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Abstract. At Crypto 2008, Shamir introduced a new algebraic attack called the cube attack,
which allows us to solve black-box polynomials if we are able to tweak the inputs by varying
an initialization vector. In a stream cipher setting where the filter function is known, we
can extend it to the cube attack with annihilators: By applying the cube attack to Boolean
functions for which we can find low-degree multiples (equivalently annihilators), the attack
complexity can be improved. When the size of the filter function is smaller than the LFSR, we
can improve the attack complexity further by considering a sliding window version of the cube
attack with annihilators. Finally, we extend the cube attack to vectorial Boolean functions by
finding implicit relations with low-degree polynomials.

Keywords Cube Attack, Algebraic Attack, Low-Degree Annihilators.

1 Introduction

In the history of cryptography, algebraic cryptanalysis is a rather recent trend. The underlying idea
behind this attack is rather simple: in trying to attack a cryptosystem, write the problem as a
set of polynomial equations with coefficients and unknowns in some common finite field K, most
probably of characteristic 2. One then employs whatever means at one’s disposal to solve this system
of polynomial equations.

It has been long known that the general problem of solving such a system is NP-complete,
even if the system comprises of only quadratic equations over Fy (see [13]). Nevertheless, many
cryptographic systems appear susceptible to attacks via this approach. Indeed, a large arsenal of
attacks have been designed with the algebraic approach in mind, including (but not restricted to)
linearization, relinearization [9], eXtended Linearization [4], Grobner basis [7, 8] and the fast algebraic
attack [5].

In Aug 2008, during the Crypto conference, Adi Shamir [12] presented a new approach to algebraic
attacks in an invited lecture. Termed cube attack, his method requires the attacker to launch an active
attack (e.g. chosen-IV or chosen-PT) in order to extract useful information from the bits obtained.
Roughly speaking, by skillfully choosing the bits in a systematic manner, the attacker may lower
the degree of the polynomial quickly.

In Section 2, we shall give a description of Shamir’s cube attack. Then, we offer several variations
to the basic cube attack. In Section 3, we extend the cube attack to polynomials f for which we can



find a low degree g such that fg is also of low degree, and we apply this to the Toyocrypt cipher as
an example. We call this the cube attack with low degree annihilator and show that it has better
attack complexity than the basic cube attack and algebraic attack.

In Section 3.2, we refine the cube attack with low degree annihilators to the special case where
the size of the filter function is smaller than the LFSR. We call this refinement the sliding window
cube attack. We demonstrate several scenarios where the sliding window cube attack has better
attack complexity than the cube attack with annihilators. We also compare our attack with the
re-synchronization attack of Daemon et. al. [10] since it is also applicable in this case, and conclude
that our attack gives better attack complexity under suitable conditions.

In Section 4, we consider the cube attack when applied to vectorial filter functions. We show
that there always exist equations describing the vectorial functions, which has lower degree than
low degree multiples of single-bit output Boolean functions. Thus this shows that theoretically, we
have better attack complexity when we apply the vectorial cube attack rather than attacking single
bit output of the S-boxes by the cube attack with low degree annihilators. Finally in Section 5, we
summarize our findings and propose some further research directions.

2 Preliminaries: Cube Attack

First let us give a brief overview of the cube attack [12]. Throughout this article, all polynomials
have coefficients in Fg, and x (resp. v) denotes the vector (zg, 21, ...2n—1) (resp. (Vo,v1,. .., Vm—1))-
The primary idea behind this attack lies in the following theorem:

Theorem 1 Let f(x) be a polynomial in n variables of degree d. Suppose 0 < k < d and t is the
monomial xoxy ...TE_1. Write f in the form:

f(x) =t Pi(x) + Qi(x),
where none of the terms in Q(x) is divisible by t. Note that deg(P;) < d — k.

Then the sum of f over all (zg,...,vx_1) € F5, considered as a polynomial in Ty, Tpi1,-- -,
equals
k
—
Pt(]-7 ceo Lo, Tht1,--- 71'77,71)

and hence is a polynomial of degree at most d — k.
Proof. Consider the equality f = t- P,+Q;. Split the sum into Z(%’“”Ikil) t- P, and Z(ﬂ)wu@k—l) Q.
In the first sum, ¢ = 0 unless xg = x1 = -+ = x;_1 = 1 in which case

k
o —
E t~Pt:Pt(l,...,I,Ik,xk+1,...,$n_1).

(IU,...,mk71)€F§

On the other hand @Q; is a sum of monomials, each of which is not divisible by ¢. Let m be any
one of these monomials. Since m is not divisible by ¢, it excludes z; for some 0 < ¢ < k — 1. If it
excludes (say) zo, then the sum across all (zg,...,7,_1) € F5 can be further split into two sums:
the sum for xg = 0 and for 2y = 1. These two sums are equal since xy does not appear in m. Hence

> m=0 = > Q; = 0.
(0,....,x—1)EFE (z0,...,xk—1)EFE

This completes our proof of the theorem.



Let us apply this theorem to cryptanalyze a stream cipher. Write the cipher in the form:

z = f(x,v),

which takes in an n-bit key x and an m-bit IV v, and outputs the first bit of the keystream. Suppose
d = deg f < m. We describe the cube attack for the term ¢ = vgvy - - - vg_o2.

Fix the IV bits vg_1,v4,v441, - € Fo and write C' for the set of v with these values of
V4—1,Vd, ... Thus |C| = 2971, Sum f(x,v) over v € C. By applying Theorem 1 to ¢, this sum
is linear in x:

> fev) = Lx). (1)

veC

If L(x) # 0, we call ¢ a maxterm in accordance with [12], and obtain one linear relation in the
key bits. To obtain n — 1 more such relations, we can do the following.

— Use the same f, but use a different maxterm ¢.
— Use a different f, e.g. by using the second bit of the keystream.

With n linearly independent relations of the key bits, we can easily find them via Gaussian
elimination.

Hence, given access to such a function f, Cube Attack proceeds to find the unknown vector x
according to the following stages:

1. First: the preprocessing stage. This involves finding the coefficients of L for n such L. Each L
has n + 1 coefficients including the constant term; to find them, we need to compute the sum
(1) for n+ 1 keys:

x =0,e0,€1,...,€n_1,

where e; is the vector where the i-th component is 1 and the rest are 0. The amount of work
required is n(n + 1)297! evaluations of f.

We also compute the inverse of the matrix of linear relations. This requires n® operations at
most so the amount of work is upper-bounded by

n(n 4 1)2¢71 4 3.

2. Second: the online stage. Now we apply a chosen-IV attack on the cipher. Compute the sum (1)
for n linear relations L. Each sum requires 2! evaluations of f, so we need n2?~! evaluations
of f in all. Since we already have the inverse of the L-matrix, we only need to perform matrix
multiplication which takes n? operations. Hence, the amount of work is upper-bounded by

n24=1 4 n2.

Notice that the attack only assumes deg f < d, and that we can evaluate f. No knowledge of the
coefficients of f is required.

Remark 1. For a given maxterm ¢, in the case where deg(t) < n—1, we may be able to derive multiple
equations, since each maxterm gives an equation that may have monomials containing terms in the
IV as well as in the key. Hence, substituting in different values for the terms in the IV that are not
in the maxterm may produce different equations.



3 Cube Attack with Annihilators

In 2003, Courtois and Meier[5] observed that for some polynomials f, we can find a low degree g
such that h := fg is also of low degree. We shall apply this observation to derive an enhanced version
of the cube attack.

As before, let z = f(x,v) represent the first output bit, where x is the key and v is the IV. Let
g(x,v) be a polynomial such that:

— g(x,v) is of low degree ¢;
— h(x,v) = f(x,v)g(x,v) is of degree d < deg(f) and d > e.

Our attack works as follows: suppose we pick the maxterm vgvy---v4_e_1. Fix the IV-bits
Ud—e, Vd—et1, -~ € Fo and let C be the set of v which has these values of vg_¢,vVg—c41.... Con-
sider the sum:

Z h(x,v) = Z f(x,v)g(x,v).
vel veC

By Theorem 1, on the left, we get a polynomial in x of degree at most d — (d — e¢) = e. On the
right, note that f(x,v) is known since it is a keystream bit, so we get a polynomial of degree < e.
Now we can solve for the secret bits by applying a range of techniques, such as linearization [4] or
Grobner basis techniques [7, 8].

We shall term this method Cube Attack with Annihilators'. Given the filter function f, assume
we have a low degree multiple g of degree e such that h = fg has low degree d. There are many
efficient algorithms in literature to find f and g. See [1] and [11] for example. The attack proceeds
as follows:

1. First, the preprocessing stage. We need to compute the polynomial

P(x):= Z h(x,v)

veC

which is of degree < e. Since this is a linear combination of Z;o (?) monomials, we need

to evaluate this sum » ;_, (7;) times (by pumping in different x’s) to find the coefficients. This
requires 24-¢ Zj:o (7;) evaluations of h to compute the coeflicients of a single P. For linearization
to work, we need Zf:o (") such polynomials, so the total amount of operations is:

= (£())

evaluations of h.

2. Second: the online phase. For each of the 3~ () maxterms, we must compute Y, f(x,v)g(x, V).

The polynomial g(x,v), for a fixed v € C has typically > ¢_, (?) terms. Hence, the computation

of the term f(x,v)g(x, V) requires 2¢7¢ 3% (") computations. For >;_, (%}) such maxterms,

we require 2¢7¢ ( >o (?))2 computations. Finally linearization of
Z f(x,v)g(x,v) = Z h(x,v) = P(x)
vel vel

! We have used the term annihilators in naming our attack because from [1], the existence of low degree
multiples is equivalent to the existence of low degree annihilators.



gives a system of > ;_, (%) linear equations which requires (Y7 ("))3 operations to solve.

% i

Hence, the total amount of operations is about:

= (£(0) +(£0))

We note that both the basic cube attack and the cube attack with annihilators are chosen IV
resynchronization attacks. However, some of their differences are as follows:

1. This variation of the cube attack requires us to compute h = fg for an appropriate polynomial
g. To find such a g, we most likely need to express f in algebraic normal form.

2. Here, we cannot perform the matrix inversion during the preprocessing stage, because the entries
of the matrix depends on the keystream output.

3. Each polynomial evaluation (of g or h) requires .7 () computations if we express the poly-
nomials in algebraic normal form.

In the next subsection, we shall provide a concrete example of this variant of cube attack.

3.1 Application to the Toyocrypt Cipher with Re-synchronization

The main Toyocrypt cipher [15] comprises of a 128-bit MLFSR (modular linear feedback shift reg-
ister), filtered through a nonlinear function f of degree 63. This f is given by:

62
f(s0,.-.,8127) =S127 + E SiSa; + 810523532542+
i=0
62
515259512518520523525526528533538541542551553559 + H Si)
i=0

where «;, 0 < i < 62, is a permutation of the set {63,...,125}. The output of the filter function
gives a keystream bit. Upon the next clocking, the MLFSR clocks once and passes through the filter
function to give the next keystream bit. For simplicity of explanation, we can treat the MLFSR as
a LFSR because as shown in [15], there is a one-to-one linear transformation between the states of
the MLFSR and an LFSR.

In [3], Courtois described an algebraic attack on Toyocrypt. He observed that f can be approxi-
mated by a degree-4 polynomial g by ignoring the two terms of degree 17 and 63 respectively. The
error rate in this approximation is given by 27!7 which is good enough for practical purposes. Later,
in [5], Courtois and Meier found an even better attack by noting that the polynomials

f-(s23+1) and f-(ss2+1)

are cubic since the variables so3 and s45 occur in all terms of f of degree at least 4.

The above observations will come in handy when we apply the two variants of cube attack on
Toyocrypt. We shall assume a simplified variant, where during initialization, an n-bit key and m-bit
IV are linearly mized to fill up the LFSR.

Let us replace f with a quartic polynomial g as mentioned above. We may then write the first bit
of the keystream as a quartic polynomial in the key (z;) and the IV (v;). In applying cube attack,
we require a preprocessing work factor of n? + 8n(n + 1) and an online work factor of n? + 8n.



The attack fails if f # g for one of the evaluations. We may safely assume that this does not occur
during preprocessing (since checks can easily circumvent that); hence, the probability of success is

(1 _ 2—17)871.

Even in the extreme case of n = 128, this is greater than 99%.

Cube Attack with Annihilators We can find a degree-1 polynomial g such that fg = h is cubic.
Hence the cube attack with annihilators requires only 23~ 'n? = 4n? evaluations of a linear function
during the preprocessing stage. During the online phase, the amount of work is 8n + n3.

A Comparison In Table 1, we compare the above variants of the cube attack (quartic approxima-
tion, low degree annihilators) with the basic cube attack on the filter function of degree 63 and the
algebraic attack of [6, 14] using cubic equations on the Toyocrypt cipher with n = 128. We see that
our cube attack variant has lower complexities and requires much fewer keystream bits.

Table 1. Comparison of Improved Variants of Cube Attack with the Basic Cube Attack and Algebraic
Attack on Toyocrypt with 128-bit State Function Linearly Initialized by 128-bit Key and IV.

Algebraic Basic Basic Cube Attack| Cube Attack
Attack |[Cube Attack| with Quartic |with Annihilators
6, 14] [12] Approximation (new)
Keystream Bits 218 262 % 128 2% % 128 22 % 128
Pre-Computation 230 276 271 216
Online Complexity 270 209 21 221

Note that the keystream bits for algebraic attack can be obtained from one keystream while those of the
other attacks have to be obtained across different keystreams from re-synchronizations. E.g., in the 4"
column, we need 22 x 128 = 2° keystream bits from 4 re-synchronizations, each having 128 bits.

Implementation We implemented both variants of the cube attack (quartic approximation and
low-degree annihilators). In both versions, the Toyocrypt cipher can be broken in a few milliseconds
on an ordinary PC. Although both variants seem to have comparable pre-computation + online
attack time from Table 1, the cube attack with annihilators runs about twice as fast as the basic
cube attack using quartic approximation. It also has the slight advantage of being 100% reliable and
uses fewer re-synchronizations.

In a Nutshell The example of Toyocrypt is used to illustrate our cube attack variant. It demon-
strates its effectiveness against ciphers in which multiplying f with a low-degree polynomial g dra-
matically lowers its degree.

3.2 Sliding Window Cube Attack on Filter Function Taking Few Inputs

Consider the case where our key is of size N and our filter function f takes only n < N inputs from
the state. Suppose we have the following two conditions:



— Linear initialization
— Linear feedback

There is a known re-synchronization attack on such a cipher with complexity [N/n] x 2", see
[10, Section 3]. We shall describe an extension of the cube attack with annihilators on this cipher
where the complexity is generally better than the re-synchronization attack of [10].

Because of the linear initialization, we can write the inputs from the state at time ¢ as l;(x, v),
where [, is linear, and consider the filter function as a function of the inputs (as opposed to the
entire state). Now its output at time ¢ is

2= f(l(x,v)) = f(y: +1:(0,v))

where y; = l;(x,0).

As before, suppose we have g and h of low degrees e and d respectively such that fg = h and
e < d < deg(f). Let us write fi(y:,v) = f(y: + 1:(0,v)), and define ¢g; and h; similarly. We can
apply the cube attack with annihilators to f;g; = h; to find y; for any ¢. We choose [N/n] values
of t such that the corresponding y; give us N linearly independent equations in the (z;), and solve
for the y;. We can then solve the N linear equations in (x;) by Gaussian elimination.

Suppose we have found low degree g and h such that h = fg. The attack works as follows:

1. First: The preprocessing stage. We pick [N/n] values of t such that the y; give us N linearly
independent equations in the (x;). For each value of ¢, we pick > ;_, (T;) maxterms. For a given

maxterm, we denote C' to be the cube of 27¢ vectors which have all possible combinations of

values for the terms in the maxterm, and have all other terms fixed in some configuration.

For each maxterm, we compute ), h(y;, v) by finding the coefficient of every y;-monomial, of

which there are Y7 (%), so hy gets evaluated 27737 (%) times.

Hence the total complexity of this stage is

€
N/n]2¢-¢ (n)
w3 (]

2. Second: The online phase. Each value of ¢ has Zf:o (?) corresponding maxterms, and for each
maxterm we can compute Y fi(yt, v)g:(yt, v) since we know the keystream bits f;(y, v). This
is a polynomial in y;, and we find the coefficient of every y;-monomial as before. This has
complexity 2¢7¢3°¢ (’:) We then equate it to > hi(y:, v) to obtain an equation in y; of
degree at most e. Since there are > ¢, (’Z) maxterms for each ¢, we get > ¢, (7;) equations in y;
of degree at most e, and we can solve for y, by linearization. This has complexity (3¢, (7;))3
After solving for all [N/n] of the y;, which are linear combinations of (z;), we get N linear
equations in (z;), and can then solve for x using Gaussian elimination with complexity N?3.

The total complexity of this stage is

(2 (X () (S ()

=0 =0

Remark 2. This argument also applies in the more general case where the filter function can be
written as a function of «(x) and (B;(v) where a4, B; are not necessarily linear, and the «; are of
degree at most ¢ for some small c. In this case, we need to solve for (7) of the ay(x), and then solve
for x by linearization.



3.3 Applications of the Sliding Window Cube Attack

In this section, we give two examples of the sliding window cube attack on a filter function generator
where the filter function has size n = 128 and the key has size N = 256 and 10000.

Ezxample 1. Consider a filter function generator where a 256-bit key is linearly mixed with a 256-bit
IV to fill up a 256 bit LEFSR. Let the filter function be a Toyocrypt-like function defined by:

62

f(s0s-..,8127) = s127 + E SiSa; + 805152 -..831 + $32533534 - - - S62,
i=0

where a;, 0 < i < 62, is a permutation of the set {63,...,125}. This function is balanced, has
algebraic degree 32 and like the Toyocrypt filter function, near optimal nonlinearity 227 — 264
for protection against correlation attack. However, it is easy to see that we can multiply it by
(so+ 1)(s32 + 1) to get a degree 4 equation. Thus e = 2 and d = 4.

1. The complexity of the sliding window cube attack from Section 3.2 on this cipher is:

2

(256/128) x ((i (138))2 % 242 4 (Z (138))3> 19563 a 240-03

i=0 i=0

and it needs (Z?:o (128)) x (256/128) ~ 21401 keystream bits from each of 2472 = 4 re-

3
synchronizations.
2. The complexity of the cube attack with annihilator from Section 3 on this cipher is:

(S () w5 (52 (20 o

and it needs (Z?:o (2‘;’6)) ~ 21590 keystream bits from each of 2472 = 4 re-synchronizations.

3. The complexity of the direct cube attack [12] on this cipher by taking the filter function degree
as 32 is:
2567 x 2°271 4 256% ~ 24701

and it needs 256 keystream bits from each of 232~ = 23! re-synchronizations.
4. The complexity of the re-synchronization attack [10] on this cipher by taking the filter function
input size as 128 bits is
(256/128) x 2128 = 2129
and it needs (256,/128) = 2 keystream bits from each of 128 re-synchronizations.
5. The complexity of the fast algebraic attack [6] on this cipher (where we combine the pre-
processing and online complexity) is:

4

N )+ ()

=0 =0 i=
(5 (TP (T =20
1=0 1=0

and it needs 3.7 (*%%) ~ 219 bits from one keystream.



Thus we see that the sliding window cube attack has better attack complexity than the other attacks
when applied to on this filter function generator. a

When we increase the size of the LFSR as in the following example, we can see that the cube attack
with annihilator may even perform worse than the direct cube attack [12] but the sliding window
cube attack will still have better attack complexities than the other attacks.

Ezxample 2. Consider a filter function generator where we use the same filter function as that in
Example 1 but increase the size of the key and IV to 10000 bits and used that to initialize a
10000-bit LFSR. Then by replacing N = 256 with N = 10000 in Example 1, we have the following
complexity for the various attacks:

1. Sliding Window Cube Attack: Attack Complexity = 2437 and it needs 2'°32 keystream bits
from each of 4 re-synchronizations.

2. Cube Attack with Annihilators: Attack Complexity = 27673 and it needs 22°-°® keystream bits
from each of 4 re-synchronizations.

3. Direct Cube Attack. Attack Complexity = 2°7-5% and it needs 232 keystream bits from each
of 23! re-synchronizations.

4. Resynchronization Attack. Attack Complexit
each of 128 re-synchronizations.

5. Fast Algebraic Attack. Attack Complexity = 2769 and it needs 225-5® bits from one keystream.

y = 213430 and it needs 2539 keystream bits from

Again, we see that the sliding window cube attack has better attack complexity than the other
attacks when applied to on this filter function generator. a

4 Cube Attack on Vectorial Filter Function with low (x,v)-Degree

4.1 Applying the Cube Attack to Vectorial Filter Functions

We now consider the case where the state function (e.g. LFSR) is filtered by a vectorial Boolean
function F : F§ — F5, r > 1. In 2005, Canteaut [2] introduced a method for finding implicit
equations of the form G(x,v,z) = 0 where z = F(x,v) and G(x, v, z) has low (x,v)-degree and is
of unrestricted degree in the output variable z. Then this low degree equation can be solved by XL
or linearization methods to recover the secret key.

In a similar way, we can extend the cube attack with annihilators to vectorial filter functions.
Let a vectorial filter function be denoted by

z=F(x,v)

where x is the key of size n, v is the IV of size m, and z is a vector of multiple output bits. We can
find G(x,v,z) of low (x,v)-degree e such that H(x,v) := G(x,v, F(x,v)) also has low (x, v)-degree
d, with e < d < deg(F'). Proposition 1 in Section 4.2 ensures that we can always find such functions
G(x,v,z) and H(x,V).

We can apply an adaptation of the attack on 1-bit filter functions to G and H. For a given
maxterm, we denote C' to be the cube of 2¢7¢ vectors which have all possible combinations of
values for the terms in the maxterm, and have all other terms fixed in some configuration. For each
v € C, z = F(x,v) is known as it is a keystream bit, so by substituting these keystream bits into
Yo G(x,v,z) = > H(x,v), we get a polynomial of degree at most e. We do this for Y7 (7)
maxterms to find >, (7;) polynomials of degree at most e, and then solve for x by linearization.

The attack proceeds as follows:



1. First: the preprocessing stage. First, we pick Zj:o (") maxterms. For each maxterm, we compute

%

> H(x,v) by finding the coefficient of every x-monomial, of which there are Y7 (%), so H

gets evaluated 297¢ 37 (%) times.
. 2
n
2dfe
(0))

The total complexity of this stage is

2. Second: the online phase. For each maxterm we can compute ) G(x,v,z) as a polynomial of
x, since we have the keystream bits z. This has complexity 2¢—¢ Yo (7;) We equate this to
> H(x,v) to obtain an equation in x of degree at most e. Since there are Y7 (7
we get > 7, (7;) equations in x of degree at most e, and we can solve for x by linearization. This
has complexity (37 (7))?.
The total complexity of this stage is

= (£0))-(50)

Remark 3. Given a stream cipher filtered by the vectorial function

) maxterms,

z=(z1,...,2) = F(x,v).

A straightforward attack would be to apply the cube attack on a linear combination of output bits,
which we denote by z = > ., 2z = f(x,V). If the attacker is able to find a multiple f(x,v)g(x,Vv)
of low degree d where zg(x,v) has low degree e, the attack complexity can be much reduced as in
the attack on Toyocrypt in Section 3.1.

However, it is easy to see that low-degree equations f(x,v)g(x, v) and zg(x, v) are special cases of
the equation G(x, v, F(x,Vv)) of low (x, v)-degree d and G(x,v,z) of low (x,v)-degree e, considered
in Section 4. Therefore we expect the vectorial cube attack in Section 4 to utilize lower degree
equations than the single-bit cube attack. This will translate into lower attack complexity when we
linearize and solve the resulting system of equations for the secret keys.

4.2 Existence of Low Degree Equations for Vectorial Cube Attack

In contrast with Canteaut’s method [2], we need not to have H(x,v) = 0 for all x,v, so the
condition that 2" Y7 ("tm) > 2"t™ is not necessary. Instead, we require a weaker condition
stated as an existence result in Proposition 1 below. The proposition also implies that finding low
degree annihilators for vectorial Boolean function case (r > 1) is no harder than the single output

bit case (r = 1).

Proposition 1 (Ezistence of Low Degree Equations) Let a vectorial Boolean function F : {0,1}™ x
{0,1}™ — {0,1}" be denoted by z = F(x,v) where x is the key of size n, v is the IV of size m, and
z is a vector of multiple output bits. For 0 < e < d < deg(F), if

e d
r n-—+m n+m ntm
(21)§(i>+§<2_>>2+,

i=0 i=0

then there exists G(x,v,2z) of (x,v)-degree e such that H(x,v) := G(x,v, F(x,v)) is of degree d.



Proof. Construct a matrix M with each row indexed by a value of (x, v), there are 2™ rows. Let
the columns range over all (x,v,z)-monomials with (x,v)-degree at most e, z-degree unrestricted
except that z = 0, as well as all the (x, v)-monomials with degree at most d. The number of columns
ne = (2" - 1), (ntm) + Z?:o (ntm)

Define the (i, j)-th entry of M to be the value of the monomial corresponding to the j-th column
evaluated with the value of (x,Vv) at the i-th row, with z = F(x, v).

If ne > 2"*t™ we can find a column vector y € F5'¢ by Gaussian elimination such that My = 0.
Then for every value of (x, V), corresponding to row i, we have

Z y;iM;; = 0.
J

Namely, each solution for y corresponds to a linear combination of some of the column index mono-
mials, the sum of which evaluates to 0 for every value of (x,v). Let G be the sum of all (x,v,z)-
monomials and H be the sum of all (x, v)-monomials. The proof is done. O

Remark 4. For a general single-bit output Boolean function, it may have algebraic immunity n/2, in
which case, the best we can do is d = e = n/2 for the annihilator cube attack. But for the vectorial
case, as shown above, we always get low degree equations when the existence condition holds and in
many cases, d and e are lower than n/2. Thus theoretically the vectorial cube attack is better than
the single-bit output cube attack with annihilator.

4.3 Results from Searching Implicit Low Degree Equations for Vectorial Boolean
Functions

We have implemented the algorithm in the proof of Proposition 1 for a few well-known vectorial
Boolean functions. Experimental results obtained seem to be even better than the above stated
theoretical bound, namely, even if the condition for existence does not hold, as long as the number
of columns exceeds the number of non-zero rows in the Reduced Row Echelon Form (RREF) of the
matrix, we are still able to find low degree annihilators for F(x,v). The results are presented in
Appendix A.

The algorithm is of at least exponential space complexity to n + m. However, it may provide a
good motivation and starting point to find efficient algorithms to search for such low degree implicit
equations for vectorial cube attack.

5 Conclusion

We have proposed several variants of the cube attack, which makes use of low degree equations.
First, the cube attack with annihilators combines the low degree multiples used in algebraic attack
with cube attack. The complexity of this combined attack is better than just a direct application of
the cube attack or the algebraic attack by itself. This is demonstrated in the attack on Toyocrypt
where the attack complexities are lower and the keystream needed is greatly reduced as shown in
Table 1.

Second, when the size of the filter function is smaller than the LFSR, we proposed the sliding
window cube attack with annihilators. As shown in Examples 1 and 2, it has better complexity than
the cube attack with annihilators and the related resynchronization attack of Daemen et. al. [10].

Finally, the vectorial cube attack works on multi-output stream ciphers and it combines the
cube attack with a new form of low degree implicit equations. The existence of such equations can



be ensured by the rank computation of certain “monomial” matrices. Because the upper bound of
the degree of the implicit equations in the vectorial cube attack is less than that of the degree of
annihilators in the single-bit case, we see that theoretically, the vectorial cube attack has better
attack complexity than applying the cube attack with annihilators to single-bit output of the vec-
torial function. We also did some experiments to find low degree implicit equations for the vectorial
cube attack and got some results which are better than that expected by theory. These findings
may serve as a motivation to find an efficient algorithm to find the low degree vectorial equations
G(x,v,F(x,v)) and G(x,v,z) for the vectorial cube attack of Section 4.
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Appendix

A Implicit Low Degree Equations for Vectorial Boolean Functions

Let a configuration be (n + m,r, e, d), we restrict the output of F(x,v) to the first r bits. Let ng
be the number of rows in the matrix M, nc the number of columns, ngrrrr be the row rank of M,



namely, the number of non-zero rows when M is reduced to the reduced row echelon form (RREF).
Let ng be the number of low degree equations obtained. When working in GF(2"), the irreducible

polynomial is denoted m(x).

n+mrednrgr Nc NRREF NS

8 2122% 64 64 0
8 2132% 120 120 O
8 2142% 190 190 O
8 2232% 204 203 1
8 22428 214 248 26
8 23428 442 256 186
8 3122% 100 100 O
8 3132% 156 156 O
8 31428 226 224 2
8 3232% 352 256 96
8 324 2% 422 256 166
8 324 2% 422 256 166
8 3342% 814 256 558
8 41228 172 172 0
8 41328 228 225 3
8 414 2% 208 256 42
8 4232% 648 256 392
8 424 2% 718 256 462
8 434 2% 1558 256 1295

Table 2. F: {0,1}® — {0,1}%, F is the S-Box of AES.



n+mrednrgr Nc NRREF NS
9 2122 76 76 0

9 2132° 160 160 O

9 2142°% 286 286 0

9 2232° 268 268 0

9 2242° 3094 384 10

9 2342 646 511 135

9 3122 116 116 0

9 3132° 200 200 O

9 3142° 326 326 O

9 3232% 452 441 11

9 3242° 578 510 68

9

9

9

9

9

9

9

-

334 2% 1166 512 654
4122° 196 196 0
4132° 280 280 O
414 2% 406 403 3
4232° 80 512 308
424 2° 946 512 434
434 2° 2206 512 1694

GF(2°), the inverse function, m(z) = 2° + 2* 4+ 1

Table 3. F : GF(2°)

n+mrednr Nc NRREF NS

10 2122 89 89
10 21321 209 209
10 2142 419 419
10 2232'0 344 344
10 2242 554 554
10 23429 914 873
10 3122'° 133 133
10 3132'° 253 253
10 31429 463 463
10 3232'° 568 568
10 3242 778 751
10 33421618 1024 594
10 412210 221 221 0
10 41321 341 341 0
10 4142% 551 551 0O
10 42321016 993 23
10 424211226 1024 202
10 43423026 1024 2002

Table 4. F : GF(2'°) — GF(2'°), the inverse function, m(z) = ' + 2® 4 1
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