant casting material in the United States. Out of 1617 metal casting 

facilities in the US, 882 (55%) produce aluminium castings. This is higher than the number of 

facilities producing iron (499). Despite the fact that iron has higher production tonnages, such 

result indicates that aluminium becomes more and more popular. Furthermore, despite years 

of general decline in production, the data of the Annual Census of World Casting Production 

show that the proportion of aluminium casting is increasing. Therefore, these results indicate 

that the increasing demand for aluminium is a universal phenomenon.  

This is especially true for UK-based industry. Because the UK remains at the forefront of 

light metal casting and investment casting technologies, it has wide experience in the design 

and manufacture of energy efficient products, which are hugely beneficial for the aerospace 

and automotive industries (Jolly, 2010). Therefore, even with the high volume of foundry 

decline, the proportion of aluminium casting has increased from 9% to 20% from 1999 to 

2010 (Figure 2.9). According to author’s knowledge, despite the energy efficiency of the final 

products, only fewer energy efficiency of the non-ferrous casting process has been 

investigated. Therefore, this research project seeks to identify the energy usage in non-ferrous 

foundries, particularly aluminium foundries.  

  

Figure 2- 9 figure shows UK annual casting production. The total production is declines through the period mainly 

due to the shrinkage of ferrous foundry sector. The non-ferrous foundries steadily increase its proportion over time. 

The UK foundry data comes from 34th, 38th, 39th,40th, 41st, 42nd, 43rd, 44th, and 45th Annual Census of World Casting 
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Production (1999) (2003) (2004) (2005) (2006) (42c) (2008) (2009) (2010). Because there is no data reported from UK, 

2000,2001,and 2002 are not includes in the graph 

Fossil fuels boost the economy but impact on the global climate. As the price of fossil fuels 

increases, the cost of manufactured products goes up as well, especially for the energy 

intensive smelter and foundry industries. Saving energy in these sectors would not only help 

the organisation reduce production costs but it would also help them meet government 

emission regulations, which is one of the reasons that led to the development of the 

CRIMSON casting process. The following discussion reviews several energy saving methods 

against which the performance of the CRIMSON process will be analysed.  

2.3.2 Research on energy saving  

The energy intensity of a process has a positive relation with the share of the energy cost in 

the total variable costs and of the value of the product (Subrahmanya, 2006). The more 

energy intense a process is, the greater the cost of the process. As a result of these pressures, 

industrial energy saving is becoming increasingly important from the aspect of the economy. 

For this reason, a number of research works have been performed to identify opportunities for 

energy saving. Generally, energy saving can be achieved through several techniques and 

methods, a few of which are outlined below: 

Klugman and his colleagues performed an energy audit at a chemical wood pulp mill in 

Sweden (Klugman, et al., 2006). They used the surveyed data from the pulp mill to identify 

the saving potential. Their work revealed that the company should update their equipment to 

reduce their energy consumption by 50%. Furthermore, they found that compressed air has a 

significant energy overhead and that it would be better to reduce the usage of compressed air. 

Kabir and Abubakar performed a similar audit in a cement production plant (Kabir, et al., 

2010). They discovered that the thermal energy efficiency was quite low; significant thermal 

energy escaped through the exhaust gas and kiln shell. They suggested that a new waste heat 

recovery steam generator should be introduced into plant to increase the thermal efficiency.  

However, audit methods only provide theoretical figures about energy saving and often 

simply suggest major equipment updates or exchange. This kind of energy efficiency 

management often requires significant capital investment on new equipment. Comparing 

energy saving and capital investment, Anderson pointed out that plants are 40% more 

responsive to initial cost rather than annual saving (Anderson & Newell, 2003). With regard 

to new equipment and the adoption of new technology for long-term savings, organisations 

prefer projects with shorter payback times, lower costs and greater annual saving. Therefore, 
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it is not surprising that Thollander’s (2010) research indicates that about one-half of the 

foundries in Sweden lack a long-term energy strategy and only about 25% may be 

categorised as having a successful energy management practice (Ottosson, 2010).  

Further evidence for this can be found in the Climate Change Agreement published by UK 

Government (Department of Energy & Climate Change, 2011). According to the agreement, 

the foundries sector needs to attain an energy burden target of 25.7 GJ/tonne by 2010. 

However, the average energy burden for the UK foundry sector is 55 GJ/tonne. A company 

runs its business for profit. No matter what strategy is employed by the company, the priority 

is profit and energy saving could be one of the many goals within that strategy. It is more 

likely that a firm may operate based purely on the benefits of cost saving rather than energy 

saving. Furthermore, according to Thollander’s research(Thollander & Ottosson 2008, 2010), 

there are several barriers that prevent a company from becoming energy efficient. He 

identified that the main barriers are technical risks, such as the risk/cost/hassle/inconvenience 

of production disruptions, inappropriate technology for the operation, lack of time and 

priorities, lack of access to capital and slim organisation. In particular, for SME foundries, the 

lack of time, proper personnel and insufficient resources are the largest barriers to energy 

efficiency (Trianni, et al., 2012). Unfortunately, this is quite true for most UK foundries; 

many of the UK’s foundries are small and medium enterprises (UKFoundries, 2013), 

(UKcasting, 2013).   

Instead of direct energy saving through big investments in new technology and equipment, a 

lean philosophy was introduced to eliminate waste, improve quality and eventually, achieve 

the goal of energy saving. This is a less radical way to achieve energy saving.  

The concept behind lean manufacturing is simple; it is to spot and eliminate waste in a 

production process rather than inspect and repair afterwards. In the lean philosophy, the word 

‘waste’ is complicated. It can represent a machine breakdown, product defects and physical 

waste during the production process. Most importantly, it represents those resources or 

processes that do not create products or services directly (US Environmental Protection 

Agency, 2003). By implementing lean tools such as Just in Time (JIT), cellular 

manufacturing, value stream mapping, waste caused by machine breakdowns, product defects, 

physical waste and non-value added processes could be reduced or eliminated. The 

consequence of such an implementation reduces the production resource requirements, costs 
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and lead-time
3
, while increasing the product quality, customer responsiveness and boosting 

competitiveness (US Environmental Protection Agency, 2003).  

However, lean tools are implemented less in continuous manufacturing sectors such as the 

foundry sector. This is because of the large stocks of input raw materials and the long setup 

times that are required and the general difficulty in producing small batches (Abdulmalek & 

Rajgopal, 2007) (Besta, et al., 2011). Therefore, Abdulmalek (Abdulmalek & Rajgopal, 2007) 

undertook research on the steel foundry and investigated which lean tools could be 

implemented. The summary of his work is shown in Table 2.1. 

Lean Tool Applicability 

Cellular manufacturing Probably inapplicable 

Setup reduction  Partially applicable 

5S Universally applicable 

Value stream mapping (VSM) Universally applicable 

Just in time Partially applicable 

Production levelling Partially applicable 

Total productive maintenance (TPM) Partially applicable 

Visual system Universally applicable 
Table 2- 1 Assessment of applicability of lean tools in the steel industry. Please refer to the Appendix 2 for detail of 

each lean tool  (Abdulmalek & Rajgopal, 2007) 

Pude (Girishi, et al., 2012) conducted research on the implementation of Value Stream 

Mapping (VSM) in a foundry. He investigated the entire production flow of the casting 

process and identified the waste during each operational step. It was discovered that without 

significant change, this foundry could reduce waste by 23%, which corresponds to significant 

energy savings if converting the waste to energy. Abeulmalek (Abdulmalek & Rajgopal, 

2007) also performed VSM for the steel industry. After implementation of VSM, that 

company was able to reduce their non-value added time dramatically. Some other lean tools 

are also used in the foundry sector. Kukla confirmed that the implementation of Total 

Productive Maintenance (TPM) in a casting industry will allow for efficient management of 

machinery and increase its effectiveness, resulting in improved production flow and lower 

production costs (Kukla, 2011).  

However, fewer research works link the elimination of waste with the practice of energy 

saving in casting industry. Therefore, this project uses lean thinking to identify waste and to 

analyse the energy saving potential for casting industry.  

                                                 
3
 The total amount of time required to complete the customers’ orders. 
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2.3.3 Opportunities for saving  

By adopting some concepts from VSM, the entire operation of the casting process can be 

investigated. In this section, suggestions regarding waste and other possible savings will be 

examined. 

Energy saving can be achieved in two ways: direct savings through lower fuel consumption 

and indirect savings through lower material consumption. Therefore, the rule for energy 

saving in the foundry sector is simple; use less fuel and less material in making a certain 

quantity of sound products. To accomplish this, an understanding of the flows of energy and 

materials in the casting process is required. Figure 2-9 presents the process flow for the 

conventional casting. This can be divided into six sub-processes: melting, refining, holding, 

fettling, machining and inspection. The melting, refining and holding activities consume most 

of the energy involved in casting (at least 60%); thus, the direct energy savings should be 

achieved in this step (DETR, 1997). Fettling, machining, and scrap contain at least 70% metal 

by weight of the total melting (Jolly, 2010); thus, the indirect saving should come from these 

three processes.  



22 

 

 

Figure 2-10 Material and energy flow chart of a conventional sand casting process. High resolution figure can be seen 

in appendix 1 (pp168) 
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2.3.3.1 Direct saving  

2.3.3.1.1 Savings through preheating the metal and loading 

This is the first step of the melting process. Most foundries employ this step to preheat or dry 

their charge metals. There are several advantages related to preheating: it can remove 

moisture and other organics, which helps preventing explosion in the furnace; it can increase 

the melting capacity of the furnace; and it can reduce the energy required for melting. 

Especially for aluminium alloy, preheating can inhibit slag formation when the hot 

aluminium comes into contact with moisture (Dalquist, et al., 2004).  

 

Nowadays, foundries often use hot flue gases from the melting furnace to preheat the metal. 

Mefferta (1999) presented results of a study that investigated how much energy could be 

saved by preheating in the iron foundry sector. The recommendation of that work was that 

using recovered exhaust gases should be seen as the primary method of reheating. However, 

loading or transferring the preheated metal may cause the loss of vast amounts of heat. When 

transferring the preheated metal to the melting furnace, the metal loses heat through 

convection and radiation. Therefore, reducing the energy lost during transportation can retain 

significant amounts of energy and reduce the energy required by melting. To achieve this 

efficiently, the pre-heating and melting operations should be close to each other and a lean 

tool such as 5S could be employed (tidy up work floor to reduce the time of movement).  

2.3.3.1.2 Savings through melting 

As mentioned in the previous section, the melting operation consumes 30% of the energy of 

the casting process. Thus, saving energy through the melting operation logically becomes a 

primary consideration. When considering energy saving via the melting operation, people 

normally think about the efficiency of the furnace. If the efficiency of the furnace increases, 

the energy consumed per unit mass of metal reduces.  

  Melt capacity Fuel Type Efficiency 
Crucible 
furnace 

Several Kg to Tonne 
Natural gas / coal 

/ Oil 
7-19% 

Reverberatory 
furnace 

1 t—75,000 t 
Natural gas / coal 

/ Oil 
20-25% 

Induction 
Furnace 

several Kg to 30 t  Electricity 85-97% 

Table 2-2 Capacity, fuel type and energy efficiency of different furnaces. Data from Advanced Melting Technologies 

(BCS, 2005) 
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The table above shows several popular furnace types used in the aluminium foundry industry. 

Clearly, the induction furnace is the most efficient melting method compared with the other 

two furnaces. However, 60% of the energy currently used in melting is provided by natural 

gas and only 27% of the melting is provided by electricity (BCS, 2005).  

 

Therefore, this raises another debate between energy saving and cost saving. Using a gas-

fired furnace can save money but the quality of the melt is poor. The quality of the melting 

influences the subsequent sub-processes. As highlighted in the section on casting quality in 

the review literature introduced before, hydrogen content is normally higher in gas-fired 

furnaces owing to the moisture-rich exhaust gases. Removing hydrogen is essential because it 

causes serious damage later on. Therefore, compared with metal melted by using electrical 

means, the metal melted by using gas requires additional treatment in degassing. In other 

words, spending less during the melting process requires additional expense during degassing. 

If considering cost savings over the long term, the story may different. 

Irrespective of the purpose for cost or energy savings, some recommendations are introduced 

for the improvement of energy efficiency.  

1. Improving the air compressor that controls the fuel-fired furnace (Meffert, 1999). 

Oxygen enrichment can lead to higher heat transfer rates and thus, reduce melting 

times. In turn, this would reduce the overall fuel consumption (BCS, 2005). 

2. Reducing the frequency of metal charging (Chan & Yang, 2010). This can reduce the 

metal loss and the radiation heat loss. Metal loss refers to losses through oxidation 

when in contact with air. Radiation loss refers to heat losses when the furnace lid or 

door is opened (BCS, 2005).  

3. When considering lean manufacturing, it is recommended to use high-quality raw 

material. Using high-quality raw material may increase the initial cost. However, in 

return, it can reduce overall metal losses through oxidation and drossing
4
. Lowering 

the metal loss requires less energy and metal to compensate.  

4. Providing training for the furnace operators. It has already been shown that operator 

performance can influence energy usage by as much as 10% (ETSU, 1998). 

                                                 
4
 Dross is a mass of solid impurities floating on the surface of melting metal. Drossing is an operation remove 

those impurities.  
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In addition to increasing energy efficiency, there is also a positive way for engineering 

energy savings. This refers to other strands of lean manufacturing; use correctly sized 

equipment to produce the desired amount of products (US Environmental Protection Agency, 

2003). For the aluminium sector, it is recommended to use the correct size and a rapid-

melting coreless induction furnace for the melting (DETR, 1997). The advantages of such a 

furnace are list below: 

1. High-efficiency furnace saves energy during melting 

2. Cleaner energy leads to cleaner metal, lower hydrogen content and less need for other 

treatments 

3. The correct size furnace can ensure no waste during casting; it can smooth the casting 

process and no residual liquid needs to be held 

4. Fast melting reduces the chance of oxidation; thus, reducing the need for additional 

metal to compensate the metal loss 

2.3.3.1.3 Savings through treating and refining molten metal 

 

Following the melting operation, the molten metal is not clean. Normally, it includes 

impurities, such as oxides and slag and undesired gas content such as hydrogen. As a result, 

degassing and flotation are necessary requirements.  

 

Normally, the hydrogen in aluminium comes from the decomposition of water vapour. 

Following the reaction, hydrogen gas dissociates and forms hydrogen atoms, which diffuse 

into the melt (Smithells, 1976). As the aluminium solidifies, the dissolved hydrogen escapes 

from the melt to form undesirable porosity, unfurl DOFs (ASM Handbook Committee, 1979), 

or even form cracks. Therefore, reducing the hydrogen content is essential during the 

degassing operation. Nowadays, the technology used for degassing is purging with an inert 

gas via a rapidly rotating nozzle (Smithells, 1976) (ASM Handbook Committee, 1979). This 

technology is based on the equilibrium relationship between the hydrogen in the melt and the 

hydrogen in the atmosphere (Otsuka, n.d.). By injecting the inert gas, the molten metal is put 

under an inert atmosphere. To maintain the balance, hydrogen needs to transfer into the inert 

gas bubble and diffuse to the surface of the melt. As the purging of the melt by the inert gas 

continues, the hydrogen content gradually drops to the required level. 
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According to the literature (Jolly, 2010), the metal loss during the treating and refining 

operations can be as high as 5% in terms of mass. Assuming a melt of 1 tonne of aluminium 

uses 2.2 GJ of energy. The loss of 5% of the metal requires an additional 0.11 GJ of energy to 

melt. Energy is also consumed by the degassing unit; the rotating motor, the inert gassing and 

the flux pumping all require energy. A mid-range degassing unit is usually powered by a 

3.5 KW motor for period of 15 minutes. Therefore, the energy consumed is 3.15 MJ. 

Furthermore, the embedded energy required to compress the inert gas into the container also 

needs to be considered. Assuming the purging rate of the inert gas is 20 L⋅min
-1

, which gives 

300 L of gas in total, the embedded energy of the inert gas would be about 0.5 MJ (Jolly, 

2010). Combined with the consumption by the motor, the total energy consumption could be 

3.65 MJ.  

 

In order to save energy through refining and treating, the quality of the raw metal is very 

important. It not only reduces metal loss during refining but also reduces the frequency of 

refining. In addition, there are the corresponding savings of inert gas and electricity to be 

considered as well. 

 

2.3.3.1.4 Savings through holding 

Holding is another significant consumer of energy in the casting process, demanding another 

30% of the energy of the casting production. The purpose of holding is to maintain a 

continuous supply of liquid for casting with constant composition and quality (BCS, 2005). 

Owing to its characteristics, the holding furnace can operate as long as a working shift (8 

hours). In most non-ferrous foundries, the holding process requires more energy and money 

than the melting process does. (DETR, 1997) Reducing the holding time is one of the most 

efficient ways for energy saving. To achieve this, a smooth and continuous production plan is 

essential. Lean tools, such as TPM, VSM, production levelling and planning can be used to 

assess the holding time reduction.  

2.3.3.2 Savings through indirect saving  

2.3.3.2.1 Savings through operational material efficiency improvement 

Operational material efficiency (OME) is the ratio between the good casting shipped to 

customer and the total metal melted (Eq. 3) (Jolly, 2010).  
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                                                                                                               Equation 3 

Improving the true yield is probably the simplest way in which foundries can save energy, 

because this method focuses on increasing good casting production and reducing the total 

metal melted. It deals mainly with the production process itself, seeking opportunities to save 

material. It has less relation with the performance of the production equipment. To be able to 

understand the true yield of the casting process, the entire casting operation needs to be 

analysed. Using a traditional sand casting as an example, the casting process is analysed 

briefly in the following. 

Aluminium is a highly reactive material. In particular, when it is liquefied at high temperature, 

it can react with air, moisture, the furnace lining and other metals. The metal loss during the 

melting process is due mainly to this characteristic. As discussed before, a casting process 

can be divided into seven sub-processes: melting, holding, refining, pouring, fettling, 

machining and inspection. Apart from pouring, six out of seven have a direct relation with 

metal loss. 

  Melting Holding Refining Fettling Machining Inspection 

Metal Loss 2% 2% 5% 50% 25% 20% 

Table 2-3 General metal loss during each operation. Data based on general/automotive sand casting production (Jolly, 

2010) 

 

Figure 2-11 Metal flow in the foundry 

Figure 2-11 shows a representation of a conventional sand casting process. By assuming 1 Kg 

of metal is melted, then after the different stages of the operation, the final casting despatched 

to customer only weighs about 0.27 Kg. Therefore, the operational material efficiency of this 

casting process is about 27%. For conventional casting, 1 Kg of good casting requires 3.7 Kg 
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of raw materials. Therefore, if the true yield of the casting can be improved, less metal will be 

required to produce the casting and the energy consumption for the melting could be reduced.  

Opportunities to improve the true yield require that the metal loss during each operation must 

be reduced. Starting with the melting operation, 2% of the metal loss is mainly due to the 

oxidation of the aluminium at the surface of the melt. Thus, keeping the melt away from 

contact with air can reduce the level of oxidation. Normally, this can be done by keeping the 

lid of the furnace shut and reducing the metal charge time. Secondly, the holding process also 

contributes 2% of the loss, which can also be attributed to oxidation (long term exposure). 

Therefore, reducing the holding time can reduce the metal loss. Thirdly, the refining / 

cleaning operation contributes 5% of the metal loss. The loss at this stage of the operation is 

due mainly to oxidation, hydrogen degassing and impurities. The rate of the loss depends on 

the cleanliness of the raw material. Again, good quality raw material is essential. 

After pouring, solidification and shakeout, the casting system is sent to the fettling operation. 

Fettling is used to separate the casting and its running system. Generally, the casting itself is 

only about 50% (casting yield
5
) by weight of the entire casting system. This means that at 

least half of the metal is chopped off and scrapped. This is the principal cause of metal loss 

during the casting process. For foundries producing aerospace castings, the metal loss during 

fettling can be as high as 90% owing to the strict quality regulations (Jolly, 2010). Thus, 

reducing the weight of the running system can reduce the metal loss in fettling. The concept 

of a good casting running system will be introduced later. 

The fifth cause of losses relates to machining. This process transforms the casting into its 

final shape. It involves grinding, drilling, boring, turning, polishing and any other necessary 

operations. The metal loss during this stage of the operation is mainly in the form of fine 

scrap or swarf. If the casting can be produced closer to net shape, then the need for machining 

operations can be reduced. The final type of loss is that of castings that fail the inspection 

process. Defects such as a poor tolerance, poor surface finish, inclusions and porosity lead to 

rejection during the inspection. To reduce the level of rejections, the processes of melting, 

alloying and refining and the design of the running system are very important.  

The losses in first three steps are permanent losses, which cannot be easily recovered or 

reused
6
. They can only be reduced by the methods mentioned. The last three types of loss are 

                                                 
5
 Casting yield = casting/ (casting + casting running system). Please do not confuse this with true yield.  

6
 Dross can be recovered. However, most foundries don't have facility to recover it.  
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assigned as internal scrap. Energy has been used to make and melt this metal and because 

these losses can contribute up to 90% of the metal loss in the casting process, energy savings 

must be achieved by reducing such losses during the casting process.  

2.3.3.2.2 Savings through using numerical simulation  

Starting from the product design, the behaviour of the fluid inside the casting running system 

and the performance of the feeder during solidification can be predicted by using a numerical 

simulation package. This allows foundry engineers to develop sound products without doing 

physical experiments of trial and error. This can help at both initial production and during 

long runs when an energy saving method is being sought. Taking advantage of the simulation 

package, this research uses numerical simulation to design and to compare the quality 

between conventional casting and the novel CRIMSON process.  

2.3.3.3 Savings through plant management  

 

Figure 2-12 Left: typical energy use in a foundry. Right: typical energy cost in a foundry (DETR, 1997) 

As Figure 2-11 shows, a typical foundry consumes 14% of its energy on air compression, 

which costs even more money than melting or holding. There are many reasons for using 

compressed air in a foundry; the most important is for combustion. Generally, compressed air 

can provide more oxygen for combustion. Efficient burning of fuels can provide a hotter 

flame temperature, which gives a higher heat transfer rate and reduces the time required for 

melting (BCS, 2005). Furthermore, it not only reduces the heat loss during combustion but 

also reduces the environmental impact. Again, there are always two sides to everything. 

Compressed air helps reducing the fuel consumption during combustion but it consumes 

significant quantities of electricity. Therefore, ensuring that there is no excess air in the 

burner will help greatly in reducing the need for compressed air. Furthermore, using the 

correct size of compressor and routine maintenance can also save energy. Ultimately, using 
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an induction furnace will eliminate the requirement for compressed air and lean tool such as 

TPM can be extremely helpful for this purpose.  

2.3.4 The CRIMSON process  

Direct and indirect methods of saving energy during the casting process have been introduced. 

At the starting point of the casting process, using the correct size of rapid induction furnace 

with matched billet size for high susception not only saves energy during melting but can also 

reduce metal loss as well; both direct and indirect savings can be achieved. Refining is the 

second step in the casting process and savings during this stage rely mainly on loss reductions. 

This requires good quality charging materials and clean melting. Savings during the holding 

process can be achieved both directly and indirectly. Reducing the time of the holding can 

reduce energy consumption and metal loss. Savings achieved during the fettling, machining 

and inspection stages of the process are all indirect savings. All of these processes achieve 

savings by increasing the casting yield. Simulation methods can be used to achieve casting 

yield improvements. Therefore, a good running system with high casting yield not only 

guarantees the quality of the casting but also saves energy. 

  Energy loss reason Saving method Saving type 

Melting 
1. Inefficient melting 
2.Permanent metal loss 

1. Correct size of furnace 
2. Rapid melting 
3. Keep melt away from 
air 

Direct / 
Indirect 

Refining Permanent metal loss 
1. Using high-quality        
charging metal 
2. Cleaning melting 

Indirect 

Holding 
1. Long-term holding 
2.Permanent metal loss 

Reducing the holding 
time 

Direct / 
Indirect 

Fettling Low casting yield 
Increasing the casting 
yield 

Indirect 

Machining Rough shape of casting 
Making net shape 
casting 

Indirect 

Inspection 
Defects such as 
inclusion, poor surface 
finish, porosity 

1. High-quality melting 
2. Good running system 

Indirect 

Table 2-4 Summary of energy loss and opportunities for energy saving during each operation 
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Based on these concepts, the CRIMSON casting process combines direct and indirect saving 

methods; thus, achieving energy savings in a more efficient way. The energy and material 

flow diagram of the CRIMSON process is shown below: 

 

Figure 2-13 Energy and metal flow of the CRIMSON casting process. High resolution figure can be seen in appendix 

9.1, appendix 2 (pp169). 

Instead of using cheap bulk metal, the CRIMSON process uses pre-alloyed high-quality 

metal for the casting process. Moreover, the CRIMSON casting process uses a rapid 

induction furnace to melt just enough metal for a single casting. The time for melting is 

normally under 10 minutes, which reduces significantly the chance of the oxidation and 

hydrogen absorption. Therefore, the refining stage of the operation is no longer necessary. 

Because of the single melting, the melt can be transfer to the pouring operation immediately; 

thus, the holding operation can be also removed from the casting process. Considering that 
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the holding process can consume up to 30% of the casting energy, eliminating this stage can 

plug a significant drain of energy consumption. 

Owing to the new filling feature of the CRIMSON process, the liquid metal is pushed into the 

casting system through a bottom gate. This up-casting method redefines the casting running 

system and the pouring basin and down-sprue are no longer required. Because of the new 

running system, less metal is fed into the running system and thus, the casting yield increases. 

With regard to quality, the up-casting process provides a turbulence-free filling, which means 

that defects, such as air entrapment and DOF formation can be minimised. The quality of the 

casting can be improved to a new level and fewer rejections reduce the energy consumed by 

re-working.  

2.4 Summary of chapter  

This chapter has reviewed the different casting methods and casting defects and their 

formation mechanisms have been reviewed as well. In addition to the quality of the casting 

production, the energy management of the casting foundry has also been considered. Instead 

of significant capital investments on new technology and equipment, the CRIMSON process 

can be considered as more of a lean manufacturing approach, which offers both direct and 

indirect material savings.  

In the remaining chapters, different approaches will be used to evaluate the performance of 

the CRIMSON process. These include investigations of quality through numerical simulation, 

investigations on environmental impact through LCA, production performance investigations 

based on process simulation and an examination of profitability through cost estimations. 

These four approaches will form a complete assessment validating the CRIMSON process in 

terms of quality, energy, productivity and cost. For decision makers, these data will be very 

useful in assessing the performance of the production process. 
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Chapter 3 : Validation of the CRIMSON process 

through numerical simulation 

3.1. General introduction  

The first approach is used of software validation method to validate the CRIMSON process. 

There are two sections in this chapter. The first concerns a comparison of the tensile test bar 

casting using different running systems: one for the traditional gravity sand casting running 

system and the other for the new CRIMSON casting running system. The Flow3D simulation 

package is used to simulate the filling processes in these two runner systems. The second 

section concerns the designing of the CRIMSON running system for making a filter housing. 

The development process involves the use of Flow3D and Magmasoft packages as standard 

tools. 

3.1.1 Software validation  

There were two computational fluid dynamics (CFD) software packages available at the 

beginning of the research project: FLOW3D (Version 9.4) and MAGMASOFT (Version 5). 

To ensure the accuracy of the simulation results, the suitable CFD software has to be used. 

Generally, FLOW3D is a commercial CFD package based on a finite volume / finite 

difference approach. FLOW3D can describe accurately transient free surfaces with large 

deformation (Barkhudarov, et al., 1995). On the other hand, MAGMASOFT 5 is commercial 

casting software used widely by foundry personnel. The well-developed thermal and fluid 

dynamic codes can be used to predict shrinkage and gas porosity as well as stress distribution 

during solidification (Sabatine, et al., 2005). 

To establish which software is most accurate in predicting the fluid pattern during filling, a 

classic benchmark test was introduced. The original benchmark test developed at the 

University of Birmingham by Sirrel and his co workers (Sirrell, et al., 1996) was carried out 

in 1995, in which x-rays were used to record flow behaviour during filling (Appendix 3 

shows the geometry of casting running system used). It is a special test intended to assess the 

abilities of computer models. For this reason, default settings are kept for both simulation 

packages to test their true potential.  
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3.1.1.1 Parameters used in the filling simulation  

 

  Flow3d94 Magma5 

Material Al 356, Al-Si alloy Al 356, Al-Si alloy 

Liquid density (kg m
-3

)
 

2385 2385 

 Kinematic viscosity (m
2
s

-1
) 0.0012 0.45 x 10-6 

Pouring pressure (Pa) 400
7
 400 

Minimum mesh size (mm) 5 5 

Total elements of mesh 95,200 91,285 

Turbulence mode Activated Activated 

Surface tension angle 160。  
Surface tension coefficient 1  

Table 3-1 Parameters used in the simulations 

Table 3-1 shows the simulation parameter  

The simulations are carried out using a Workstation with 16 GB RAM and eight 2.66 GHz 

CPUs. In addition to the accuracy of the results, the simulation time is another consideration 

in software selection. Thus, the maximum hardware performance was applied for each 

simulation. Flow3D took only 5 to 10 minutes to run the filling simulation, whereas 

Magmasoft 5 took about 30 minutes to perform the same task.  

Under default settings, both simulation packages exhibit some difference compared with the 

benchmark results. However, Flow3D still has the most similar fluid pattern. Thus, 

considering both the accuracy and the execution time, Flow3D is selected as the better choice 

for the filling simulation. In addition to these two reasons, the Flow3D package offers 

additional useful functions. One of the most useful function is that offering a customised 

subroutine to track the oxide film in the liquid metal. The detailed results of the comparison 

result can be found in Appendix 5. 

 

 

 

                                                 
7
 Pressure head work as pouring basin  
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Table 3- 2 Comparison of the benchmark and the different simulation results  

3.1.1.2 Solidification & mechanical property  

Ideally, it is possible to use Flow3D to perform the solidification and some stress analysis. 

However, that would have required more time and resources than was available to establish a 

proper database. Fortunately, Magmasoft5 contains reliable thermal data for most engineering 

metals; thus, Magmasoft5 is the ideal choice for the solidification and stress analyses.  

In conclusion, on the topic of software selection, it is better to combine two software 

packages, using the strengths of Flow3D to model the filling and those of Magmasoft5 to 

perform the solidification. However, to ensure the precision of the solidification results, the 

filling simulation is also carried out under Magmasoft5
8
.  

                                                 
8
 Magmasoft5 can perform solidification without filling by considering that all the liquids in the model are 

at a homogenous temperature. However, in a real situation, the temperature of the liquid is changing during 

the pouring. As a result, the filling simulation in Magmasoft5 can ensure that the solidification simulation 

is more accurate.  
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3.1.2 Process introduction  

3.1.2.1 Gravity filling method  

The gravity filling method is a relatively cheap and less skilful filling method for the casting 

process. It is probably the best-known and most common filling method used throughout the 

world.  

To fill the casting cavity, the down-sprue length should be sufficient to maintain the pressure 

head. As mentioned in the literature section 2.1, the critical velocity for liquid aluminium is 

0.5 m⋅s-1
. By converting this critical velocity to height, gives a value of 12 mm (Jolly, 2002). 

This means that the critical free fall height for liquid aluminium alloy is 12 mm; beyond this 

height, the critical velocity will be exceeded. Therefore, the design of a sound gravity pouring 

running system to minimise defects will be introduced in this chapter.  

3.1.2.2 The CRIMSON process 

For the purpose of ameliorating the casting quality and related energy issues within the light-

metal casting industry, the researchers and engineers from University of Birmingham, 

Cranfield University, and a local company, N-Tec LTD., have co-invented the patent 

Constrained Rapid Induction Melting Single Shot Method (CRIMSON) (Jolly, et al., 2010). 

Compared with traditional casting processes, the CRIMSON method uses a rapid induction 

furnace to melt just enough metal for a single shot. The melt metal is then transferred to a 

computer-controlled platform to finish the anti-gravity up filling (Jolly, et al., 2010). During 

this up filling process, the filling rate is the only parameter that needs to be considered. 

According to the conservation of flow rate, the velocity of the piston can be determined easily 

to fit the filling rate required for a given area of piston. As a result, the velocity control in the 

CRIMSON process can be achieved much more easily. The energy consumption is also 

considered. Owing to the minimised melting and holding time, energy is saved during the 

casting process (Jolly, et al., 2010). The layout of the CRIMSON facility shows as below.  
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.  

Figure 3-1 the entire CRIMSON facility (top  view). The arrow represents operation sequence. + High resolution 

layout can be seen in Appendix 5  

3.1.3 Methodology 

3.1.3.1 CRIMSON casting running system  

The mould design for the CRIMSON process is based on Gebelin’s (Gebelin, et al., nd) up-

casting running system for an ASTM (ASTM, 2003) standard tensile test bar. According to 

their simulation and experimental results, six test bars will be cast in one system. To prevent 

porosity and the unfurling of double oxide films (DFOs), a tube is added in the middle of the 

system to work as a riser (Figure 3-2). Gebelin derived a flow rate of 0.25 L⋅s-1
 and 8500 pa 

pressure, which can provide turbulence-free filling for up-casting (Gebelin, et al., nd). In 

order to match the performance of the CRIMSON process, a gravity poured running system 

was designed to the highest specifications using the so-called Campbell guidelines, the details 

of which are introduced below.  

 

Figure 3-2 CRIMSON up-casting runner  



38 

 

3.1.3.2 Gravity pouring running system design 

After the introduction on defects, it is clear that the quality of the casting relies on the quality 

of the filling and feeding. Firstly, a good running system should control the filling velocity 

inside the casting cavity to prevent surface turbulence. Secondly, a good casting system needs 

to provide effective gas flow, either through vents or holes or via mould permeability; 

otherwise, gas porosity can occur during solidification. Finally, a good casting system needs 

to provide sufficient feeding during solidification. In order to guarantee a directional 

solidification, eliminate localised shrinkage and micro-porosity and eliminate hot tears, a 

typical gravity poured running system looks like that depicted in Figure 3-3. It should have a 

pouring basin, down-sprue, a filter (optional), runner bar, ingate and casting. In addition to 

the casting itself, the cross sections of each element should be designed correctly.  

Figure 3-3 Typical gravity poured running system 

 

Table 3-3 presents some parameters that can be used for gravity poured running systems 

design, obtained from the casting information of the CRIMSON process. 
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Alloy Al354 

Critical velocity for surface turbulence 

(m⋅s-1
) 0.5 

Process (Sand, LPD, GD, Investment) 
Sand 

casting 

Mass of casting and feeder (kg) 4.35 

Solid density (g⋅cc
-1

) 2.65 

Liquid density (g⋅cc
-1

) 2.385 

Volume (cc) 1822 

Filling time required (s) 5 

Average mass fill rate (kg⋅s-1
)  0.87 

Initial mass fill rate (kg⋅s-1
) 1.30 

Initial volume fill rate (cc⋅s-1
) 503 

Average vol. fill rate (cc⋅s-1
)  335 

Table 3-3 Initial data for mould design 

3.1.3.2.1 Pouring basin  

Starting from the pouring basin, which is the initial part of the running system, a traditional 

design is a conical cup. However, this design requires a high rate of pouring; otherwise, the 

base of the down-sprue cannot be choked. The low pressure at the bottom will continue to 

suck air and dross into the system. Even though a desirable pouring rate can be achieved, a 

direct pouring (Conical pouring basin) will still cause the most oxides and bubbles to be 

carried into the casting (Campbell, 1991). Therefore, a new design of pouring basin should be 

used that can settle the liquid, arrest bubbles and provide a sufficient pouring rate.  

 

Figure 3-4 Schematic of the recommended pouring basin (Jolly, 2002) 

The dimensions of the pouring basin have a relation with the average volume fill rate (table 

3-3).  

       √
                           

        
                                                                                   Equation 4 

                                                                                                             Equation 5 

In Eq. 4, the height of the pouring basin can be decided by the designer. In this case, the 

height is 60 mm, which was decided upon by the author. 
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3.1.3.2.2 Down-sprue 

The second part that has to be considered is the down-sprue, which needs to have a tapered 

shape in order to avoid defects, such as bubble entrapment and oxide film entrapment. From 

Table 3-3, the formula   ̇  
 

 
 can be used to calculate the required mass fill rate, where M is 

the mass of the casting, t is the time required to fill the casting and  ̇ is the average mass fill 

rate. Typically, an initial pouring rate     ̇  will be 1.5 times higher than an average pouring 

rate (Campbell, 1991).  

   ̇       ̇                                                                                                     Equation 6 

   
̇  

   ̇

 
                                                                                                                                         Equation 7 

Where    ̇  is the initial volume fill rate and ρ is the density of the liquid metal. 

As shown in Figure 3-3,     is the velocity of the metal liquid reaching the bottom of the 

pouring basin. Therefore, the velocity at the bottom of the basin can be calculated by using 

Bernoulli’s equation: 

    √
       

    
                                                                                                  Equation 8 

Where hp is the height above the pouring basin (the position of pouring activity) and hb is the 

depth of the pouring basin. The value of hp should be as small as possible to prevent 

splashing during the pouring. In this case, hp is set at 5 mm above the pouring basin and as 

mentioned, the depth of the pouring basin is 60 mm. 

It is assumed that each direction change can cause a 50% loss of the original energy. By 

transforming that lost energy to velocity, 1/√  or 71% of velocity will lost during each right-

angled turned (Jolly, 2002). As a result, 

     
   

√  √ 
           (Two right angles)                                                              Equation 9 

In Eq. 9, vtds is the velocity at the top of the down-sprue. 

Therefore, the area of the top of the down-sprue is given by: 

     (
   ̇

    
)                                                                                 Equation 10 

By using Bernoulli’s equation again, the velocity of the liquid at the bottom of the down-

sprue can be calculated. In Eq. 11, vbd is the velocity at the bottom of the down-sprue and hds 
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is the height of the down-sprue. Again, there is no strict requirement regarding the height of 

the down-sprue; it is only required that the down-sprue be higher than the casting to provide 

suitable filling pressure. In this case, the height of the down-sprue is 368 mm.  

    √
         

    
                                                                                            Equation 11                              

Owing to conservation of mass theory, the flow rates are the same at the top and bottom of 

the down-sprue. The area of the base of the down-sprue can be calculated as: 

     
           

    
                                                                                                                       Equation 12 

3.1.3.2.3 Ingate  

Clearly, the velocity of the liquid is too high at the bottom of the down-sprue. Therefore, the 

velocity must be reduced before entering the casting; otherwise, the casting will suffer quality 

problems. The runner bar and the ingate have the responsibility of reducing the velocity of 

the liquid to below the critical velocity. 

As mentioned before, the critical velocity for aluminium is 0.5 m⋅s-1
. The velocity of the 

liquid should be of a value equal to or less than this when it enters the casting cavity. 

Therefore, the target velocity at the ingate needs to be set at 0.5 m⋅s-1
.  

Figure 3-5 shows the flow chart for determining the size of the ingate. As with the down-

sprue design, the calculation starts from the initial flow rate (Eq. 7). As the figure shows, by 

combining the target velocity and the initial flow rate together, the target area of the ingate 

can be established and then the shape of the ingate can be decided upon.  

        
   ̇

       
                                                                                                 Equation 13 

It is easy to understand the reason for using the initial volume flow rate to determine the 

target area of the ingate. In practice, the fill rate will decrease as the liquid metal fills the 

mould cavity due to the changing hydraulic pressure difference. This means that at the 

beginning of the filling, the fill rate is higher than the average fill rate. If the average flow 

rate is used, there is a chance that the velocity of the liquid metal will exceed the critical 

velocity at the beginning of filling. To avoid this kind of situation, the initial volume fill rate 

has to be used to satisfy the target velocity. Then, the initial fill rate and target velocity will 

work together to calculate the target ingate area.  
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3.1.3.2.4 Runner bar 

After determining the target area of the ingate, the cross-sectional area of the runner bar can 

be established easily. Usually, the area of the runner bar should be one-half that of the ingate 

in order to reduce further the velocity of the liquid at the ingate (Jolly, 2002). The only 

suggestion about the runner bar is its height; it should be as thin as possible to prevent 

phenomena, such as a rolling back wave and hydraulic jumps (they can form DOFs). 

Additionally, the runner bar has to be located at the bottom of the running system. This 

arrangement can allow bubbles and slag to float out to the liquid surface. Beyond this 

requirement, there is no strict condition regarding the length of the runner bar; it is 

determined by the geometry of the casting. 

 

Figure 3-5 Flow chart of the velocity control in the gravity poured running system (Zeng, 2010). High resolution flow 

chart can be seen in Appendix 6 (pp185). 
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3.1.3.3 Summary 

A gravity poured casting running system, designed to the highest specifications, has been 

introduced. According to this, a gravity poured tensile test bar with a five-second filling time 

has the parameters shown in Figure 3-6.  

 

Figure 3-6 Key dimensions of the running system 

3.1.4 Software and hardware introduction 

From the validation results, the Flow3D package will be used for the filling simulation. In 

this project, a customised sub-routine is introduced into FLOW3D to track DOFs. This sub-

routine was developed by researchers at the University of Birmingham  (Reilly, et al., 2009). 

It allows the placement of particles at the point where the flow structure is likely to entrain 
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DOFs and tracks those particles (defects) to their final position. The density, size, co-efficient 

of restitution and initial velocity vector of the particles can be defined by the user. This 

allows particle behaviour to be tuned to exhibit specific behaviour defined by past research 

and theory. By using a velocity tracking sub-routine, the velocity and volume flow rate in the 

tensile test bars and the ingate are also recorded. 

3.1.5 Results 

By using the velocity tracking sub-routine in Flow3D, the flow velocities at the casting cavity 

were recorded. As Figure 3-7 shows, the fluid flow velocities for both casting processes are 

around 0.25 m⋅s-1
. This means that both processes can provide smooth filling in the casting 

cavity and no subsequent defects (air entrapment and DOFs, etc.) can be generated in the 

cavity. Although the flow rate in the CRIMSON process is slightly higher than that of the 

gravity casting process, both flow rates are reasonably well matched with the target flow rate 

of 0.25 L⋅s-1
.  

As discussed in section 3.3.2 in this chapter, falling under gravity causes surface turbulence 

during filling. The simulation results given in the tables below indicate the same problem as 

predicted. Tables 3-4 and 3-5 show the amount of DOFs generated in the gravity sand casting 

running system and the CRIMSON running system, respectively. One thing that must be 

emphasised here is that the amount of particles shown here cannot represent the real amount 

of DOF (it is impossible to count real amounts of DOF by any method). However, such 

results can still qualitatively represent the DOFs in the casting. 

 



45 

 

 

Figure 3-7 Tb stands for tensile test bar; it counts from left to right. ig represents ingate 

  1 2 3 4 5 6 

Particle in Test Bar (TB) 236 14 3 182 190 540 

Particle NOW in TB 73 3 0 0 57 96 

Particle in Gauge Length (GL) 66 3 1 13 33 75 

Particle NOW in GL 8 1 0 0 7 12 

Total Particle in System9 124801 

Total particle NOW in 
system10 

12718 

Table 3-4 DOFs generated in the gravity sand casting running system 

 

                                                 

 

9
  The system includes pouring basin, downsprue, runner bar, ingate, and feeder 

10
  The system includes pouring basin, downsprue, runner bar, ingate, and feeder.   

Velocity (m
.
s

-1
) 

Flow rate (L
.
s

-1
) 
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  1 2 3 4 5 6 

Particle in TB 15 8 27 15 21 21 

Particle NOW in TB 0 0 3 0 1 19 

Particle in GL 0 0 0 3 1 2 

Particle NOW in GL 0 0 0 0 0 2 

Total particle in system 1900 

Total particle NOW in system 763 
Table 3-5 DOFs generated in the CRIMSON running system 

In the tables, the “Particle NOW” stands for those not on the wall. It represents the DOFs 

remaining in the liquid. Because it has similar density to liquid aluminium, it can stay 

anywhere within the casting running system. The “Particle NOW in GL” shows the number 

of particles within the gauge length. Because the gauge length is the thinnest section in the 

tensile test bar, it is the key performance indicator for the filling quality. Therefore, it is clear 

to see that the CRIMSON process has fewer particles in the gauge length. By contrast, four 

out of the six test bars made by the gravity filling method have DOFs, which means that the 

gravity tensile test bar is more likely to fail during the tensile test.  

3.1.6 Discussion 

Both the theoretical assumption and the simulation results indicate that the gravity filling 

method generates more DOFs than the CRIMSON method does during the filling. Generally, 

there are two sources for DOF formation in a gravity poured casting running system: the 

pouring basin and the down-sprue. From Figure 3-8, it can be seen that when the liquid metal 

entering the pouring basin at t = 0.1 seconds, the velocity of the liquid metal flow has already 

exceeded the critical velocity. In particular, when the liquid metal steam hits the pouring 

basin, the sudden change of the velocity direction leads to the break-up of the oxide film 

surface, forcing it to become entrapped. As the liquid metal fills the pouring basin, a physical 

phenomenon called a plunging jet (Reilly, 2010) occurred at around t = 0.3 seconds. Such an 

impingement breaks up the surface oxide and entrains it at the point of impingement. As 

mentioned before, the aluminium is a film forming material, which means that it can react 

instantly with air to form an oxide. Therefore, the impingement point keeps breaking and 

reforming oxide films, which is why such chaos occurs in the pouring basin. 

Pressure difference is the driving force for gravity filling. Therefore, the down-sprue should 

have sufficient length to maintain the pressure head. As discussed before, the critical height 

for the fall of aluminium is 12 mm. However, the down-sprue used in this system is 368 mm 
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in length. Thus, surface turbulence occurs almost immediately after the liquid metal enters 

the down-sprue, generating DOFs all of the way down the down-sprue (Figure 3-9b, 3-9c, 3-

9d).  

Fortunately, the well-designed taper-shaped down-sprue arrests most of the DOFs during the 

filling (Figure 3-9c, 3-9d); otherwise, the quality of the castings produced by the gravity 

runner system will be much worse.  

 

Figure 3-8 Schematics of the fluid behaviour in the pouring basin 
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Figure 3-9 Schematic of DOF generation during falling. Parts c and d show DOFs stuck on the taper-shaped down-

sprue 

On the other hand, the CRIMSON process tells a different story. To satisfy the 0.25 L⋅s-1
 

volume flow rate for the ingate and test bar, the piston only has to move at a velocity of 

0.032 m⋅s-1
 (determined from mass conservation theory, the diameter of the sleeve is 100 

mm). With such a velocity, the surface tension dominates the flow and no surface turbulence 

is present. Thus, the liquid metal can be delivered smoothly into the ingate without any DOFs 

forming. Figure 3-10 below shows the filling of the running system.   

 

Figure 3-10 Demonstrating fluid behaviour during the CRIMSON filling process. Fluid is moving very smoothly in 

the runner. 
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3.1.7 Conclusion 

From the simulation and investigation, the following conclusions can be made: 

1. The gravity sand casting running system designed for this project is successful, 

because 90% of the oxide films generated in the running system are captured by the 

running system itself. This indicates that a good running system is very important for 

a casting process.  

 

2. Because of the geometry requirements, the gravity casting running system cannot 

avoid DOFs during the filling process. No matter how sound the running system 

design is, there will always be DOFs entering the casting product and causing 

problems.  

 

3. The CRIMSON up-casting process eliminates two major sources of DOF generation: 

the pouring basin and the down-sprue, which not only prevents DOFs defect but also 

increases the casting yield of the casting product. 

 

4. In the CRIMSON process, all the important parameters are under control. Because of 

the conservation of flow rate, the piston needs only a very slow speed (0.032 m/s for 

this project) to deliver the liquid metal. This slow movement can ensure that the liquid 

metal is delivered smoothly, avoiding the formation and entrapment of DOFs. 

3.2 Design and optimisation of an investment CRIMSON casting 

running system 

Because of the advantages of the CRIMSON process, the next task is to apply CRIMSON to 

an investment casting process. As a partner of this project, AEROMET International PLC 

provided a thin-walled aluminium filter housing for research. AEROMET’s traditional route 

is to use a massive investment casting running system to produce this filter housing, which 

only gives 5% to 10% casting yield. The running system of the filter housing was designed 

by using a combination of the casting software Magmasoft 5 and Flow3D. By working with 

AEROMET, various configurations of the casting running system ware discussed and 

analysed. Ultimately, the optimum newly designed CRIMSON casting running system will 

be compared with the original. 
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Figure 3-11 schematic of the geometry of the filter housing  

Figure 3-11 shows the filter housing made by AEROMET. This filter housing has a thin 

middle section and a thick bottom. During the solidification stage, the thin wall in the middle 

solidifies first. Therefore, the natural feeding from the top is blocked by the solidified metal; 

thus, the thick bottom may suffer from shrinkage porosity. To eliminate the shrinkage 

problem, AEROMET has a massive feeding system to feed the shrinkage of the filter housing. 

It transpires that their casting yield is between 5% and 10%. Even with their maximum 10% 

yield, the manufacture of a 0.8 kg filter housing requires 8 Kg of raw Al356 alloy.  

3.2.1 Methodology 

Based on the comparison results of the gravity running system and the CRIMSON running 

system, the concept of an up-casting runner is adopted for the design of the new running 

system. By using the combination of Flow3D and Magmasoft 5, the geometry of the running 

system, pouring rate, pouring temperature and some other parameters can be determined. 

Flow3D has already been introduced in previous sections. Its unique free surface model can 

describe accurately transient free surface flow with large deformations. According to 

benchmark tests performed at the University of Birmingham (Sirrell, et al., 1996) , Flow3D 

describes accurately the fluid behaviour inside the casting runner. According to the 

benchmark test and the author’s experience (Zeng, 2010), Flow3D can be used to observe the 

behaviour of liquid and to optimise the shape of the running system. 
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On the other hand, Magmasoft 5 is commercial casting software package that is used widely 

by foundry personnel (1,800 active licenses). It can be used to perform numerical simulations 

of molten metal filling and solidification in different casting process, such as sand casting, 

investment casting and die casting. Its database not only contains the physical properties of 

the metals but also their thermal properties as well. Moreover, the well-developed thermal 

and fluid dynamic codes can be used to predict shrinkage and gas porosity, as well as stress 

distribution during solidification. For the design of the filter housing running system, 

Magmasoft 5 is used to focus mainly on the simulation of solidification, thermal properties 

correction and boundary condition justification. 

3.2.2 First approach  

Considering the advantage of the CRIMSON casting running system, the original test bar 

runner is used as a draft design (Figure 3-12). Two filter housings are attached to the runner 

bar: one on the left and the other one on the right. The first simulation is performed by 

Magmasoft 5. As mentioned before, the filter housing is a thin-walled casting product, which 

requires fine meshes for these parts. The author used the uniform mesh method to mesh the 

entire geometry. It transpires that this first approach has 50,974,440 mesh elements in total 

and takes about 30 hours to run. Some of the key settings, together with the simulation results 

are shown in Table 3-6 and in Figure 3-13. 

 

Figure 3-12 Ground design adapted from tensile test bar 

Casting Method Up-casting 
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Casting Material AlSi7Mg 

Mould Material Furan 

Heat Transfer Temperature dependent HTC 

Pouring Temperature (
o
C) 700 

Mould Temperature (
o
C) 20 

Maximum Flow rate (l/s) 0.25 

Time for solver (s) 108841.5 

Time for solver (hour) 30.23 

Filling time (s) 6.91 

Solidification time (s) 1067.86 

Porosity per housing (mm
3
) 2832.42 

Velocity at runner (m⋅s-1
) 0.2 

Velocity at ingate (m⋅s-1
) 0.11 

Mass of casting (kg) 1.6 

Mass of casting system (kg) 1.36 

Casting Yield (%) 54 
Table 3-6 General settings and results 

 

Figure 3-13 Solidification results. Left to right: porosity, FS time and Hot spot FS time 

Table 3-6 shows that the velocity is not a problem during filling. In fact, the filling velocity is 

a little bit slow. The main concern from these results is porosity defects, as shown in Figure 

3-13a. Eliminating these porosity defects is the major challenge to be addressed in the new 

running system design. Based on information from Figures 3-12 and 3-13 and from Table 3-6, 

several suggestions can be addressed here: 

Firstly, the tensile test bar runner is oversized. As we know, the purpose of this design is to 

increase the casting yield. Thus, it is observed easily from Figure 3-12 that the distance 

between two filters can be reduced.  
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Secondly, as the metal enters the runner bar, it cannot reach the top of the runner and it leaves 

a gap. Because the filling is slow, the surface oxide film may be thicker due to longer 

oxidation. Eventually, the thick films can be a potential threat for the casting products. 

Therefore, reducing the height of the runner is essential.  

Thirdly, because of the porosities found in the casting, various boundary conditions need to 

be tested. Feeders also need to be considered in the running system design. Their shape, size 

and location need to be calculated and proved. In order to assess the porosity in different 

locations, the filter housing is divided into six sections: the top ring, thin wall, dense bottom, 

deck and wings 1 and 2 (Figure 3-12).  

Finally, the simulation took too long time to process. Therefore, a sensitivity analysis needs 

to be performed to establish the optimal mesh density for the simulation. 

3.2.3 Running system design  

3.2.3.1 Runner design 

Filter housing running system design based on the CRIMSON tensile test bar runner due to 

its advantage. As the most important parameter for the sand casting running system, the 

velocity have to be under critical one for all cases. Therefore, the start point of the running 

system design is about discovering the thinnest cross section in the casting. For filter housing, 

the thinnest section is highlighted as below. It has the cross section area of 907 mm
2
. The 

target velocity through this section should be less than 0.5 m⋅s-1
. Therefore, using the volume 

conservation theory Fr=AV, the critical filling rate (Fr) is about 453 cc⋅s-1
, However, the 

author choose 250 cc⋅s-1
 to demonstrate the flexibility of the CRIMSON process. 

 

Figure 3- 14 shows the thinnest cross section area of the filter housing 
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In order to reduce the metal yield into the runner bar, the author decides to reduce the width 

of the runner bar. In this case, the width of the runner bar is same as the diameter of the 

bottom of filter housing, which is 40 mm.  Assuming the runner bar is in rectangular shape. 

According to the observation, the idea runner bar should be a single pass runner bar (Reilly, 

2010). The concept of the single pass runner is that the liquid enter into the runner can reach 

the top of the runner at first place. Therefore, there will be no gap between top surface of 

liquid and the runner and reduce the chance of the unnecessary contact. Therefore, a single 

pass runner in this case should have the thinnest thickness of 6.5 mm (volume conservation).  

On the other hand, the condition to form single pass runner requires the runner must have the 

same or less height as the critical height the liquid can with stand. This critical height relates 

to the height of the sessile drop, which has relation with the critical velocity. It has been 

proved that the critical velocity has the relation with the height of the sessile drop (Campbell, 

2004). The sessile drop is a stationary fluid droplet placed on the plain surface, which 

exhibits a specific height h defined by the balance between the surface tensional pressure and 

the gravitational pressure (Jolly, 2002) of the droplet.  

    
   

 
                                                                                                                         Equation 14 

                                                                                                                            Equation 15                                             

Combining Eq. 14 and Eq. 15 together, the critical height of the sessile drop can be defined as: 

       √
  

  
                                                                                                                  Equation 16                                                   

 

Figure 3-15 Critical height of the sessile drop (Jolly, 2002) 

By using equation 16, the critical height of the aluminium is about 12 mm. This means the 

height of the single pass runner should be no more than 12 mm. Therefore, the runner bar 

thickness for this case should be in the range of 6.5 mm to 12 mm. Six different heights of the 

runner bars were simulated in Flow3D for the purpose identify the best thickness of the 

runner bar and also showcase the performance of the single pass runner. As usual, the 
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velocity and DOF defect tracking sub-routine are applied to check the quality of filling. 

Figure 3-16 below shows the general shape and dimension of the runner bars 

 

 

Figure 3-16 typical shape of the runner bar 

The velocity of the liquid metal is always a big concern in the design of a running system. 

Maintaining the velocity of the aluminium below 0.5 m⋅s-1
 is always good practice for 

maintaining casting quality. Because of the symmetrical structure, only half of the runner bar 

needs to be checked. By using simple mass conservation theory (                ) 

the liquid velocity along the runner can be determined. Figure 3-17 displays the velocity 

profile for different heights of runner. Clearly, if the height of the runner bar is reduced to 

7.44 mm, the velocity of the liquid metal exceeds the 0.5 m⋅s-1
 limit. It turns out that surface 

turbulence can occur. Therefore, reducing the runner height to 7.44 mm is probably 

unsuitable. 
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Figure 3-17 Velocity profile for different heights of runner 

After the theoretical calculations, the runners were tested in Flow3D. Figure 3-18 shows the 

fluid pattern in the different runner bars at the same filling time. From the graph, it is easily to 

find that only the 12.44, 9.44 and 7.44 mm runner bars can form a single pass metal steam. In 

the remaining runner bars, the liquid cannot reach the top of the runner bar and their slow 

moving front (less than 0.2 m⋅s-1
) increases the chance of oxidation. Therefore, the 12.44, 

9.44 and 7.44 mm runner bars can considered further. 

 

Figure 3-18 schematics of fluid pattern for different heights of runner 
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Figure 3-19 DOFs count for different casting running systems  

Figure 3-19 shows the DOFs count for different heights of runner. Because the 22.44, 19.44 

and 14.44 mm runner bars are not single pass runners, they generate more DOFs than the 

other runner bars, even though they have a slower velocity of liquid metal. Therefore, they 

cannot be used for the new filter housing running system. As discussed before, the 7.44 mm 

depth runner bar may suffer from DOF defects due to its velocity issue. The figure above tells 

the same story as expected; because of the velocity problem, it generates more DOFs than the 

9.44 and 12.44 mm runner bars. Furthermore, the 7.44 mm depth runner may lose heat more 

quickly, causing a miss run in a filling. Therefore, the 7.44 mm depth runner is unsuitable for 

the new filter housing running system. 

The 12.44 and 9.44 mm runner bars have similar performance on velocity control, single pass 

stream formability and DOF control. Clearly, the comparison of these two runners is focused 

on savings. According to the calculations, the 9.44 mm runner uses only 75% of the metal 

used by the 12.44 mm runner. Furthermore, comparing with the original 24.44 mm runner, 

the new runner bar saves about 62% of the aluminium. Considering both filling quality and 

the saving, the 9.44 mm runner bar is selected as the best runner design. This runner bar will 

be used as the standard runner bar for further optimisation. 

3.2.3.2 Feeder design 

As mentioned in the literature section 2.2, shrinkage is due to volume change during the 

solidification process. Figure 3-13 suggests several reasons that may cause porosity. The 

filter housing is in the vertical orientation and owing to the natural tendency of the flow; the 

liquid at the top will flow downward. This is why the top ring section suffers from porosity 

defects. The FS time result displayed in Figure 3-13b indicates another reason. FS time shows 

the time needed for a critical portion of liquid to solidify. This portion of liquid is related to 
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the feeding rate. For aluminium, the feeding rate is 30%. Thus, the FS time shown in Figure 

3-13b indicates the time needed for 30% of the aluminium to solidify. From the graph, it is 

easily to establish that the centre of the thick bottom and the centre of the deck take a 

significant longer time to solidify than their surroundings. Therefore, when the surroundings 

solidify, the feeding passages are blocked and porosity defects can occur. 

To eliminate porosity defects, feeders must be applied to the casting running system. The size 

of the feeder can be determined by modulus, which is the ratio of the volume to the cooling 

surface area. Normally, the modulus of           is applied to calculate the feeder size. 

For an L junction like the extruded deck, the modulus of            is used (Jolly, 

2002). Table 3-7 below shows the feeder size for filter housing casting.  

  
Modulus of casting 

(mm) 
Modulus of Feeder 

(mm) 
Feeder 
shape 

Dimension  
(mm) 

Top ring 6.45 7.74 ring D120.5*d105*H30 

Deck 5 6.65 cylinder D26*H35 

Bottom 7.5 8.99 cylinder D40*H60 
Table 3-7 Dimensions of the feeders 

Figure 3-20 shows the first improvement of the feeder design. The highlighted parts are the 

feeders attached to the filter housing. In addition to those three feeders, two blank feeders are 

also attached in this design. They are used to feed the wing sections, as well as the thin wall.  

 

Figure 3-20 Schematic of the shape of the feeders and their locations 

3.2.3.3 Parameter settings  

After establishing the runner design and the feeder design of the running system, the next task 

is to determine the casting parameters for this investment casting that are most sound. 

Because the CRIMSON process is good at velocity control, defects caused by DOFs are 
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hardly to form. Therefore, the key performance indicator should be the shrinkage porosity in 

this case. Follwoing factors can influence the volume of the porosity. 

Pouring temperature is the first parameter needing consideration. Generally, the pouring 

temperature is around 700
o
c. However, the temperature can vary depends on the casting wall 

thickness. The second parameter need to be considered is the mould temperature. The casting 

will take longer to settle and may cause solidification defects at higher mould temperature. 

By contrast, a miss run may happen during a lower mould temperature. As the information 

provided by Aeromet, they keep the mould temperature at 400
o
c. The next parameter needing 

consideration is the filling rate, which is the key to surface turbulence-free filling. According 

to design specification, 0.25 l/s is the target flow rate for this case. Because the shell 

thickness will affect the cooling behaviour of the casting, this also needs to be considered. 

Currently, all investment castings have 6 mm shell at Aeromet. 

Four factors had been discovered. It is make sense to investigate their influence to porosity 

level in terms of different variation. Therefore, a design of experiment method was used 

investigate such influence. However normal design of experiment method requires a certain 

amount of data to perform the analysis. In order to simplify the design of experiment analysis, 

a Taguchi
11

 experimental design was adopted. A four factors and three levels (low, middle, 

and high) of Taguchi experiment were introduced. The factors, their levels and Taguchi 

combination is shown in Table 3-8 and Table 3-9. 

  1 2 3 

Pouring Temp (oC)                 A 650 700 750 

Flow rate (l⋅s-1)                      B 0.15 0.25 0.5 

Mould Temp (oC)                   C 300 400 500 

Shell thickness (mm)            D 3 6 10 

Table 3-8 Parameters that need to be tested for filter housing 

                                                 
11

 Taguchi methods have been used widely in engineering analysis to optimise the performance characteristics 

through the setting of design parameters. By applying Taguchi methods based on orthogonal arrays, the time 

and cost required to conduct experiments can be reduced. In addition, the Taguchi method recommends the use 

of the S/N ratio for the determination of the quality characteristics implemented in engineering design problems. 

The S/N ratio can be divided into three stages: the smaller the better, the normal the best and the larger the better.  
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Factor 

Run A B C D 

1 650 0.15 300 3 

2 650 0.25 400 6 

3 650 0.5 500 10 

4 700 0.15 400 10 

5 700 0.25 500 3 

6 700 0.5 300 6 

7 750 0.15 500 6 

8 750 0.25 300 10 

9 750 0.5 400 3 
Table 3-9 Parameter combination of orthogonal array L9 (3*4) that needs to be tested 

Because porosity is the key performance indicator, it should be as small as possible. 

Therefore, the response table for the signal-to-noise in the Taguchi method should be smaller 

is better.  

Level A B C D 

1 -101.11 -102.28 -102.25 -101.83 

2 -93.65 -93.58 -94.16 -94.16 

3 -95.37 -94.27 -93.72 -94.14 

Delta 7.46 8.71 8.53 7.69 

Rank 4 1 2 3 
 

Table 3-10 Response table for signal-to-noise ratios Smaller 

Table 3-10 shows that the flow rate has the most influence on the porosity level. The filling 

rate not only relates to the filling quality but also to the filling time. Too low a flow rate will 

need a longer time the fill the mould, which means that the liquid metal may lose significant 

amounts of heat that affects the feeding. On the other hand, a high value of flow rate causes a 

higher velocity of the flow in the casting. The surface turbulence can cause DOF defects and 

cause porosity in the casting. Once again, this result indicates that how important velocity 

control is; it not only affects DOF generation but also affects porosity formation.  
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Figure 3-21 Main effects plot for SN ratios. Indicates that a good casting should have pouring temperature of 700 °C, 

a mould temperature of 500 °C, a filling rate of 0.25l/s and a 6-mm thickness shell 

Optimisation is also carried out after the test. Figure 3-21 is the main effects plot for the SN 

ratios. It can be seen that the combination of A2B2C3D2 provides the best opportunity for 

reducing porosity. After the examination in Magmasoft 5, such a combination provides the 

minimum level of porosity. Furthermore, such results match with the normal parameters used. 

Especially the shell thickness, it matches with AEROMET’s own design. Therefore, the 

following set of parameters is used in the new design running system: pouring temperature, 

700 °C; flow rate, 0.25 L⋅s-1
; shell temperature, 500 °C; and shell thickness, 6 mm.  

3.2.4 Simulation results for version One 

The assembly of the first version of the CRIMSON running system, shown in Figure 3-22, 

includes a new runner bar, filter housing and the feeders. The casting is in the vertical 

orientation and the metal will be pushed though the bottom gate. The highlighted parts are the 

feeder and attachments to the filter housing. In order to show the feeding capability only one 

housing has the feeder attachment.  
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Figure 3-22 First version of the filter housing design and key parameter settings  

  With Feeder Without Feeder 

Porosity 
volume 
(mm3) 

No. of 
Porosities 

Porosity 
volume 
(mm3) 

No. of 
Porosities 

Dense Bottom 0 0 909 1 

Deck 0 0 474 1 

Wing 1 0 0 11 3 

Wing 2 0 0 0 0 

Top Ring 0 0 180 2 

Other 0 0 4 1 

Total 0 0 1577 8 
Table 3-11 Porosity volume for Version One. The housing with the feeder shows massive improvement. 

 

Figure 3-23 Schematics of the smooth and uniform filling process for Version One 
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By using the new configuration and parameters, the simulation takes about three hours to run. 

Figure 3-23 shows the filling results for Version One. It is clear to see that the filling is very 

smooth throughout the entire process. The velocity has been kept under 0.5 m⋅s-1
 for the 

entire filling process. Secondly, the melt rises almost uniformly until the casting cavity is 

filled.. This filling pattern ensures a uniform temperature distribution inside the casting cavity. 

Therefore, the solidification rate can be consistent during the solidification stage. Table 3-11 

shows the comparison of porosity between the feeder and non-feeder filter housing; it 

indicates how important the feeders are. According to the results of velocity and porosity, this 

runner bar and the feeders are working very well in this design. The casting yield for this 

running system is about 51%. 

3.2.5 Version Two 

However, AEROMET did not approve of this design because of the location of the feeder. In 

their opinion, the feeders inside the filter housing are impossible to cut off in the fettling 

process. Furthermore, they highlight that they produce three filter housings per running 

system. Thus, the new running system should have the same or higher production rate 

compared with the existing one.  

 

AEROMET also offered two suggestions based on their experience: try to reduce the cost and 

reinforce the wax pattern. Unlike other casting processes, investment casting needs to make 

the negative shape die to produce the wax pattern. Generally, the die can be made in any 

shape by machining. However, because of the costs of machining, it should be as simple as 

possible. After the wax injection, the wax pattern may deform in some way. If that happens, 

the final casting will be affected by the wax deformation. Therefore, it is important to prevent 

such deformation during the wax solidification and this requires that the entire structure of 

the casting running system be reinforced.  

 

Thus, the design has to be changed to fit the fettling process. To overcome this problem, the 

author decided to change the casting orientation, such that the filter housing is cast upside 

down. In this new design, all of the feeders are located outside of the housing. This not only 

provides easy fettling in the post-machining process but it also permits more effective feeding 

(blank feeders are removed). The author also increased the production rate by incorporating a 

new configuration of the casting running system. Two crossed runner bars have been 
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introduced to the running system to produce four filter housings at a time, which means that 

the production rate can be increased by 25%.  

 

After several design updates (full version of running system design can be seen under 

Appendix section), the final running system was approved by AEROMET, as shown in 

Figure 3-24. The blue parts are the reinforced elements attached to the running system and 

the red parts are the feeders. The ingate is attached directly to the runner bar. This design 

ensures that the runner bar pattern can be produced directly without further assembly. The 

runner bar also works with the top blue rhombus frame, which fastens the running system in 

the correct location. Again, there are no filling and solidification defects from the simulation 

results. Because additional elements have been added to the running system, the casting yield 

of such design decreased to 42%. 

 

Figure 3-24 Configuration of Version Two. All of the feeders are located out of the filter housing 

3.3 Development of the CRIMSON running system design spreadsheet 

The CRIMSON running system is relatively easy to design. The designer only needs to focus 

on the volume conservation theory to control the filling velocity. However, as a new casting 

technology, no one has been working on the standardization of its running system design. 

Therefore, the author developed a CRIMSON running system designing spreadsheet to help 

future researchers or foundry engineers to design the CRIMSON running system. 

The concept of the CRIMSON running system had been already introduced in section 2.3. 

The sequence of the CRIMSON running system design shows in the figure 3-25. From the 

flow chat, the logic of the CRIMSON designing sheet is clear. The major task of the user is to 
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identify the thinnest cross section of the casting and possible size of the casting feeder (can be 

done by simulation method). According to the target velocity input in the spreadsheet, the 

maximum flow rate pass though the thinnest section112- can be calculated. The whole 

running system geometry is then decided by this flow rate to ensure the fill velocity of the 

liquid metal.   

 

Figure 3- 25 schematics the system approach to design the CRIMSON running system  

Decide geometry by flow rate shows in the figure 3-25 is the actual designing step of the 

running system. The author considered two kinds of situation at this stage. First scenario is 

for a big casting
12

 which can only produced once a time. The second scenario is for multiple 

castings produced in one running system. Example shows in figure 3-26A can be used to 

demonstrate the situation one.  Figure 3-26A shows a racing car wheel which has diameter 

around 400 mm. Due to the space limitation of the CRIMSON workstation, only one wheel 

can be cast at a time. Due to the advantages of the CRIMSON process, the wheel casting 

doesn’t require traditional gating system such as inlet, runner bar. Instead of using ingate, 

runner bar to deliver metal into the wheel, it can be directly attached with the sleeve to 

receive metal.  

                                                 
12

 The dimension of the casting approach the upper limit of the CRIMSON up-casting workstation  
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Figure 3- 26 shows three different situations for the CRIMSON casting production   

For scenario two, it can be divided into two sub-situations: produce all castings in line (along 

the filling direction) and produce all castings normally. Figure 3-26B can be used to represent 

sub-situation one. In this case, the valve wheel is cast by using the CRIMSON process. 

Similar to scenario one, no running systems are required by its configuration. The filter 

housing running system demonstrated before belongs to sub-situation two, which is the 

classical case of the CRIMSON process.  

Decide geometry by flow rate show in the figure 3-25 refers to this kind of situation. The 

running system components such as in-gate, inlet, and runner have to satisfy the maximum 

flow rate.  

Above all, a guideline was created in the spreadsheet to help user to design correct running 

system. In the spreadsheet, the user needs to answer following questions: 

1. Does the running system produce more than one casting? 

2. Does all castings filled in line (vertical orientation)? 

By answering the questions, the spreadsheet gives proper advice to help user make the most 

efficient running system. Later, the validation of the spreadsheet will be take place at chapter 

8. Please refer to the Appendix section for the full version of the spreadsheet. The appendix 

number is 11 (pp194). 
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Figure 3- 27 shows the guide provided by the spreadsheet.  

 

3.4 Summary of chapter 

Compared with the conventional gravity filling method, the CRIMSON process adopts the 

up-casting method to fill mould. Because of the smooth and uniform behaviour of the filling, 

bubbles and DOF defects are hardly form in the CRIMSON running system. Furthermore, the 

up-casting method removes the pouring basin and the down-sprue from the running system. 

This not only eliminates the source of bubbles and DOF generation but also increases the 

casting yield.  

 

The implementation of the CRIMSON process into investment casting production was 

investigated as well. Several CRIMSON running systems were developed for a filter housing. 

The approved version by AEROMET can increase casting yield from 10% to 42%. As part of 

the true yield, increasing the casting yield plays a vital role in energy saving. This means 

AEROMET can reduce their energy usage through metal reduction from 8 kg to 1.9 kg if 

they adopt the CRIMSON method.  

 

Knowledge and experience of the CRIMSON running system design had also been developed 

through the filter housing running system design. A guideline and running system design 

spreadsheet was developed for future use.   
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Chapter 4 Validation of the CRIMSON process 

through Life Cycle Assessment 

4.1 Introduction  

As summarised in the summary, this research uses four different approaches to validate the 

CRIMSON process. In this section, the second approach using Life Cycle Assessment (LCA) 

is reviewed. According to the ISO 14040 standard, LCA can be defined as a four-phase 

process: goal definition and scoping, inventory analysis, impact assessment and interpretation. 

As the primary goal is to compare the CRIMSON process with other casting processes, only 

the goal definition and scoping, inventory analysis and impact assessment are important. This 

chapter focuses on the raw material and energy data collection for inventory analysis and the 

simulation approach for impact assessment.  

4.1.1 About Life Cycle Assessment  

Unlike some traditional analysis methods that focus on a particular machine or stage of the 

production/service, the LCA technique deals with the entire life of the product/service. The 

term ‘cradle to cradle’ refers to the entire life of a product or service from its raw material 

extraction, through manufacturing, usage, maintenance and final disposal. Therefore, the 

environmental impact of each stage is investigated. The cumulative effect on the environment 

of such a product or service can be established. By applying LCA to a product/service, the 

hidden impacts of material transportation, raw material extraction, etc., can be visualised. 

According to Curran’s report (2006), applying LCA throughout the life cycle of a 

product/service can provide a comprehensive view of the environmental aspects and thus, 

help decision makers select the correct process for the product/service.  

4.1.1.1 Goal definition/scoping 

Goal definition/scoping are the first steps and vital steps of LCA analysis. These affect 

directly the LCA depth and accuracy. Goal definition not only indicates the reasons for 

performing LCA but also identifies what type of results is essential. Scoping, on the other 

hand, determines the range of the analysis.  

In this chapter, the goal of the LCA study is to assess the environmental impact of both the 

CRIMSON process and the conventional sand casting process. In contributing to this goal, a 

tensile test bar is used to assess the environmental impact of both casting processes. The life 
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cycle of the production system of the tensile test bar includes raw material production, 

manufacturing, production use and recycling. Because the same product is produced by both 

casting processes, the use phase of the tensile test bar (tensile test) is not included in this LCA.  

4.1.1.2 System boundaries 

The system boundaries for both casting processes have been defined according to the goal 

definition and scoping. For these casting processes, the material and energy requirements for 

each operation were investigated and the total material and energy usage will be determined.  

 

Figure 4-1 System boundaries for both casting process 
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4.1.1.3 Life cycle inventory data collection  

Life cycle inventory (LCI) analysis is a process by which to complete and quantify the input 

and output of a product, service, or activity. The input refers to the initial design (Rebitzer, G. 

et al, 2004), energy and raw material. The output refers to atmospheric emissions, waterborne 

waste, solid waste, co-products and other releases throughout the entire life cycle (Curran, 

2006). This means that all the resource inputs and emission outputs involved from raw 

material extraction to the final disposal of the product need to be understood. 

Figure 4-2 demonstrates the entire life cycle of the sand casting product. As the colours 

indicate, the life cycle of a casting product can be divided into six phases: metal extraction
13

 

(yellow), extraction of sand and its additives (green), casting
14

(red), mould making (light 

blue), use (dark blue) and disposal (purple). Meanwhile, the energy and material inputs are 

shown by black arrows and the emission outputs are shown by red arrows. 

Every single step in the life cycle has inputs and outputs. Starting from the metal extraction 

process, the following factors need to be considered: the energy consumption for bauxite 

mining, alumina production, electrolysis and ingot casting; the material consumption of 

caustic soda, limestone, petrol coke, aluminium fluoride and so on. Similarly, each phase in 

the life cycle needs to go through the same investigation to collect data for the LCA.  

By goal definition, the tensile test bars made by the CRIMSON process and by the 

conventional gravity sand casting process will be investigated by the LCI method. Because 

these processes produce the same product, the phases of use and disposal of the LCI are the 

same. Therefore, the LCA method only focuses on the metal extraction, the extraction of sand 

and its additives, casting and mould making phases of the casting process. The use and 

disposal phases of the tensile test bar are not included in this research project.  

 

                                                 
13

 Also known as primary aluminium production 
14

 Casting can be treated as secondary aluminium production  
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Figure 4-2 Schematic of the entire life cycle of the sand casting product. High resolution version can be found in 

appendix 12  
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4.1.1.4 Life cycle impact assessment  

This is the third phase of the LCA. It is used to evaluate the potential impacts to human 

health and the environment by assessing the results of the LCI (Curran, 2006). The SimaPro 

LCA simulation package was used to assess the life cycle impact assessment.  

Following the example of the flow chart shown in Figure 4-2, the entire casting production 

process was modelled in SimaPro. The collected material and energy data are used with the 

SimaPro inventory data for a complete LCA model to assess the environmental impact of the 

casting process. Three impact assessment methods are considered in this study: Gas Protocol, 

Eco-indicator and Eco-points. All of the impact categories are used to assess the 

environmental impact throughout the complete life cycle. 

4.2 Inventory data collection for casting  

4.2.1 Energy input data collection for sand mould making 

Following Figure 4-2, the author decided to begin the investigation with the process of the 

making of the sand mould. In line with process of metal preparation, the making of the sand 

mould is essential for sand casting. The data collection is easy for the mould making because 

it only contains mixing and compaction processes. The difficulty in mould making is in the 

selection of the raw materials and the selection of the reclamation method. Depending on the 

casting applications, different sands can be used for moulding and different reclamation 

methods can be used later on. Therefore, this high degree of freedom over material selection 

makes it difficult to collect the input and output data. According to author’s knowledge, not 

too many works have been carried out in this area.  

To obtain the input data for the making of the sand mould, the author investigated every 

single step of the process, which included the following investigations: 

1. The embedded energy of different sandstones. 

2. The energy consumption for every single machine involved in sand making. 

3. The energy consumption for every single machine involved in mould making. 

4. The energy consumption for every single machine involved in sand reclamation. 

4.2.1.1 Introduction  
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Generally, the process of making a sand 

mould can start with the mixing of the raw 

material. The mixed material is then 

transferred to the moulding machine. 

Subsequently, the mould is transferred to the 

pouring line for casting. Shakeout is the next 

step when the casting has solidified. At this 

step, the casting and the sand mould are 

separated. The casting is then transferred to 

post-process and the used sand is reclaimed 

for the next cycle of use. The process flow is 

shown in Figure 4-3.  

According to Figure 4-3, the process starts 

with the preparation of the raw material. In this 

step, the preparation of the sand and its additives is required. Clearly, obtaining these raw 

materials requires energy input. Therefore, investigating the embedded energy of those raw 

materials is the first task. 

However, this is a challenge because of the diverse materials available for sand moulding. 

Sand used for moulding can be divided into four categories: silica sand, zircon sand, olivine 

sand and chromite sand (Ramana, 1996). Silica sand is the most common, which can be 

found throughout the world. It is used for a wide range of applications, such as glass, fillers 

and casting moulds (SAMSA, 2012). It is a naturally occurring material and is extracted 

normally by surface quarrying (SAMSA, 2012). However, depending on the requirements of 

the application, silica sand can also be manufactured from sandstone. The following sections 

will explain how silica sand is made and how its embedded energy is calculated.  

 

Silica sand is made from quartz stone, which is the most common stone found anywhere. 

According to CES2011’s database
15

, the embedded energy of such stone is around 0.4 MJ⋅kg
-

1
 to 0.6 MJ⋅kg

-1
 (including mining and transportation). To make silica sand, the quartz stone 

is delivered evenly by a vibrating feeder to a jaw crusher for primary crushing. The crushed 

stones are then transferred by a belt to a secondary crusher, such as a cone crusher, for further 

                                                 
15

 CES EduPack is the world-leading teaching resource for materials in engineering, science, processing, and 

design. It includes General and mechanical engineering, Manufacturing, Materials science and materials 

engineering, and so on (Network, 2013) 

Figure 4-3 Process flow chart of sand mould 

construction 
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crushing. Following the secondary crushing, the coarse sand is transferred to a vibrating 

screen for screening. The coarse sand can be screened into two major types of sand; one is 

transferred to the sand-making machine and the coarser material is sent back for re-crushing. 

The final step of sand making is sand washing. The cleaned sand is then delivered to the final 

products pile (Figure 4-4).  

 

Figure 4-4 Process flow chart of sand making. Please note every arrow in this graph represents transportation by 

conveyor belt or bucket elevator 

From Figure 4-4, the embedded energy of silica sand is calculated from the sum the energy 

burden of the entire process. The equation used to calculate the energy burden is: 

 

                                                                                                 Equation 17                                                   
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Table 4- 1 Example shows various types of vibrating feeders (JOYAL, 2013). Please refer to appendix 37 for 

specification of each sand making machine. 

According to this equation, the energy consumption and the processing capacity of the 

equipment must be determined. These data are normally displayed in the specifications of the 

equipment. However, there are various types and brands of equipment such as the vibrating 

feeder shown above that are available, which have different capacities and power outputs 

(Table 4-1). However, Eq. 17 indicates that the energy burdens of these feeders are normally 

of similar magnitude. Therefore, the normal distribution of their energy burden is investigated. 

In a normal distribution with a mean μ and standard deviation σ, the maximum and minimum 

energy burdens are adopted within 68% of the observations falling within σ and μ.  

Similar to silica sand, zircon sand, olivine sand and chromite sand can also be made from 

stone. Assuming that similar mining techniques are used, the embedded energy of such stone 

also lies between 0.4 MJ/kg to 0.6 MJ/kg. Furthermore, by using same process to make the 

sand, the same embedded energy can be applied to all of these sands. As Table 4-2 shows, the 

embedded energy of the sand is between 406 kJ/kg and 616 kJ/kg. 
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Minimum energy burden 

(KJ⋅Kg
-1

) 

Maximum energy burden 

(KJ⋅Kg
-1

) 

Average 

(KJ⋅Kg
-1

) 

Vibrating 
feeder 

0.13 0.26 0.2 

Jaw crusher 1.3 5.5 3.4 

Cone crusher 1.82 4.42 3.1 

Vibrating 
screen 

0.44 0.83 0.6 

Sand making 
machine 

2.47 4.76 3.6 

Sand wash  0.23 0.71 0.5 

sand 400 600 500 

Total  406 616 511 

 

Table 4-2 Embedded energy of sand 

4.2.1.2 Sand additives 

When classifying the sand mould by binder type, it can be categorised as a green sand mould 

or a chemical sand mould. The term green sand does not mean that the colour of the sand is 

green; it means using wet sand and clay to make the mould. Typically, a recipe for a green 

sand mould comprises 80% to 90% sand (silica, olivine and chromite sand), 5% to 10% clay, 

2% to 4% water and 0% to 2% coal dust (Lost&Foundry, 2012). To determine the energy 

content of green sand requires an estimation of the embedded energy of all materials involved. 

Therefore, in addition to that of the sand, the embedded energy of the clay and other additives 

needs to be resolved.  

 

The naturally occurring materials of sodium bentonite and calcium bentonite are normally 

used as clay in a green sand system. Therefore, these clays have to be mined by a certain 

method. Assuming that the same method is adopted, then the embedded energy of these 

natural clay lies between 0.4 MJ⋅kg
-1

 and 0.6 MJ⋅kg
-1

. Problems arise with the other additives 

such as coal dust. It is difficult to find useful information regarding how this product is 

produced. However, owing to its minor content (0% to 2%), it can be ignored in this situation. 

 

For chemical bond sand, this issue becomes even more complicated. Firstly, the chemical 

bond sand mould can be classified as a self-hardening or a triggered-hardening mould. The 

chemical binder required for these two kinds of mould are different. A simple example for a 

self-hardening mould is the furan sand mould. This kind of mould is adopted widely in 
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ferrous and non-ferrous foundries. As a self-setting mould, furan resin and an acid catalyst 

are used as a binder system. The resin can be urea-formaldehyde, phenol-formaldehyde, or a 

combination of the two with additions of furfuryl alcohol (Brown, 1999). The catalyst can be 

phosphoric acid, sulphonic acids or some other mixed acid (Brown, 1999). Because the 

chemical reaction is complicated, the energy contents of the resin and the catalyst are hard to 

establish. In addition to the energy content of the materials, various recipes for the furan 

binder make the determination of the embedded energy even more un-predicable. Thus, as for 

the case of the triggered chemical binder, it is impossible to track every single additive.  

 

After investigating different bonding resins, some reasonable assumptions have to be made 

for the purpose of simplification. Firstly, the average resin additions are 1% to 2.5% by mass. 

Secondly, by investigating the primary energy of the various resins using CES2011, the 

energy content of the resin is found to be between 87.63 and 116.28 MJ⋅kg
-1

. Finally, the 

energy content of the catalyst can be ignored because of its negligible content (normally 0.38% 

by mass (Brown, 1999)).  

The energy contents of the sands and their additives are given in Table 4-3. 

  
Minimum energy burden 

(kJ⋅kg
-1

) 

Maximum energy burden 

(kJ⋅kg
-1

) 

Average 

(KJ⋅Kg
-1

) 

Silica sand 406 616 511 

Zircon sand 406 616 511 

Chromite 
sand 

406 616 511 

Olivine sand  406 616 511 

Nature clay 400 600 500 

Resin binder 87630 116280 101955 

Green sand  40516 61517 510 
Chemical 
sand  

127918 350819 2393.5 

Table 4-3 Energy contents of the sands, additives and mixed sands 

4.2.1.3 Sand mix 

The actual start point in making the sand mould is the mixing process. Prepared base sand, 

reclaimed used sand, clay/chemical binder and other additives are mixed in a mixer. For 

natural bonded sand (green sand), a muller is used. The main purpose of using a muller is to 

restore the ‘ready to use’ texture of the moulding sand. Calcium bentonites and sodium 

                                                 
16

 Sand 90% and clay 10% 
17

 Sand 95% and clay 5% 
18

 Sand 99% and binder 1% 
19

 Sand 97.5% and binder 2.5% 
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bentonites are the most common clays used in the natural binder system (Brown, 1999). They 

have to work with water to bond the sand together and the only way to bond the clay and 

water properly is with a muller. Its wheel provides sufficient kneading and compression to 

the clay, which progressively exposes more clay flakes to the adsorption of water (Group, 

2010). The plough blade then stirs the clay evenly around the sand grains (Brown, 1999).  

 

Figure 4-5 Schematic of a continuous mixer (muller) for chemical bonded sand (Brown, 1999) 

For a chemical bond binder system, once the sand and binder are mixed, it begins to harden 

even inside the mixer. As a result, the mixer used for chemical bonded sand is a continuous 

sand mixer, as shown in Figure 4-6. Normally, a continuous sand mixer comprises two arms, 

a resin bucket, a catalyst bucket and a dust catcher. Firstly, the base sand from the sand bin is 

released to the conveying arm. The sand is then transferred to the mixing arm where the resin 

and catalyst from the other buckets are mixed together. Finally, the mixed sand is discharged 

for mould making.  

 

Figure 4-6 Typical structure of a continuous mixer , containing a muller wheel and plough blade (A-Yite-group-

Limited, 2012) 
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4.2.1.4 Mould making (compaction) 

After the sand is fully mixed, it is ready for the mould making. Depending on the throughput, 

this can be either a manual operation for a minimal use or a highly mechanised operation for 

mass production (Brown, 1999). To investigate the energy content of the mould making 

process, it is better to focus on the mould for mass production. Therefore, this project 

considers only the mechanised operation of mould making. The principle of machine 

moulding is to use mechanical power to compact the mould. The compaction power can be 

categorised as squeeze power, impact power, vacuum power or vibration power (Brown, 

1999). Depending on the application of the mould (size of the mould, hardness requirement, 

binder system of the mould), various types of moulding machines are available.  

4.2.1.4.1 Green sand  

A green sand mould uses natural clay to bond the sand mould. It requires large amounts of 

energy to compact the green sand evenly around the pattern. Only by such methods, can the 

green sand mould resist the friction of the molten metal and provide an inclusion-free casting 

(Brown, 1999). Jolting and squeezing are the most common compaction methods used. 

During jolting, the flask containing the loose sand is placed on a jolt table. The table then 

repeatedly jolts against a stopper to generate shocks that are largely absorbed by the sand 

(Brown, 1999). By using this method, the sand can be compact to some extent; the densest 

sand is always near the pattern plate (Brown, 1999). Consequently, the dimensions of the 

casting can be more accurate by using the jolting method. By contrast, squeezing employs a 

squeeze head to apply pressure to the surface of the mould. In this case, the density 

distribution of the sand is reversed; the densest sand is nearest the surface of the mould. 

According to the advantages of both compaction methods, most foundries combine the 

methods of jolt and squeezing compaction to produce a mould that is more uniform.  

Similar to jolt and squeeze compaction, shoot squeeze compaction, impulse compaction and 

vacuum squeeze compaction can be used for green sand moulding (Brown, 1999). All of 

these methods require compressed air or vacuum to pre-compact the sand, and the squeeze 

head used for final compaction.  

4.2.1.4.2 Chemical sand  

Unlike green sand moulding, chemical sand requires less energy to compact the mould. 

Therefore, a slightly gentler force is used for chemical sand compaction. Instead of the jolt, a 
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vibration mould machine vibrates the flask while the chemical sand is charging. To intensify 

the compaction effect, squeezing is also used for final compaction. 

4.2.1.4.3 Energy burden of mixing and compaction  

DISA moulding machines are the most common moulding equipment used in foundries. The 

energy consumption of the mould making is based on DISA’s machines.  

 

  
Minimum energy 

consumption 

(kJ⋅kg
-1

) 

Maximum 
energy consumption 

(kJ⋅kg
-1

) 

Average 
(kJ⋅ kg-1) 

Green sand mixer (muller) 4 9 6.5 

Chemical sand mixer 3 7 5 

DISA vertical 2 4 3 

DISA flask 15 57 36 

DISA match plate 2 5 3.5 
Table 4-4 Energy burden of the mixer and moulding machines 

4.2.1.5 Sand reclamation 

The high cost of new sand and the growing cost of disposing of used sand, makes the 

reclamation and reuse of old sand increasingly important for the foundry sector. Reclamation 

is a process that returns the lumps of used sand back to sand grains in order to restore its 

working ability. During this process, it is important to reduce the contents of spilt metal, nails 

and spent binder inside the sand (Brown, 1999). There are three types of reclamation methods: 

mechanical (attrition), thermal and wet reclamation. Because the wet reclamation method 

requires expensive water treatment to permit safe disposal (Brown, 1999), it is not a 

technique commonly used for reclamation. Thus, this section focuses only on the mechanical 

and thermal methods.  

4.2.1.5.1 Mechanical reclamation   

Clay can absorb water continuously up to temperatures within the range 400–700 °c. The 

only permanent damage to the clay occurs at the interface immediately in contact with the 

pouring metal (Brown, 1999). This means that most of the original binder remains unchanged 

after the casting process. Owing to this feature, most of the green sand can be retrieved by 

mechanical reclamation.  

The mechanical reclamation (also named primary reclamation) method is the technique most 

commonly adopted by foundries. It can work with a wide range of binder systems (green 

binder or chemical binder). This method also has the advantages of low capital cost and low 

operational cost. The reclamation begins with the shakeout. Sand moulds are placed in a 
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rotating drum or on a vibrating screen to separate the casting and the sand lumps. By further 

passage of the sand lumps through the drum or the screen, the sand lamps can be broken 

down into smaller pieces. For ferrous casting, such as cast iron, some metal spillages remain 

mixed with the sand (Hughes, nd). This metal can reduce the permeability and refractory 

resistance of the sand (Brown, 1999). Thus, magnetic separation needs to be employed 

following the initial sand and casting separation. After this classifying, the sands are 

transferred to a crusher to restore the sand to granular size. Depending on the equipment, the 

sand will go through a cooling and classifying process to cool the sand to ambient 

temperature and remove fine dust. Finally, the reclaimed sand will be transferred to a storage 

hopper for a new cycle. 

 

Figure 4-7 Process flow chart of primary mechanical reclamation. Every arrow in this graph represents a conveyor 

or bucket elevator, which means energy is consumed in the transportation 

4.2.1.5.2 Secondary mechanical reclamation  

However, primary reclamation is not efficient for chemical bonded sand. Dead binder on the 

sand grain acts as a coating that is hard to remove. If the residual coating builds up on the 

grains, it will reduce the bonding ability of the sand. Therefore, a secondary reclamation 

(more radical reclamation) to remove the coating of the spent binder is introduced. 

Secondary reclamation requires mechanical systems that are more intensive. There are two 

kinds of secondary system: pneumatic scrubbing and a hammer mill (Brown, 1999) (Hughes, 

nd). The pneumatic device speeds up the sand streams and forces them against a target 

surface and each other. The impaction and the abrading of the sand grains remove the 

residual coating and fine dusts in the process (Hughes, nd). Similarly, the hammer mill forces 

the sand grains to spin, which causes them to impact with each other and thus, removes the 

binder coatings. Chemical sand systems are normally reclaimed by this method.  
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Figure 4-8 Process flow chart of full mechanical reclamation typical for resin bonded sand. Every arrow in the graph 

represents a conveyor or bucket elevator, which means energy is consumed by transportation 

4.2.1.5.3 Thermal reclamation  

The thermal reclamation method uses a gas furnace to heat the sand in an oxidising 

atmosphere to burn off the binder residuals (Brown, 1999). This is the most radical 

reclamation method for all types of the sand (except silicate bonded sands; the binder cannot 

tolerate high temperatures (Brown, 1999)), especially for organically bonded sand and the 

reclamation can reach 100%. Similar to mechanical reclamation, the starting point for the 

thermal method is shakeout and metal removal. Subsequently, the sand is transferred to a 

fluidised bed furnace, which is heated up to 800 °C for residual binder removal. Emissions 

carrying dusts are captured by a bag filter and the cleaned sand proceeds to a cooling stage. 

Finally, the reclaimed sand will be transferred to a storage hopper for a new cycle.  

 

Figure 4-9 Process flow chart of full thermal reclamation. Every arrow in the graph represents a conveyor or bucket 

elevator, which means energy is consumed by transportation 

A combustion furnace uses natural gas or LPG for thermal treatment. Using LPG as an 

example, to reclaim one tonne of used sand can consume 7 to 9 kg of fuel (WESMAN, nd). 
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The calorific value of LPG is between 46.6 and 50.1 MJ⋅kg
-1

. Therefore, the heat required for 

thermal reclamation is between 326 and 451 MJ. 

The energy burden of each reclamation method is presented in Tables 4-5, 4-6 and 4-7. 

  
Minimum energy 

burden 

(kJ⋅kg
-1

) 

Maximum energy 
burden 

(kJ⋅kg
-1

) 

Average 

(kJ⋅kg
-1

) 

magnetic separate 0.2 0.4 0.3 

shake out 
vibrating 3.3 13 8.2 

rotating 6.2 10.5 8.4 

crusher 
green sand 4.5 9.4 7 

chemical sand 2 4.2 3.1 

sand cooling  
fluid bed 5.1 13.5 9.3 

rotary kiln 7.9 11.9 9.9 
Table 4-5 Energy burden of primary reclamation 

  
Minimum energy 

burden (kJ⋅kg
-1

) 

Maximum energy 

burden (kJ⋅kg
-1

) 

Average 

(kJ⋅kg
-1

) 

magnetic separate 0.2 0.4 0.3 

shake out 
vibrating 3.3 13 8.2 

rotating 6.2 10.5 8.4 

crusher 
green sand 4.5 9.4 7 

chemical sand 2 4.2 3.1 

secondary attrition 
pneumatic 3.9 4.6 4.3 

hammer mill 7.2 18 12.6 

sand cooling  
fluid bed 5.1 13.5 9.3 

rotary kiln 7.9 11.9 9.9 
Table 4-6 Energy burden of secondary reclamation 

  
Minimum energy 

burden (kJ⋅kg
-1

) 

Maximum energy 

burden (kJ⋅kg
-1

) 

Average 

(kJ⋅kg
-1

) 

magnetic separate 0.2 0.4 0.3 

shake out 
vibrating 3.3 13 8.2 

rotating 6.2 10.5 8.4 

crusher 
green sand 4.5 9.4 7 

chemical sand 2 4.2 3.1 

heat treatment burning 326.3 455.5 391 

sand cooling  
fluid bed 5.1 13.5 9.3 

rotary kiln 7.9 11.9 9.9 
Table 4-7 Energy burden of thermal reclamation 
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4.2.1.6 Transportation 

Up to this point, the energy of transportation has not been discussed. In this project, 

transportation refers only to the sand transferred between each operation and does not include 

the transportation from its original source to the foundry (this is already included in the 

embedded energy of raw material). For example, the arrows appearing in Figures 4-4, 4-7, 4-

8 and 4-9 represent the transportation involved within the process. In those cases, the 

equipment involved includes conveyor belts or bucket elevators. Unlike other the equipment 

used in the sand making process, the energy burden of the conveyor or elevator is influenced 

by multiple factors, such as the transfer velocity, distance and load capacity. Generally, the 

energy burden increases as the distance increases and decreases as the capacity increases. In 

order to investigate the energy burden, some other equations are introduced. 

For a conveyor belt (DUNLOP, 2009): 

               
                  

   
 

   

   
                                                                         Equation 18 

For a bucket elevator (CarlosIII_University, nd) 

  
 

     
                                                                                                                                                  Equation 19 

              (
   

    
)                                                                                              Equation 20 

where: 

Fc is the equipment friction factor; its value is about 0.03, L is the horizontal centre-to-centre 

distance (m), tf is the terminal friction constant (m), the value of which: 

Up to 300 m = 60 m 

From 300 m to 1200 m = 45 m 

From 1200 m to 1800 m = 30 m 

Above 1800 m, this influence is disregarded  

C is the capacity (t⋅h-1
); Q is the mass of moving parts expressed in kilograms per metre of 

the centre-to-centre distance (Appendix 13); S is the belt speed (m⋅s-1
); h is the net height 

change during lift (for inclined conveyor belt); F is the force the driver pulley needs to move 

the belt; H is the lift height, H0 is the friction height in metres; its value can be selected from 

3.8, 7.6, 11.4 and 15.3; n is the efficiency of the motor; t is the time in this case it is 3600 

seconds  
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Clearly, the energy burden of transportation is complex and various factors need to be 

considered. In fact, depending on the processing capacity and layout of the foundry, the 

transporting status between different processes is not same; it could be a conveyor belt or a 

bucket elevator with different delivery length/capacity/speed. This is why the arrows in 

Figure 4-4, 4-7, 4-8 and 4-9 are never the same.  

Integrating all the information together, the average energy burden of the making of the sand 

mould is summarised in Table 4-8.  

Sand mould type Sand used 
Energy burden  

(KJ⋅kg-1) 

Green sand mould Green sand 511 

Chemical sand mould Chemical sand 2393 

Mould made by primary method Green sand 565 

Mould made by second method Chemical sand 2448 

Mould made by thermal method Chemical sand 2448 
Table 4-8 Summary of the energy burden of making sand moulds using different materials and processes 

4.2.2 Energy input data collection for metal preparation  

In this section, the inventory data collection for metal preparation is introduced. Following 

the flow chart shown in Figure 4-2, the metal extraction and casting phases are investigated in 

this section. However, how best to collect these data is a significant problem for this type of 

research project. Owing to reasons of confidentiality, data on energy, material and emissions 

are not available publicly. Unfortunately, this is true for the casting foundry sector and there 

are no specific statistical data regarding energy consumption or annual production available 

for the non-ferrous foundry sector since 1996 (DETR, 1997).  

In addition to the difficulty of data collection from different industrial sectors, collecting data 

from within the casting foundry sector faces other troubles. Different foundries have different 

approaches to casting aluminium products. Thus, it is feasible that the energy consumption 

between foundries is different, even when producing similar products. Dalquist (2004a; 

2004b) performed an LCI analysis for sand casting and die casting in 2004.Using mould 

making as an example, the results indicated that energy consumption can vary from 6% to 20% 

of the total energy. The Department of the Environment, Transport and the Regions published 

a report in 1997 (DETR, 1997), which suggest that the average energy burden of the casting 

process is about 40 GJ⋅tonne
-1

. However, it also indicated that there was a significant 

difference between different casting sectors. For example, the energy burden of die casting 

foundries was in the range of 26 to 52 GJ⋅tonne
-1

 (DETR, 1997). By contrast, the energy 
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burden of sand casting foundries was in the range of 30 to 130 GJ/tonne (DETR, 1997). Such 

widely scattered data is not helpful in this research.  

However, it is impossible to use a detailed analysis method to investigate the energy burden 

of metal preparation. As mentioned previously, different foundries have different approaches 

to making sand casting products. Unlike the process of making the sand mould, the process of 

metal preparation is not as standardised. To avoid difficulties in the collection of energy data, 

a concept called embedded energy will be adopted to collect energy input data. Embedded 

energy is defined as the sum of the all the energy required to produce products or services 

(Jolly, 2010). In this case, the embedded energy of casting refers to the energy used to 

produce the casting, which includes the energy input of making the sand mould and preparing 

the metal (melting, holding, ventilation, fettling, etc.).  

4.2.2.1 Aluminium foundry energy consumption investigation  

First, the overall situation of production, energy consumption and energy price for aluminium 

foundries needs to be understood. The only data available for aluminium foundries was 

published in 1996 (DETR, 1997). At that time, 55 GJ of energy was required to produce one 

tonne of aluminium casting (Jolly, 2010). However, the aluminium foundry sector has not 

reported any useful data since then; thus. these data may outdated and unrepresentative of the 

current situation. For this reason, the energy burden of aluminium casting needs to be 

reinvestigated. Theoretically speaking, the concept of collecting the data is simple; find the 

annual energy consumption for the aluminium foundry sector and the annual production by 

weight. The energy burden can then be determined by dividing the energy consumption by 

the weight. In order to solve this issue, several different statistic datasets were compared and 

combined.  

Data category Time Range Investigated sector 

UK Industry Energy 

Consumption (2012) 
1990--2010 

Aluminium Production 

Energy Consumption 

UK Monthly Digest of 

Statistics (2000) (2002) 

(2007) 

1995--2007 Aluminium Casting 

percentage by weight 

Census of World Casting 

Production  
1996, 1999 

UK Aluminium casting 

by weight 
Table 4-9 Database used to collect data 

From the UK Industry Energy Consumption data catalogue, the energy consumption for 

entire aluminium industry can be found. The data coverage is from 1990 to 2010. However, 

this data includes energy consumption for all aluminium production, which includes cast, 
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wrought and machined products, etc. Therefore, the UK Monthly Digest of Statistics was 

used to investigate the contribution of the casting products. The coverage of the data is from 

1995 to 2007. For the annual production of aluminium castings, either the Monthly Digest or 

the Census of World Casting Production is used, from which the weight of production can be 

estimated.  

 

Table 4-10 Energy burden result from 1993 to 2010. High resolution table can be seen in Appendix 14 (pp197) 

 

Figure 4-10 Box plot showing the distribution of energy burden from 1993 to 2010  
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Table 4-10 and Figure 4-10 present the results of the investigation of the energy burden of the 

aluminium casting foundry sector. The variation of the energy burden is between 38 and 67 

MJ/kg. In fact, the average energy burden, determined from the table above, is 55 MJ⋅kg
-1

. 

Therefore, the embedded energy used to produce an aluminium casting is 55 MJ⋅kg
-1

.  

Therefore, according to the energy burden of the sand mould making process, the energy 

burden of the casting process varies from 52 to 54 MJ⋅kg
-1

.  

4.2.3 Multiple recycling inventory data collection  

The embedded energy investigated here only looks at a once-through product system. It does 

not consider the influence of recycling and reusing material in the casting process. A more 

relevant LCI analysis is required to take recycling into consideration. As a result, the multiple 

life cycle method is adopted for the LCI data collection. This method is used to calculate the 

environmental cost of a material that undergoes recycling and reuse (Brimacombe, et al., 

2005). It focuses on the impact of the product production phase and not on the use of the 

product. It is a useful tool for investigating the material flow and energy burden over a series 

of life cycle stages (Brimacombe, et al., 2005). 

4.2.3.1 Methodology for multiple life cycle method  

In order to collect energy consumption data using the multiple life cycle method, it is 

important to measure or estimate the following factors: 

Process yield (Y): This is used to describe the true mass loss from a unity, normally less than 

1 (Jolly, 2010). The true mass loss in an aluminium foundry can be defined as the oxides loss 

during the melting, holding and degassing. The fettling, machining and scraps cannot be 

taking into consideration because they can be recycled. 

Recovery Ratio (RR): This is the figure that considers the scrap that is recycled from the 

process as a percentage of the material put in (Jolly, 2010). It includes the fettling loss, the 

machining loss and the scraps. As research has shown, the worst case RR for a 

general/automotive foundry can be estimated at 64% (Jolly, 2010). For quality reasons, the 

RR can be as high as 86% in an aerospace foundry. 

Recycling Efficiency (r): This factor represents how efficient the process is over one 

production cycle. It is the product of the process yield and the recovery ratio (Jolly, 2010).  

                                                                                                                                                        Equation 21 

To calculate the LCI for different foundry sectors by using the multiple life cycle approach, 

the following equations are required.  
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The total mass passing through the chosen number of cycles, M (Jolly, 2010) 

                                                                                                                                Equation 22 

The total energy content for the chosen number of cycles can be calculated as follows (Jolly, 

2010): 

                                                                                    Equation 23 

where Xpr is the energy from the primary process and Xre is the energy for the recycling 

process. Normally, the primary process energy is 55 MJ⋅Kg
-1

 and the secondary energy is 

only about 5% that of the primary energy (2.754 MJ⋅Kg
-1

) (Jolly, 2010). 

 

By dividing the total mass passing through the cycles by the total energy content, the life 

cycle inventory (X) can be defined as below (Jolly, 2010): 

                           
                        

                                                            Equation 24 

By simplifying Eq. 37 the energy burden can be derived (Jolly, 2010): 

  (       ) [
     

      
]                                                                                            Equation 25 

 

4.2.3.2 Material flow during the casting process  

The values of RR and r need to be determined in order to find the Process Yield (Y). 

Summarizing from section 2.3.3.2, the weight loss for different casting processes and 

products can be listed as in Table 4-11.  

  
CRIMSON 

test bar 

Gravity test 

bar 

CRIMSON 

housing 

AEROMET 

housing 

Weight loss during 

melting (%) 
0.5 2 0.5 2 

Weight loss during 

holding (%) 
0 2 0 2 

Weight loss during 

degassing (%) 
0 5 0 5 

Weight loss during 

fettling (%) 
60 77.5 58 90 

Weight loss during 

machining (%) 
25 25 25 25 

Weight loss by scrap 

(%) 
10 20 10 20 

Table 4-11 Summary of weight loss for different casting foundry sectors. Filter housing was introduced to 

demonstrate the multiple recycling method 
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Assuming that there is 1 Kg of virgin aluminium prior to melting, after the different stages of 

metal loss, the weight of the saleable casting, process yield, recovery ratio and recycling 

efficiency can be calculated. 

Table 4-12 Saleable casting per unit melting of aluminium, process yield, recovery ratio and recycling efficiency for 

different casting products. High resolution table can be found in appendix 16. 

4.2.3.3 Energy burden for casting  

Table 4-12 presents the process yield, recovery ratio and recycling efficiency for different 

foundry sectors. By applying these parameters in Eq. 25, the multiple LCI for different 

foundry sectors can be derived, as shown in Figure 4-11. 

 

Figure 4-11 Energy burden for different foundry sectors 

The figure 4-11 above shows the energy burden after taking the recycling into consideration. 

By using recycled aluminium from the fettling, machining and scrap, the environmental cost 

of making a new casting is reduced. From this graph, the average energy burden stabilises at 

13.13 MJ/Kg after 10 production cycles for the CRIMSON test bar. Similarly, the gravity test 
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bar stabilises at 14.58 MJ⋅Kg
-1

, the CRIMSON housing stabilises at 13.65 MJ⋅Kg
-1 

and the 

AEROMET housing stabilises at 11.81 MJ⋅Kg
-1

. Compared with primary virgin aluminium, 

recycling uses in excess of 50% less primary energy. Especially for AEROMET with 

recycling, the energy burden is only 25% of that when using primary material. However, 

owing to the quality requirements, it is difficult for the AEROMET foundry to undertake any 

recycling and reusing. This means that they use only virgin alloy to make castings, which is 

why their energy burden remains at 55 MJ⋅Kg
-1

, as shown in the figure above.  

It is also can also be determined that after several cycles of recycling and reuse, the energy 

burden of the process stabilises. Therefore, Eq. 25 can be simplified further by assuming that 

the recycling and reuse continues indefinitely:     .  

                                                                                                                                                Equation 26 

It becomes obvious that the energy burden is influenced heavily by the recycling efficiency 

(r). The more material that can be recycled from the process, the lower the energy burden 

required to melt the metal. 

4.2.3.4 Energy burden for saleable casting 

The energy burden for multiple recycling methods shows that the aerospace foundries have 

the lowest energy burden for melting aluminium if they do recycle their internal scrap. 

However, this result only considers the melting energy for different foundry sectors. The 

energy burden of the saleable castings (the castings finally shipped to the customer) is not 

considered. In the following section, the operational material efficiency (OME) is introduced 

to calculate the energy burden for saleable castings. It represents how many materials have 

passed through the process and been shipped. 

 

The OME is defined as:  

    
              

    
                                                                                                Equation 27 

where AlMt stands for aluminium melted, AlWs stands for aluminium waste sold and AlWr 

stands for aluminium waste recycled in-house (Tharumarajah, 2008).  

 

By using the OME, the efficiency of good casting per unit mass can be calculated. Based on 

the information provided by Table 4-12, the OME for different foundry sectors is presented 

in Table 4-13. 
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CRIMSON 

test bar 

Gravity 

test bar 

CRIMSON 

housing 

AEROMET 

housing 

Virgin aluminium (Kg) 1 1 1 1 

Good casting (Kg) 0.24 0.12 0.25 0.06 

OME (%) 24% 12% 25% 6% 

Casting weight (kg) 1.56 1.56 3.2 3.2 

Melting weight (kg) 6.52 12.68 12.75 58.18 
Table 4-13 Operational material efficiency of the different foundry sectors 

First, considering the critical situation in which foundries use only virgin aluminium to 

produce casting products no recycling and reuse are involved in the process. As mentioned 

before, the energy burden for melting virgin aluminium is approximately 55 MJ⋅Kg
-1

. Thus, 

the CRIMSON process will use 359 MJ of energy to make the tensile test bars and 701 MJ of 

energy to make the filter housings. By contrast, the conventional process will use 697 MJ of 

energy to make the test bars and 3200 MJ of energy to make the filter housings. Table 4-14 

displays the energy burden for the saleable castings.  

  
CRIMSON 

test bar 

Gravity 

test bar 

CRIMSON 

housing 

AEROMET 

housing 

Casting weight (kg) 1.56 1.56 3.2 3.2 

OME (%) 24% 12% 25% 5.5% 

Energy burden (MJ⋅kg
-1

) 55 55 55 55 

Energy consumption (MJ) 359 701 697 3200 

Energy burden for 

saleable casting (MJ⋅kg
-1

) 
230 449 208 1000 

Table 4-14 Energy burden of saleable castings for different casting processes under critical condition  

As calculated before, following recycling and reuse of the internal scrap, the energy burden 

of melting aluminium is reduced to 13.13 MJ⋅kg
-1 

for the CRIMSON test bar, 14.58 MJ⋅kg
-1 

for the gravity test bar, 13.65 MJ⋅kg
-1 

for the CRIMSON housing and 55 MJ⋅kg
-1 

for the 

AEROMET housing. The saleable energy burden can be seen from Table 4-15. 
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CRIMSON 

test bar 

Gravity 

test bar 

CRIMSON 

housing 

AEROMET 

housing 

Casting weight (kg) 1.56 1.56 3.2 3.2 

OME (%) 24% 12% 25% 5.5% 

Energy burden (MJ⋅kg
-1

) 13.13 14.58 13.65 55 

Energy consumption (MJ) 85 174 185 3200 

Energy burden for 

saleable casting (MJ⋅kg
-1

) 
54 112 58 1000 

Table 4-15 Energy burden of saleable castings for different casting processes under multiple recycling method 

4.2.4 Spreadsheet 

The embedded energy of sand and it additives, the energy burden of the mould making 

machines, the material flow of metal preparation and the embedded energy of the casting 

process have all been investigated. Therefore, following the objective of the project, it is time 

to discuss the environmental impact assessment. This can be achieved by simply modelling 

Figure 4-2 in the SimaPro simulation package using the collected inventory data. However, 

the variables of sand type, reclamation method and number of operations can influence the 

embedded energy of the mould making and entire casting process. Therefore, a spreadsheet 

was developed to estimate the embedded energy of making the sand mould and the energy 

burden under the multiple recycling method and material usage through the casting operation.  

This spreadsheet is divided into three sections: sand mould making, total energy burden and 

recycling. For the sand mould making, it can be used to calculate the embedded energy of 

making the mould and the energy consumption of mould making under the multiple recycling 

method. The embedded energy of the casting process will be applied directly for the total 

energy burden and the spreadsheet focuses on calculating the energy burden of the multiple 

recycling method. In order to calculate the embedded energy for sand mould making, the 

sand mould making section can be divided into four parts: energy consumption of using new 

sand, primary reclamation, secondary reclamation and thermal reclamation. 
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Figure 4-12 Process flow of sand in a foundry  

As Figure 4-12 shows, the starting point is using new sand to make the mould. After the first 

cycle of mould making, pouring, solidification and shakeout, the used sand is transferred to a 

specified reclamation method. The energy burdens of those operations are calculated and 

added together to form the embedded energy. The process yield, recovery rate and recycling 

efficiency are also determined for the purposes of multiple recycling.  

4.2.4.1 How the spreadsheet works 

4.2.4.1.1 Sand mould making 

The spreadsheet starts by using new sand and additives. The first step is to select what type of 

sand will be used for mould making. As with the assumption made previously, all sands have 

the same embedded energy; only the binder systems make a difference. Consequently, there 

are two choices available: green sand and chemical sand. The energy contents can be seen 

from Table 4-3.  

The second step is the selection of the mixer. Depending on the binder system, the mixers 

that can be chosen are the muller and chemical sand mixers. The energy burden of these 

mixers can be verified in Table 4-4. 

The third step is the transportation between the mixing and the next process. Again, the 

performance of the transportation depends on the layout and productivity of the foundry. 
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Therefore, two options are available for transportation. The user can choose either conveyor 

belt or bucket elevator and even activate both or deactivate both. Furthermore, depending on 

a specific transportation method, the user can decide upon factors, such as capacity, delivery 

length, lifting height and motor efficiency according to the real situation.  

After the mixing, the sand is sent to the mould-making machine. According to the moulding 

mechanism, the moulding methods used are DISA vertical, flask and match plate. Their 

energy burdens are also presented in Table 4-4.  

Following the moulding, there is another transfer; the sand mould is transferred to casting, 

solidification and for shakeout. As with the first transfer, the user can decide on the 

transportation method and the corresponding parameters.  

The sixth step is the shakeout, which depends on the process requirements. Two mechanisms 

are available for shakeout: vibrating screen and rotary drum. The energy burden of these 

machines can be found in Table 4-5. 

After the shakeout process, the sand goes through a reclamation process. As explained before, 

the reclamation process can be divided into three categories: primary reclamation, secondary 

reclamation and thermal reclamation. The logic behind each process is the same; the user 

selects the appropriate equipment for a particular operation. The energy burden of the 

reclamation can be found in Tables 4-5, 4-6 and 4-7. 

According to the literature (Brown, 1999) and author’s experience, the mechanical 

reclamation method can achieve 90% reclamation and the thermal method can achieve almost 

100% reclamation. Therefore, a reclamation rate of 90% is adopted for the primary and 

secondary reclamation and a reclamation rate of 98% (foundry experience) is adopted for 

thermal reclamation. Combining the energy burden information for sand processing, the user 

can determine the energy burden for a given number of recycling cycles.  

4.2.4.1.2 Casting production  

The energy burden calculation for the casting production is relatively simple. The purpose of 

the spreadsheet is to calculate the process yield, recovery rate and the recycling efficiency. 

The energy burden can then be calculated based on these data. To achieve this, the user need 

only know the amount of aluminium flow through each casting operation. After all the 

parameters have been worked out, the user only need decide on the number of operation 
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cycles and the corresponding casting production energy burden can be derived. For full 

version of the spreadsheet, please refer to the Appendix 16 on the DVD.  

4.2.4.2 Results 

In this section, the author will choose the most common equipment to perform the calculation 

of the energy burden of the mould making process. For the conveyor belt and bucket elevator, 

the capacity is 20 t⋅h-1, the velocity of the belt is 3 m/s, the length/height of the delivery is 10 

m and the motor efficiency is 85%. The tables below show the energy burden for the casting 

process for up to 10 recycling cycles. As expected, the CRIMSON process has less energy 

burden compared with the conventional casting process.  

Table 4-16 Energy burden of sand mould making and total energy burden of casting. High resolution table can be 

found in appendix 17 (pp200) 

Table 4-17 Energy burden of sand mould making through secondary reclamation method and total energy burden of 

the casting. High resolution table can be found in appendix 18 (pp200) 

Table 4-18 Energy burden of sand mould making through thermal reclamation method and total energy burden of 

the casting. High resolution table can be found in appendix 19 (pp201) 

4.2.4.3 Discussion  

From the tables above, it is easy to see that the energy burden between green sand and 

chemical sand are quite different. This is because the binder systems are different. Natural 

clay is used for the green sand mould, which has low energy content. In contrast, chemical 

sand uses artificial binders to bond the sand. The chemical industry is another energy 

intensive industry, whose products normally have high energy content. In this case, the 



97 

 

energy burden of the resin is around 87.63–116.28 MJ⋅Kg
-1

. Even with the small amounts of 

resin (2% by weight) in the chemical sand, it still has much higher energy content than green 

sand.  

As described previously, clay can absorb water continuously up to temperatures within the 

range 400–700 °C. As a result, the aim of its reclamation is the removal of metal spillages 

and the breaking down of the sand lumps. This is why primary reclamation has the lowest 

energy burden. “Dead” resin coating is hard to remove by primary methods; thus, equipment 

that is more energy intensive, such as pneumatic scrubbing or hammer mills is required in 

secondary reclamation. However, compared with thermal reclamation, the energy burden of 

the mechanical method is only about 10%. The reason that thermal reclamation is intensive is 

because of the large amount of heat required. Although it is an expensive method, compared 

with using new sand, it is still less energy and material intensive.  

For good sand casting, the sand to metal ratio is about 6:1 (Fenyes, 2010), which means 1 kg 

of metal requires 6 kg of sand. Using the CRIMSON tensile test bar as an example, 1.56 Kg 

of tensile test bar requires 39 kg of sand. Table 4-19 presents the energy consumption of 

mould making after continuous recycling. It shows that the average energy of using green 

sand reduces from 19913 to 3606 KJ, which saves 82% of the energy by using new green 

sand. For chemical sand, this figure can be 87% by the secondary method and 73% by the 

thermal method. 

sand type 
unit energy consumption 

after 25 recycling (kJ⋅kg
-1

) 

energy consumption 
(kJ) 

green sand 510 19919 

chemical sand 2393 93336 

primary reclaimed  green sand 92.45 3605 

secondary reclaimed chemical 
sand  

322 12574 

thermally reclaimed chemical 
sand 

652 25466 

Table 4-19Table of the unit energy consumption and energy consumption of sand mould making for different mould 

making methods 

In addition to the sand process and its treatment, transferring the sand also consumes energy. 

Although it is not a huge amount of energy compared with the total energy of the mould 

making, it still worth considering its energy and cost efficiency (driven by electricity, which 

is an expensive energy resource). For the conveyor belt, two factors influence the energy 

burden significantly: load capacity and belt speed. Load capacity has an inverse relation with 

the energy burden; the greater the capacity the belt has, the less energy burden it has. In 
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contrast, the speed of the belt is proportional to the energy burden; the faster the speed is, the 

more energy required to drive the belt. Moreover, according to the spreadsheet, the speed of 

the belt has the most influence on the energy burden. The energy burden reduces as the speed 

decreases. Thus, reducing the conveyor speed can reduce the energy burden of the conveyor 

belt dramatically. For a bucket elevator, the most influential factor is the lifting height. In 

comparison with the conveyor belt, lifting over the same distance costs three times more 

energy than horizontal transportation. As a result, reducing the lifting height or replacing the 

elevator with an inclined conveyor will save significant amounts of energy.  

4.3 Simple impact assessments: greenhouse gas emission  

To this point, the energy burden of the casting production, sand mould making and associated 

reclamation has been determined. In this section, a simple environmental impact assessment 

is carried out to investigate the greenhouse gas emissions caused by the CRIMSON and the 

conventional tensile test bar production. Four types of situations were investigated: the 

CRIMSON process with chemical sand mould without recycling, the CRIMSON process 

with chemical sand mould with recycling, the conventional process with chemical sand 

mould without recycling and the conventional process with chemical sand mould with 

recycling. Because the energy burden reduces to a constant value after 25 recycling 

operations, the operation cycle used was 25. The total energy burden for each situation is 

shown in Table 4-20. 

Table 4-20 Total energy burden for different recycle and non-recycle models. High resolution table can be seen from 

appendix 20 (pp201) 

As the table above shows, under a non-recycle situation, the CRIMSON process uses 437 MJ 

of energy and the conventional process uses 849 MJ of energy to produce the tensile test bar. 

In contrast, the CRIMSON process uses only 124 MJ and the conventional process uses 224 

MJ under a recycle situation.  

Carbon dioxide (CO2) is the main greenhouse gas investigated in this simple impact 

assessment. Using the greenhouse gas equivalencies calculator (EPA, nd), the energy 

consumption can be converted into an amount of carbon dioxide emissions. Table 4-21 

presents the emission data for these four situations. 
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Table 4-21 Equivalent CO2 emissions for four different situations 

 

4.4 Environmental impact assessment 

SimaPro is the leading LCA software chosen by industry, research institutes and consultants. 

It has the most complete LCI database to carry out environmental impact assessment. For the 

casting foundry and smelter sectors, the material usage and energy consumption during 

alumina extraction, electrolysis and ingot casting can be determined. Taking advantage of its 

database, more environmental impact assessments are carried out. Furthermore, its complete 

database provides great opportunity to validate the material and energy inventory data 

collected thus far.   

4.4.1 Data input for simulation  

The purpose of the analysis is to compare the environmental impact for different casting 

processes. Same as previous simple impact assessment, four types of situations were 

investigated by the SimaPro simulation. For non-recycle models, the primary aluminium 

ingot
20

 data from SimaPro database were used as the raw material input and for the recycle 

models, the secondary aluminium ingot
21

 data from the database were used as inputs. 

4.4.2 Simulation setup 

As introduced before, the SimaPro simulation package was used to assess the environmental 

impact of the casting process. A model formed by the assembly and waste scenario is used in 

the SimaPro simulation. The assembly deals with the production stage of the products and it 

should include all the resources, parts/components, distribution, and processes required to 

make the products. The waste scenario is the use and end of life phases of the products, 

which it includes different scenarios, such as use, landfill, recycle and incineration, etc.  

                                                 
20

 Only virgin aluminium alloy is used as raw material input. All the production, distribution, and use data are 

include. It is the best match case compared with collected inventory data 
21

 Combination of virgin metal and recycled scrap metal are used as raw material input. It is the best match case 

compared with collected inventory data 
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For a normal approach, the impact assessment is used to assess the production, use phase and 

end life environmental impact of the product. In other words, the normal approach assesses 

the impacts only related to the final products. Clearly, the recycling in this study refers to the 

reuse of the high-energy-content metal removed from the fettling, machining and scrap. It is 

not as simple as the reuse of the tensile test bar at its end of life phase. Therefore, a special 

LCA model was developed in SimaPro to assess the environmental impact of raw material 

extraction, production and in-house recycling. 

In order to redefine the definition of recycle within SimaPro, a complex model needs to be 

developed. There are two difficulties in developing such model in SimaPro. The first 

difficulty is to separate the recyclable, non-recyclable and other material. In the normal 

approach, all material passes through the process without any classification. In fact, the 

material can be converted to recyclable material, non-recyclable material and others. The 

second issue is to make SimaPro understand that each material has a different waste scenario. 

Once the material is separated into different categories, these categories have to be defined 

with a waste scenario. In SimaPro, one assembly has only one corresponding waste scenario. 

In order to define the different waste scenarios with different categories, multiple assemblies 

are needed. 

According to the literature (Jolly, 2010), the metal loss during the casting process has been 

presented in Table 4-22. The loss in the melting, holding and degassing operations is through 

oxidation and impurities, which can be treated as a permanent loss. The metal loss during 

fettling, machining and inspection is high-energy-content scrap metal, which can be recycled 

to reduce the virgin aluminium requirement. Therefore, the raw aluminium input can be 

divided into three categories: permanent loss, scrapped and final product, which refers to the 

non-recyclable, recyclable and others. 

Table 4-22 Metal loss during each step of casting operation for the CRIMSON and the conventional casting processes. High 

resolution table can be seen from appendix 21 (pp202) 
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In addition to the metal input, sand is also used to make the test bar. Assuming that the metal 

and sand ratio is 1:6 for the tensile test bar sand casting, the sand required for the sand mould 

is 40 kg for the CRIMSON test bar and 76 kg for the conventional test bar. The material input 

for the sand mould can also be split into two categories: sand that can be recycled and sand 

that can be disposed of. According to research, 90% of the sand can go back into the process 

and 10% can be disposed of in landfill. Assuming the metal and sand ratio is 1:6 for the 

tensile test bar sand casting, then based on Table 4-22, the total material input to make the 

casting test bar for both casting processes can be categorised as shown in Table 4-23.  

 

Table 4-23 Total aluminium used to produce the test bar 

After splitting the material into different assemblies, the process for each assembly can be 

established. For permanent loss metal, the process starts from the raw material extraction and 

finishes at the holding process. For scrapped metal, the process starts from the raw material 

extraction and ends at the inspection process. The tensile test bar is the only assembly that 

goes through the entire casting operation from raw material extraction to final shipment. 

Similarly, the process flow of the sand can be determined. Figure 4-14 shows the mind 

mapping of the simulation. 

 

Figure 4-13 Flow chart of new simulation.  
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4.4.3 Life cycle impact assessment 

Three environmental impact assessments were used to assess the environmental impact of the 

casting process. The first impact assessment is called Greenhouse Gas Protocol. It has been 

widely used to calculate and report the greenhouse gas emissions. In this section, it has been 

used as validation tool to check the accuracy of the collected inventory data. The second 

impact assessment method is called ECO-indicator 99. It calculates the environmental loads 

of the product / service from production, distribution, use, and end of life phase (Sustainable 

Manufacturing Protal, 2013). It expresses the emissions and resource extractions in 11 

different impact categories (such as radiation, ozone layer, land use, and fossil fuels) 

(Salonitis, et al., 2006).  The last impact assessment method used is called ECO-point 97. It 

also covers all life cycle stages include production, distribution, use, and end of life. The 

difference is that the ECO-point can be used to address environmental benefit of recycling 

and reusing materials (Bennett, et al., 1999).  

4.4.3.1 Greenhouse gas emission  

Table 4-24 presents the results of such a method. Clearly, there is some difference between 

spreadsheet and GHG gas protocol result. As introduced before, the spreadsheet use 

embedded energy owing to lack of raw material extraction data. By contrast, SimaPro 

provides complete inventory data for calculation. However, the spreadsheet still provides 

reasonable close results even the spreadsheet has such shortage. Therefore, the spreadsheet 

results and the simulation results are considerably close. The spreadsheet can be used for 

energy estimation. 

Process 
spreadsheet (kg/kg 

good casting) 
simulation (kg/kg 

good casting) 

non-
recycle 

CRIMSON  54 69 

Conventional 107 135 

recycle 

CRIMSON 15 21 

Conventional 33 40 

Table 4-24 CO2 emission resulting from the simulation and the spreadsheet 
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4.4.3.2 ECO-indicator  

By applying the weighting factor, the result is shown in Table 4-25, revealing that the ‘Resp. 

inorganics’, ‘Fossil fuels’ and ‘Climate change’ are the most significant problems, which 

contribute at least 66% of impact.  

The total cumulative impact results are shown in Figure 4-15, which gives the total 

environmental effect for each casting scenario. Firstly, recycled sand and metal can reduce 

the environmental impact of the casting process. The impact can be reduced by 62% by 

recycling in the CRIMSON process and 60% of the impact can be reduced by recycling in the 

conventional process. In addition to the influence of the recycling activity, the main purpose 

of the simulation is the comparison of the CRIMSON process and the conventional casting 

process. From the result, no matter whether the recycling activity is applied or not, the 

CRIMSON process has less impact than the conventional casting process: 49% and 47% of 

the impact can be reduced for non-recycling and recycling activity, respectively.  

The impact caused by individual process, such as sand mould making and casting production, 

can also be seen from the simulation results. Table 4-26 displays the environmental impact 

contribution by each production process.  

 

Table 4-25 Impact assessment: GWP, AC, HTA due to emissions from the casting process and raw materials. High 

resolution table can be seen in appendix 23 
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Figure 4-14 ECO-indicator single score results for four casting scenarios. High resolution table can be seen in 

appendix 24 

Process 
Metal processing  

(%) 
Sand processing 

(%) 

non-
recycle 

CRIMSON  83.6 14.6 

Conventional 83.5 14.7 

recycle 
CRIMSON 84.5 14.8 

Conventional 83.8 14.8 
Table 4-26 Environmental impact contribution sorted by process type under ECO-indicator method 

4.4.3.3 ECO-points 97 

The comparison of the CRIMSON process and the conventional casting process, after the 

weighting factor is applied, is shown in Table 4-27. It can be seen that the major contribution 

to the environmental pollution is from NOx, SOx, NMVOC, NH3, Dust PM10 and CO2. 

Furthermore, these gases are the primary sources for global warming. 

Table 4-27 below shows the single scores for the four casting scenarios. Again, the recycle 

activity reduces the environmental pollution by about 55%. As can be seen, the comparison 

between the CRIMSON process and the conventional casting process has similar results to 

the ECO-indicator. As with the ECO-indicator, the impact caused by individual processes, 

such as sand mould making and casting production, can also be seen from the simulation 

results. Table 4-28 presents the environment impact contribution for each production process.  
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Table 4-27 Weighting comparison using ECO-Points 97 method. High resolution table can be seen in appendix 25  

 

Figure 4-15 ECO-point single score results for four casting scenarios. High resolution table can be seen in appendix 

26  
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Process 
Metal processing  

(%) 
Sand processing 

(%) 

non-
recycle 

CRIMSON  58.4 28.2 

Conventional 58.2 28.4 

recycle 
CRIMSON 67.0 32.4 

Conventional 66.5 32.4 
Table 4-28 Environmental impact contribution sorted by process type under ECO-point method 

4.4.4 Discussion  

The results of the simple impact assessment and the SimaPro impact assessment indicate the 

same phenomenon; that the CRIMSON process has less impact compared with the 

conventional casting sand process. In fact, irrespective of which impact assessment method is 

used, the environment impact for the CRIMSON process is only about half that of the 

conventional process. Such a result is quite interesting because it matches with the metal 

input, as Table 4-23 shows. This means that the environmental impact is influenced mainly 

by the metal input. In fact, this is as expected because the aluminium data used are for the 

primary ingot produced in the plant. In reality, such production also includes a refinery, a 

smelter and an ingot casting plant. Compared with ingot production from bauxite, the 

resources and energy input to make the tensile test bar (secondary production) is insignificant. 

According to the evidence given in the SimaPro inventory database, secondary production 

accounts for only about 2% of the energy consumption of the primary production. Therefore, 

the impact results are influenced mainly by the amount of primary ingot input. 

Furthermore, if we investigate why there is a different metal input, it can be found that 

everything is related to the OME. The OME for the CRIMSON process and the conventional 

process is 23.9% and 12.3%, respectively. Therefore, the CRIMSON process uses only half 

the metal to produce the same casting compared with the conventional process (Table 4-22). 

The associated energy consumption is also halved. Meanwhile, because of the OME, the sand 

demand and associated process energy for the CRIMSON process is also halved (Table 4-22). 

As all the input data for the CRIMSON process were halved, its environmental impact is also 

halved.  
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4.5 Summary of chapter 

4.5.1 Inventory data for mould making 

For the sand mould making process, the energy content of the material and the energy 

consumption of the different machines are investigated. A special spreadsheet was developed 

to benchmark the energy burden for different mould making processes and methods of 

reclamation. From the spreadsheet, the following aspects have been discovered. 

The energy burden of the green sand mould is between 434 and 695 kJ⋅kg
-1

 and the energy 

burden of the chemical sand mould is between 1307 and 3587 kJ⋅kg
-1

. The large difference 

between the two types of mould is due to the sand additives. For reclamation, as the process 

becomes radical, the energy burden of reclamation is increased. It was found that the energy 

burden of primary reclamation is 92 kJ⋅kg
-1

, the energy burden of secondary reclamation is 

322 kJ⋅kg
-1

and the most radical thermal reclamation is 653 kJ⋅kg
-1

. Because of reclamation, 

82%, 87% and 74% of the mould making energy can be saved by green sand primary, 

chemical sand secondary and chemical sand thermal reclamation, respectively. By modifying 

the loading capacity, belt speed and the elevator lifting height, the energy burden of mould 

making can be reduced further by 1% or 2%. 

4.5.2 Inventory data for casting production  

Unlike the normal once-through inventory data collection, the influence of recycle and reuse 

is also taken into consideration. The method used in this study is called the multiple recycling 

method. It focuses on the impact of the product production phase rather than on the use of the 

product. It is useful for calculating the energy burden over a series of life cycle stages. By 

using this method, the energy burden of the casting process either with or without recycling 

can be derived.  

 

For the casting production phase, it has been discovered that the energy burden of casting is 

influenced heavily by the recycling efficiency. The more metal removed from the fettling, 

machining and scrap, the higher the recycling efficiency. A typical example is shown in 

Figure 4-11. The AEROMET foundry could have the highest recycling efficiency and lowest 

energy burden if they recycled their internal scrap. However, recycle efficiency only 

influences the energy burden of production. The energy burden of the saleable casting is 

influenced by the OME. The OME determines the true material requirements to perform good 
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casting. The higher the value of the OME is, the lower the demand for material. It is a good 

indicator by which to measure the material efficiency of the process.  

 

Table 4-29 Summary of the embedded energy of casting before and after recycling  

4.5.3 Environmental impact assessment  

In reality, materials that go through the casting process are not split. However, for the 

purposes of investigating the influence of recycling, it is useful to split the material flow, as 

presented in Table 4-24. This ensures that alumina and dead sand are sent to landfill, 

scrapped metal and reusable sand are sent for recycling and the test bar is sent to the 

customer. The difficulty of modelling the recycling model is solved and the mind mapping 

shown in Figure 4-13 displays the breakdown of the simulation model. Each sub-assembly 

has its process inputs and resource inputs according to the data shown in Table 4-24. By 

gathering all the sub-assemblies, the life cycle of the casting process can be assessed.  

Using the spreadsheet, the energy consumption to make the sand casting bar can be 

calculated. In consideration of the aims of this study, four types of situations are calculated: 

CRIMSON test bar non-recycle, conventional test bar non-recycle, CRIMSON test bar 

recycle and conventional test bar recycle. The calculated energy consumption was converted 

to carbon dioxide emissions and compared with the SimaPro simulation results. Despite the 

limitation of the embedded energy, table 4-25 shows that the calculated results and the 

simulation results are similar, which indicates that the developed spreadsheet is reliable for 

use in a sand casting foundry.  

In addition to the validation of the spreadsheet, the SimaPro life cycle assessment also 

assessed the environmental impact for both casting processes. The differences between the 

CRIMSON process and the conventional process are very significant. As with the good 

casting energy burden, the CRIMSON process has only half the environmental impact of the 
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conventional casting process. Once again, this is due mainly to the OME of the process. 

Because the CRIMSON process doubled the OME compared with the conventional process, 

it only requires half the amount of metal and associated sand and energy.  

Therefore, the most important discovery from the inventory data collection and 

environmental impact assessment, is that the OME is the key for energy saving and 

sustainability. Because of the lower melting loss and higher casting yield, the CRIMSON 

process has a higher OME than the conventional casting sand process. 
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Chapter 5 Validation of the CRIMSON process 

through productivity investigation  

Thus far, the quality and environmental impact of both casting processes have been 

investigated and the advantages of the CRIMSON process identified. In this chapter, the 

production performance of the casting process will be investigated. As the most important 

performance indicator, the labour productivity will be used to assess the performance of the 

CRIMSON casting process. Unlike previous chapters, some lean thinking will be adopted 

here to develop a more realistic model for the casting process. The performance indicator will 

be investigated in this model. 

5.1 Assumptions for model development 

In order to measure the labour productivity of the CRIMSON casting process, a complete 

casting model needs to be developed. Therefore, a casting foundry model was developed for 

this purpose. A survey was undertaken to investigate parameters such as cycle time, casting 

yield, operational material efficiency (OME) and recovery ratio (Appendix 27). This survey 

had been sent out to Cast Metal Federation (CMF) members and Linkdin Aluminium casting 

user group. However, the response to the survey was poor; only 4% response rate (Appendix 

28 –31 on DVD). Unfortunately, limited resources make it impractical to obtain additional 

data and therefore, to make the model more realistic, the survey results are combined with 

optimistic but reasonable estimates to build the foundry model. Sections 5.1.1- 5.1.6 

describes the assumption made in the model. 

5.1.1 Casting weight  

The CRIMSON furnace can melt up to 30 kg of aluminium, it therefore sensible to 

investigate the influence of casting weight at the limit of production performance. As a result 

of  metal loss during the casting operation, the actual weight of the casting is less than the 

30 kg. Once again, OME is used to calculate the casting weight and associated melting 

weight. Unlike the OME used in Chapter 4, here the average OME was used for the general 

application. From the literature, the OME for the CRIMSON and conventional casting sand 

processes is 34% and 27%, respectively (Jolly, 2010). Under 34% OME, the CRIMSON 

process can produce a maximum 10 kg good casting. Therefore, it makes sense to investigate 
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the influence of casting weight on productivity from 1 to 10 kg for both casting processes 

(Table 5-1). 

Table 5-1 Depending on the capacity of the CRIMSON furnace, a maximum 10 kg aluminium casting can be 

produced. From 1 to 10 kg, the corresponding weights for the conventional casting sand process are also shown.  

5.1.2 Cycle time for Melting  

Melting is the most time-consuming operation of any casting process. Its cycle time 

determines the maximum number of operations that can be performed each day. For the 

CRIMSON process, a 300 kW induction furnace is used. However, for safety reasons, the 

author’s team only used 40 kW. There is no lid to the furnace and conservatively assuming 

50% efficiency, the time for melting is shown in Table 5-2. 

  

Table 5-2 Time required to melt different weights of metal to make one casting under the CRIMSON process 

For the conventional casting sand process, a batch melting method is adopted. In this case, a 

500 kg gas furnace is used for the melting operation. If it is assumed that the furnace is 

completely empty after each cycle of melting, then according to the survey results, two hours 

will be used to melt this amount of metal.  

 

Table 5-3 Time required to melt different weights of metal to make one casting under the conventional process 

5.1.3 Customer requirements 

1. Casting products are delivered to the customer on a daily basis. 

5.1.4 Supplier information  

1. Supplier delivers raw materials twice a week to ensure sufficient supply for 

production  
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5.1.5 Information flow 

1. All communication between customer and supplier is electronic. 

2. Production control receives 30-day forecasts and daily orders from the customer. 

3. Production control transmits monthly forecasts and weekly orders to supplier 

4. There is a daily schedule released to the shop floor. 

5. The combination of push and pull single is used in the production flow  

5.1.6 Special assumptions for shop floor operation 

1. Every month has 30 working days. 

2. Foundry operates three shifts daily. Ignoring break times, the working time is 1440 

minutes.  

3. The conventional melting furnace can supply 500 kg of aluminium every 120 minutes. 

Depending on the weight, the CRIMSON melting furnace can supply up to 30 kg of 

aluminium every 16 minutes.  

4. One-piece flow manufacturing method
22

 is adopted for both casting processes to 

eliminate the work in process. Therefore, there is no inventory during the casting 

process. There is no batch production required. Because of the speciality of the 

casting process, the one-piece flow starts from the shakeout operation, which is the 

cold end
23

 of the casting process. For the conventional casting process, the raw 

material enters into production flow every 120 minutes. For the CRIMSON process, 

the raw material enters into production flow depending on the melting time. 

5. Based on reasonable assumptions, each operation requires one operator, except for 

preheating, melting, refining, holding and casting operations in the conventional 

casting sand process. Preheating, melting and refining processes can share an operator 

in the conventional casting sand process and the holding and casting operation can 

share one operator as well. 

6. The production time for both casting processes is set as one year 

7. Setup time is ignored due to the long period of production. 

8. Due to the uncertain shapes of the casting products, there is no point in investigating 

casting solidification for a particular casting shape. Therefore, an average 

solidification time is used for all castings.  

The tables below present the assumptions of the setup time, cycle time, changeover time, 

availability and the up time for the two processes. 

                                                 
22

 One-piece flow production is also called the Cellular Manufacturing Method. It aims to move the products 

through the production process one piece at a time, at a rate determined by customer demand (US 

Environmental Protection Agency, 2003) 
23

 Casting can be divided into hot end and cold end processes. The hot end refers to the liquid state of the casting 

operation, in which all of the operations have to be continuous. The cold end refers to operations dealing with 

solidified metal. The processes at the cold end can be discrete.  
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Table 5-4 Assumptions of setup time, cycle time, changeover time, availability and up time for different 

equationuipment used in conventional sand casting process 

 

Table 5-5 Assumptions of setup time, cycle time, changeover time, availability and up time for different 

equationuipment used in the CRIMSON process 

5.2 Simulation approach  

Gathering all the assumptions above, the total output of the casing production can be 

determined by the melting time. The amounts of casting products that can be made in one 

year for different weights are shown in the table below. 

 

Table 5-6 Theoretical calculation results of casting products made in one year under the assumptions 

However, such results are not accurate enough; the relation between cycle time and 

production output is not a simple linear relation. In fact, the size of the casting, the power 

output of the furnace and some other factors have an influence on the time of production. In 

this work, this is called a macroscopic relationship between time, size and shipments. In 

addition to the macroscopic relationships, the interconnected features of each operation also 

influence the production output (Robinson, 2004). As introduced in the life cycle approach, 

the casting process includes preheating, melting, refining, holding, shakeout, fettling, 

machining and inspection. The different machine cycle time and different production 

  Melting Casting Shakeout Fettling Machining Inspection 

operator 1 1 1 1 1 1 

setup time (min) 30 30 30 30 30 30 

cycle time (min) 2-16 1 5 1 1-10 1 

Availability 480 480 480 480 480 480 
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capacities create a complex situation, which can influence the output variable of the 

production 

Therefore, in order to investigate the production output of the casting production process, a 

process simulation needs to be introduced to this project. The process simulation model is 

able to represent the variability, interconnectedness and complexity of the system (Robinson, 

2004). It is possible to predict the system performance with simulation. The simulation 

package used was WITNESS
24

, which is a process simulation and modelling tool used to 

simulate full production runs over an arbitrary period (Markt, et al., 1997). WITNESS allows 

material flows to be modelled and tracked through each production process, which is a good 

way to discover problems and suggest improvements.  

5.2.1 Simulation model setup 

There are four types of basic elements in WITNESS: parts, buffers, machines and labour. 

Parts represent the input materials. Depending on the real situation, this can be set to any size 

and time. Buffers represent the storage for products or semi-finished products. Machines 

represent the production process. In WITNESS, the production process can be single, batch, 

production, general, multiple cycle and multiple station. For both casting processes, only 

single, batch and production are used. Single means processing the parts or products one at a 

time, batch means processing a certain amount of parts or products at one time and 

production means repetitive continuous production. Labour straightforwardly represents the 

work force required for the job.  

In WITNESS, there are two types of output rules: push and pull. Push means the current 

process pushes output to the downstream process and pull means that the downstream process 

extracts input from upstream. A combination of push and pull are used to model the casting 

process.  

Beginning with the conventional casting sand process, the model starts with the entry of raw 

metal into the foundry. Following the material flow, the metal passes though preheating, 

melting, refining, until holding with respective cycle times. After the holding operation, the 

molten metal is poured into 135 sets of casting moulds (assume 1 kg of good casting 

required). Moreover, the holding is used to supply liquid metal continuously for casting. It 

works as storage or a buffer to supply the downstream operations. In order to apply these two 

                                                 
24

  Witness is provided by Lanner simulation  
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characteristics into the simulation, the holding operation is set as a production process in 

WITNESS, which can produce 135 sets of casting moulds. However, as a buffer it is not 

assigned a cycle time. 

Following the material flow, the parts then go through the casting process and the mould is 

transferred to the safety area for solidification. In WITNESS, a buffer is used to represent the 

safety area and a 30-minute delay applied to represent the solidification time. After the 

solidification buffer, the material is moved into the shakeout process, in which a work-in-

process buffer was added to collect parts after the shakeout process. The purpose of this 

buffer is to supply parts continuously to the downstream operation. After the buffer, there is a 

container to collect a certain amount of parts and to await transfer to the next process (to 

simulate the batch production process). In the current situation, the container only collects 

one part to act as the one-piece flow. For future batch investigations, the container can collect 

any number of parts. Similarly, for fettling and machining, a work-in-process buffer and 

container are located at the end of each process before delivery to the next process.  

Figure 5-1 Process flow of the Witness simulation for conventional casting sand process. In current simulation, the 

container in the process only takes one piece at a time 
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Figure 5-2 Process flow of the Witness simulation for the CRIMSON casting process. In current simulation, the 

container in the process only takes one piece at a time 

 

A similar model was developed for the conventional casting sand process. However, the 

CRIMSON melts metal for a single shot and has no holding in the process. Therefore, there is 

no production required at the hot end and the raw material can enter into the production flow 

much more quickly than in the conventional casting sand process. Figures 5-3 and 5-4 

represent the actual layout used in simulation for both casting process.  

 

Figure 5-3 Layout of the conventional casting sand process in WITNESS. The process starts from raw metal 1 on the 

left side. Followed by the assumption there are no inventories from preheating to holding. After casting, buffers are 

applied to represent the work-in-process inventory 
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Figure 5-4 Schematic of the current state of CRIMSON process. A part arrives every 4.8 minutes. The capacity of the 

container is 20 

5.2.2 Simulation results 

Under the assumptions, the productivity of both casting processes for different casting 

weights has been investigated for a period of one year. The results of both casting processes 

are presented in Figure 5-5. 

Figure 5-5 Simulation results of output for both casting processes under different casting weights for one-year period 

In addition to the production output data, the machine availability is also investigated for both 

casting processes. The utilisation of the machine represents the availability of the machine. 

The higher the utilisation is, the higher the productivity of the machine is. Figure 5-6 shows 
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the machine utilisation comparison between the CRIMSON and the conventional casting 

processes.  

 

Figure 5-6 Comparison of busy status between the CRIMSON and the conventional casting processes. Maximum, 

minimum and mean difference between the processes are shown. Above base line means conventional has higher 

utilization, below base line means CRIMSON has higher utilization.  

The maximum, minimum and the mean difference for each operation are shown in the graph. 

There is a base line in the figure, which represents the same performance for both casting 

processes. The conventional process has greater value above the base line and the CRIMSON 

process has greater value below the base line. Clearly, most of the operations are above the 

base line. This means that most of the conventional casting operations have higher utilisation 

than the CRIMSON process, no matter what the change in casting size.  

Finally, the labour productivity can be seen from the table 5-7. 

Table 5-7 Labour productivity results for both casting processes. The conventional casting sand process is more 

productive than the CRIMSON process 

5.2.3 More results and discussion  

The data above are based on current furnace safety settings for power output up to 40 kW. In 

fact, the power output of the CRIMSON furnace can reach up to 300 kW. If the full power 

were used for melting the metal, the story would be different. Therefore, further results 

relating to the different power outputs will be presented in this section. 
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Figure 5-7 CRIMSON product output under different power outputs 

Figure 5-7 lists the product outputs for different casting weights under different power 

outputs. Several things can be seen from these results. First, the conventional process is much 

more productive for small-sized casting products, especially those castings below 2 kg in 

weight. Secondly, the product outputs increase as the power output increases, especially for 

large-sized casting products. Finally, as the casting size increases, the product output 

decreases.  

The reason why the conventional casting process is productive can be seen from Figure 5-8. 

This shows the utilisation of the major casting operations for 1 kg of casting products. Clearly, 

the conventional sand casting process has the smoothest operation compared with the other 

process. Furthermore, its operations also have the highest utilisation compared with the 

CRIMSON process. Because of these two advantages, the operations in the conventional sand 

casting process can be fully functional without any process interruption or delay.  
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Figure 5-8 Machine utilisation for different casting settings; higher utilisation means higher productivity 

Figure 5-9 shows the machining utilisation required to produce 3 kg castings under different 

furnace power outputs. As the power increases, the machine utilisation increases. Therefore, 

more products can be produced during the same period, which is why the output increases as 

the power output increases.  

 

Figure 5-9 Machine utilisation in producing 3 kg castings under different power outputs 

As the size of the casting increases further, the utilisation of machines changes. Figure 5-10 

presents the utilisation in producing 8 kg castings under different furnace power outputs. 
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Unlike Figures 5-8 and 5-9, the pattern shown in Figure 5-10 is much rougher. Therefore, a 

trend can be seen from these three figures; as the casting size increases, the production 

becomes less smooth. It turns out the casting process is not fully operational and that the 

productivity is low, which is the reason why the productivity is reduced as the casting size 

increases.  

 

Figure 5-10 Utilisation to produce 8 kg castings under different power outputs 

From these investigations, the labour productivity for all kinds of situations is displayed in 

Table 5-8. Once again, it tells a similar story to that shown in Table 5-7. The conventional 

sand casting can produces more when the casting size is less than 2 kg. However, in addition 

to the aspects indicated in Table 5-7, compared with the conventional sand casting processes, 

the CRIMSON process can be much more productive under high power output when making 

large castings. The best scenario can be found at 300 kW when making castings between 6 

and 10 kg, which can be at least 2.5 times more productive compared with the conventional 

sand casting process. 

Table 5-8 also indicates the production limit for the CRIMSON process. As the highlighted 

area shows, six sets per hour is the upper limit for the CRIMSON process. For castings up to 

3 kg, an increase in the power output cannot help the productivity. This is because more 

metal can be melted under high power output; however, it only builds up the work-in-process 

inventory. Therefore, this table not only indicates the advantages of the CRIMSON process, it 

also gives good guidance about the power output selection for CRIMSON furnace.  
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casting size (kg) 1 2 3 4 5 6 8 9 10 

Conventional (set/h) 8.57 4.86 3.21 2.43 1.93 1.64 1.21 1.07 1.00 

CRIMSON 40KW (set/h) 5.85 3.07 2.04 1.54 1.23 1.02 0.77 0.68 0.61 

CRIMSON 100KW (set/h) 6.00 6.00 5.13 3.28 2.63 2.19 1.65 1.46 1.32 

CRIMSON 150KW (set/h) 6.00 6.00 6.00 4.31 3.46 3.28 2.16 1.92 1.73 

CRIMSON 200KW (set/h) 6.00 6.00 6.00 4.50 4.39 3.85 2.55 2.28 2.04 

CRIMSON 250KW (set/h) 6.00 6.00 6.00 4.50 4.50 4.38 2.88 2.56 2.55 

CRIMSON 300KW (set/h) 6.00 6.00 6.00 4.50 4.50 4.50 3.13 2.80 2.76 

Table 5-8 Labour productivity for different casting processes for different casting sizes and power outputs 

5.3 Summary of chapter  

In this chapter, the labour productivity was used as a performance indicator to investigate the 

production performance of the CRIMSON process. To achieve this, a complete casting 

foundry model was developed. In this model, the setup time and cycle time for different 

operations were defined through a survey investigation and reasonable assumptions. Working 

hours, labour availability and material flow were also defined. According to the OME results, 

the casting capacity of the CRIMSON process was also defined at 10 kg. Other factors such 

as cycle time, casting size and furnace output, were also used to investigate the influence of 

labour productivity on performance.  

In order to achieve better productivity results, WITNESS simulation package was used to 

simulate the foundry model. Under the current situation, the CRIMSON only uses 40 kW to 

melt metal. It transpires that the conventional sand casting process is twice as productive 

when compared with the CRIMSON process. However, as the CRIMSON furnace power 

increases, the situation is changed. When full power is applied to make 10 kg casting 

products, the CRIMSON process is four times more productive than the conventional casting 

sand process. However, there is an exception. No matter whether the power output is 

increased or not, the conventional casting sand process has higher labour productivity if the 

casting is less than 2 kg.  

Therefore, the simulation results suggest that the CRIMSON process should be used for 

casting sizes between 2 and 10 kg, using the correct power output, as shown in Table 5-8. 
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The conventional sand casting process should be used for casting sizes up to 2 kg, if the 

productivity is an issue. 
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Chapter 6 Validation of the CRIMSON process 

through cost analysis 

Nowadays, the global market has become increasingly competitive. In the manufacturing 

industry in particular, such pressure forces the manufacturing organisations to seek 

continuously for opportunities to improve quality, reliability and productivity with a 

competitive manufacturing cost. In the previous chapters, the quality, reliability and 

productivity of the CRIMSON process have been investigated and the results are appealing. 

In this chapter, the manufacturing cost of the CRIMSON process will be investigated. Once 

again, a process simulation will be used to investigate the CRIMSON casting process and the 

results will be compared with the conventional sand casting process. 

It is the author’s contention that this chapter is the most important part of the validation the 

CRIMSON process. As discussed in the literature review, introducing new equipment or 

technology is difficult. Organisations may deliberate over time, production disruption, 

associated costs of production disruption and the cost of technology. In particular, the cost of 

production disruption and cost of technology can be the most significant barriers to an 

organisation becoming competitive. Even for the CRIMSON process, despite advantages 

such as low capital cost, high flexibility, quality and productivity, the foundry management 

will not be pay attention without realistic and accurate cost estimations. 

6.1 Introduction to cost estimation  

The aim of cost estimation in a manufacturing organisation is to estimate accurately the 

manufacturing costs prior to actually commencing manufacture (Shehab, et al., 2001). It can 

help an organisation understand the feasibility and value of a project. It plays a vital role in 

cost engineering, because it helps cost engineers with proposals of cost control.  

As Layer (2010) indicated, from a methodological point of view, cost estimation techniques 

can be divided into qualitative and quantitative approaches. A qualitative estimation is based 

primarily on expert judgement and similarities between existing and new products (Caputo, et 

al., 2008). On the other hand, quantitative estimations are based on detailed investigations of 

product design, product’ features and the manufacturing process (Niazi, et al., 2006). 

According to the literature, cost estimation techniques can be further classified, as shown in 
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Figure 6-1. Each method will be introduced and the most suitable chosen for the CRIMSON 

cost estimation.  

Figure 6-1 Typical classification of cost estimation techniques (Niazi, et al., 2006) 

6.1.1 Intuitive cost estimation techniques  

The intuitive cost estimation technique is based on an expert’s experience and knowledge. It 

retrieves data from past projects and experience, building up an extensive database for current 

processes or projects. Therefore, intuitive cost estimation can provide relatively quick and 

accurate estimations. However, it requires people and time to establish the database (Niazi, et 

al., 2006). 

6.1.2 Analogical cost estimation techniques 

The analogical cost estimation technique is based on historical cost data (Niazi, et al., 2006). 

The estimated cost of a new process or project is based on previous cost information 

(Agyapong-Kodua, et al., 2011). Such a technique is quite useful when a current process or 

project has similarities with a historical one. However, its accuracy depends on the integrity 

of the historical data and the validity of the relationship between the historical and current 

process or project (Agyapong-Kodua, et al., 2011).  

6.1.3 Parametric cost estimation techniques 

The parametric cost estimation technique is based on statistical methodologies, expressing 

cost as a function of its constituent variables (Niazi, et al., 2006). By using this technique, 

some information is needed (Zhai, 2012); however, this technique needs to identify the cost 

drivers because without cost drivers, this technique cannot work.  

6.1.4 Analytical cost estimation techniques 

The analytical cost estimation is a technique used to assess production costs by investigating 

the cost of each operation involved. This technique requires detailed understanding about the 



126 

 

production process. It is the most time consuming and costly approach; however, it is the 

most accurate (ASIEDU, 1998).  

6.2 Suitable technique for current project 

The advantages and disadvantages of the different cost estimation techniques have been 

introduced. The intuitive cost estimation technique can provide quick and optimised results; 

however, it requires accumulated experience and knowledge. For the CRIMSON process, 

such a cost estimation technique has its limitation. Despite the geometrical differences of 

casting products, different casting methods (sand casting or investment casting for example) 

and different metal alloys can be used. Thus, similarities are hard to find under such flexible 

production processes. Furthermore, the CRIMSON process is a relatively new process, for 

which time is required to build up experience and knowledge. Similarly, the analogical cost 

estimation technique is unsuitable for the CRIMSON process. 

The accuracy of the parametric method depends on the identification of the cost drivers. This 

is easy for the CRIMSON process. The cost drivers are material cost, set-up cost, tool 

replacement cost, machining cost and transportation cost, etc. The problem is that the 

CRIMSON process is too young to have historical data and thus, the statistical cost 

estimation approach is impossible.  

Therefore, the cost estimation method used in this chapter is the analytical cost estimation 

technique. By using this method, only the production time and hourly rate for the man, 

machine and resources need to be investigated. The associated manufacturing costs can be 

calculated by multiplying times and rates together. Traditionally, this approach to obtain the 

production information is time consuming and costly. However, because of the process 

simulation carried out in previous chapters, it is possible to use the simulation approach to 

investigate the production time.  

As the production time is investigated by using the analytical cost estimation technique, it is 

easier to assess how cost varies with production quantity. Therefore, the cost estimation 

method used is the fixed cost and variable cost method. The fixed cost refers to the capital 

cost for machines, rental cost for site, development cost for new product and administration 

cost, etc. These costs are fixed even if there is no product output. Investigating such costs can 

be relatively simple and easy. Therefore, the cost estimation focussed mainly on the variable 

costs of the casting process.  
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Variable costs refer to process costs such as raw material cost, labour cost, the inventory cost 

and facility maintenance cost, etc. These costs are influenced by the amount of output of the 

products. Generally, as the output increases, the time for production increases, the raw 

material requirement increases and the price of material may decrease. The longer the 

machine is in operation, the possibility of breakdown increases and the cost of maintenance 

increases. Therefore, it is easy to see that most variables are inter-connected. Changing one 

variable may change in others. Therefore, to coordinate all the variables and to estimate the 

cost of the production, a cost estimation model will be developed.  

6.3 Model development 

The model developed in Chapter 5 is still useful for the cost estimation model. The casting 

size of up to 10 kg is used for both casting processes. The CRIMSON process uses a rapid 

melting furnace, which has 300 kW power output. The conventional process uses a 500 kg 

furnace all the time. However, there is one difference between the cost estimation model and 

the productivity model. The cost estimation model investigates the production time for 

different amounts of product output. Therefore, a new assumption is added to the model, 

which is that the customer requirement for casting products depends on real demand. The 

normal total demand is shown in the following table and the production time for each demand 

can be then recorded.  

 

Table 6-1 Quantity of the shipment by customer requirement 

6.4 Development of casting cost estimation model  

According to the assumptions, the variable costs modelled are raw material cost, energy cost 

for melting and labour cost. The total variable cost can be calculated as below: 

                                                                                                           Equation 28 

6.4.1 Raw material cost 

For the estimation of the raw material cost, the key element is the unit cost of the aluminium. 

For the CRIMSON process, pre-alloyed high-quality aluminium was used. Typically, the 

price of such metal is around £1.5⋅kg
-1

 to £1.9⋅kg
-1

. A database of the price of casting 

aluminium alloy was developed based on CES 2011. For the conventional casting sand 
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process, a normal ingot was used as the input metal for the purposes of cost reduction. From 

the metal price website (Alu13), an aluminium ingot costs about £1.22⋅kg
-1

. From the data 

provided by the partner foundry, the sand cost can be as low as £0.03⋅kg
-1

 for silica sand and 

can be as high as £1.8⋅kg
-1

 for zircon sand.  

Because this is a continuous production process, it is possible to use recycled material for the 

casting production. Therefore, the price of recycled metal and sand will be used. From 

Greengate Metals website (Scr13), the value of in-house aluminium scrap is about £0.65⋅kg
-1

. 

From the partner foundry, the cost of reclamation is £0.015⋅kg
-1

 for all kinds of sand. A 

melting weight of 3 kg (can produce 1 kg of good CRIMSON product) is assumed. After the 

first cycle of the casting process, 1.96 kg of metal can be used for the second cycle (65% 

recovery ratio) and only 1.04 kg of new metal is required to produce the second casting. By 

splitting the melting metal into recycled and new metal, as the recycling process continues, 

the original aluminium will be completely replaced by new metal after a certain number of 

operations. For this particular example, 3 kg of aluminium can be digested in 16 operation 

cycles. In these cycles, 47.65 kg of aluminium was melted and 8.73 kg of metal was 

contributed by recycled metal. Assuming CRIMSON metal is £1.5⋅kg
-1

 and the in-house 

scrap is £0.65⋅kg
-1

, the total cost of metal is £64, which is less than the £72 it would cost if 

only virgin aluminium was used. 

According to this assumption, the cost equation of the raw material can be derived as below: 

       
              

 
                       ∑        

                       

∑              
                                                                                                  Equation 29 

                                                                                                                                                                              

                                                                                                                                            Equation 30 

where 

       is the cost of metal;                     is the unit value of in-house scrap;                 

is the unit cost of new aluminium alloy;      is the weight of the metal melted at a particular 

cycle;    is the recovery ratio for the casting process; it represents how much metal can be 

recycled in one cycle;  n is the number of operation cycles; it represents how many cycles 

before the recycled metal is fully replaced by new metal.  

Through similar reasoning, the sand cost can be presented as below: 

      
              

 
                               ∑        

                     

∑              
                                                                                                                               Equation 31 
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where  

      is the cost of sand for the casting production;                              is the cost of 

reclamation; only thermal reclamation is considered in this cost model;     is the weight of 

sand used at a particular cycle;    is the recovery ratio for sand reclamation; it represents 

how much sand can be recycled in one cycle;  n is the number of operation cycles; it 

represents how many cycles before the recycled sand is fully replaced by new sand.  

6.4.2 Energy cost 

Regarding the melting, the conventional sand casting process uses a gas furnace to melt the 

aluminium to its melting point (660
o
C), after which it is transferred to a holding furnace to be 

superheated to 700–750 °C. The energy efficiency for a gas furnace is about 50%. Using 

tensile test bar as example, 12.68 kg of aluminium will consume 14444 KJ. As the energy 

price shows on Europe’s Energy Portal website (Portal, 2013), natural gas in the UK costs 

£0.024⋅kWh
-1

. Therefore, the conventional casting process costs about £0.12 per casting. For 

the holding operation, the literature indicates that it uses the same amount of energy as the 

melting process but costs more because it uses electricity. As the literature shows, the holding 

operation costs 1.2 times more than the melting process (DETR, 1997). Therefore, the 

holding cost is £0.13 per casting and the total cost is £0.25 per casting. By contrast, the 

CRIMSON process only uses electricity to melt metal up to750 °C. Assuming 50% energy 

efficiency, its energy cost per casting is about £0.22. 

                                  (            )                             

                                                                                                                                                                        Equation 32 

                                           (            )               

                                                                                                                          Equation 33 

 

                                                                                                                                                                                

where 

          is the energy cost for the CRIMSON process;                is the energy cost for 

the conventional process;     is the specific heat of metal in the solid phase;     is the specific 

heat of metal in the liquid phase;       is room temperature;       is melting temperature; 

       is the superheated temperature;        is the mass of molten metal; e is the melting 

efficiency ;              is the unit energy cost (electricity or gas);    is the heat of fusion, 

389 kJ⋅kg
-1

 (°C). 
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6.4.3 Labour cost 

Labour cost is a function of the equipment, the labour and the time required to produce a 

certain amount of products. As stated previously in the assumptions, the CRIMSON process 

has six operators and the conventional process has seven operators. Assuming the national 

minimum wage is used, the labour costs will be: 

        ∑            
                                                                                     Equation 34 

where 

        is the cost of the labour;       is the wage for particular job n;    is the number of 

the operators for job n;   is the time required for a certain amount of production; different 

casting processes have different ways to calculate this parameter. 

Because the melting process has the longest cycle time, the labour hours will be determined 

by the melting time for the CRIMSON process. The melting time is calculated by the melting 

energy over the furnace power output.  

                                                                                                                                    Equation 35 

By contrast, the conventional process uses a different approach because of the fixed furnace. 

For the conventional process, a 500-kg furnace with a two-hour melting time was used. 

Depending on the casting size, the number of moulds that can be poured is different:  

     
        

 
                                                                                                                            Equation 36 

where  

   is the time for melting; fixed at two hours in this study  

n is the number of moulds needed for 500 kg of metal 

For the same reason that the calculated product output will not be the same as in the 

simulation results, the actual time will not be the simple linear relation shown in the above 

equation. Figure 6-2 shows the ratio between simulation results and the calculation results 

when 100 kW of power is applied. The higher the ratio means the higher the difference 

between simulation and calculation results. Clearly, the difference reduces as the casting 

weight is increased and it reduces as the output is increased. Therefore, the above equation 

works very well for heavy castings and high power output. However, for small castings, 

below 4 kg, the difference between the simulation and the calculation result is large. Similar 
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results can be seen for different furnace power outputs for the CRIMSON process (Appendix 

31). To ensure the accuracy of the labour cost, the calculated time needs to match that 

simulated. To do this, a spreadsheet needs to be developed to analysis data.  

 

Figure 6-2 Ratio between simulated and calculated results for the CRIMSON process under 100 kW power output. 

The simulation and calculation results can be same only if the ratio equal to one. Otherwise, they are different. 

6.5 Development of the cost calculation spreadsheet  

 

Figure 6-3 Schematic of the relation between variable cost and variables 
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Figure 6-3 shows the relation between the variable cost and the variables. Most of the 

variables are connected with more than one variable cost. Any change of a parameter might 

cause a different cost estimation result. Moreover, not only might the total cost of the 

production change but something like the time distribution and cost contribution might 

change as well. Therefore, in order to gain a complete view of the cost model, it was 

necessary to develop a spreadsheet that can integrate all the variables. 

6.5.1 Calculation spreadsheet introduction  

The spreadsheet can be divided into three sections according to the variable cost: raw 

material cost, energy cost and labour cost. There are three colours in the spreadsheet. The 

blue cells indicate optional data that can be decided upon by the user. These cells represent 

the variables in equations. The red cells represent the result according to the user input and 

the black cells show the fixed value according to literature and experience.  

the CRIMSON Process   

Meltiung temperature oc 750 

Energy consumption (kJ) 9772 

Effciency 0.5 

Real energy consumption (kJ) 19545 

Total energy consumption for all shipment (kJ) 195447122 

energy (kWh) 54291 
 

Figure 6-4 Illustration of the colour system in the spreadsheet 

6.5.1.1 Raw material cost  

For the estimation of raw material costs, only the costs of the sand and aluminium are 

collected. Because recycling and reuse are adopted, the cost of material is the sum of cost of 

the recycled materials and virgin raw materials. Therefore, the basic requirement is the 

weight of the material and the unit cost of the material. The operational material efficiency 

(OME) is used for the melting metal weight calculation. The user can decide the amount of 

metal input and loss during each process. The OME can then be calculated according to the 

input data and the true mass melted can be determined. For the sand consumption, the sand to 

metal ratio of 6: 1 is used. Because recycling and reuse are adopted for both casting processes, 

the weight of the recycled material and new material are calculated according to Equation. 29 

and Equation. 31. For the unit cost of the material, the data come from three different 

resources. The price of the CRIMSON metal comes from the CES 2011, the price of the 
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conventional process metal comes from the Internet and the price of the sand comes from the 

foundry expert (appendix 32, pp208).  

6.5.1.2 Energy cost for melting and holding 

As equation. 32 and 33 show, the energy cost is the product of energy consumption and unit 

energy cost. Energy consumption depends on the casting size, the OME, the shipment and the 

melting temperature, which can be defined according to the user requirements. The unit cost 

of the metal can be found on Europe’s Energy Portal website (Portal, 2013).  

6.5.1.3 Labour cost  

The key to the calculation of labour cost is the time calculation. The production time is 

influenced by the casting size, the output size and the furnace power output. Therefore, a 

lookup function was used in the spreadsheet to locate matched simulation times. The user 

only needs to input the casting size, the desired output size and the furnace power output and 

then the spreadsheet will find automatically the best fitting production time. The labour cost 

can be calculated based on Equation. 34. 

Please refer to the Appendix 33 (pp210) for the full version of the cost estimation spreadsheet. 

6.5.2 Case study  

Two cases have been chosen to demonstrate how to use the spreadsheet. A variable cost 

comparison between the CRIMSON and the conventional processes has also been made. 

6.5.2.1 Case study 1: tensile test bar  

The tensile test bar has been chosen to demonstrate how to use the spreadsheet. According to 

a previous study, the following data can be input into the spreadsheet. 

Step 1: recovery ratio and operational material efficiency  

Step 1 is used to calculate the recovery ratio and operational material efficiency. The 

recovery ratio is used to calculate how much metal can be recycled. The operational material 

efficiency is used to calculate how much metal needs to be melt for the casting. According to 

real situations, the user can input into the spreadsheet the melting loss, holding loss, 

degassing loss, fettling loss, machining loss and the scrap rate. Consequently, the 

corresponding recovery ratio and OME can be determined. In this case, the recovery ratio for 

the CRIMSON process and conventional process is 0.76 and 0.79, respectively. The OME for 

the CRIMSON and conventional process is 0.24 and 0.12, respectively.  
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Step 2: material consumption and shipment 

The user inputs the casting weight from 0 to 10 kg. According to the OME calculated in step 

1, the weight of the melting metal can be calculated. In the spreadsheet, the metal to sand 

ratio 1: 6 is used to calculate the sand requirement. In this case, one set of tensile test bars 

(six pieces) weighs about 1.56 kg. The metal required for the CRIMSON process and 

conventional process is 6.53 and 12.67 kg, respectively. The sand required to make the mould 

is 40 and 76 kg, respectively. Finally, the user decides the total amount of castings that need 

to be produced.  

Step 3: metal and sand selection  

Step 3 is used to select the desired metal and sand for the casting. It will be used for the 

material cost calculation. In this section, the user selects the metal and the sand. Because 

recycling and reuse are adopted, the in-house value of the metal and the price of reclaimed 

sand are also valuable. 

Step 4: breakdown material into new and recycled  

The material is composed of new material and recycled material. As the example in Section 

4.1 shows, a special method was developed in the spreadsheet to split them. According to the 

recovery ratio calculated in step 1 and the melting weight calculated in step 2, the operation 

cycle to consume all the recycled metal and sand can be calculated. For the CRIMSON 

process, the metal can be consumed within 26 cycles and the sand can be consumed within 86 

cycles. For the conventional process, the metal can be consumed within 34 operations and the 

sand can be consumed within 92 operations. The cost of each material can be seen in the 

following table. 

metal input during the recycle cycle  

CRIMSON  conventional  

<=26 <=34 

recycle (kg) 
new metal 
input (kg) 

recycle (kg) 
new metal 
input (kg) 

27 143 60 371 

CRIMSON sand conventional sand 

<=86 <=92 

recycle (kg) 
new sand 
input (kg) 

recycle (kg) 
new sand input 

(kg) 

391 2978 759 6231 
Table 6-2 Operation cycles to consume the recycled metal and total weight of recycled metal and new metal 
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Step 5: time consumption for operation 

Step 5 is used to determine the production time for the entire operation. It will be used for the 

calculation of the labour cost. 

The CRIMSON process 

As introduced before, the melting time can be the longest cycle time within the casting 

process. Therefore, the production time is based on the melting time for the CRIMSON 

process. However, the melting time is not accurate enough to predict the production time. 

Therefore, an equation was developed, based on the simulation results, to predict the 

production time. According to this equation, the spreadsheet will measure automatically the 

influence of the power output, casting size and shipment and thus, a proper production time 

can be calculated. 

The conventional process 

For the conventional process, the furnace is fixed at 500-kg capacity with a two-hour melting 

time. The production time calculation is slightly different. According to the melting weight 

calculated in step 2, the number of pourings can be calculated. In this case, 500 kg of melting 

metal can make 39 castings in two hours. Therefore, the time required for one mould can be 

calculated, as can the total time. Again, these calculated results are not accurate enough to 

predict the production time. The simulation was introduced to optimise the predicted results. 

Step 6: energy consumption calculation  

Step 6 is used to calculate the energy consumption required to melt the aluminium at the 

desired temperature. It will be used to calculate the energy cost. According to the energy 

calculation in step 5 and the shipment input in step 2, the total energy consumption of the 

CRIMSON process can be determined. Similarly, the conventional melting energy can be 

worked out.  

Step 7: total variable cost  

All calculated results are gathered in step 7 and the final cost of materials, labour and energy 

are displayed. For the tensile test bar case study, the total variable cost is shown in the 

following table: 



136 

 

 

Table 6-3 Key variables used to calculate the variable cost 

CRIMSON  Conventional 

metal 
recycle £ 670 

metal 
recycle £ 1148 

new £ 9025 new £ 13296 

sand 
recycle £ 68 

sand 
recycle £ 124 

new £ 1039 new £ 2032 

energy £ 239 energy £ 258 

labour £ 2640 labour £ 2482 

total £ 13680 total £ 19341 
 

Table 6-4 Total variable costs for both casting processes 

 

6.5.2.2 Case study 2: piston head  

The geometry selected for case study 2 is an engine piston head, which can be produced by 

sand casting. The spreadsheet was used to design the casting running system in this case 

study. According to author’s experience, four piston heads produced in one running system 

weigh about 1.93 kg. Figure 6-5 shows the casting running system for the piston head. The 

left-hand side is the CRIMSON running system and the right-hand side is the sand casting 

running system. 

Figure 6-5 Schematics of the running system design for piston head. The left-hand side is the CRIMSON running 

system and the right-hand side is the conventional sand casting system. The casting yield for the CRIMSON system is 

58% and the casting yield for the conventional system is 52% 
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Following the same steps as shown in case study 1, the piston head case study has the 

following variable input and cost results: 

 

Table 6-5 Key variables used to calculate the variable cost 

CRIMSON  Conventional 

metal 
recycle £ 573 

metal 
recycle £ 801 

new £ 7562 new £ 6905 

sand 
recycle £ 73 

sand 
recycle £ 97 

new £ 744 new £ 1047 

energy £ 180 energy £ 140 

labour £ 1839 labour £ 1707 

total £ 10974 total £ 10698 
Table 6-6 Total variable cost for case study 2 

6.6 More results and discussions 

Two case studies have been presented in the previous sections and their results are 

summarised in the following. The casting weight of the tensile test bar and the piston head is 

1.56 and 1.93 kg, respectively. The cost of the tensile test bar is £13679 and £19340 for the 

CRIMSON and conventional sand casting processes, respectively. The cost of the piston head 

is £10974 and £10698 for the CRIMSON and conventional sand casting processes, 

respectively.  

This is a surprising result because the lighter casting (tensile test bar) actually costs more than 

the heavier casting (piston head). Initially this result was unanticipated and so the results 

were  re-examined to debug errors and establish whether the results were correct.  

According to the information shown in Tables 6-3 and 6-5, the OME for the tensile test bar 

varies from 0.12 to 0.24 and it varies between 0.28 and 0.39 for the piston head. Therefore, 

even though the tensile test bar is lighter than the piston head, it still requires more metal to 

cast, which means that the cost of the metal becomes higher. Figure 6-6 shows the cost 

contribution of each variable cost. Clearly, the contribution of the metal cost is the most 

significant in the production cost. It comprises at least 70% of the total variable cost, which is 

why the tensile test bar has a higher cost than the piston head. This indicates the importance 
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of the OME; the higher the OME, the less material needed to make the casting and thus, the 

lower the associated material costs.  

From these two case studies, it is found that the OME can influence the cost estimation 

results significantly. Such results prove that any parameter change can cause a different cost 

estimation result. In the following results section, the influence of different manufacturing 

methods, materials and process parameters will be discussed.  

Figure 6-6 Cost breakdown for the two case studies 

6.6.1 Recovery ratio influence 

In addition to the OME, the recovery ratio may also influence the total variable cost. The 

metal recovery ratio has a relation with casting yield, machining loss and scrap rate. Any 

change in the recovery ratio requires a change in the casting design. Therefore, it is 

impractical to investigate the influence of the metal recovery ratio. In this section, only the 

sand recovery ratio is investigated. The parameters used to investigate the variable costs are 

listed in Table 6-7 and the results shown in Figure 6-7.  

 

Table 6-7 Parameters used to investigate the influence of recovery ratio  

CRIMSON test bar
(£)

CRIMSON piston
head (£)

conventional test
bar (£)

conventional piston
head (£)

labour 2639 1839 2482 1707

energy 239 180 258 140

sand 1108 817 2156 1144

metal 9694 8135 14445 7706
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Figure 6-7 Cost contribution for different sand reclamation methods (different recovery ratios) 

The influence of the sand recovery ratio can be easily found in Figure 6-7. Clearly, sand costs 

can be high when radical reclamation methods are used (secondary reclamation). This is 

especially true when high-cost sands such as chromite and zircon are used (very rare in 

foundries). Therefore, the correct reclamation method not only reduces the sand costs but also 

brings down the total variable cost.  

6.6.2 Material influence  

Currently, 22 aluminium alloys and 4 types of sand can be chosen from the spreadsheet. In 

order to show the material influence on the total variable cost, the same product produced by 

three different material groups was carried out. The three material groups were a low price 

combination of sand and metal, a middle price combination of sand and metal and a high 

price combination of sand and metal. The parameters used to investigate the variable costs 

are listed in Table 6-8 and the results are shown in Figure 6-8.  

Secondary Thermal Secondry Thermal

CRIMSON conventional

Labour 12727 20368 12727 20368

Energy 3222 2262 3222 2262

Sand 293985 57484 372023 69954

Metal 134906 125821 134906 125821
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Table 6-8 Parameters used to compare the variable costs  

 

Figure 6-8 Contribution of the different variable costs 

From Figure 6-8, it can be seen easily that the material cost is the major contributor to the 

total variable cost. However, for different categories, the cost contribution is slightly different. 

For low cost material, the major contributor is the metal cost. For middle cost material, the 

cost of sand increases and for high cost material, the major contribution shifts to the sand cost. 

Overall, the material cost contributes the largest effect on the variable cost. Therefore, 

choosing the correct material for the job is quite important.  

6.6.3 Casting size influence  

Casting size determines the total amount of melted metal needed and the total amount of sand 

needed for the mould. Therefore, it makes sense to investigate its influence on the total 
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variable cost. The parameters used to compare the variable costs are listed in Table 6-9 and 

the results are shown in Figure 6-9.  

 

Table 6 -9 Parameters used to investigate the influence of size 

 

Figure 6-9 Total variable cost for different sizes of casting and the cost per kg as the casting size increases 

It can be seen that the total variable cost increases as the casting size increases. However, as 

the casting size increases, the cost per kilogram of the casting decreases. The CRIMSON 

process has the lower unit cost in producing 1 kg of good casting. 

6.6.4 Batch size influence  

Batch size also determines the total amount of melted metal needed and the total amount of 

sand needed for the mould. Therefore, it makes sense to investigate its influence on the total 
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variable cost. The parameters used to investigate the variable costs are listed in Table 6-10 

and the results are shown in Figure 6-10.  

 

Table 6-10 Parameters used to investigate the influence of batch size 

Figure 6-10 Results show total variable costs vary with batch size and unit cost to produce one casting  

As with the size, the total variable costs increase as the batch size increases. However, as the 

batch size increases, the unit cost to produce one casting decreases. The unit cost for the 

CRIMSON process can be stabilised when the shipment increases to 1500. For the 

conventional casting sand process, the unit cost can be stabilised when the shipment increases 

to 2500.  

When the shipment number increases 1500, the curve tends to stabilise for the CRIMSON 

process.  
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6.6.5 Power output influence  

The CRIMSON furnace can supply power up to 300 kW. It has been made clear that the 

productivity of the CRIMSON process is influenced significantly by the furnace power 

output. Therefore, it is worth investigating the influence of the power output on the total 

variable costs. The parameters used to investigate the variable costs are listed in Table 6-11 

and the results are shown in Figure 6-11.  

 

Table 6-11 Parameters used to investigate the influence of power 

 

Figure 6-11 Total variable costs for different power outputs for the CRIMSON process 

From Figure 6-11, it is easily to see that the power output has no effect on the raw material 

costs. It only influences the labour cost; the higher the power output, the lower the labour cost. 

This is probably because the productivity increases with an increase of power output. 

However, as discovered in the last chapter, there is a critical point beyond which, for any 
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additional increase in power output, there is no further increase in productivity. In this case, 

the critical power output is 150 kW. 

6.7 Summary of chapter  

In this chapter, a cost estimation spreadsheet was developed to estimate the total variable 

costs for the CRIMSON and conventional sand casting processes. By using this spreadsheet, 

the cost of the casting production could be estimated under different casting sizes, shipment 

sizes, furnace power outputs, OME and more. The case studies carried out in the last section 

covered all the variables that can influence the variable costs of casting. Based on those 

results, a box plot has been used to illustrate the distribution of the cost comparison of the 

CRIMSON and conventional sand casting processes.  

This box plot is the result of the CRIMSON costs divided by the conventional casting costs. 

Therefore, the CRIMSON process can be seen as expensive when the result is greater than 1. 

Conversely, the conventional casting process can be deemed expensive when the result is less 

than 1. From Figure 6-12, it is easy to see that most data lie to the left-hand side of the base 

line. This means that the conventional casting process has higher total variable costs in most 

circumstances. However, there is an exception to this. The CRIMSON process can be 

expensive in certain cases. For instance, the CRIMSON process can be expensive when a low 

furnace power output is adopted, because low power output prolongs the production time, 

which increases the labour cost.  

 

Figure 6-12 Comparison of the CRIMSON and conventional sand casting processes. The red line is the base line of 

the comparison. Left-hand side of the red line means that conventional casting is expensive, the right-hand side of the 

min  = 0.742 

quartile1 = 0.945 

median = 0.957 

quartile3 = 0.964 

max = 1.045 

                     Conventional                                   1          CRIMSON  
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red line means that the CRIMSON process is expensive and the red line means both casting processes have the same 

cost 

Based on the case study results, the average cost contribution for each variable cost can also 

be plotted (Figure 6-13).  

 

Figure 6-13 Average cost contribution and distribution of each variable cost  

Irrespective of whether the CRIMSON or the conventional sand casting process is used, the 

energy costs only contribute about 1% of the total variable costs. In contrast, the metal costs 

contribute the greatest effect on the variable costs. In particular, the CRIMSON process has 

the highest cost contribution due to the high cost of the raw material. Because less material is 

required by the CRIMSON process, the CRIMSON process has low sand costs compared 

with the conventional sand casting process. According to the results shown in the last chapter, 

the CRIMSON process is more productive than the conventional sand casting process. 

Therefore, the labour costs can be cheaper because of the lower lead-time.  

In addition to the average results of the variable costs, the above figure also indicates the 

distribution of each variable cost. The sand cost has the widest distribution because of the 

sand price. It can be as low as 10% when silica sand is used and as high as 70% when zircon 

sand is used. Because the sand has such a wide distribution, it affects the overall contribution 

of the metal cost. In contrast to the sand cost, the metal contribution is high when the sand 

cost is low and the metal contribution is low when the sand cost is high. Therefore, the metal 

has a similar distribution to the cost contribution.  

Finally, several conclusions can be drawn from the case studies: 

1. The influence of raw material is significant; it contributes at least 80% of the total 

variable cost.  
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2.  The OME is a very important parameter. It decides the amount of metal and sand 

required for the casting process. Improving the OME can reduce the cost of the 

materials. 

3. Irrespective of whether green sand or chemical sand is used, the thermal reclamation 

method is recommend for sand recycling. This is because thermal reclamation has the 

highest recovery ratio, which increases the utilisation of the used sand. In particular, 

for high-quality sand such as Zircon and Chromite sand, thermal reclamation can 

reduce the sand cost by up to 80% compared with the secondary reclamation method.  

4. As the casting size and the shipment increase, the unit cost of casting decreases. This 

is exactly what happens when batch production is adopted.  

The power output of the furnace influences only the productivity and labour cost of the 

production process. 
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Chapter 7 All-In-One spreadsheet development  

The CRIMSON process has been compared with the conventional sand casting process 

through numerical simulation, life cycle assessment, productivity comparison and variable 

cost comparison. A running system design spreadsheet was used to design the casting running 

system in the numerical simulation comparison chapter. A spreadsheet was developed to 

estimate the embedded energy of sand mould making and casting making in the life cycle 

assessment section. Another spreadsheet was developed to estimate the casting variable cost 

in the cost estimation chapter. In this chapter, the author will introduce a new spreadsheet 

which can be used by industry people to design casting running system, to estimate the 

energy consumption and to estimate the production cost at early stage.   

7.1 The all in one spreadsheet 

After finish in of the development and comparison, the author realised that there are some 

connections between each spreadsheet. A parameter in one spreadsheet can influence the 

result of the other spreadsheet. Therefore, the author considered the idea to integrate all the 

spreadsheets together to form an all-in-one spreadsheet. To do so, it will be very useful at 

early stage of the product development. Then foundry people not only get idea about casting 

running system design, but also understand the energy consumption and cost estimation of 

the corresponding design. 

Basically, the principle of the all in one spreadsheet can be seen from the figure. Different 

functions are connected by the shared information. By default, the information used in 

running system design will eventually influence the result of the cost estimation. However, 

the user can break the link between each function to use any function individually. By 

clicking the reset button, each function can be reconnected.  

 

Figure 7- 1 schematics the flow chart of the all in one spreadsheet. Because of the shared information, each function 

can be connected  
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7.2 Share information  

7.2.1 Casting weight 

Starting from the casting weight, this is the first shared information indentified. As 

introduced, it is the key information links everything together. Once the casting size is 

determined, the general size of the running system can be determined and amount of sand 

required can be determined as well. Based on this information, the energy consumption of the 

sand and metal can be estimated. The cost of sand, metal, energy, and possible labour time 

also can be estimated.   

7.2.2 Casting yield  

Casting yield is a ratio between casting weight and the pouring weight. Originally, this 

parameter is a performance indicator in the casting running system design spreadsheet. In the 

energy estimation spreadsheet, the casting yield also used to determine how much metal need 

to be chopped off (fettling operation). Because the fettling loss influences the recovery ratio 

(RR) and the operational material efficiency (OME), the casting yield has a relationship with 

these parameters aswell. 

7.2.3 OME and RR 

The operational material efficiency (OME) is a ratio between good casting product and metal 

melted (i.e considering casting yield, fettling and scrap rates as well). The Recovery ratio 

(RR) is a ratio that represents how much metal can be recycled in the process. These are two 

important parameters are used to estimate casting energy consumption in the energy 

estimation spreadsheet. However, these two parameters play vital roles in the cost estimation 

spreadsheet as well. The OME can be used to determine the actual amount of metal and sand 

required. The RR can be used to determine how much recycled metal can be used to replace 

the raw metal requirement.  

7.3 Running system design  

Running system design is the first part of the all in one spreadsheet. It can be used to 

determine the geometry of the gravity pour running system and CRIMSON up-casting 

running system. Jolly (appendix 34, pp211) developed the gravity pour running system 

spreadsheet and the author developed the CRIMSON up-casting running system spreadsheet. 

Originally, the user interface of such spreadsheet is not very user friendly. Considering the 

user experience, it is better to simplify it.  As figure 7-2 shows below, the input data and 
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output data are separated and the output data are categorized according to geometry feature. 

By doing this, the user can easily find any information they desired.  

 

Figure 7- 2 schematics the simplified spreadsheet for gravity running system design, the blue cells are the user input 

data, the red cells are the output results, the green one are the shared information with other sheet, and the black cell 

is the default value.  

7.4 Energy consumption estimation  

The function of the energy consumption spreadsheet has been introduced in chapter 4 section 

4. The main function of the spreadsheet is same as before: estimate the energy consumption 

of the sand mould making and casting under multiple recycling method.  In the all in one 

spreadsheet, the energy consumption spreadsheet was connected with the running system 

designing sheet by casting weight, yield, and recovery ratio (RR). 

7.5 Variable cost estimation  

Like the running system designing spreadsheet, the cost estimation spreadsheet wasn’t user 

friendly. Therefore, the cost estimation spreadsheet was reformatted in a smart way. In the 

all-in-one spreadsheet, the cost estimation is separated into three tabs named as: cost 

information, production process information, and costing sheet. Cost information tab contains 

information such as cost of the raw material, labour rate, and energy cost. Production process 

information tab contains information such as casting weight, shipment, sand reclamation 

method, and energy consumption. Costing sheet is the summary sheet of the total variable 

cost.  

Please refer to the Appendix 35 (pp212) for full version of the all-in-one spreadsheet  
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7.6 Case study 

7.6.1 Calliper production  

An aluminium calliper weight about1.28 kg. The calliper is sand cast in an olivine sand 

mould. The customer requires 10000 callipers. 

Running system design 

First of all, the calliper is assessed by Magmasoft to determine possible casting orientation 

and size of the feeder. As figure shows below, such calliper has many curve surfaces and 

thick body. Considering the feeding and fettling, the calliper is cast in the vertical orientation 

as figure shows below. According to the Magmasoft results, hot spots are formed at the 

junction area. Therefore, cooling fins are introduced to increase the cooling rate at junction 

area to achieve more effective feeding. Figure 7.3 b on the right shows the casting with the 

feeder and the cooling fins. The feeder is about 0.43 kg by weight. 

 

Figure 7- 3a left side is the geometry of the calliper. Figure 7- 3b right side is the casting orientation with feeder and 

cooling fin 

Put casting and feeder information into designing spreadsheet. The high specification casting 

running system can be worked out. In order to maximise the productivity of the casting 

process, four callipers are produced in one running system.  
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Figure 7- 4 running system on the left is for the CRIMSON process, the running system on the right is for the gravity 

sand casting process. Both are designed to the highest specification 

According to the running system showed here. The casting yield, OME, energy consumption 

of this casting, the possible production lead time and the variable cost of the production can 

be estimated.  

  casting yield OME 

CRIMSON 68% 46% 

Conventional  58% 32% 
Table 7- 1 the casting yield and OME results from the spreadsheet 

energy burden  
(MJ/kg) 

material consumed  
(kg) 

energy consumption  
(MJ) 

CRIMSON  conventional  CRIMSON  conventional  

green sand energy   0.56 16.57 23.81 9.28 13.34 

chemical sand energy   2.44 16.57 23.81 40.42 58.1 

green sand primary 
reclamation after stable25  

0.09 16.57 23.81 1.49 2.14 

chemical sand secondary 
reclamation after stable 

0.31 16.57 23.81 5.14 7.38 

chemical sand thermal 
reclamation after stable  

0.64 16.57 23.81 10.6 15.24 

CRIMSON after stable 15.69 2.76   43.32   

Conventional after stable  17.38   3.97   68.98 
Table 7- 2 energy burden and energy consumption of each operations 

 

 

 

                                                 
25

 The energy burden of the casting reduces to a constant level after certain number of recycling operation. 

Please refer to chapter 4, section 4.2.3.3 and figure 4-11 for more detail (pp90).  
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  CRIMSON  Conventional  

production time (h) 213 641 

sand cost (£) 10294 14111 

metal cost (£) 150757 180782 

energy cost (£) 4051 3252 

labour cost (£) 9671 29188 

total variable cost (£) 174773 227333 
Table 7- 3 the production time and variable cost estimation 

7.6.2 Sliding block  

An aluminium sliding block weight 1.9 kg. The block is cast in silica sand mould. The 

customer requires 10000 blocks.  

Running system design  

Ideally, this sliding block can be produced by milling process. However, it requires a solid 

block has at least 180 x 85 x 120 mm. considering the material utilization, only 40% of the 

metal is used by machining method. Therefore, sand casting is introduced to produce this 

sliding block 

 

Figure 7- 5the geometry of the sliding block 

Again, the block was assessed by Magmasoft to determine possible casting orientation and 

the feeder. Because the block has a curved surface, feeders should be avoided (hard for 

fettling and machining). Therefore, the casting is cast in the vertical orientation.  As the entire 

casting is a solid block, hotspots can easily occur at thermal centre and cause porosity (circled 

in figure). According to the Magmasoft simulation results, the hot spot is circled in the 

following figure. A cooling fin is therefore used to improve cooling at thermal centre. As 

figure 7.6 showed below, the casting is cast in a vertical orientation, the feeders are on the top 
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of the casting, and the cooling fin is at centre of the casting. The feeder is weight 0.86 kg in 

total.  

 

Figure 7- 6 the left side shows the casting orientation  and the right side shows the casting feeder and cooling fin 

location 

Input the casting and feeder information into the casting running system design spreadsheet. 

The casting running system for both casting process can be worked out. 

According to the running system showed here. The energy consumption of this casting, the 

possible production lead time, the variable cost of the production can be estimated.  

  casting yield OME 

CRIMSON 60% 41% 

Conventional  49% 27% 
Table 7- 4 the casting yield and OME results from the spreadsheet 

energy burden (MJ/kg) 
material consumed (kg) energy consumption (MJ) 

CRIMSON  conventional  CRIMSON  conventional  

green sand energy   0.56 27.80 42.22 15.57 23.64 

chemical sand energy   2.44 27.80 42.22 67.84 103.02 

green sand primary 
reclamation after stable  

0.09 27.80 42.22 2.50 3.80 

chemical sand 
secondary reclamation 
after stable 

0.31 27.80 42.22 8.62 13.09 

chemical sand thermal 
reclamation after stable  

0.64 27.80 42.22 17.80 27.02 

CRIMSON after stable 15.69 4.63   72.71   
Conventional after 
stable  

17.38   7.04   122.30 

Table 7- 5 energy burden and energy consumption of each operations 
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  CRIMSON  Conventional  

production time (h) 297 1132 

sand cost (£) 6863 9752 

metal cost (£) 202688 295027 

energy cost (£) 6792 5661 

labour cost (£) 13526 51517 

total veriable cost (£) 229869 361957 
Table 7- 6 the production time and variable cost estimation 

7.6.3 Casing  

An aluminium casing is weight about 0.7 kg. The casing is casted in chromite sand mould. 

The customer requires 10000 castings. 

Running system design 

Unlike previous case studies, this casing is a very thin casing. Ideally, such casing can be 

easily cast by high pressure die casting method. However, let’s see how this casing can be 

cast by the sand mould. The casting was assessed by the Magmasoft to determine the casting 

orientation and possible feeder location and size. figure below shows the casting orientation 

of the casing. The right side figure is the casting with the feeders.  

Figure 7- 7 shows the geometry and casting orientation of the casing.  

 

Input the casting size and feeder information to the casting running system design 

spreadsheet. The casting running system for both casting process can be worked out. 
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Figure 7- 8 the left side is the CRIMSON running system, and the right side is the gravity poured running system  

According to the running system showed here. The energy consumption of this casting, the 

possible production lead time, the variable cost of the production can be estimated.  

  casting yield OME 

CRIMSON 56% 38% 

Conventional  45% 25% 
Table 7- 7 the casting yield and OME results from the spreadsheet 

energy burden (MJkg-1) 
material consumed (kg) energy consumption (MJ) 

CRIMSON  conventional  CRIMSON  conventional  

green sand energy   0.56 11.05 16.80 6.19 9.41 

chemical sand energy   2.44 11.05 16.80 26.97 40.99 

green sand primary 
reclamation after stable  

0.09 11.05 16.80 0.99 1.51 

chemical sand 
secondary reclamation 
after stable 

0.31 11.05 16.80 3.43 5.21 

chemical sand thermal 
reclamation after stable  

0.64 11.05 16.80 7.07 10.75 

CRIMSON after stable 15.69 1.84   28.90   
Conventional after 
stable  

17.38   2.80   48.66 

Table 7- 8 energy burden and energy consumption of each operations 
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  CRIMSON  Conventional  

production time (h) 281 942 

sand cost (£) 90686 131609 

metal cost (£) 205504 261681 

energy cost (£) 5481 4684 

labour cost (£) 12817 42045 

total veriable cost (£) 314488 440019 
Table 7- 9 the production time and variable cost estimation 

7.7 Summary of chapter  

A running system design spreadsheet was developed to design the casting running system in 

the numerical simulation comparison chapter. A spreadsheet was developed to estimate the 

embedded energy of sand mould making and casting making in the life cycle assessment 

section. Another spreadsheet was developed to estimate the casting variable cost in the cost 

estimation chapter. Because the shared information was discovered in each spreadsheet, the 

author developed an all-in-one spreadsheet which contains all information. Typical case 

studies have been used to exam the performance of the spreadsheet. It has been showed that 

the all-in-one spreadsheet not only can design the casting running system, but also can 

estimate the energy consumption and cost of the casting production. From this point of view, 

the all-in-one spreadsheet is a convenient and powerful tool for early stage product design 

and development.  
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Chapter 8 conclusions   

The purpose of this project is to validate the novel CRIMSON process for foundry industries. 

Four different approaches have been used to validate the CRIMSON process. First of all, the 

casting simulation method was introduced to investigate the casting quality of the CRIMSON 

process. Secondly, the Life Cycle Assessment (LCA) method was used to assess the 

environmental impact of the CRIMSON process. Thirdly, using process simulation method, 

the productivity of the CRIMSON process had been investigated. Finally, and most 

importantly, the total variable cost of the CRIMSON process was investigated. Comparing 

with the conventional sand casting process, this research project has been found specifically 

that: 

8.1Simulation approach  

 There are two double oxide film sources for gravity poured casting running system. 

The first one is in the pouring basin due to plunging jet, the second one is the in the 

down-sprue due to surface turbulence. Both sources are hard to avoid due to the 

geometry requirement of the gravity poured running system. 

 In the casting quality simulation, the gravity poured sand casting running system 

designed for the tensile test bar is quite successful. 90% of the oxide films generated 

during the filling are trapped by the running system itself. This indicated that a good 

running system is very important for a casting process.  

 In the CRIMSON process, all the important parameters are under control. The up-

casting piston only needs to move at very low velocity to deliver liquid metal. This 

low velocity can assure the liquid metal is smoothly delivered avoiding double oxide 

film formation and entrainment The CRIMSON process also removes the pouring 

basin and downsprue from the casting running system. It not only eliminates the 

source of double oxide film generation , but also improves the casting yield.  

8.2 Life Cycle Assessment approach 

 Life Cycle Assessment method was introduced to investigate the environmental 

impact of the CRIMSON process. Regarding the inventory data collection of the 

casting process, the embedded energy of the casting process had been introduced. Due 
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to the difficulty of the data collection, the data investigated in this research project 

were sand mould making embedded energy and total embedded energy. According to 

the investigation, the embedded energy of sand mould making varies from 0.5 MJ⋅kg
-1

 

to 2.4 MJ⋅kg
-1

. The total embedded energy of the casting is about 55 MJ⋅kg
-1

. 

Therefore, the embedded energy of metal preparing is about 52.6 MJkg
-1

to 54.5 

MJ⋅kg
-1

.    

 Instead of using virgin aluminium in all cases. Recycling and reusing of the 

aluminium also takes into consideration. The method used to calculate the energy 

burden of the recycling and reusing is called multiple recycling method. After the 

recycling, the energy burden of the CRIMSON tensile test bar can be reduced to 13.13 

MJ⋅kg
-1

, and the energy burden of the conventional sand tensile test bar can be 

reduced to 14.58 MJ⋅kg
-1

. 

 However, these results only consider the energy burden of casting production. The 

real energy burden for saleable casting is not clear. As a result, the Operational 

Material Efficiency (OME) was introduced to investigate the energy burden for 

saleable casting. In order to calculate the OME of the casting process, the material 

usage during each casting operation need to be investigated as well. After the 

investigation, the OME for CRIMSON and conventionally cast test bars are 24% and 

12% respectively. The energy burdens for saleable castings are 230 MJ⋅kg
-1 

and 449 

MJ⋅kg
-1

respectively.  

 Using the collected energy and material inventory data, the environmental impact 

assessment was carried out by SimaPro LCA simulation package. Greenhouse gas 

emission, ECO-indicator, and ECO-points were the impact assessment used. All the 

impact assessment results indicate that the CRIMSON process has less environmental 

impact compared with the conventional sand casting process.  

8.3 Productivity investigation  

 Besides the casting quality and environmental impact of the process. The productivity 

of the CRIMSON process was investigated as well. The key performance indicator 

used was the labour productivity. According to survey and reasonable assumptions, a 

foundry model was developed to investigate the labour productivity. The foundry 

model was then modelled in the WITNESS simulation package. For the CRIMSON 

process, the casting size investigated from 1 kg to 10 kg. The furnace power out 

investigated from 40 KW to 300 KW. The period of the investigation is one year. For 
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Conventional sand casting process, the casting size investigated also from 1 kg to 10 

kg. A 500 kg capacity furnace was used for all casting size. The period of the 

investigation also is one year.  

 Several things can be found by the WITNESS simulation. As the CRIMSON furnace 

power increase, the labour productivity increase as well. For large size casting, the 

labour productivity of the CRIMSON process can be two times higher than the 

conventional process. However, the casting size can influence the performance of the 

power output. Small casting with high furnace power output can not increase the 

productivity. By contrast, it only builds up the work in process inventory. Therefore, 

the WITNESS simulation not only indicates that the CRIMSON process is productive, 

but also establishes the guides for the CRIMSON power output selection. 

Table 8- 1 shows the guides of the power selection for the CRIMSON process 

 No matter increase the power output or not, the conventional casting sand process has 

higher labour productivity if the casting is less than 2 kg. If the productive or lead 

time is very important for casting less than 2 kg. The conventional sand casting 

process should be used. 

8.4 Cost estimation  

 Beside other advantage of the CRIMSON process. Cost estimation is the most 

realistic performance indicator for industries. Analytical cost estimation techniques 

was used to estimate the total variable cost of the casting production. By using this 

technique, the cost estimation spreadsheet was developed. Varies of case study were 

carried out by the spreadsheet. As expect, the CRIMSON process is cheaper than the 

conventional sand casting process in most cases.  

 The case studies also indicate that the raw material influence is significant. It 

contributes at least 80% of the total variable cost.  
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 The OME is a very important parameter. It decides the amount of the metal and sand 

need to be used for the casting process. Improve the OME can significantly reduce the 

total variable cost. 

 No matter green sand or chemical sand, thermal reclamation method is recommend 

for sand recycling. This is because the thermal reclamation has higher recovery ratio, 

which increase the utilization of the used sand. Especially for high quality sand like 

Zircon and Chromite sand, the thermal reclamation can reduce the sand cost by 80% 

compared with the secondary reclamation method.  

 As the casting size and the shipment increase, the unit cost of casting decrease. This is 

exactly what happed when batch production is adopted.  

8.5 Final conclusions 

This research project is about validating the novel CRIMSON casting process. In order to 

achieve this goal, the author decided to validate the CRIMSON process through quality 

investigation, productivity analysis, environmental impact assessment, and estimate cost of 

the production. As the findings conclude here, the CRIMSON process does have more 

advantages compared with the conventional sand casting process. It has better casting quality 

due to great filling rate control; it saves energy through holding free casting production and 

high OME; under the CRIMSON capacity, it has higher productivity compared with the 

conventional sand casting process; most importantly, it costs less to produce same casting 

products compared with the conventional sand casting process.   

According to these approaches, a special spreadsheet also was developed to assess the entire 

production process of the CRIMSON and conventional sand casting process. The user can 

use this spreadsheet to design the high specification casting running system, evaluate the 

environmental impact of such running system, and estimate the cost to produce such casting. 

It is a convenient and powerful tool for early stage product design and development.  
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Chapter 9 Future Work   

 Further quality investigation of the CRIMSON process would benefit from 

mechanical property testing to ensure product quality. 

 The spreadsheet designed for this research project can design sound CRIMSON 

casting running system easily.  However, the shape of the casting running system is 

limited at moment. A more flexible CRIMSON running system needs to be designed.  

 This research project only validates the CRIMSON process for sand casting 

production. Considering the potential of the CRIMSON process, validating the 

CRIMSON process for investment casting process and block moulding process wide 

the market for the CRIMSON process. 

 For the cost estimation, more detailed and accurate material database needs to be 

developed. For example: the price lists of copper alloy, magnesium alloy, investment 

slurry, wax, and so on. 

 Considering further increase the casting yield of the CRIMSON process, rollover 

mechanism needs to be assessed.  

  To further increase the productivity of the CRIMSON process, an automatic crucible 

handing / loading device needs to be developed. It can reduce the setup time for every 

casting and reduce the hassle for operators.  
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Chapter 11 Appendix    

Appendix 1: Material and energy flow chart of the conventional sand casting 
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Appendix 2 knowledge of the lean manufacturing  

Cellular manufacturing  

Work stations are arranged in a product- aligned sequence to support a smooth flow of 

production with minimal transport or delay. It normally used in one piece flow production.  

5S 

Sort, Set in order, Shine, Standardize, and Sustain are called 5S. It encourages workers to 

improve the physical setting of work, and reduce waste. Basically, it can reduce the space 

required for work. 

Value stream mapping 

Requires understand all the processes involved. So that non-value-added activity can be 

identified and eliminated. It involves cycle time, inventory, setup time, changeover time 

investigation. After the current VSM, the problem and waste can be addressed. Plan or future 

VSM need to be developed to solve the problems.  

Just in time  

It is a production planning method. Aim to provide product the customer want, when they 

want. Based on cellular manufacturing and pull method, levelling the production, spreading 

production evenly over time. Normally, visual signal / Kanban are used to assist JIT. 

Production levelling 

Mix different products within the same production line.  

Total productive maintenance  

The operators know their machine better than others. Give them responsibility to look after 

their machine, do daily maintenance. Also Involves senior concept such as prevent / reduce 

maintenance through initial equipment design. 
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Appendix 3  Material and energy flow chart of the CRIMSON sand casting 
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11.2 Numerical casting simulation  

Appendix 4  the geometry of benchmark test  
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Appendix 5 the simulation results  
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Appendix 6  layout of the CRIMSON facility 
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Appendix 7  Flow chart of velocity control in gravity casting 
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Appendix 8  First version of the running system design  
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Casting Method Up-casting 

Casting Material AlSi7Mg 

Mold Material Furan 

Heat Transfer Temperature dependent HTC 

Pouring Temperature (oc) 700.00 

Mold Temperature (oc) 20.00 

Maximum Flow rate (l/s) 0.25 

Time for solver (s) 9584.00 

Time for solver (hour) 2.66 

Filling time (s) 4.18 

solidification time (s) 812.82 

No feeder housing porosity (mm3) 4641.53 

Feeder housing porosity (mm3) 77.71 

velocity at runner (m/s) 0.32 

velocity at ingate (m/s) 0.19 

Mass of casting (kg) 1.60 

Mass of casting system (kg) 1.48 

Yield (%) 51.95 
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Appendix 9  Second approach of the CRIMSON filter housing system  
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Casting Method Up-casting 

Casting Material AlSi7Mg 

Mold Material AL2O3 

Heat Transfer Temperature dependent HTC 

Pouring Temperature (
o
c) 700.00 

Mold Temperature (
o
c) 500.00 

Maximum Flow rate (l/s) 0.25 

Time for solver (s) 176374.72 

Time for solver (hour) 49 

Filling time (s) 8.95 

solidification time (s) 1112.20 

housing porosity (mm
3
) 0 

velocity at runner (m/s) 0.18 

velocity at ingate (m/s) 0.15 

Mass of casting (kg) 3.24 

Mass of casting system (kg) 2.71 

Yield (%) 54.45 
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Appendix 10  The third approach for filter housing running system design  

 

 

 

 

 

 

 

 

 

 

 

 



185 

 

Casting Method Up-casting 

Casting Material AlSi7Mg 

Mold Material AL2O3 

Heat Transfer Temperature dependent HTC 

Pouring Temperature (
o

c) 700.00 

Mold Temperature (
o

c) 500.00 

Maximum Flow rate (l/s) 0.25 

Time for solver (s) 176374.72 

Time for solver (hour) 49 

Filling time (s) 8.95 

solidification time (s) 1112.20 

housing porosity (mm
3

) 0 
velocity at runner (m/s) 0.18 

velocity at ingate (m/s) 0.15 

Mass of casting (kg) 3.24 

Mass of casting system (kg) 2.71 
Yield (%) 54.45 
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Appendix 11 the final design of the filter housing design  
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Casting Method Up-casting 

Casting Material AlSi7Mg 

Mold Material AL2O3 

Heat Transfer Temperature dependent HTC 

Pouring Temperature (
o

c) 700.00 

Mold Temperature (
o

c) 500.00 

Maximum Flow rate (l/s) 0.25 

Time for solver (s) 176374.72 

Time for solver (hour) 49 

Filling time (s) 8.95 

solidification time (s) 1112.20 

housing porosity (mm
3

) 0 
velocity at runner (m/s) 0.18 

velocity at ingate (m/s) 0.15 

Mass of casting (kg) 3.24 

Mass of casting system (kg) 4.42 
Yield (%) 42.32 
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Appendix 12 the CRIMSON running system design spreadsheet 

 

Please refer to the attached DVD for the spreadsheet
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11.3 LCA Investigation of the casting process  

Appendix 13 life cycle of the sand casting product (also can be found on DVD) 
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Appendix 14 Average values for “Q” for Fabric Belts 
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Appendix 15 Energy burden result from 1993 to 2010 
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Appendix 16 Saleable casting per unit melting of aluminium, process yield, recovery ratio and recycling efficiency for different 

casting products 15 
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Appendix 17 sand casting energy consumption calculation spreadsheet  

 

Please refer to the attached DVD for the spreadsheet 
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Appendix 18 Energy burden of sand mould making and total energy burden of casting 

 

Appendix 19 Energy burden of sand mould making through secondary reclamation method and total energy burden of the 

casting 
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Appendix 20 Energy burden of sand mould making through thermal reclamation method and total energy burden of the 

casting 

 

Appendix 21 Total energy burden for different recycle and non-recycle models. 
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Appendix 22 Metal loss during each step of casting operation for the CRIMSON and the conventional casting processes 

 

Appendix 23 Impact assessment: GWP, AC, HTA due to emissions from the casting process and raw materials. 
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Appendix 24 ECO-indicator single score results for four casting scenarios 
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Appendix 25 Weighting comparison using ECO-Points 97 method 
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Appendix 26 ECO-point single score results for four casting scenarios. 
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11.4 Productivity investigation: foundry survey and response  

Appendix 27 the foundry survey  

 

To whom it may concern 

My name is Binxu Zeng. I am a PhD at Cranfield University supervised by Professor 

Mark Jolly and funded by the UK government on a project entitled “Energy saving in 

the Foundry Industry”. The CMF are representing the sector by being partners in the 

programme. I am working on the novel casting process called the CRIMSON 

(constrained rapid induction melting single up-casting ) process. The aims of this new 

process are to improve casting quality and reduce  energy consumption within the light-

metal casting industry. The philosophy of the new process is to melt just enough mass 

of alloy in a closed crucible of an induction furnace and to use a counter-gravity filling 

method to fill a single mould and thus ensure smooth liquid alloy flow behaviour and at 

the same time avoid unnecessary energy consumption.  

Currently I am working on validation such process through productivity analysis and 

cost estimation. For productivity analysis, I am planning to use process simulation 

method to compare normal casting process (sand casting, investment casting) with 

CRIMSON. For cost estimation, I will carry out a  break even analysis both processes. 

To do this analysis I require some input data  such as typical cycle times  and fixed 

costs of equipment. If possible, please spend 5 to 10 minutes to finish this survey. It will 

help me a lot to validate such process.  

In return, I can show you the possibility to improve casting quality, energy saving and 

cost saving as well.  

Looking forward your reply 

Best Regards 

Binxu Zeng 
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This survey aims to find the process cycle time for casting product up to 10 kg. The second goal 
is to find the fixed cost of the machines used for production. In this research, the casting 
process has been divided into eight steps:  pre-heating, melting, melt-treatment, holding, 
shakeout, fettling, machining, and inspection. 
 
Please select one typical casting below 10 kg. 

General information about the cast products 

1 what is your alloy and casting size?  

  

2 how much do you cut off during fettling? (kg) 

  

3 roughly, how much metal do you remove during the machining process? (kg) 

  

4 roughly, what is the scrap rate during inspection?  (%) 

  

5 roughly, how much is the raw material cost? £/tonne 

 

 

about the casting process 

1 what is batch size of the pre-heating? What is the cycle time of pre-heating? If possible, how 
much is the pre-heating equipment cost? 

  

2 what is the capacity of the melting furnace? Ideally, how long will take to melt? If possible, 
how much is the furnace cost? 

  

3 what is the cycle time of refining, degassing and drossing?  If possible, how much is the 
degassing unit cost? 

  

4 what is the capacity of the holding furnace? Ideally, how long will take to empty it? If possible, 
how much is the furnace cost? 

  

5 what is the batch size of the shakeout? What is the cycle time to shakeout one batch? If 
possible, how much is the unit cost? 

  

6 how long will fettling take? If possible, how much is the equipment cost? 

  

7 how long will it take to machine one casting? If possible, how much is the equipment cost? 

  

8 how long will it 
 take to inspect one casting? If possible, how much is the equipment cost? 
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Appendix 28 the foundry survey response from GKN 

Appendix 29 the foundry survey response from himangshu patel 

Appendix 30 the foundry survey response from RD casting  

Appendix 31 the foundry survey response from zac ulsinger 

Above appendices are located on the attached DVD 

11.5 Data of cost estimation  

Appendix 32 the comparison of the simulation results and the calculation 

results for different power output. 

Above appendix is located on the attached DVD 

Appendix 33 the conversation with Martin Wood from GW Cast about sand 

cost 

Good morning Binxu, 

The Cosworth process we operate uses Zircon sand. The cost for this material is around £1800 

per tonne. Typical Silica sand is around £30 per Tonne. The Chromite sand you mentioned is 

around £650 per tonne. All of these sands are recycled using thermal reclamation. The 

recycling cost per tonne is around £15-20. Sand losses are somewhere between 3 and 5% per 

cycle. 

Regards 

Martin 

 

From: Zeng, Binxu [mailto:b.zeng@cranfield.ac.uk]  

Sent: 21 May 2013 19:45 

To: Martin Wood 

Subject: need little help about chromite sand price 

Hi Martin  

I am doing some break even analysis for the CRIMSON process and conventional 

casting process. I know GW use COSWORTH process which will use chromite sand.  

mailto:b.zeng@cranfield.ac.uk
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Can you give me any information about the  price of the chromite sand? It is hard to 

find it on line.  

 

Thank very much  

 

Best Regards 

 

Binxu  

 

______________________________________________________________________ 

This email has been scanned by the Symantec Email Security.cloud service. 

For more information please visit http://www.symanteccloud.com 

______________________________________________________________________ 

 

______________________________________________________________________ 

This email has been scanned by the Symantec Email Security.cloud service. 

For more information please visit http://www.symanteccloud.com 

_______________________________________________ 
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Appendix 34 the cost estimation spreadsheet  

 

Please refer to the attached DVD for full version of the spreadsheet 
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Appendix 35 gravity pour casting running system design spreadsheet  

 

Please refer to the attached DVD for full version of the spreadsheet 
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Appendix 36 All-in-one spreadsheet  

 

Please refer to the attached DVD for full version of the spreadsheet
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11.6 Machineries for sand making 

Appendix 37 specification of machineries for sand making 

Sand making line contains vibrating feeder, jaw crusher, cone crusher, sand making 

machine, vibrating screen and belt conveyor and some other equipment.   

Silica sand making 

The raw material (silica stone) is evenly delivered by the vibrating feeder to jaw crusher 

for primary crushing. The crushed materials are then sent by the belt to the secondary 

crusher such as cone crusher for further crush. After the second crush the coarse sand is 

transferred to a vibrating screen for screening. Then the coarse sand can screen out two 

major sand, one can be transferred to sand making machine and the other one sent back 

for re-crush. The final step of the sand making is the sand washing. The cleaned sand 

then send to the final products pile.  

 

 

 

 

 

 

 

 

Vibrating feeder output 

Model 
Feeding Chute 

Size (mm) 

Max. Feeding 

Size (mm) 
Capacity (t/h) 

Motor 

Power 

(kw) 

Weight 

(kg) 

Overall Dimension 

(mm) 

GZD-750×2500 750×2500 300 50-80 3 1590 2580×1100×1400 

Olivine 

Stone 

Vibrating feeder Jaw 

Crusher 

Cone 

Crusher 

Vibrating 

screen 

Sand making 

machine 

Sand 

washer 

Product 
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GZD-850×3000 850×3000 400 80-120 2X2.2 3895 3110×1800×1600 

GZD-960×3800 960×3800 500 120-210 11 3980 3850×1950×1630 

GZD-1100×4200 1100×4200 580 200-430 15 4170 4400×2050×1660 

GZD-1100×4900 1100×4900 580 280-500 15 4520 5200×2050×1700 

GZD-1300×4900 1300×4900 650 450-600 22 5200 5200×2350×1750 

GZD-1500×6000 1500×6000 800 500-700 30 8670 6082×2995×2095 

http://www.joyalcrusher.com/products/Feeding-Conveying/Vibrating-

Feeder.html?gclid=CL7UyO_z17ECFcYmtAodfAYAwg 

Model 
Max. 

feeding 
(mm) 

Pocessing 
capacity(t/h) 

Motor 
power(kw) 

Obliquity 
of material 

trough 

Total 
weight 
(kg) 

Trough 
size 

(mm) 

Dimensions 
(L*W*H)(mm) 

GZD-650*2300 300 80 1.5*2 10 2798 650*2300 2300*1360*780 

GZD-750*2500 350 100 1.5*2 10 3260 750*2500 2500*1460*780 

GZD-850*3000 400 120 3*2 10 3607 850*3000 3110*1800*1600 

GZD-1000*3600 500 150 5.5*2 5 3895 1000*3600 3850*1950*1630 

GZD-1100*4200 580 240 5.5*2 5 4170 1100*4200 4400*2050*1660 

GZD-1100*4900 580 280 7.5*2 5 4520 4900*1100 5200*2050*1700 

GZD-1300*4900 650 450 11*2 5 5200 4900*1300 5200*2350*1750 

ZSW-380*95 500 96-160 11 0 4082 3800*960 3920*1640*1320 

ZSW-490*110 630 120-280 15 0 5352 4900*1100 4980*1830*1320 

ZSW-600*130 750 400-560 22 0 7800 6000*1300 6082*2580*2083 

http://www.china-crusher.com/vibrating-feeder1.html 

Model 
Max feed 

size(mm) 

Processing 

capacity(t/h) 
Speed(r/min) 

Motor 

Model 

Motor 

power(KW) 

Motor 

NO. 

Hopper 

size 

(mm) 

Motor 

weigh(t) 

Overall 

dimension 

(L×W×H)(mm) 

GZD-

180×80 
300 30-80   

YZO-

20-6 
1.5×2 2 1800×800 0.8 2200×1100×800 

GZD-

220×120 
300 80-220   

YZO-

30-6 
2.2×2 2 2200×1200 1.59 2200×1200×855 

GZD-

300×90 
300 40-100   

YZO-

30-6 
2.2×2 2 3000×900 1.5 3050×1430×1550 

GSW- 500 90-200 500-714 Y180L- 11 1 3800×960 3.98 3882×2224×2121 

http://www.joyalcrusher.com/products/Feeding-Conveying/Vibrating-Feeder.html?gclid=CL7UyO_z17ECFcYmtAodfAYAwg
http://www.joyalcrusher.com/products/Feeding-Conveying/Vibrating-Feeder.html?gclid=CL7UyO_z17ECFcYmtAodfAYAwg
http://www.china-crusher.com/vibrating-feeder1.html
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380×96 6 

GSW-

420×110 
580 150-350 500-800 

Y180L-

6 
15 1 4200×1100 5.0 4250×2500×1365 

GSW-

490×110 
580 180-380 500-800 

Y180L-

6 
15 1 4900×1100 5.32 5100×2500×1365 

GSW-

490×130 
720 200-300 500-800 

Y180L-

6 
22 1 4900x1300 5.9 4960x2580x1870 

GSW-

600×130 
750 450-800 500-800 

Y180L-

6 
30 1 6000×1300 7.8 6150×2580×2083 

http://www.alibaba.com/product-

gs/578987527/Supply_complete_vibrating_feeder_specification.html 

 

 

 

Jaw crusher 

 

Model 

Feed 

Opening Size 

(mm) 

Max. 

Feeding 

Size 

(mm) 

Adjustable 

Range of 

Output Size 

(mm) 

Capacity 

(t/h) 

Motor 

Power 

(kw) 

Weight 

(t) 

Overall 

Dimension 

(mm) 

PE250× 400 250× 400 200 20-50 5 20 15 2.9 1430× 1310× 1340 

PE400× 600 400× 600 350 40-100 15-60 30-37 6.8 1700× 1732× 1653 

PE500× 750 500× 750 425 50-100 40-100 45-55 11.2 2035× 1921× 2000 

PE600× 900 600× 900 480 65-160 60-140 55-75 16.5 2290× 2206× 2370 

PE750× 1060 750× 1060 630 80-150 80-230 90-110 29 2655× 2302× 3110 

PE900× 1200 900× 1200 750 95-165 140-320 110-132 54.5 3789× 3050× 3025 

PE1000× 1200 1000× 1200 850 105-185 180-400 160-200 56.5 3900× 3320× 3280 

PE1200× 1500 1200× 1500 1020 150-300 250-650 220-250 99.6 4300× 3540× 4043 

PEX150× 250 150× 250 125 10-40 1 3 5 5 0.85 896× 745× 935 

PEX150× 750 150× 750 125 12-45 5 16 15 3.8 1205× 1495× 1203 

PEX250× 750 250× 750 210 25-60 10 40 22-30 5 1667× 1545× 1020 

PEX250× 1000 250× 1000 210 25-60 15-50 30-37 6.8 1964× 1550× 1380 

PEX250× 1200 250× 1200 210 25-60 20-60 37-45 8.5 2192× 1605× 1415 

PEX400× 1200 400× 1200 320 35-95 28-95 45-55 11.7 2256× 2100× 1960 

JC180× 1300 180× 1300 150 10-30 12 40 30-37 6 1320× 2150× 1175 

JC250× 1000 250× 1000 220 20-40 15-55 30-37 5.6 1400× 1850× 1310 

http://www.alibaba.com/product-gs/578987527/Supply_complete_vibrating_feeder_specification.html
http://www.alibaba.com/product-gs/578987527/Supply_complete_vibrating_feeder_specification.html
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JC250× 1300 250× 1300 220 20-40 20-65 37-45 6.8 1450× 2150× 1310 

JC400× 600 400× 600 350 35-85 15-80 30-37 10 1920× 1460× 1840 

http://www.greatwallmill.com/product/jawcrusher.html 

Model 
Max. Feed 

Size(mm) 

Adjustable Range of 

Discharging 

Opening(mm) 

Capacity(t/h) 
Motor 

Power(kW) 

Feed 

Opening(mm) 
Weight(t) 

PE-150×250 125 10-40 1 5 5.5 150×250 0.81 

PE-250×400 210 20-60 5 20 15 250×400 2.8 

PE-400×600 340 40-100 25-65 30 400×600 6.5 

PE-500×750 425 50-100 45-80 55 500×750 10.1 

PE-600×900 500 65-160 70-150 55-75 600×900 15.5 

PE-

750×1060 
630 80-140 130-260 110 750×1060 28 

PE-

900×1200 
750 95-165 220-500 110-132 900×1200 50 

PE-

1000×1200 
850 195-265 250-700 132 1000×1200 57 

PE-

1200×1500 
1020 150-300 400-1000 160-220 1200×1500 100.9 

http://www.quarrycrusher.com/jaw-crusher/ 

Model 

Max. 

Feeding 

Size (mm) 

Adjustable 

Discharge 

opening (mm) 

Capacity 

(t/h) 

Motor 

Power 

(kW) 

Overall 

Dimensions 

(mm) 

Weight 

(t) 

PEW200 

×1300 
150 10-30 12 35 30 

1320X2150 

X1175 
6 

PEW250 

x1000 
220 20-40 15-50 30 

1400x1850 

x1310 
5.6 

PEW250 

x1200 
220 20-40 20-50 37 

1450x2150 

x1175 
6 

PEW400x600 350 35-85 15-70 37 
1920x1460 

x1840 
6.5 

PEW860 720 100-225 200-500 132 
3300x2320 

x3120 
32 

PEW1100 940 150-275 300-650 185 
4140x2660 

x3560 
59.2 

http://www.greatwallmill.com/product/jawcrusher.html
http://www.quarrycrusher.com/jaw-crusher/
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http://www.shanghai-crusher.com/European_Jaw_Crusher/?googleUK-

jawcrusher&gclid=CPnh2pCF2LECFUcKtAodZk4AMQ 

Cone crusher 

[ Standard CS Cone Cruser Technical Data ] 

Type 

Dia. of 

cone 

mm 

(inch) 

Cavity 

Feed 

Openin

g 

(mm) 

Discharg

e Setting 

(mm) 

Capacit

y 

(t/h) 

Counte

r Shaft 

(r/min) 

Powe

r 

(kw) 
Weigh

t 

(t) 

Overall 

Dimensio

n 

(mm) Closed 

Side"B" 

Openin

g 

Side"B" 

      

CSB75 900(3') 
Fine 83 102 9-22 45-91 

580 75 15 
2821×1880×216

4 Coarse 109 175 13-38 59-163 

CSB11

0 
1200(4') 

Fine 127 131 9-31 63-188 

485 110 20 
2821×1974×265

1 

Mediu

m 
155 156 13-38 100-200 

Coarse 178 191 19-51 141-308 

CSB16

0 

1295(4 

1/4') 

Fine 109 137 9-31 109-181 

485 160 27 
2800×2342×266

8 

Mediu

m 
188 210 13-38 132-253 

Coarse 215 241 19-51 172-349 

CSB24

0 

1650(5 

1/2') 

Fine 188 209 16-38 181-327 

485 240 55 
3911×2870×377

1 

Mediu

m 
213 241 22-51 258-417 

Coarse 241 268 25-64 299-635 

CSB31

5 
2134(7') 

Fine 253 278 19-38 381-726 

435 315 110 
4613×3251×473

2 

Mediu

m 
303 334 25-51 608-998 

Coarse 334 369 31-64 
789-

1270 

[Short Head CS Cone Cruser Technical Data ] 

Type 

Dia. of 

cone 

mm 

(inch) 

Cavity 

Feed Opening 

(mm) 
Discharge 

Setting 

(mm) 

Capacity 

(t/h) 

Counter 

Shaft 

(r/min) 

Power 

(kw) 

Weight 

(t) 

Overall 

Dimension 

(mm) 
Closed 

Side"B" 

Opening 

Side"B" 

http://www.shanghai-crusher.com/European_Jaw_Crusher/?googleUK-jawcrusher&gclid=CPnh2pCF2LECFUcKtAodZk4AMQ
http://www.shanghai-crusher.com/European_Jaw_Crusher/?googleUK-jawcrusher&gclid=CPnh2pCF2LECFUcKtAodZk4AMQ
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CSD75 914(3') 
Fine 13 41 3-13 27-90 

580 75 15 2821×1880×2410 
Coarse 33 60 3-16 27-100 

CSD110 1218(4') 

Fine 29 57 5-16 50-132 

485 110 20 2560×1942×2928 Medium 44 73 10-16 90-145 

Coarse 56 89 13-19 141-181 

CSD160 
1295(4 

1/4') 

Fine 29 64 3-16 36-163 

485 160 27 2800×2342×2668 Medium 54 89 6-16 82-163 

Coarse 70 105 10-25 109-227 

CSD240 
1676(5 

1/2') 

Fine 35 70 5-13 90-209 

485 240 55 3917×2870×3771 Medium 54 89 6-19 136-281 

Coarse 98 133 10-25 190-336 

CSD315 2134(7') Fine 51 105 5-16 190-408 435 315 110 4130×3251×445 

http://www.quarrycrusher.com/cone-crusher/symons-cone-crusher.php 

Standard Chamber 

 
Min discharge 

opening (mm) 
Power 

Capacity(t/h) 

Weight(kg) Max feedsize Close discharge size(mm) 

（mm） 6 10 13 16 19 22 25 38 51 64 

ZYC600 

C 95 10 37 45   20 25 30 35 45 50 76     5300 

M 72 6 37 45 18 20 25 30 35 40 45 60     5300 

ZYC1000 

C 160 13 90 110     80 100 135 150 175 235     10800 

M 115 10 90 110   65 75 90 120 135 150       10800 

F 80 8 90-110 52 62 72 78 115           10510 

EF 50 6 90-110 50 55 65 70 102           10510 

ZYC1160 

C 180 13 110-132     115 135 150 180 200 260     15500 

M 130 10 110-132   100 110 120 135 165 175       15500 

F 90 10 110-132   80 105 110 140           15500 

EF 60 6 110-132 60 74 105 110 130           15500 

http://www.quarrycrusher.com/cone-crusher/symons-cone-crusher.php
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ZYC1300 

C 200 16 132-160       150 180 200 230 310 390   22300 

M 150 13 132-160     115 140 160 190 210       22300 

F 102 10 132-160   90 115 145 160           22300 

EF 70 8 132-160   88 110 135 155           22300 

ZYC1380 

C 215 19 185-220         200 220 260 350 440   26300 

M 160 16 185-220       155 180 200 220       26300 

F 115 13 185-220     150 190 210 230         26300 

EF 76 8 185-220   122 148 185 200           26300 

ZYC1500 

C 235 22 185-220           265 310 420 525 580 37750 

M 175 19 185-220         215 240 265 320     37750 

F 130 13 185-220     180 210 235 255 275       37750 

EF 90 10 185-220   148 178 200 220           37750 

ZYC1680 

C 267 22 250-300           330 390 525 655 725 44300 

M 203 16 250-300       230 270 300 330       44300 

F 140 13 250-300   185 225 265 340           44300 

EF 95 10 250-300   180 220 260 335           44300 

http://www.joyalcrusher.com/products/Crushing/ZYC-Cone-

Crusher.html?gclid=CLS_osyG2LECFQUOfAodtlQAfg 

 

Vibrating screen   

Type 
Screen Spec 

.mm 
Layers 

Sieve 

Pore 

mm 

Max. 

Feed 

Size  

mm 

Capacity 

t/h 

Power 

KW 

Vibrating 

Frequency 

HZ 

Double 

Amplitude 

mm 

YA1230 1200×3000 1 3-50 200 7.5-70 5.5 800-970 8 

http://www.joyalcrusher.com/products/Crushing/ZYC-Cone-Crusher.html?gclid=CLS_osyG2LECFQUOfAodtlQAfg
http://www.joyalcrusher.com/products/Crushing/ZYC-Cone-Crusher.html?gclid=CLS_osyG2LECFQUOfAodtlQAfg
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2YA1230 1200×3000 2 3-50 200 7.5-80 5.5 800-970 8 

2YA1230 1200×3000 3 3-50 200 7.5-80 7.5 800-970 8 

YA1237 1200×3700 1 3-50 200 7.5-70 5.5 800-970 8 

2YA1237 1200×3700 2 3-50 200 7.5-80 5.5 800-970 8 

3YA1237 1200×3700 3 3-50 200 7.5-80 7.5 800-970 8 

2YA1548 1500×4200 2 5-50 400 50-208 15 970 8 

3YA1548 1500×4800 3 5-50 400 50-250 15 970 8 

3YA1848 1800×4800 3 5-80 400 50-300 18.5 970 8 

3YA1860 1800×6000 3 5-80 400 50-350 22 970 8 

3YA2160 2100×6000 3 5-100 400 100-500 30 730 8 

2YA2460 2400×6000 2 5-150 400 150-700 30 730 8 

  

http://www.chinavibratingscreen.com/Vibrating-screen-Specification.html 

 

sand making machine (silica sand) 

Model VSI5X7615 VSI5X8522 VSI5X9532 VSI5X1145 

Capacity (t/h) 

Feed Both at 

Center and Sides 
150~280 240~380 350~540 500~640 

Feed at Center 70~140 120~200 180~280 250~360 

Max Feed Size 

(mm) 

Soft Material <35 <40 <45 <50 

Hard Material <30 <35 <40 <45 

Rotation Speed (r/min) 1700~1900 1500~1700 1300~1510 1100~1310 

Double Motor Power (kW) 110~150 180~220 260~320 400~440 

Overall Dimension L×W×H (mm) 4100×2330×2300 4140×2500×2700 4560×2600×2900 5100×2790×3320 

Weight (t) 8.6 11.8 17.5 27.5 

Power Supply 380v，50Hz 

Lubrication and 

Hydraulic Station 

Double Motor Power 2X0.31kW 

Safety Assurance 

Double oil pumps assure enough oil supply, automatic switch off 

with no oil stream or hydraulic strength, lower the temprature with 

cool waterin summer, raise the tamprature with motor in winter. 

Power of Oil Tank Heater 2kW 

Overall Dimension 

L×W×H (mm) 
820X520X1270 

http://www.quarrycrusher.com/sand-making-machine/ 

Model Rolling 

Speed(r/min) 

Max.Feed 

Size(mm) 

Power(kw) Capacity(t/h) Overall Dimention(m) 

JYS-6020 1460-2100 30 60-110 60-140 3.60×2.15×2.80 

http://www.chinavibratingscreen.com/Vibrating-screen-Specification.html
http://www.quarrycrusher.com/sand-making-machine/
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JYS-8623 1380-1810 40 150-220 120-280 4.52×2.58×3.30 

JYS-9928 1200-1580 40 180-320 150-360 4.72×2.70×3.46 

JYS-1238 1100-1360 40 220-400 200-400 4.98×2.97×3.68 

http://www.mineral-grinder.com/pro_details_34.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mineral-grinder.com/pro_details_34.html
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11.7 Publication  

Appendix 38 Publications  

Journal papers: 

1. Xiaojun, D. A. I., Jolly, M., & Binxu, Z. E. N. G. (2012). Reduction of Energy 

Consumption and GHGs Emission in Conventional Sand Casting Process by 

Application of a New CRIMSON Process. Energy Science & Technology, 3(1). 

2. Jolly, M. R., Dai, X., & Zeng, B. (2012). Energy saving in the foundry industry by 

using the CRIMSON single shot up-casting process. Foundry Trade Journal 

International, 186(3700), 317-324. 

Conference papers: 

1. Zeng, B., Jolly, M. and Dai, X. (2013) Designing Novel CRIMSON Running System 

Through Numerical Simulation Method for the Purpose of Reducing the Energy 

Content of Aluminium Investment Casting, in Energy Technology 2013: Carbon 

Dioxide Management and Other Technologies (eds S. Pati, J. Drelich, A. Jha, N. 

Neelameggham, L. Prentice and C. Wang), John Wiley & Sons, Inc., Hoboken, NJ, 

USA. doi: 10.1002/9781118658352.ch5 

2. Dai. X, Jolly, M, Zeng, B. (2012) Implementation of Energy Saving and GHGs 

Emission Reduction in Investment Casting Process by Practical Application of a New 

Casting Method,  International Conference on Applied Energy, Suzhou, China  

3. Dai, X., Jolly, M., & Zeng, B. (2012, July). The improvement of aluminium casting 

process control by application of the new CRIMSON process. In IOP Conference Series: 

Materials Science and Engineering (Vol. 33, No. 1, p. 012009). IOP Publishing. 

4. Dai, X., Jolly, M., & Zhang, B. (2012). Reduction of Energy Consumption and GHGs 

Emission in Investment Casting Process by Application of a New Casting 

Method. Energy Technology 2012: Carbon Dioxide Management and Other 

Technologies, 15-22. 
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5. Dai, X., Jolly, M., & Zeng, B. (2011). The Capability Enhancement of Aluminium 

Casting Process by Application of the Novel CRIMSON Method. In Shape Casting: 4th 

International Symposium 2011 (pp. 265-272). John Wiley & Sons, Inc.. 

6. Zeng, B., Salonitis, K., & Jolly, M. (2013). comparison of the enviromental impact of 

the CRIMSON process with normal sand casting process, Proceedings of the 11th 

International Conference on Manufacturing Research, Cranfield University, UK 

7. Zeng, B., Jolly, M., & Salonitis, K. (2013, December). Manufacturing Cost Modeling 

of Castings Produced with CRIMSON Process. In Shape Casting: 5th International 

Symposium 2014 (p. 201). John Wiley & Sons. 

 


