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Abstract
A multi-secret sharing scheme allows several secrets to be sharedjstnaogroup of participants. B005, Shao and

Cao developed a verifiable multi-secret sharing scheme where edidipaat's share can be used several times which
reduces the number of interactions between the dealer and the groupenseitim addition, some secrets may require a
higher security level than others involving the need for different trokestalues. Recently, Chan and Chang designed
such a scheme but their construction only allows a single secret to igberthreshold value.

In this article, we combine the previous two approaches to design a multiples¢irifiable multi-secret sharing scheme
where several secrets can be shared for each threshold value ti$nwnning time is an important factor for practical
applications, we will provide a complexity comparison of our combinedaggh with respect to the previous schemes.

Keywords: Secret Sharing Scheme, Threshold Access Structures, @éiability, Chinese Remainder Theorem, Keyed
One-Way Functions.

1 Introduction

In 1979, Blakley and Shamir independently inventgdn)-threshold secret sharing scheniresrder to facilitate the dis-
tributed storage of secret data in an unreliable environifiefi8]. Such a scheme enables an authority callealerto
distribute asecrets assharesamongst: participants in such a way that any group of minimum gizan recoves while
no groups having at most— 1 members can get any information abeut

Sometimes, however, several secrets have to be sharedaienlsly. A basic idea consists of usingtan)-threshold
scheme as many times as the number of secrets. This apphmaedver, is memory consuming. As noticed by Chetn

al. [4], multi-secret sharing schemes can be used to overcomdrdawvback. In such a construction, multiple secrets are
protected using the same amount of data usually needed tecpansingle secret. Multi-secret sharing schemes can be
classified into two families: one-time schemes and multipplee schemes [12]. One-time schemes imply the dealer must
redistribute new shares to every participant once somécphat secrets have been reconstructed. Such a redigribut
process can be very costly both in time and resources, iitpkat, when the group size gets large as it may be the case
in group-oriented cryptography![6].

Several constructions of multiple time schemes have beleieaad [4] 25]. Nevertheless, they have the drawback that a
dishonest dealer who distributes incorrect shares or aioas participant who submits an invalid share to the combin

*The original version of this paper appears in the proceedfighe 3rd SKLOIS Conference on Information Security andp@ipgy (INSCRYPT
2007), Lecture Notes in Computer Science, vol. 4990, pp 1681 ; $pringer - Verlag, 2008.



prevents the secrets from being reconstructed. The idedbast computational secret sharing schemes was introdyced
Krawczyk [14] to deal with this problem. Several such praisavere developed. Harn designed a verifiable multi-secret
sharing scheme_[10] which was extended by Lin and Wi [15]3ln Changet al. recently improved that construction
even further by providing resistance against cheating Hicioas participants and reducing the computational ceaxipy

with respect to [10, 15]. The security of that scheme reliethe intractability of both factorization and discretedoighm
problem modulo a composite number. [n][25], another metrst sharing scheme was developed by Yeinal. As [4],

its security is based on the existence of keyed one-way ifumintroduced by Gong in [9]. Shao and Cao recently ex-
tended Yanget al's scheme by providing the verification property and redgc¢he number of public values[19].

It may occur that the same group wfparticipants share several secrets related to differeastiold values according

to their importance. As an example, consider that an armyncander requests a strike to be executed and transmits the
order to a group of 0 generals. One can imagine that any pair of officers can réwmshe coordinates of the target and
then initialize the process by mobilizing the appropriaqeipment (plane, submarine, missile) but only subsets it

of 10 generals can get access to the bomb activation code andhlthmsetrike. Recently Chan and Chang designed such
a construction[2] but it only allows a single secret to beretiger threshold value.

In this article, we propose a generalization [df[[2] 19] bydducing a Verifiable Multi-Threshold Multi-secret Shagin
Scheme (VMTMSS) where several secrets can be shared pshdfalevalue. The security of our multiple time scheme is
guaranteed as soon as keyed one-way functions and coltssigstant one-way functions exist. In the previous situati
our VMTMSS would enable any pair of generals to have accessdet location, launch time, type of weapon to be used
while any subset o8 out of 10 officers can recover the bomb code as well as the commandegital dignature([2D] as
the approval for the strike. This example also emphasizesdied for computational efficiency. Therefore we will also
provide an analysis of the computational cost of our coetitn.

This paper is organized as follows. In the next section, wieratall the polynomial interpolation problem as well as
Garner's algorithm since they will have an important roleoim construction. Ii-Secfiod 3, we will describe our multi-
secret sharing scheme and prove its soundnelss, In Sektienwill analyze the computational complexity of our appitvac
and compare it to the cost of the two constructions froii_[4, TBe last section will summarize the benefits of our
construction.

2 Preliminaries

In this part, we recall two problems which will play an impant role in proving the soundness and efficiency of the
scheme we describe [n Secfidn 3.

2.1 Interpolating Points

Assume that we are givenpoints(z1, 1), - . ., (zx, yx) such that the:;’s are distinct in a field&. TheLagrange interpo-
lating polynomialL (X)) is the only polynomial of degree at most- 1 passing through the previougoints. Algorithm

4.6.1 from [8] computes the\ coefficients ofL  (X) usingw field operations irK.

We now consider that we work over the finite fiéldpZ for some prime numbey. In this field, an addition/subtraction
requiresO (log, p) bit operations and a multiplication nee@glog? p) bit operations. Using Algorithm4.61 and Note
14.64 from [16], an inversion can be performeddr{log? p) bit operations as well. Therefore, theoefficients ofL  (X)
can be obtained usin@(\? log3 p) bit operations.

2.2 Solving the Chinese Remainder Problem
We first recall theChinese Remainder Theordl@RT):

Theorem 1 Letmg, ..., m) be) coprime integers and denofd their product. For any\-tuple of integerguvy, ..., v)),
there exists a unique in Z/MZ such that:

r=v; modmy

r=vy modm,)

Solving the Chinese remainder problem is reconstructiegutiquex in Z/MZ oncevs,...,vy andmy,...,my are
given. This can be achieved thanks to Garner’s algorithrh Béised on Notd4.74, its running time i@(/\logg M) bit
operations.



3 Our Multi-Secret Sharing Scheme

We assume that we haveparticipantsP;, . . ., P, and/ distinct threshold values, . . ., t,. Consider we havé distinct
prime numberg;, ..., p,. Foreach in {1,...,¢} we denoteS; 1, ..., S; i, thek; secrets of thét;, n)-threshold scheme.
Without loss of generality we can assume that thgseecrets belong t@/p; Z. We first introduce the following definition:

Definition 1 A functionf : R™ — RT is said to benegligibleif:
Va>03 e RT : V(> (¢ f(¢Q)< (™™
We have the following definition adapted from Definitib®.2 [20].

Definition 2 A threshold multi-secret sharing scheme for threshold vaigea method of sharing secretsSy, ..., Sk
among a set of participants{P;, ..., P,} in such a way that the following properties are satisfied:

(i) (soundness) If at leasgtparticipants pool their shares together then they recotierwholek secretsS, . . ., Sk.

(i) (secrecy) If at most — 1 participants pool their shares together then they do nobver the wholég: secrets with
non-negligible probability as a function of the secretzesi

The reader may notice that Definitids.2 is related to perfect secrecy since it is there assumedtbatdalition of
t — 1 participants does not know anything about the secret vakiea{l values are equally probable). This cannot be held
here as several secrets will be shared using the same padbndtavertheless we will see that- 1 participants cannot
recover the wholé secrets with good probability. We can generalize the pressiefinition as follows:

Definition 3 A multiple-threshold multi-secret sharing scheme for thodd valuesty, ..., t, is a method of sharing
k1+---+ke secretsSy 1, ..., Sk, among a set of participants{ P1, ..., P, } in such a way that the following properties
are satisfied:

() (soundness) For eache {1, ..., /}, ifatleastt; participants pool their shares together then they recolienthole
k; secretsS; 1, ..., ik,

(i) (secrecy) For eachi € {1,...,¢}, if at mostt, — 1 participants pool their shares together then they do nobvec
the wholek; secretsS; 1, . . ., S;k, with non-negligible probability as a function of the sezaize.

A verifiable multiple-threshold multi-secret sharing sclegMMTMSS) is a multiple-threshold multi-secret sharing
scheme for which the validity of the share can be publiclyfisrle. Let us introduce the following definition fromi [9]:

Definition 4 A functionf(-,-) that maps a key and a second bit string of a fixed lengthse@ire keyed one-way hash
functionif it satisfies the following five properties:

P1:Givenk andz, it is easy to computg(k, x).

P2:Givenk and f (k, z), it is hard to compute:.

P3:Without knowledge d¥, it is hard to computef (k, «) for anyz.

P4:Givenk, it is hard to find two distinct values andy such thatf (k, ) = f(k,y).
P5:Given (possibly many) pairs;, f(k, z)), it is hard to computé.

Remark, however, this secure keyed one-way function is qoivalent to the two-variable one-way function defined by
He and Dawson iri [11] contrary to what claimed Ch&tral. [4]. Indeed, the collision resistance property P4 of theskky
one-way function is not a requirement for the functions édy He and Dawson (see Definitibrn [11]).

We assume that we ha¥esuch functions, . .., f, whose respective domains arg, . . ., D,. Without loss of generality
we can assume that the prime numbars . . , py are chosen such thati € {1,...,¢} f;(D;) C Z/p;Z. We also assume:
Vie{1,...,0} D; C Z/p;Z x Z/p;Z. We need to use a collision resistant hash funchibfil7]. As in [13], it will be
used to check the validity of the shares.

Our approach will consist of two steps. First, we will treatk(¢;, n)-threshold scheme separately. We build a polynomial
F;(X) whose degree and coefficients will be determined similarlf2E]. Second, we will combine thépolynomials
Fi(X),..., Fy)(X) using the following result obtained by extending Corollary from [2]:

Corollary 1 (Polynomial form of CRT) Letmy, ..., m) be coprime integers and denote their producty; For any
A-tuple of polynomial§A; (X), ..., Ax(X)) fromZ/miZ[X ] x - - - x Z/m Z[X], there exists a unique polynomid(X)
in Z/MZ[X] such that:

A(X) = Al(X) modm1
: : 1)
A(X) EA)\(X) modmA
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In addition: deg(A(X)) = ZE{r?z.p.()\}(deg(Al-(X))).

Proof.
In [2], Chan and Chang proved the existence of such a polyalo#iiX ). What remains to demonstrate is its uniqueness
and the value of its degree.

Let A(X) be a polynomial fron¥ /M Z[ X solution of System (1) and denateits degree. The ring isomorphism:
Z/MZ ~Z]miZ X -+ X Z/m)Z (2)

involvesa = ?aXA}(deg(Ai (X))) since Isomorphism () implies an elemenis congruent td in Z/MZ if and only
i€{l,...,

EERER}

if is congruent td in eachZ/m;Z fori € {1,..., A}

Let A(X) andA(X) be two solutions df System (1). Since their degree,ize can write them as:
AX):=) a; X' and  AX):=) a; X'
=0 =0

where thea;’s and @;’s are elements ofZ/MZ. Since these polynomials are solutions[of Systern (1) andtdue

[[somorphism (), we deduck¥i € {0,...,a}a; = a; mod M.
g

The previous proof involves that(X') can be computed from; (X), ..., Ax(X) using Garner’s algorithm + 1 times.
We will now present the details of our construction.

3.1 Scheme Construction

Our construction consists of three algorithms: SetUp, &Banstruction and SecretReconstruction. The first two-algo
rithms will be run by the dealer while the last one will be exted by the combiner. As in|[4, 19], SetUp will only be run
once while ShareConstruction will be called each time neweds are to be shared. The private elements distributed to
then participants by the dealer when running SetUp will ensua¢ dlur VMTMSS is a multiple time scheme.

Algorithm 1 SetUp
Input: The group sizex and/ distinct prime numbers, ..., p,.

1. Foreach € {1,..., ¢}, generate: distinct elements df./p,Z denoteds; 1, . . . , S; .
2. Use Garner's algorithm agj € {1,...,n}S; := Garnefs1j,...,S¢;,P1, .-, De)-
3. DistributeS; to participant?; over a secure channel for eagk {1,...,n}.

Output: Then private valuesSy, ..., S, which will be used by the participants to check the validifytieeir pseudo-
shares.

We have the following observation concernihy [4, 19]. Eakcthen participantsP; receives a secret valug. The dealer
chooses a random elemenand evaluates theseudo-shareg(r, s1), ..., f(r, s,) wheref is the keyed one-way func-
tion used in those schemes. He builds a polynomi& ) whosek lowest degree coefficients represent thgecrets to

be shared. Finally he publishesh(f(r,s1)),...,h(f(r, s,)) so that the combiner can verify the validity of shares. In
order to ensure the multiple time property of their congta; a new value is generated each time a new sek@ecrets

is to be shared. If is chosen such that(r, s;,) is 0 then P;, can recover one of the secrets as the constant term of the
polynomial h(X') from the list of public elements sinc&(0) = h(f(r, s;,)). Even if the probability of such an event is
negligible when the domain ¢f is large, it is still easy to deal with this problem by shiffieach coefficient of the poly-
nomial (X') by one position and setting up the new constant term as amaetement. This is at the cost of publishing
an extra point to reconstrua{ X ) since its degree has increasedlby

We will now introduce our algorithm ShareConstruction. Wetfintroduce the following notation:

. 0 ift; > k;
Vel b= { ki —t; otherwise

Notice thatd; can be computed as soon as bgtandk; are known. ShareConstruction is represent¢d as Algorithm 2

4



Algorithm 2 ShareConstruction

Input: The group sizer, the prime numbersg,, . .., p¢, the threshold values, . . . , t,, the number of secrets, . .., ky,
the corresponding secre$$1,...,S51%,,-..,5¢1,...,S¢k,, the functionsf, .. ., f,, the elements; 4, ..., s¢,, from
SetUp and the collision resistant hash functin

1. For each € {1,...,/}, pick uniformly at random an element from Z/p;Z. Use Garner’s algorithm aRR :=
Garnefry,...,T¢, D1, -, De)-

2. Do the following:
2.1. Computef;(r;, s; ;) fori € {1,..., ¢} andj € {1,...,n}.

2.2. Compute the hashés( f;(r;,s;;)) fori € {1,...,4} andj € {1,...,n} and publish them as tablg;.

2.3. Use Garner’s algorithm a¢j € {1,...,n} P; := Garnef fi(r1,s1;),--., fe(re, 8¢5), 01, - - - s De)-

3. Foreach € {1,...,/} do the following:
3.1. Pick uniformly at random an elemetit from Z/p; Z.

3.2. Ift; > k; then:

ki X
Pick uniformly at randomu; 1, . . ., u; 5, from Z/p,Z and build the polynomialf;(X) := C; + > S;; X7 +
j=1
ti—k;
Uij XjJrki .
=1

J

Else
Build the polynomial:F;(X) := C; + > S;; X7.
=1

D
4. Denote D := Hllaxf}(deg(Fi(X))). For eachi € {1,....¢}, write F;(X) as: F;(X) = Y F;; X7
j=

ie{l,...¢

0
where:Vj € {deg(Fi(X)) + 1,...,D} F;; = 0. Use Garner's algorithm as?zj € {0,...,D} F; :=
Garne(Flj,...,ng,pl,...,pz).

D
5. Build the polynomialF(X) as:F(X) := > F; X7 and computeF (P, ), ..., F(Py).
7=0
6. Do the following:
6.1. Foreach € {1,...,¢}, generate an elemeaf from Z/p;Z distinct froms; 1, . . ., Sin-

6.2. Use Garner’s algorithm ag := Garne( f1(r1,a1), . .., fe(re, ae), p1, ..., pe).

6.3. ComputeF(A).

7. Foreach € {1,...,¢} such that; > 0 do the following:

7.1. Generaté; elementss; ..., s;; such thats;1,...,sin,ai,s}1,...,5;5 aren + 1+ §; distinct elements of
L[ piZ.

7.2. Comput@%(ri, S;l), ey fi(’l”i, 8251’)'

7.3. Compute (fi(ri, si1)), .-+ Fi(fi(riy 8i5,))-

8. Publish the table T containing R,F(P1),...,F(Pn), (A, F(A)) as well as the couples
(fi(Ti, S; 1), Fi(fi(rh S; 1))), ey (fi(ri» Sé 57:)’ Fi(fi(Tia 8; 57))) for eachi such that); > 0.

Output: The tableT; which will be used to verify the pseudo-shares and the tablehich will be used to reconstruct
the secrets of our VMTMSS.




Notice that(4, 7 (.A)) is the extra point needed to overcome the problem fiorh [18].aWo remark that any participant
P; can compute the pseudo-shafes-;, s; ;) from the public valueR and his secret elemest since:

r, =R mOdpz
Sij = Sj modpi

Using this information any participant can verify the vilydof his pseudo-shares by checking thémashes from table
Ty. Similarly, the combiner can check the validity of any psewtiare submitted during the secret reconstruction pro-
cess usindy as well. Notice, however, that the prime numbgys. . ., p, should be large enough in order to prevent an
exhaustive search to be performed by an adversary who woaMpete 4 (¢) (where¢ € Z/p;Z) until finding a match
amongst the: elementsH (f; (7, 8:1)), - -, H(fi(Ti, Sin))-

represents the previous two algorithms. The elésnegreenare the public elements @f while the elements in
redrepresent the private elements generated by SetUp. Th&wectien of polynomialsF (X), ..., Fp(X) andF(X) is
depicted of Figure|2 where the elementgimplerepresent thé; + - - - + k, secrets of our VMTMSS.

Moduli p1 De p1 X X De p1 X X Py
11 501 — Garner— &
Random
Sin e Stn — Garner_> Sn
aq ag
s11 Spq
Elements
Slln SZn
" o Te — Garner— R
fl(ﬁ,Sll) f@(W,S“) — Garner—— 731 N .7:(X) L .7:(731)
Pseudo
Shares
fl(T'l,Sln) f[(m,sen) — Garner—— 7)” _ ] f(X) L, JT_.(P”)
Extra Point .fl (le Cll) fe (’I"g7 ag) — Garnerl— A _ ]:(X) L, .7:(./4)
fi(r1,s11) fe(re,spy)
Additional
Couples fi(r, 515,) fe(re, sy5,)
of Fi(X) Fy(X)
Points Fl(fl(rl"slll)) Ft:(f((7'[~,821))
5,‘ >0 X , i
( ) Fl(f1(7'1751(3,)) Féi‘(fé(ré,’us}(;/))

Figure 1: Representation of SetUp and ShareConstruction.



P1 S11 S1ky Fio F max(t1,k1) } Fi(X)
De Se1 Sk, Fyo Fy max(te,ke) b Fu(X)
D1 Fio Fip
De Fro Fip

|
Garner
|

fo fD

p1 X X Py

F(X)

Figure 2: Construction of polynomials by the dealer.

We will now design SecretReconstruction which is run be coertto recover the secrets. We assume fhat. . ., P;,
are thet; participants wishing to reconstruct thesecrets of thét;, n)-threshold scheme. SecretReconstruction is repre-

sented a5 ATGoTT 3.

Algorithm 3 SecretReconstruction

Input: The threshold value;, the number of secrets, the prime numberg, ..., ps, the public tablel” as well as the
pseudo-shares of the participantsf;(rs, si j, ), - - -, fi(ri, Sij, ).

1. Computer;, +1 := A modp; andy,,+1 := F(A) modp,. Foreach\ € {1,...,¢;}, computey, := F(P;,) modp;.

2.1f §; = 0 then:
2.1. Reconstruct the Lagrange interpolating polynomial sspmy through the  points
(fi(TiaSijl)yyl)a---a(fi(riasijti)yyti)y(mti+1ayti+1)-
ts .
2.2. Write the polynomial obtained a3 p; X7 and returry, . . ., pg, -
=0
Else

2.3. Reconstruct the Lagrange interpolating polynomial sspay through the  points
(fi(riv Sijl)?y1)7 sy (fi(ria Sijti)vyti)a (xti"rl) ytH-l)a (fi(ri» 321)’Fi(fi(riv s;l)))v ceey
(filris si5,)s Fi(fi(ris 835,)))-

2.4. Write the polynomial obtained a$:_ 1; X7 and returru., . . ., i, .
j=0

Output: Thek; secretguy, ..., uk, of the(¢;, n)-threshold scheme.




3.2 Security Analysis

In this section, we have to demonstrate that our VMTMSS \eerifiie properties from Definition 3. In particular we have
to argue that the table of hashBs and the table of extra poinfs do not leak too much information about the secrets. We
have the following result for our construction:

Theorem 2 The reconstruction algorithrBecretReconstructias sound.

Proof.
We have to demonstrate that, for any value {1, ..., ¢}, the elements output by SecretReconstruction arétkecrets
of the (¢;, n)-threshold scheme whatever the familytpparticipants is.

Leti be any element of1, ..., ¢}. ConsiderP;,, ..., P;, a family of¢; participants. Due to Stefzs4 and5 of Share-
Construction, we have the following result:

Vi € {1,. .. 7£} VA e {1, - ,ti} Fi(fi(TiasijA» = ]_-(/PJ)\) modpi

Due to Property P4 off;, Step1l of SetUp and Steg.1 of ShareConstruction, the elemenfs(r;,s;j,),. ..,
fi(ri,sijti), fi(ri, a;) are distinct with overwhelming probability. Singg(r;,a;) = Amodp; = x4, 41, thet; + 1
points (fi(7i,8ijy)sy1),- -+ (fi(ris sige, )s Yt,)s (@41, y,+1) have different abscissas iy p;Z. We have two cases to
consider: '

First Case: 6; = 0. We can interpolate the previods+ 1 points as if_Section 2.1 and dendte .;(X) the corre-
sponding Lagrange polynomial obtained at Seep of SecretReconstruction. It should be noticed that the rpmtyial

F;(X) defined at Step.2 of ShareConstruction passes through the same points ardkbese at most; (it is exactly

t; if the highest degree coefficient is different frdth Due to the uniqueness of such a polynomial [see Seciignviel
get: L;,11(X) = F;(X). Thus, thek; coefficients returned at Stép2 of SecretReconstruction are thesecrets of the
(t;,n)-threshold schemes; 1, ..., S;,.

Second Case:d; > 0. Using table T, we obtain §; additional points: (f;(r:, s} ), Fi(fi(ri,851))),-- -
(fi(riy sis,)s Fi(fi(ri, s75,))). This leads to a total of; + 1 + d; = k; + 1 points have different abscissas. We can
interpolate thosé; + 1 points as in_.Section 2.1 and dendtg, ., (X) the corresponding Lagrange polynomial obtained
at Step2.3 of SecretReconstruction. AB;(X) passes through the same points and has degree atm(isis exactly
k; if the secretS;, is different from0) we get: Ly, 1 (X) = F;(X). Thus, thek, coefficients returned at Stefp4 of
SecretReconstruction are thesecrets of thét;, n)-threshold schemes; 1, . .., S;, .

g

Theorem 3 Our VMTMSS achieves secrecy.

Proof.

Leti be any integer if1, ..., ¢}. Assume that; — 1 participants pool their pseudo-shares together and udie ulowl-
edge from table§” and7}. The participants are denotéd, , ..., P;, ,. SinceH is a collision resistant hash function,
H is a one-way function. Therefore, with overwhelming prabghthe only information the colluders learn from table
Ty is the pseudo-shares of the non-colluding members areetitférom theirs. Nevertheless, this fact was already known
to each of then participants due to Step of SetUp, Property P4 arid Tsomorphism| (2). So, takledoes not give any

extra-information to the colluders with overwhelming pability. We have two cases to consider.

First Case:J; = 0. The colluders have to determine the-1 coefficients ofF; (X ') (Step3.2 of ShareConstruction). Using
the same technique as in the proof of Theorém 2, they canmohtpoints F;(X') goes through from their pseudo-shares
and the point{.A, F(A)) from T. Consider the set:

E = {(fi(ri,si), Fi(fi(ri, i) : 3 ¢ {1, -, ri—1}}

The elements ofr represent the points owned by the non-colluding membeighdtld be noticed that the values
Fi(fi(ri,si1)),- .., Fi(fi(ri, sin)) are known to each group participant since they can be olst&ipeeductions modulo
p; from elementsF(P,),. .., F(P,) contained inl". We will see that the probability the colluders can congteutele-
ment of £ is negligible as a function of the length pf.

Due to Property P4 of the functigfy, the colluders know, with overwhelming probability, thia¢ tabscissas of the elements
of £ belong to:

D)\ {fi(ri,siz)s - fi(risij,,_,), Amodp; }

8



We would like to draw the reader’s attention to the followpint. OnceF;(f;(r;, s; ,)) is given, there may be more than
one valuer such thatF;(z) = F;(fi(r4,s:,)). In the worst case we can have uprie- ¢t; + 1 such values for: which
happens when all the ordinates of the elementg afe equal. Thus:

n+1
[fi(Di)| = n

Second Cased; > 0. The colluders have to determine the+ 1 coefficients ofF; (X)) (Step3.2 of ShareConstruction).
As before, they can obtain + §; points F;(X) goes through from their pseudo-shares andithe 1 points fromT". As
previously we get:

Prol((z, F;(fi(ri,s:,))) € E,x is built by the colluders <

n+1
|fi(Di)| — ki
Without loss of generality, we can assume that the range mfpresents a non-negligible partfp;Z. At the same time,

we can consider that the group sizandk; is small in comparison tp; so that there exisi§;, independent from;, such
that, in both cases, we have:

Prol((x, F;(fi(ri, sip))) € E,x is built by the colluders <

Prol((z, F;(fi(r4,5:,))) € E,x is built by the colluders < 9

K2

Therefore, it is sufficient to pick the smallest of therimes to bes0 bits long to ensure computational secrecy for our
scheme.
O

4 Complexity Survey

As claimed i Sectiion]1, the computational and storage ceptesent key factors to take into account when implementin
a protocol as a part of a commercial application. In this partstudy the cost of our construction and compare it to the
schemes froni[2, 19]. In this section we dendfethe product of thé prime numberg;, ..., p,. We assume that picking
random elements from the ségp,Z, . .., Z/p,Z has a negligible computational cost.

4.1 Cost of Our Construction
4.1.1 Computational Cost at the Dealer

Based o Section 2.2, SetUp can be executed(in/ log; M) bit operations.

ShareConstruction performs+ D + 3 calls to Garner’s algorithm which results@((n + D) ¢ log2 M) bit opera-
tions. In addition, there are+ 1 polynomial evaluations oveét/MZ. Using Horner's rule each of them can be doneRia
additions and> multiplications inZ/M?Z. Based ofi Section 2.1, this represents a tota)@f D log3 M) bit operations.
There are alsd; polynomial evaluations oveZ/p;Z. If we denoteA := %ax[} 0; then thed; + - - - + &, polynomial

i€{1,...,0
evaluations cosD <A D log? ( ?mxf} p,»>) bit operations. Since each prime numbpeis less than\/, the total cost
ice{l,...,
of ShareConstruction i©([D (¢ + n + A) + n €] logs M) bit operations.

Furthermore, the collision resistant hash functidnis runn ¢ times while each keyed one-way functighis run
n + ¢; times.
4.1.2 Computational Cost at the Combiner

Notice that the cost of SecretReconstruction depends othteshold value;. We havet; 4+ 2 reductions modulg;

of elementsZ/MZ. This can be done using Euclid’s divisions @(t; (log, M logp;)) bit operations. In addition an
interpolating polynomial passing through+ 1 + §; points is to be build oveZ/p;Z. We know fromSecfion 211 this
can be achieved i®((t; + 52-)2 log§ p;) bit operation. Sincey; < M, we deduce that SecretReconstruction runs in
O((t; + 6;)% logy M log, p;) bit operations.

4.1.3 Storage of Public Elements

Denote sizér) the number of bits used to represent the natural integéve have sizer) = |log, «| + 1. We define

14 0
p:= Y 0;Sizep;) andp’ := Y size(p;). We also denoté{ the bitsize of a digest produced by the collision resistasth
=1 =1
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function. First, storingly requiresn ¢ H bits. Second{’ containsn + 3 elements fronZ/M7Z and2 §; elements from
Z/p;Z for eachi € {1,...,¢}. Thus, the size of " is (n + 3) sizg M) + 2 p bits. As a consequence, the size of public
elements represents a totalof¢ H + size M )) + 3 sizg M) + 2 p bits. Notice, however, that the sender must buffer all
the elements; 1, ..., s¢,, from Stepl of SetUp which representsy’ bits.

4.2 Efficiency Comparison

Our Scheme| Chan-Chang’s Scheme|[2] Shao-Cao’s Scheme [19]
Thresholds L L 1
Secrets per Threshold k; 1 k
Size Private Values | sizg M) bits sizeg(p) bits size(p) bits

Table 1: Parameters of the three VMTMSS.

The parameters of the schemes are depictédin Table 1. Nb&téhe construction by Chan and Chang does not allow
flexibility in the number of secrets to be shared. Indeed,whke iterate that constructiontimes (with the same threshold
values) then the total number of secrets has to beTherefore, we restrict our comparison to the scheme by Shdo
Cao as it enables to choose the number of secrets per thdeéstiependently from the total number of thresholds. Remark
that our construction can be seen as extension of Chan amyShepproach providing flexibility. To have an accurate
survey, we assume that Shao and Cao’s construction isdtkféitnes (one iteration per family df; secrets). The results

of our comparison are summarizedin Table 2.

Our Scheme Shao-Cao’s Scheme [19]
Size Private Valueg size( M) bits o' bits
Set-up n £ random elements n £ random elements
Phase
n calls to Garner
Share 0; pol. eval. in eaclZ/p;Z n + ¢; pol. eval. in eactZ/p;Z
Creation n+ 1 pol. eval. inZ/MZ
Process
n /¢ calls toH max(t;, k;) exp. in eact¥./p;Z
n + 0; calls to eachy; n calls to eachy;
n + D + 3 calls to Garner
Pseudo-Share lcalltoH max(t;, k;) exp. in eactZ/p;Z
Validity max(t;, k;) exp. inZ/ 217
Verification max(t;, k;) mult. inZ/p;Z
Secret 1 polynomial reconstruction 1 polynomial reconstruction
Recovery
t; + 2 reductions modulg;
4
Storage Public | n (¢ H + sizeM)) + 3sizgd M) +2p | (n+1)p +2p+ > t;Sizep;)
1=1
Elements bits bits
Storage Sender n p' bits n p' bits

Table 2: Computational complexity of the three VMTMSS.

The reader can notice that is slightly larger than siZé\/) so, a priori, our technique does not provide any significant
size benefit front iterations of Shao and Cao’s construction. As noticedlinf@jvever, the latter approach requires each
participant to keep multiple shares which can create a shareagement problem. In our construction, each participant
holds a single "master" share which can be used to recreathtre for eacfy;, n)-scheme. We now have two points to
consider.

First, the pseudo-share verification process fronh [19] peesive. Indeed, verifying a single pseudo-share rougbgysc

2 max(t;, k;) exponentiations if%./p;Z. Even if each of them can be performed@tlog p;) bit operations using the
fast exponentiation algorithm [L7], the coefficienax(t;, k;) is prohibitive for large thresholds. In addition, when the
communication channel is under attack of malicious userditg the combiner with incorrect values, the coefficient
max(t;, k;) may result in successful denial-of-service attacks as oinepatational resources needed to identify correct
shares amongst forgeries become too large. This problemmaeéhappen with our construction as only a single hash as
to be computed to validate/discard a share. Notice that gatitipant first needs to perfortreductions modulg; and
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1 call to f; to construct his pseudo-share from his secret value andutbielementR. However, this is at the cost of
running2n + D + 3 times Garner’s algorithm at the dealer during the set-upsiadle construction phases.

Second, our pseudo-share verification process requitdgshes to be published as tafilg. If we use SHA256 as
collision resistant hash function théy, is represented ove56 n ¢ bits. On the other hand, the construction by Shao
and Cao is secure provided that the discrete logarithm enolaver eaclZ./p;Z is intractable. For achieve security, it is

suggested to usE)24-bit moduli or larger[[16]. If we assume that the differentetbholds are roughly equal to the same
¢

valuet then the coefficienzti size(p;) is approximately1024 ¢ ¢ bits. Therefore, the storage of our public elements less
=1

expensive as soon &s> 7, i.e. the construction by Shao and Cao provides better sfficiency only for small threshold

values.

5 Conclusion

In this paper, we generalized the approaches fidm [2, 19]dsygding a multiple time verifiable secret sharing scheme
allowing several secrets to be shared per threshold valsién £LS], our construction allows any number of secrets to
be shared per threshold value. In addition, we showed thrgtsrudo-share verification process was much faster than in
[19] while the storage requirements were smaller. We walkltb point three facts. First, we assumed that the threshol
values were different (sée_Secfidn 3). Nevertheless, antques could also be employed if some threshpls usedr;
times provided that different primes, ..., p; -, are used respectively. Second, the security of our schetvesid on

the random oracle model for the collision resistant hasltfan H. Most hash functions used in practice are considered
heuristically collision resistant. Recently several stugiictions were successfully attackedl[21} [22,[23] 24, 26brder

to maintain the security of our protocol, we suggest to usash fiunction whose security has be proved to be linked to a
computationally difficult problem such as Very Smooth Ha&hdr Gibson'’s discrete logarithm-based hash function [7].
Nevertheless, this may result into larger digests or irsgrdaunning time. Finally the main drawback of our constaunct

is that we are only able to deal with threshold schemes andpgpnoaches cannot be directly generalized to non-thréshol
access structures.
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