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Abstract 

One-dimensional single crystal incorporating functional nanoparticles of other 

materials could be an interesting platform for various applications. We studied the 

encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the 

crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean 

diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 

200 nm have been used to study the encapsulation process. It was found that by 

regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full 

encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that 

our low-temperature aqueous solution growth of ZnO nanorods do not affect or 

cause degradation of the nanoparticles of either inorganic or organic materials. This 

new growth method opens the way to a plethora of applications combining the 

properties of single crystal host and encapsulated nanoparticles. We perform micro-

photoluminescence measurement on a single ZnO nanorod containing luminescent 

nanodiamonds and the spectrum has a different shape from that of naked 

nanodiamonds, revealing the cavity effect of ZnO nanorod.  
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Introduction 

Anisotropic growth of compound semiconductors with wurtzite crystal structure 

normally leads to the formation of one-dimensional (1D) structures. A typical 

example is ZnO that, in its wurtzite form, has the fastest growth rate over the <0001> 

face and has been extensively studied in terms of synthesis methods and 

applications. ZnO is a multifunctional material with semiconducting, photonic, and 

piezoelectric properties. Potential applications of ZnO 1D nanostructures include gas 

sensor [1], transistor [2], light-emitting device [3], optical waveguide [4], nanolaser 

[5], and piezoelectric power generator [6], etc. Since the first report of ZnO nanobelts 

in 2001 [7], methods for growing ZnO 1D nanostructures have been well developed, 

including high-temperature vapour-phase growth [8], low-temperature aqueous 

solution growth [9], and electrochemical deposition [10]. The aqueous solution 

growth is the most inexpensive one, and is scalable for production.  

Single-crystal nanowires/nanorods of wide-bandgap semiconductors are ideal 

candidates for nanophotonic applications. The 1D geometry, dislocation-free single-

crystalline nature, high index of refraction and atomically smooth surface, allow for 

sufficient end-facet reflectivity and photon confinement in a volume of just a few 

cubic wavelengths of material. Since the first report of a ZnO nanowire laser, much 

effort has been placed in nanophotonic research based on small-sized 

semiconducting nanocrystals with 1D or 2D structures. To study the photon-matter 

interaction within those crystals, the luminescence of the cavity material has been 

conventionally used as a light source. Under excitation, ZnO emits UV light at ~380 

nm ascribed to its wide band gap (Eg~3.4 eV). With crystal defects such as oxygen 

vacancies, ZnO show visible photoluminescence under UV light excitation. Though 
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ZnO micro/nanorods can be both light emitters and optical cavities, the drawback is 

that their luminescence is not tunable in terms of wavelength and efficiency. For 

laser applications, the visible emission of ZnO micro/nanocavities has a broad range 

which can be used to observe a series of optical resonances [11,12], while lasing in 

this range cannot be achieved. Within the narrow excitonic emission range, UV 

lasing from ZnO micro/nanorods has been realized [5,13], however this requires that 

the resonant positions sit within the narrow UV emission range. Thus the options for 

lasing wavelength and resonant mode orders are limited. There is a large variety of 

nanoparticles that have various luminescent properties and potential applications. 

Luminescent nanoparticles including semiconductor quantum dots, nanodiamonds 

(NDs) with nitrogen-vacancy (NV) centres, and dye-doped polymer nanobeads, etc., 

have wide applications based on their luminescent properties. Luminescent NDs can 

be used for magnetic sensing [14]; dye-doped polymer nanobeads can act as laser 

gain media [15], depending on the selection of dye molecules. Semiconductor 

quantum dots can be used as laser gain media as well as for quantum 

communications when confined within an optical cavity. The coupling of luminescent 

nanoparticles emission to artificial optical cavities such as 2D photonic crystals [16] 

and micro-spheres [17] has been studied. Single crystal nanorods as dielectric 

cavities have superior features in terms of their small size and excellent cavity 

properties. Therefore by encapsulating luminescent nanoparticles into transparent 

single-crystal nanorods, it is possible to develop an interesting platform for novel 

photonic applications.  

ZnO nano/microrods are particularly interesting because they are not only optical 

cavities but also components for developing UV light-emitting diodes (LEDs). If 

luminescent quantum dots or dye-doped polymer nanobeads can be encapsulated 



4 

 

into a ZnO nano/microrod that is integrated into a LED, the UV emission of ZnO can 

act as an excitation source to stimulate the visible emissions of embedded 

nanoparticles, providing the way to develop small-size lasers.  So far, nanoparticles-

filled polymers or glass fibres have been reported [18,19]. No reports exist on 

integrating nanoparticles into single-crystal nanorods. By sealing functional 

nanoparticles, such as luminescent, magnetic, and plasmonic metal materials, etc., 

into single crystal nanorods, we believe that many applications can be explored. 

Herein, we report the encapsulation of nanoparticles into ZnO nanorods by exploiting 

the growth habit of ZnO. A low-temperature aqueous solution growth method is used 

to grow ZnO nanorods. It is worth mentioning that the low-temperature growth 

(<100oC) does not produce any thermal damage to the encapsulated nanoparticles, 

and this is important in particular for organic nanomaterials.  

Results and Discussion 

Encapsulation of nanodiamonds 

We firstly used small size NDs (10 nm size), which are non-luminescent and 

purchased as nanopowder, to study the encapsulation of small nanoparticles into 

ZnO nano/microrods, as shown in Figure 1. Two groups of samples, ZnO nanorods 

and microrods, used to study the embedment of NDs, are depicted in Figures 1a-c 

and Figures 1d-f, respectively. Figure 1a and Figure 1d show that NDs are attached 

to both the top and side facets of nano/microrods. The thin nanorods in Figure 1a 

and relatively thick microrods in Figure 1d were grown from two nutrient solutions 

with different chemical concentrations of 15 mM and 30 mM, respectively. The side-

view image in Figure 1b shows that NDs were embedded in the nanorods after a 

second growth process (20 mM, 4 h). Regrowth of the nanorod along the axial 
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direction leads to a new section with smooth surface. By measuring the length of 

newly-grown section, we can estimate that the second growth process results in 1.7 

times increase of the length. Nevertheless, the growth over the side facets was too 

slow to completely bury the surface-attached NDs. The close-view image in Figure 

1c shows that the incomplete encapsulation of NDs leads to holes in the nanorod 

surface. For ZnO microrods in Figure 1d, regrowth along the axial direction is much 

slower than that of the much thinner nanorods, concluded by comparing Figure 1b 

and Figure 1e. Note that experimental conditions for the second growth of the two 

samples are identical. On the other hand, for thick microrods the growth over the 

side facets was less suppressed as can be seen in Figure 1e, where most of the 

nanoparticles were completely encapsulated into the nanorods, leaving some big ND 

clusters partially exposed. All the surface attached NDs can be completely 

encapsulated into ZnO microrods if longer regrowth time (8 h) is allowed, as seen in 

Figure 1f. The encapsulation of 10-nm-size NDs into ZnO nano/microrods indicates 

that luminescent quantum dots can be hosted by a ZnO nano/microrod cavity, in 

order to develop advanced photonic devices such as lasers and color-tunable light 

emitting devices. In our experiment NDs from isopropanol solution were dispersed 

onto both ZnO nano/microrods and a Si substrate. If a lithography technique is 

employed to grow ordered ZnO nanorods onto a lattice-constant-matched substrate, 

nanoparticles on the substrate can be avoided and the size of nanorod cavity can be 

well controlled in respect of light wavelength and optical cavity effect.      
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Figure 1: FE-SEM images showing the encapsulation of 10-nm-diameter NDs into 

ZnO nanorods and microrods. (a) Thin nanorods with NDs attached to their surfaces. 

(b) After a second growth process of ZnO nanorods. (c) A close-view of the nanorod, 

showing the embedment of NDs into the rod and the newly-grown section with 

smooth surface. (d) Relatively thick microrods with NDs in their surfaces. (e) After a 

second growth process, most of the NDs were encapsulated into the microrod, 

leaving some NDs clusters partially exposed. (f) NDs were completely encapsulated 

into the nanorod, given long regrowth time.  

 

       Figure 2 demonstrates the encapsulation of 40-nm-diameter NDs, which contain 

NV luminescent centres, into ZnO nanorods. We dispersed NDs from the suspension 

twice onto ZnO nanorods in order to increase the areal density of nanoparticles. It 

can be seen in Figure 2a that some NDs even agglomerate. As nanoparticles were 

heavily loaded onto ZnO nanorods, regrowth of ZnO can only occur over the limited 

bare surface. However, it is surprising to see that these surface-attached NDs were 

completely encapsulated into nanorods after a regrowth process (20 mM, 6 h), as 

evidenced by the top-view image in Figure 2b and the side-view image in Figure 1c. 

Among the nanorods, few show incomplete encapsulation of agglomerated NDs. as 
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can be seen in Figure 2d. We cut the Si substrate to take side-view images. Some 

nanorods were fractured at the edge of the cracked substrate. The cross-sections of 

fractured nanorods in Figures 2e and 2f clearly show NDs completely encapsulated 

into the nanorods. Also, from Figure 2e we can measure that the thickness of newly-

grown ZnO layer over the side facets is about 120 nm. For nanoparticles of inorganic 

materials, the size below 100 nm can be easily achieved. However for polymer 

materials it might be not easy to prepare small nanoparticles with size below 100 nm. 

Hence it is worth studying the encapsulation of relatively large nanoparticles into 

ZnO nanorods. The advantage of polymer nanobeads is that they can be multi-

functional by hosting luminescent dye molecules or magnetic nanoparticles. As the 

growth rate over the side facets of a ZnO nanorod is much slower than that over the 

top facet, it would be more challenging to encapsulate large nanoparticles with size 

beyond the 100 nm regime into ZnO nanorod.  

 

 

Figure 2: FE-SEM images showing the encapsulation of 40-nm-diameter NDs into 

ZnO nanorods. (a) ZnO nanorods covered with NDs. (b and c) Top- and side-view 

images of the nanorods after a second growth process, showing the complete 
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encapsulation of NDs into the nanorods. (d) A nanorod shows the incomplete 

encapsulation of agglomerated NDs. (e and f) Cross-section images of fractured 

nanorods containing NDs, showing NDs inside the crystal.  

 

Encapsulation of polymer nanobeads 

       We used polystyrene nanobeads (diameter 200 nm) to study the encapsulation 

of large nanoparticles into ZnO nanorods. After dropping nanobeads aqueous 

suspension onto ZnO nanorods arrays and blow-drying, nanobeads were found 

sparsely scattered over the nanorods surfaces as seen in Figure 3a. Nanobeads 

attached to the top facet can be entirely encapsulated into the nanorod after a 

regrowth process due to the fast axial growth rate. However, those attached to the 

side surface were partially embedded into the nanorods after a second growth from 

solution (20 mM, 5 h), as seen in Figure 3b. We intentionally broke these nanorods 

by crushing them against a piece of bare Si for SEM imaging, as shown in Figures 

3c and 3d. The close-view image in Figure 3c shows that the nanobeads were about 

half-volume embedded in the nanorod. Considering the nanobead radius of 100 nm, 

we can deduce that the thickness of newly-grown ZnO over the side facet is about 

100 nm, which is consistent with the thickness of newly-grown layer revealed by 

Figure 2c. Some nanobeads embedded into the nanorod were detached when the 

nanorods were mechanically fractured. This exposes the bowl-shaped pits where the 

nanobeads once were. A close-view image of these voids in Figure 3d shows that 

their inner surface is rather smooth, which means the embedded nanobeads are 

tightly surrounded by ZnO. We believe that no chemical bonds were formed at the 

interface between nanobeads and ZnO, and the interaction is Van de Waals force.   
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Figure 3: FE-SEM images showing the embedment of 200-nm-diameter polymer 

nanobeads in ZnO nanorods. (a) ZnO nanorods with polymer nanobeads attached to 

their surfaces. (b) Nanobeads were embedded in nanorods after a second growth 

process. These nanobeads were about half-volume exposed. (c) Intentionally 

fractured nanorods. (d) Close-view of the vacant sites where the nanobeads were 

broken off.  

 

     The polymer nanobeads can be embedded deeper or even completely 

incorporated into ZnO crystal, depending on how much the nanorod is regrown. 

Figure 4a shows the nanorod after a regrowth process of 8 h. Such a long regrowth 

process leads to an overgrowth thickness more than 120 nm but less than 200 nm, 

leading to a deep embedment of nanobeads into the ZnO nanorod. In Figure 4b, the 

nanobeads were embedded even deeper after a 12 h regrowth (thickness above 200 

nm) of the nanorod. The deeply embedded nanobeads leave holes in the nanorod 

surface of about 100 nm across, much smaller than the nanobeads (200 nm). It is 

conceivable that the holes will gradually fill in and finally close if the nanorod 
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continues to grow. Figure 4c shows a nanorod in which some nanobeads are slightly 

exposed and one is almost encapsulated into the nanorod bulk as indicated by an 

arrow. In the aqueous solution most of the Zn2+ ions are condensed into ZnO within 

4 h, and the chemicals are exhausted if the growth duration exceeds 12 h. Hence the 

200-nm-diameter nanobeads cannot be completely sealed into the nanorods by 

simply prolonging the growth time. To further thicken the nanorods, we used a three-

step growth process. The nanorods after the first growth step were used to support 

nanobeads. After the second growth for 4 h, which is insufficient to completely 

encapsulate the nanobeads into ZnO nanorods, the sample was transferred to a 

fresh nutrient solution for the third-step growth for 4h. The fractured nanorod in 

Figure 4d reveals a nanobead entirely encapsulated into the nanorod.  

 

 

 

Figure 4: FE-SEM Images showing the encapsulation of nanobeads into ZnO 

nano/microrods after different regrowth processes. (a) Most part of the nanobead is 
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embedded into a nanorod. (b) Nanobeads are deeper embedded into a nanorods, 

leaving holes in the surface. (c) A thick microrod showing that the embedded 

nanobeads are slightly exposed. (d) A fractured microrod showing a completely 

encapsulated nanobead inside.  

 

Growth mechanism 

 The growth of ZnO in aqueous solution can be described as an epitaxial growth 

process. The precursors Zn(NO3)2 and HMTA in water lead to chemical reactions 

are as follows [20]: 

(CH2)6N4 + 6H2O → 4NH3 + 6HCHO                   (1) 

NH3 + H2O → NH4
+ + OH−                                    (2) 

Zn2+ + 2OH− → Zn(OH)2                                      (3) 

Zn(OH)2 → ZnO + H2O                                          (4) 

Hence, Zn2+ and OH- are the growth species contributing to the growth of ZnO. When 

the ZnO nanorod is in the nutrient solution, the growth species deposited onto the 

surface contribute to the stack of atomic layers, making the nanorod grow thicker 

and longer while maintaining the single-crystal feature and hexagonal shape 

[Supporting information Figure S1]. This growth process can be described as 

solution homoepitaxy [21, 22]. By crushing ZnO nano/microrods containing NDs onto 

a bare Si, we were able to expose NDs in the fracture section. The smooth and 

continuous surface around those exposed NDs or tiny cavities with NDs off further 

reveals the single-crystal character of the rod after two-step growth process 

[Supporting information Figure S2]. Figure 5a illustrates the encapsulation of a 

nanoparticle into a growing crystal. Initially the nanoparticle attaches to the crystal 

surface. With atomic layers stacking and spreading over the surface, the 
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nanoparticle is embedded in newly-grown crystal. Step by step, the crystal grows 

around the nanoparticle enclosing it into a perfectly matching cavity. When the 

overgrowth is nearly completed a hole above the nanoparticle could still be present. 

The epitaxial growth continues and the hole gradually shrinks and finally closes, 

sealing the nanoparticle in crystal. Figure 5b is a 3D view of the encapsulation 

process. The top [0001] facet of ZnO nanorod is known to have the fastest growth 

rate, hence nanoparticles at the top face can be quickly encapsulated. Complete 

encapsulation of nanoparticles attached to the side facets into the nanorod can be 

achieved if the newly-grown layer thickness is beyond the nanoparticle size.  

 

 

 

Figure 5: (a) Illustration of the encapsulation process of a surface-attached 

nanoparticle into the growing crystal. (b) Encapsulation of nanoparticles into a ZnO 

nanorod by regrowing the nanorod.  
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Micro-photoluminescence of a single ZnO nanorod containing 

luminescent nanodiamonds  

The 40-nm-size NDs with NV luminescent centers exhibit red photoluminescence 

(PL) when excited by a green laser. The results of micro-PL measurements on a 

single ZnO nanorod containing luminescent NDs, a ZnO nanorod with NDs attached 

to its surface, and naked NDs dispersed from solution on a steel substrate are 

shown in Figure 6a. The insets show two fractured ZnO nanorods lying on Si 

substrates. One nanorod has NDs embedded inside and the other one has naked 

NDs attached to its surface. The three PL spectra, with peak maximum normalized, 

have two small characteristic peaks of the NV defect at 576 and 638 nm, 

corresponding to charge states of NV0 and NV-, respectively. The PL spectrum of 

naked NDs shows peak position of emission band at 705 nm. However, for those 

NDs in contact with a ZnO nanorod, either embedded or in the surface, their PL 

emission peak is blue-shifted to 686 nm. The laser energy is insufficient to produce 

PL of ZnO, ruling out the influence of ZnO luminescence in causing the shift of NDs 

emission. In Figure 6b, the PL spectrum of NDs in a thick ZnO microrod shows a 

different shape compared to that of naked NDs. The inset in Figure 6b is an optical 

microscope image, in which the relatively thick rod marked by a cross was the target 

for collecting PL spectrum. The diameter of this rod is estimated to be 1.5-2.0 μm, 

whereas those in Figure 6a are 0.6-1.0 μm. In micro-PL measurement, the laser 

beam with spot size ~1 μm was perpendicular to the nanorod and NDs inside or 

attached to the nanorod were excited to produce red luminescence. ZnO nanorod is 

transparent to visible light and emissions from NDs can transmit into ZnO 

nano/microrod to undergo multi-reflections. ZnO is a birefringent crystal with 

refractive indice around 2.0 in the visible range, indicating the total refraction angle of 
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light ray in ZnO is ~30 oC. Due to the waveguide effect partial photons would 

propagate along the nanorod axis direction. Hence inside the nanorod light rays 

refracted to top upper facet have contribution to the PL signal (Figure 6c). Light rays 

with different polarizations have different transmittance when refracted from ZnO to 

air. The blue-shift of emission band of NDs inside or in the surface of a ZnO nanorod 

could be attributed to the optical cavity effect of ZnO nanorod. One possible light 

propagation path is a close loop in the rod cross-section, as show in the right hand in 

Figure 6c. That means, the nanorod is treated as a 2D cavity and the light ray strikes 

at the center of boundary at 60o incident angle to circulate in a hexagon loop, leading 

to whispering-gallery mode (WGM) resonances when the length of loop is an integer 

multiple of light wavelength. Normally, the larger the cavity size, the higher the 

resonance quality [23, 24]. In the PL spectrum, the resonant peaks would broaden 

and peaks will be more separated with reducing the nanorod diameter. In Figure 6b, 

the PL spectrum of a relatively thick ZnO microrod containing NDs shows not only 

the blue-shift of the luminescence band but also the suppressed intensity of the band 

central region. The shoulder peak at 660 nm is pronounced, which can be explained 

by the resonant cavity-induced enhancement. The thickness of this microrod is 

estimated to be ~1.5-2.0 μm, which is more suitable to produce discernible WGMs 

compared to those thinner nanorods with diameters < 1 μm. Light emission from 

NDs is coupled to the microrod cavity and WGM resonances behind the PL spectrum 

leads to enhancement of luminescence at positions aside the emission band peak, 

making the PL peak shift and the band shoulders prominent. Fabry-Pérot type 

resonances originated from photons bouncing between two opposite side facets of 

the nano/microrod cannot be observed due to the short inter-distance. If vertical ZnO 

nano/microrods containing luminescent nanoparticles are illuminated by an excitation 
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laser at the top, we believe that much stronger PL signal can be collected due to the 

waveguide effect and Fabry-Pérot type resonances or even lasing can be achieved.  

 

 

Figure 6: (a) Micro-PL spectra taken from a single ZnO nanorod containing NDs, a 

nanorod with NDs in the surface, and cluster of naked NDs, respectively. The insets 

show typical SEM images of two fractured ZnO nanorods lying on bare Si. One 

nanorod contains NDs and the other one has NDs attached to its surface. (b) Micro-

PL spectra of a single ZnO microrod containing NDs and naked NDs. The inset 

shows an optical photograph taken during the PL measurement. The relatively thick 

rod marked by a cross was targeted for PL measurement. (c) Illustrations for light 

propagations when the emission from a ND interacts with the rod cavity.   

 

Conclusion 

In summary, we have demonstrated the encapsulation of nanoparticles into single 

crystal ZnO nanorods by exploiting crystal growth. Nanodiamonds and polymer 

nanobeads are used as examples to study this process for nanoparticles with 
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different sizes and shapes into ZnO nanorods grown in aqueous solution at low 

temperature. Our two-step aqueous epitaxial growth process results in the full 

encapsulation of 10 nm and 40 nm nanodiamonds. The same two-step process 

results only in a partial embedment of 200-nm-diameter polymer nanobeads. 

Complete encapsulation of these relatively larger nanobeads into ZnO nanorods can 

be achieved by a further epitaxial growth of ZnO via a three-step process using the 

same solution method. Our study indicates that in principle any kinds of 

nanoparticles, both inorganic and organic, can be incorporated into ZnO nanorods. 

The epitaxial growth over ZnO surface leads to the encapsulation of nanoparticles 

into the crystal while maintaining the single crystal feature. We believe that 

nanoparticles can be encapsulated into not only ZnO, but also other functional 

crystals grown by the epitaxy process. Micro-PL measurements on a single ZnO 

nanorod containing luminescent NDs demonstrates that the light emission from NDs 

can be coupled to the nanorod cavity, resulting in shift of the PL emission peak and 

change of the PL spectrum shape.  

This low temperature process opens the way to the encapsulation of nanoparticles 

made of polymers and even biomaterials, which would degrade at high temperature, 

creating a new platform for nano-devices, nano-detectors, and applications in nano-

medicine.  

Experimental 

ZnO nanorods were grown at 90 oC onto Si substrates in an aqueous solution 

containing zinc nitrate and hexamethylenetetramine (HMTA) with molar ratio of 1:1. 

A piece of bare Si was put face-down floating on top of the nutrient solution surface. 

The strategy to encapsulate nanoparticles into ZnO nanorods is through a multi-step 
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growth process. First, ZnO nanorods are grown onto the substrate; second, 

nanoparticles are attached to the surface of nanorods; Third, the nanorods are 

grown again in the solution to incorporate the nanoparticles. The growth duration 

was set 4 h for the first-step growth, but different concentrations of zinc nitrate and 

HMTA in the solution were used to control the nanorod thickness. To grow thin 

nanorods, 15 mM Zn2+ in the solution was used. Thick nanorods were grown in the 

30 mM solution. After growth, the sample was rinsed with DI water and dried. 

Afterwards, nanoparticle suspension was dropped onto the substrate covered with 

nanorods, and then rinsed. This leads to the attachment of nanoparticles onto the 

nanorods surfaces by Van der Waals force. The sample was dried at 50 oC, followed 

by a second growth of ZnO nanorods in the nutrient solution containing 20 mM Zn2+. 

The regrowth duration was 4-12 h, and different nanoparticles were used: two types 

of diamond nanoparticles with average diameters of 10 nm and 40 nm, respectively, 

and polymer nanobeads with mean size of 200 nm. Nanopowder of NDs with mean 

size of 10 nm (Aldrich Sigma) was dispersed into isopropanol (0.2 mg/ml) to prepare 

a suspension. An aqueous suspension of 40-nm-diameter NDs (0.1 mg/ml) with NV 

luminescent centres was purchased from Adamas Nanotech. Polystyrene 

nanobeads (200 nm size) dispersed in water (0.5 mg/ml) were purchased from 

Polyscience Inc. Field-emission scanning electron microscopy (FE-SEM, Zess 

Sigma) was employed to study the morphologies of ZnO nanorods and embedded 

nanoparticles. For micro-PL measurement, ZnO nanorod arrays were crushed 

against a bare Si, to produce fractured nanorods lying on the surface. A micro-

Raman/PL spectrometer (Renishaw inVia) with 532 nm laser was employed to study 

the PL of single ZnO nanorod containing NDs. 
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