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Abstract

Existing multi-model approaches for image set classifica-
tion extract local models by clustering each image set in-
dividually only once, with fixed clusters used for match-
ing with other image sets. However, this may result in the
two closest clusters to represent different characteristics of
an object, due to different undesirable environmental con-
ditions (such as variations in illumination and pose). To
address this problem, we propose to constrain the cluster-
ing of each query image set by forcing the clusters to have
resemblance to the clusters in the gallery image sets. We
first define a Frobenius norm distance between subspaces
over Grassmann manifolds based on reconstruction error.
We then extract local linear subspaces from a gallery im-
age set via sparse representation. For each local linear
subspace, we adaptively construct the corresponding clos-
est subspace from the samples of a probe image set by
joint sparse representation. We show that by minimising
the sparse representation reconstruction error, we approach
the nearest point on a Grassmann manifold. Experiments
on Honda, ETH-80 and Cambridge-Gesture datasets show
that the proposed method consistently outperforms several
other recent techniques, such as Affine Hull based Image
Set Distance (AHISD), Sparse Approximated Nearest Points
(SANP) and Manifold Discriminant Analysis (MDA).

1. Introduction
Image set classification approaches can be categorised

into two general classes: parametric and non-parametric
methods. The former utilise parametric distributions [2, 3,
17] to represent image sets. The similarity between the es-
timated parameters of the distributions can be considered
as a distance measure between two sets. However, the es-
timated parameters might be dissimilar if the training and
test data sets of the same subject have weak statistical cor-
relations [14, 28].

Non-parametric methods can be grouped into two
classes: single-model and multi-model methods. Single-
model methods can be further divided into two groups: sin-
gle linear subspace methods and affine hull methods. Sin-
gle linear subspace methods [14, 29] use principal angles to

measure the difference between two subspaces. As the simi-
larity of data structures is used for comparing sets, subspace
approaches can be robust to noise and relatively small num-
ber of samples [29, 28]. However, subspace methods con-
sider the structure of all data samples without selecting opti-
mal subsets for classification. Affine hull approaches [4, 12]
use geometric distances to compare sets, such as the clos-
est points between two affine hulls by least squares optimi-
sation. As such, these methods adaptively choose optimal
samples to obtain the distance between sets, allowing for
a degree of intra-class variations [12]. However, as only
distances between certain samples are used, structural in-
formation is largely ignored. Furthermore, deterioration in
discrimination performance can occur if the nearest points
between two hulls are outliers or noisy.

Multi-model approaches generate multiple local linear
models by clustering to improve recognition accuracy [9,
27, 28]. In [9], Locally Linear Embedding [21] and k-
means clustering are used to extract several representative
exemplars. The maximal linear patches technique is used
to extract local linear models in [27, 28]. For two sets with
m and n local models, the minimum distance between their
local models determines the set-to-set distance, which is ac-
quired by m× n local model comparisons.

A limitation of current multi-model approaches is that
each set is clustered individually only once, resulting in
fixed clusters of each set being used for classification. These
clusters may not be optimal for discrimination, as undesir-
able environmental conditions (such as variations in illu-
mination and pose) may result in the two closest clusters
representing two different characteristics of an object.

Consider that each cluster can be interpreted as repre-
senting a particular physical property of an object. For
example, let us assume we have two face image sets of
the same person, representing two different conditions.
The clusters in the first set represent various poses, while
the clusters in the second set represent varying illumina-
tion (where the illumination is different to the illumination
present in the first set). As the two sets of clusters capture
two different variations, matching two image sets based on
cluster matching may result in a non-frontal face (eg. ro-
tated or tilted) being compared against a frontal face.



Contributions. To address the above problem, we pro-
pose to constrain the clustering of each query image set by
forcing the clusters to have resemblance to the clusters in
gallery image sets, while simultaneously using structural in-
formation (similar to single linear subspace methods) and
selecting a subset of samples (similar to affine hull meth-
ods).

Consider two sets to be compared. The proposed ap-
proach first uses sparse approximation to extract local linear
subspaces from the first set. Each local linear subspace is
then represented as a reference point on a Grassmann man-
ifold. For each reference point, we approximate its closest
point on the manifold from a group of points of the second
set. Instead of searching through all the points, we apply
joint sparse approximation to solve the search problem. We
prove that by minimising the joint sparse representation er-
ror, we are approaching the nearest point to the reference
point on the Grassmann manifold. The average distance of
the closest points from the second set to the corresponding
reference points of the first set is taken to indicate the dis-
tance between the two sets. We term the proposed approach
as Sparse Approximated Nearest Subspaces (SANS). Fig. 1
shows a conceptual illustration of the proposed approach.

Comparisons on three benchmark datasets for face, hand
gesture and object classification show that the proposed
method consistently outperforms several recent techniques.
To our knowledge, this is the first paper to show the link
between joint sparse approximation and Grassmann man-
ifolds, and the proposed method is the first that adaptively
constructs the closest subspace to a reference subspace from
the samples of a set.

We continue the paper as follows. In Section 2, we
briefly overview sparse representation and Grassmann man-
ifolds. We then define a Frobenius norm distance between
subspaces over Grassmann manifold in Section 3. The pro-
posed approach is discussed in detail in Section 4, followed
by empirical evaluations and comparisons with other meth-
ods in Section 5. The main findings and possible future
research directions are summarised in Section 6.

2. Mathematical Preliminaries
This section overviews sparse representation as well as

Grassmann manifolds, serving as a ground for further de-
velopments. More rigorous treatment of sparse represen-
tation can be found in [5, 6], while manifolds and related
topics are covered in [1, 7, 11].

2.1. Sparse Representation

Sparse representation is based on the observation that
natural signals can be concisely represented if the signal
basis is properly selected. Consider a single measurement
vector (SMV) x ∈ Rn, which requires n numbers for repre-
sentation in the spatial domain. If the basis of the space is

carefully selected, x can be represented with d atoms (with
d < n), where each atom is an entry in a dictionary. Assume
a dictionary D can represent all possible measurements of
the signal. The sparse representation of x can be achieved
by solving the following `0-norm optimisation:

min
w
‖w‖0 , s.t. x = Dw (1)

where ‖w‖0 is the `0-norm that counts the number of non-
zero elements in w. Greedy pursuit methods iteratively
approximates the sparse solution by finding the local op-
timal at each iteration to solve the equivalent feasible prob-
lem [25]:

min
w
||x−Dw||2, s.t. ‖w‖0 ≤ α. (2)

Figure 1. Conceptual illustration of the proposed approach. Image
sets A and B are separately clustered. The green dots indicate the
corresponding point on a Grassmann manifold using images in the
cluster. The black points indicate other Grassmann points using
subsets of images from image set A or B. Query set C is sepa-
rately clustered according to the clusters of sets A and B. Set C
is divided into 4 clusters during comparison with set A. The red
dots show that images in set C are adaptively clustered such that
the nearest Grassmann point can be constructed corresponding to
the reference green points on the manifold. In this way, the corre-
sponding nearest clusters in set A and C capture similar variations.
The gray points indicate other Grassmann points using subsets of
images from set C. When comparing with set B, set C is adaptively
clustered into 3 clusters.



Sparse representation has been extended from SMV to
multiple measurement vectors (MMV) [23, 24, 26], also
known as joint sparse representation (JSR). In MMV, multi-
ple vectors are simultaneously reconstructed using the same
basis. Given a matrix X composed from a set of column
vectors, X = [x1,x2, . . . ,xm], and a dictionary D, JSR
solves the following optimisation problem:

min
W
‖W ‖p,r , s.t. X = DW (3)

where ‖W ‖p,r is the matrix norm defined as [23]:

‖W ‖p,r =
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with w[i] representing the i-th row of W . A typical choice
of p is 2 or∞ [26]. Following the `0-norm optimisation in
Eqn. (2), solution of Eqn. (3) can be approximated by [5]:

min
W
‖X −DW ‖2F , s.t. ‖W ‖2,0 ≤ α, (5)

where ‖W ‖2,0 counts the number of rows in W that con-
tain non-zero elements.

2.2. Grassmann Manifolds

Manifold analysis has been extensively studied with suc-
cess in various disciplines, such as activity recognition and
pedestrian detection [10, 22]. A manifold can be consid-
ered as a low dimensional smooth surface embedded in a
higher dimensional space. At each point of the manifold, it
is locally similar to Euclidean space. In this paper we fo-
cus on a particular class of manifolds, known as Grassmann
manifolds.

A Grassmann manifold GD,m is a set of m-dimensional
linear subspaces of RD. A point in GD,m can be repre-
sented by an orthonormal matrix with a size of D×m. The
matrix representation of a Grassmann point is not unique,
ie. two matrices A and B represent the same point if the
subspaces spanned by the column vectors of the two ma-
trices are the same. The distance between two Grassmann
points is the length of the shortest geodesic connecting two
points, which can be obtained via [7]:

dG (A,B) = ‖Θ‖2 (6)

where Θ = [θ1, θ2, · · · , θp] is the principal angle vector, ie.
cos(θi) = max

ai∈A, bj∈B
a′ibj (7)

subject to a′iai = b′ibi = 1, a′iaj = b′ibj = 0, i 6= j. The prin-
cipal angles have the property of θi ∈ [0, π/2] and can
be computed through singular value decomposition of
A′B [16].

Grassmann manifolds provide a straightforward way to
solve image set matching problems. A set with m images
ofD pixels can be transformed directly to a point onGD,m.
Thus the image set classification problem can be transferred
to a point classification problem on Grassmann manifolds.

3. Residual Distance on Grassmann Manifold
Following the form of JSR, we define a Frobenius norm

distance, named residual distance, between two subspaces
over a Grassmann manifold. For two subspaces Sa and Sb,
the distance between subspaces is defined as the summation
of distance from the unit vectors of orthonormal basis of the
subspace Sa to the subspace Sb. That is

D(Sa, Sb) = ||Ua −UbU ′
bUa||2F , (8)

where Ua and Ub are the orthonormal basis of Sa and Sb

individually. The distance D(Sa, Sb) is also the reconstruc-
tion error of Ua represented by the basis Ub.

This residual distance is the l2 norm of the sine of prin-
cipal angles given in Eqn (6) and is proved to be a form of
projection distance over Grassmann manifolds [10].

4. Sparse Approximated Nearest Subspaces
We now propose the approach to find the nearest sub-

space over Grassmann manifolds by minimising the resid-
ual distance. The proposed method consists of three main
components, which are explained in detail in the following
sub-sections.

1. Local linear subspace extraction. Images in a gallery im-
age set are grouped based on sparse representation, in order
to extract multiple local linear subspaces.

2. Nearest subspace approximation. For each local linear
subspace from a gallery image set, the approximated near-
est subspace is adaptively constructed from the samples of
the query image set. Joint sparse representation is applied to
approximate the nearest subspace.

3. Distance calculation. The average distance of all the clos-
est subspace pairs is considered as the distance between two
sets.

4.1. Local Linear Subspace Extraction

Given an image set Ia represented by matrix Xa =ˆ
xa

1 ,x
a
2 , . . . ,x

a
Na

˜
, where each column vector represents an

image of Ia, we can create a total of Na
m = Na!

m!(Na−m)!
sub-

spaces of rank m from the available Na sample images.
A collection of all these subspaces Sa

m is called the m-order
subspace set of Ia. We note that not all of the subspaces can
precisely represent the variations of the object and hence
only some of the subspaces should be used for classifica-
tion.

Single measurement vector (SMV) sparse representation
is applied to create and select local linear subspaces that
can accurately represent real samples from the image set.
This is in contrast to affine hull based methods [4, 12],
where the nearest points are synthetic samples generated
through linear combination of real samples. For each sam-
ple image xa

i from set Ia we use the remaining images
Da

k =
ˆ
xa

1 ,x
a
2 , . . . ,x

a
i−1,x

a
i+1,x

a
Na

˜
to reconstruct sample

xa
i sparsely as per Eqn. (2). We specify the number of atoms



m to use by choosing the atoms corresponding to the largest
m absolutes of coefficients w acquired via Eqn. (2). Let us
construct matrix Ma

k =
ˆ
xa

k1 ,x
a
k2 , . . . ,x

a
km

˜
containing m

column vectors of the selected atoms. Ma
k can be used to

represent a subspace sa
k. The distance between the sample

point xa
k and the subspace sa

k can be calculated by the re-
construction error ra

k = ‖Ma
kwa

k − xa
k‖2, where wa

k are the
coefficients of the selected atoms.

From a manifold point of view, each subspace of order
m can be represented as a point on Grassmann manifold
GD,m. For each image xa

i ∈ Ia, the subspace sa
k constructed

by SMV sparse representation is represented as a point over
the manifold. By setting a threshold ε on the reconstruction
error, the SMV sparse representation can select representa-
tive subspaces sa

k that can linearly represent real samples xa
k

with an error smaller than threshold ε as following:

eSa
m = {sa

k}, ∀ra
k < ε, k ∈ [1, Na], (9)

where S̃a
m is a set of selected points on the manifold. This

filtering step significantly reduces the number of points
from Na

m to less than Na. This type of subspace extrac-
tion is motivated by [8], where SMV sparse representation
is used to cluster linear subspaces.

4.2. Nearest Subspace Approximation

After extracting local linear subspaces, traditional multi-
model approaches use fixed subspaces (clusters) of each set
for classification. In contrast, we propose to adaptively clus-
ter the query image set via considering the clusters from a
gallery image set. To match image sets Ia and Ib, we first ex-
tract the local linear subspace set eSa

m for image set Ia as per
Eqn. (9). Then for each extracted local linear subspace, we
find its corresponding nearest subspace from the m-order
subspace set Sb

m of Ib. From manifold point of view, for im-
age set Ib with Nb images, there are Nb

m = Nb!
m!(Nb−m)!

points
on the same manifold. For each point sa

k, we need to find its
closest point from Nb

m points of set Ib on the manifold.
Instead of searching through all the points on the mani-

fold, we apply joint sparse approximation [24, 26] to solve
this challenging NP-hard search problem. We first gener-
ate the orthonormal basis Ua of subspace sa

k. We then treat
all the samples in Ib as elements in dictionary and apply
joint sparse representation to find the optimal solution via
Eqn. (5) by specifying the number of active atomsm. Given
orthonormal basis Ua from sa

k, we findm samples from ma-
trix Xb, representing image set Ib, that give minimal sparse
representation error1:

min
W
‖Ua −XbW ‖2F , s.t.||W ||2,0 ≤ m. (10)

1Note that a rotated basis UaRa may have slightly different solution
to Ua due to the limitation of the approximated solution for joint sparse
representation.

Assume matrix X̃b is formed by the m samples selected by
equation 10 and W̃ is the corresponding non-zero elements
from W . Thus, the reconstruction error is

Ek =
‚‚‚Ua − X̃bW̃

‚‚‚2

F
. (11)

The samples X̃b can be also be used to construct a subspace
sb

k with orthonormal basis Ub. The reconstruction error can
be rephrased as equation 8. Thus the reconstruction error
can be used as a measure of distance D(sa

k, s
b
k) = Ek be-

tween two subspaces on Grassmann manifold. By minimis-
ing the error, the nearest subspace over Grassmann mani-
folds is approached.

4.3. Distance Calculation

We have shown above how to approximate the nearest
subspace sb

k from Sb
m, given a specific subspace sa

k from the
m-order subspace set eSa

m. As we generate Nc local linear
subspaces from Ia and find their corresponding nearest sub-
spaces from Ib, the distance between two image sets Ia and
Ib is defined as the average distance of the nearest subspace
pairs:bD (Ia, Ib) =

1

Nc

XNc

k=1
D
“
sa

k, s
b
k

”
, k ∈ [1, Nc] (12)

4.4. Complexity Analysis
The complexity of the proposed SANS method is depen-

dant on the complexity of joint sparse representation (JSR).
Given two image sets with nc and nd samples, the complex-
ity of JSR is O(ncndm), where m is the number of active
atoms used. Thus, the complexity of SANS is O(Ncmndm),
whereNc is the number of local linear subspaces generated.
By controlling m and the reconstruction threshold (to limit
Nc), the time complexity can be constrained.

5. Experiments
The proposed approach was first evaluated on synthetic

data to investigate the accuracy of nearest subspace approxi-
mation, followed by a performance comparison against pre-
vious state-of-the-art methods on three image set recogni-
tion tasks: face, gesture and object recognition.

5.1. Synthetic Data
We randomly generated m sample points in Rn

(n = 100) to construct a reference subspace Sref with rank
m. N >> m sample points are randomly generated in Rn

as a dictionary. The proposed nearest subspace approxima-
tion (NSA) approach is used to find m samples from the
dictionary to construct the approximated nearest subspace
Sapp and is compared with the actual nearest subspace Sact

found by a brute force method. The relative difference ra-
tio r = |D(Sref ,Sapp)−D(Sref ,Sact)|

D(Sref ,Sact)
and the percentage of

Sapp in the top k nearest subspaces of Sref are consid-
ered as the measurements of performance. The results are



Table 1. Accuracy of the proposed nearest subspace approximation (NSA) on synthetic data. m is the number of samples used to construct
the reference subspace Sref . N is the number of samples in dictionary. The total number of subspaces for each search is Cm

N . ‘mean rank’
is the average ranking of the approximated subspace Sapp in all subspaces. The percentage that Sapp is in the top k nearest subspaces
of Sref is shown for k = 1, k = 5, k = 0.01 × Cm

N , and k = 0.05 × Cm
N . Ratio r measures the relative difference of distance as

r = |D(Sref , Sapp)−D(Sref , Sact)|/D(Sref , Sact), where Sact is the actual nearest subspace of Sref found by a brute force method.

dictionary size N = 20

num. of total num. of mean Sapp in the top k nearest subspaces ratio time (ms)
samples m subspaces Cm

N rank k=1 k=10 k=1% k=5% r NSA brute force
2 190 6.33 32% 80% 45% 80% 0.014 0.9 33
3 1140 16.7 22% 59% 63% 91% 0.012 1.1 236
4 4845 44.7 18% 52% 83% 96% 0.008 1.3 1099

dictionary size N = 100

num. of total num. of mean Sapp in the top k nearest subspaces ratio time (ms)
samples m subspaces Cm

N rank k=1 k=10 k=1% k=5% r NSA brute force
2 4950 21.9 23% 60% 83% 100% 0.022 4 894
3 161700 375.3 7% 22% 96% 100% 0.018 4 32450

achieved based on the average of 1000 tests for dictionary
size N = 20 and N = 100 separately.

Table 1 shows how close the approximated nearest sub-
space is to the actual nearest subspace. The average relative
difference ratio r is less than 1.5%. The ratio is insensitive
to the number of samples m of reference subspaces. How-
ever, it is affected by the dictionary size. This is expected
as increasing the dictionary size, the total number of sub-
spaces is exponentially increased, while the ratio is only in-
creased slightly. Evaluating the performance from the point
of view of the ranking for the approximated nearest sub-
space, most of the approximated subspaces are in the top 1%
closest subspaces and almost all of the approximated sub-
spaces are in the top 5% closest subspaces. The proposed
approach can find maximally 32% actual nearest subspaces
when dictionary size is small. In the worst case, at least 7%
actual nearest subspaces are found when the total number of
subspaces is huge (> 160, 000). The calculation time of the
proposed method is nearly constant and takes only several
milliseconds, disregarding the number of samples and the
dictionary size. In contrast, the brute force method to find
the actual nearest subspace is hundreds or even thousands
of times slower.

5.2. Image Set Recognition Tasks
We used the Honda/UCSD dataset [17] for the face

recognition task, the ETH-80 dataset [18] for the object
recognition task and Cambridge-Gesture dataset [15] for
hand gesture recognition task. We will first briefly overview
the datasets used in the experiments (Section 5.2.1), fol-
lowed by a description and discussion of the experiments
(Section 5.2.2).

5.2.1 Datasets

Honda/UCSD consists of 59 videos of 20 subjects. There
are pose, illumination and expression variations across the
sequences for each subject. As in [28], face images from

each frame of Honda/UCSD dataset were cropped and re-
sized to 20× 20. We followed [12, 27] to conduct 10-fold
cross validations by randomly selecting one sequence for
each subject for training and using the rest for testing.

ETH-80 contains 8 object categories. Each category in-
cludes 10 object subcategories (eg. various dogs), with each
subcategory having 41 orientations. We resized the images
to 32× 32 and treated each subcategory as an image set.
For each category, we selected each subcategory in turn for
training and the remaining 9 for testing. In total, 80 image
sets were used for training and 720 for testing.

The Cambridge-Gesture dataset includes 900 video se-
quences for nine gestures. For each gesture, the 100 videos
are further divided into five illumination sets. Following
the protocol of [19], the first four sets are used for test set
and the fifth set is the training set. All images are resized to
20× 20 and we select the middle 32 frames from each video
sequence as in [19].

On the Honda/UCSD dataset, we used three configu-
rations of training and testing images: randomly chosen
50, randomly chosen 100, and all images. If the number
of images in a set is smaller than the number specified,
then all the images are selected. Using a subset of images
partly simulates real-world situations where a face detec-
tor and/or tracker may fail on some frames. On ETH-80
and Cambridge-Gesture datasets, we used all raw images
for classification, while on Honda/UCSD we used two types
of images: raw and normalised via histogram equalisation.
Histogram equalisation provides some compensation to il-
lumination variations, and hence it can mask the limitations
of the matching algorithms. As such, the raw image type
provides a more challenging comparison.

5.2.2 Comparative Evaluation and Discussion

The proposed method was compared against five recent al-
gorithms: Affine Hull based Image Set Distance (AHISD)
[4], Convex Hull based Image Set Distance (CHISD) [4],



Table 2. Performance of the proposed SANS method with vary-
ing parameters m and ε on Honda/UCSD dataset using 100 raw
images per set.

ε = 0.01
m 10 15 20 25 30 35

accuracy 93.6 94.1 93.3 92.8 93.8 92.3
m = 15

ε 0.005 0.01 0.02 0.03 0.04 0.05
accuracy 92.8 94.1 92.3 93.6 93.3 93.3

Table 3. Comparison of the proposed method with the component
techniques involved, such as Joint Sparse Representation (JSR),
Grassmann Manifolds (GM) and Local Linear Subspace (LLS) ex-
traction. The results were obtained on the Honda/UCSD dataset.
‘h.e.’ indicates that the images were pre-processed with histogram
equalisation.

num. of image
JSR JSR+LLS

GM GM proposed
images type Eqn. (6) Eqn. (8) SANS

50
raw 83.8 87.7 88.7 90.0 92.3
h.e. 87.4 89.5 94.4 94.1 95.6

100
raw 88.2 93.8 87.9 90.0 93.8
h.e. 89.2 90.8 94.9 94.8 96.7

all
raw 87.7 93.6 88.7 92.1 94.1
h.e. 85.4 93.8 90.8 95.1 96.4

Sparse Approximated Nearest Points (SANP) [12], Mutual
Subspace Method (MSM) [29] and Manifold Discriminant
Analysis (MDA) [27].

AHISD, CHISD and SANP are nearest point based
methods, which find the closest points between two hulls.
MSM and MDA are subspace based methods which model
image sets as linear subspaces. Except for SANP, we ob-
tained the implementations of all methods from the original
authors. We also compare with two component techniques
involved in the proposed SANS method: Joint Sparse
Representation (JSR) technique (Eqn. (5)) and Grassmann
Manifold (GM) technique on two distances (Eqn. (6) and
Eqn. (8)).

The proposed SANS model has only two parameters:
the number of active atoms m and the sparse representa-
tion threshold ε. Preliminary experiments suggested that
m ∈ [10, 30] and ε ∈ [0.01, 0.05] resulted in satisfactory per-
formance. The performance of SANS is not sensitive to
both parameters in the range specified above. Table 2 shows
the results of varying m and ε on Honda/UCSD dataset,
using 100 raw images per set. The performance of SANS
is very stable and is consistently better than other methods
shown in Table 4. To avoid the effect of duplication samples
on local linear subspace extraction due to the limitation of
sparse representation, we remove the duplication of samples
in each image set individually.

Table 3 shows the comparison of the proposed SANS
method with component techniques, including Joint Sparse

Table 4. Performance comparison with other methods on the
Honda/UCDS dataset. ‘h.e.’ indicates that the images were pre-
processed with histogram equalisation.

num. of image AHISD CHISD SANP 2 MSM MDA proposed
images type [4] [4] [12] [29] [27] SANS

50 raw 68.4 69.7 71.0 84.9 71.0 92.3
h.e. 94.6 92.8 93.1 93.8 88.7 95.6

100 raw 65.9 66.9 68.7 84.4 72.1 93.8
h.e. 92.1 93.1 94.4 92.1 87.2 96.7

all raw 64.1 61.5 71.1 84.4 74.4 94.1
h.e. 90.7 91.3 94.9 90.8 96.2 96.4

Representation (JSR), Grassmann Manifolds (GM) and lo-
cal linear subspace (LLS) extraction. The proposed SANS
method can be considered as GM+LLS. SANS always per-
forms the best compared to each individual technique. By
applying local linear subspace extraction, the performance
of both JSR and GM is improved. For all the methods, per-
formance on histogram equalised images is slightly better
than raw images.

The comparison with other state-of-the-art methods is
shown in Table 4. The proposed SANS method obtains
the highest accuracy in all cases, with considerable im-
provements over other methods on raw images. As the
Honda/UCSD dataset contains considerable illumination
variations, histogram equalisation is required by AHISD,
CHISD, SANP and MDA to obtain good performance. For
these four methods, there is about 20 percentage points dif-
ference between the performance on raw and normalised
images. In contrast, the proposed SANS method is con-
siderably more robust, obtaining high performance for both
raw and normalised images.

AHISD, CHISD and SANP are all based on the near-
est point distance between subspaces, which is inevitably
sensitive to the illumination variations. If two image sets
are taken in different illumination conditions, the distance
between points on two subspaces will be rather large, lead-
ing to a deterioration in classification performance. While
MDA clusters images to construct local linear models and
learns a more discriminant embedding space, the distances
between local models/subspaces are based on the Euclidean
distance between the center points of models. Thus the dis-
tances is also sensitive to illumination variations.

In contrast, MSM, JSR, GM and the proposed SANS ex-
ploit structural similarities between subspaces (eg. principal
angles), which are more robust to noise (such as illumina-
tion variations). It has been previously shown that for holis-
tic face representations, illumination variations lie in a low
dimensional linear subspace [20]. Sparse representation ap-

2The performance of SANP on histogram equalised images is slightly
different from the results reported in [12]. The difference might be due to
a different face detector being used and/or the random selection of images.
Minor performance variations of this nature on the Honda/UCSD dataset
have also been observed for MDA in [12, 27].



Table 5. Results on the Cambridge-Gesture dataset [15].

PM TCCA DCCA proposed
[19] [13] [14] SANS

Set 1 89 81 63 90
Set 2 86 81 61 89
Set 3 89 78 65 91
Set 4 87 86 69 89

Average 88 82 65 90

proaches allow the use of several atoms to linearly repre-
sent any sample lying in the same subspace. In other words,
if there are several images of a person’s face taken under
varying illumination conditions, the subspace constructed
from these images can be used to represent many possible
illumination conditions. The Grassmann manifold approach
treats all samples lying in the same subspace as one point on
a Grassmann manifold, suggesting that illumination varia-
tions do not affect the point. The robustness of SANS also
comes from being able to exploit the variations present in
the training data by local linear subspace (LLS) extraction
and the adaptively constructed nearest subspaces. Multi-
ple local linear subspaces can be extracted from a gallery
image set that represent variations of a subject. For a given
local linear subspace, SANS finds the closest subspace from
the subspace set of the query image set, which represents a
similar variation. As an example, Fig. 2 shows the sample
images of an extracted local linear subspace as well as the
sample images of the constructed nearest subspaces.

Fig. 3 illustrates the results obtained on the ETH-80
dataset. In this test, all methods perform worse than on the
Honda/UCSD dataset. ETH-80 is more challenging as it
has much less images per set, significant appearance differ-
ences across subjects of the same class, and larger view an-
gle variations within each image set. Nevertheless, the pro-
posed SANS method dramatically outperforms other meth-
ods by more than 20 percentage points. We note that the

(a)

(b)

(c)

Figure 2. (a) Sample images of an extracted local linear sub-
space from a gallery image set. (b) Sample images of the con-
structed nearest subspace from a query image set of the same
class. (c) Sample images of the constructed nearest subspace from
a query image set of a different class.

Figure 3. Results on the ETH-80 dataset [18].

Table 6. Comparison of average time cost to compare two image
sets with 100 images per set.

Methods AHISD CHISD SANP MSM MDA SANS
Time (ms) 15.3 936.1 65.9 22.3 11.2 35.3

performance of MDA on ETH-80 is lower than that reported
in [27], as our setup is more challenging. Compared to [27],
where 5 sets are used for training, we use only one set. The
average time cost to compare two image sets is shown in
Table 6.

Table 5 shows the results of the proposed method com-
pared with three recent approaches for action classification
on the Cambridge-Gesture dataset. Nearest point based
methods, such as AHISD, CHISD and SANP, and the multi-
model method MDA perform poorly in this dataset with less
than 30% accuracy on average, due to the significant illumi-
nation variation. The proposed SANS method still performs
the best compared to state-of-the-art action classification
methods, including Product Manifolds (PM) [19], Tensor
Canonical Correlation Analysis (TCCA) [13] and Discrim-
inative Canonical Correlation Analysis (DCCA) [14] meth-
ods.

6. Main Findings and Future Directions

We have proposed a novel approach to approximate near-
est subspaces over Grassmann manifolds. To this end, we
first defined a residual distance over Grassmann manifolds.
Single measurement vector sparse representation is then
employed to create local linear subspaces from a gallery
image set, followed by joint sparse representation to ap-
proximate the corresponding nearest subspaces from the
probe image set. We have shown that by minimising the
joint sparse reconstruction error, the nearest subspace on a
Grassmann manifold is approached. The average distance
of nearest subspace pairs is defined a new distance between
two image sets.

In contrast to single linear subspace methods, the pro-
posed Sparse Approximated Nearest Subspaces (SANS)



method extracts multiple local linear subspaces using a
subset of samples. Unlike affine hull based approaches,
SANS compares structural similarity between local linear
subspaces. Distinct to multi-model based methods, SANS
utilises the subspaces (clusters) of one image set to adap-
tively cluster the samples of another image set by construct-
ing the corresponding closest subspaces without complete
pairwise local subspace comparisons.

Comparative evaluations on synthetic data show that the
proposed method can approximate the nearest subspaces
with small errors. Further experiments on three recogni-
tion tasks show that the proposed approach consistently out-
performs several recent methods (AHISD [4], CHISD [4],
SANP [12] and MDA [27]), especially in cases of large im-
age variations and limited number of samples. The experi-
ments also indicate that subspace structural similarity based
methods generally perform better than nearest point based
methods for image sets with variations in illumination.

Future avenues of research include random rotation of
orthogonal basis for more robust nearest subspace approxi-
mation and learning more discriminative embedding spaces
for manifolds [10, 27]. The proposed nearest subspace ap-
proximation can also be extended to use other multi-model
approaches for local model extraction, such as Manifold
to Manifold Distance (MMD) [28], Manifold Discriminant
Analysis (MDA) [27] or Local Linear Embedding (LLE)
with k−means clustering [9].
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