
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Asghar, Hassan Jameel, Pieprzyk, Josef, & Wang, Huaxiong (2010) A
new human identification protocol and Coppersmith’s baby-step giant-step
algorithm. Lecture Notes in Computer Science : Applied Cryptography
and Network Security, 6123, pp. 349-366.

This file was downloaded from: http://eprints.qut.edu.au/70125/

c© Copyright 2010 Springer-Verlag Berlin Heidelberg

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-13708-2_21

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/978-3-642-13708-2_21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/20337477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Pieprzyk,_Josef.html
http://eprints.qut.edu.au/70125/
http://dx.doi.org/10.1007/978-3-642-13708-2_21

A New Human Identification Protocol and
Coppersmith’s Baby-Step Giant-Step Algorithm?

Hassan Jameel Asghar1, Josef Pieprzyk1, and Huaxiong Wang1,2

1 Center for Advanced Computing, Algorithms and Cryptography, Department of
Computing, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia

{hasghar, josef, hwang}@science.mq.edu.au,
2 Division of Mathematical Sciences, School of Physical & Mathematical Sciences,

Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
{hxwang}@ntu.edu.sg

Abstract. We propose a new protocol providing cryptographically se-
cure authentication to unaided humans against passive adversaries. We
also propose a new generic passive attack on human identification pro-
tocols. The attack is an application of Coppersmith’s baby-step giant-
step algorithm on human identification protcols. Under this attack, the
achievable security of some of the best candidates for human identifi-
cation protocols in the literature is further reduced. We show that our
protocol preserves similar usability while achieves better security than
these protocols. A comprehensive security analysis is provided which sug-
gests parameters guaranteeing desired levels of security.

Keywords: Human Computer Cryptography; Human Identification Pro-
tocols; Entity Authenticaion.

1 Introduction

Secure human identification protocols are a form of user authentication proto-
cols through which the human user proves his/her identity to a remote computer
server using an insecure public terminal and through an insecure channel. Such
protocols are based on shared-key cryptography and are potentially more secure
than traditional authentication methods such as passwords, biometrics, tokens or
combinations of them, since the adversary has more powers in the threat model.
The adversary can view the alphanumerics entered by the user, see the compu-
tations done at the terminal and above all observe the information exchanged
between the user and the remote server during a protocol session. Much stronger
models allow the adversary to actively interfere with the communication channel.
This scenario was conceived by Matsumoto and Imai in [4].

? This is the full version of the paper with the same title in J. Zhou and M. Yung (Eds.):
Applied Cryptography and Network Security, ACNS 2010, LNCS 6123, Springer,
2010.

Although, human identification protocols secure against active attacks is cov-
eted, it is extremely hard to construct one that ensures both acceptable security
and good human executability. To date there have been a handful of proposals
known to resist some active attacks [1, 6, 8, 14]. Among them only the sum of k
mins protocol proposed in [1] has been constructed to be secure against generic
active adversaries; yet, the protocol falls short of usability. The rest of the proto-
cols only treat security against a known set of active attacks. Due to the difficulty
of constructing usable protocols secure against active attacks, recently the focus
of the research community has been on security against passive (eavesdropping)
adversaries [2, 3, 10, 12, 13]. Despite this being a weaker threat model, there is
still no widely accepted human identification protocol secure against passive ad-
versaries and this remains an open problem. Recently proposed protocols can be
used for only a small number of authentication sessions if a certain level of usabil-
ity is desired. Loosely speaking, most of these protocols consist of a shared secret
that is a set of k objects out of n. The protocol involves a series of challenges
from the server and corresponding responses by the user which are constructed
as a function of the secret and the challenges. Since the challenges and their
responses are communicated in the open, the adversary can always do a search
after learning a few challenge-response pairs to find the secret. We shall call
protocols belonging to this general category as k-out-of-n protocols. Hopper and
Blum showed a bound on what security is achievable for this class of protocols
assuming a certain generic time-memory tradeoff attack to be optimal [1, §6]. In
other words, all k-out-of-n protocols are susceptible to this time-memory trade-
off attack, even if they do not have any other weaknesses. This bound severely
lessens accomplishable security for small values of k. A smaller value of k is
necessary to ensure that human memory and computational requirements are
low. Despite their findings, some of the recent proposals have ignored security
evaluation against time-memory tradeoff attacks [10, 12].

Hopper and Blum also proposed two protocols for human identification. One
of them is the now famous HB protocol based on the problem of learning parity in
the presence of noise. However, the variant of this protocol proposed as a human
identification protocol uses a small hamming weight k. We call this protocol
the k-weight HB protocol to distinguish it from the HB family of protocols
used for pervasive devices. The other protocol is the sum of k mins protocol
mentioned before. We use the variant that is constructed to be secure against
passive adversaries only. The two protocols achieve good security against passive
adversaries but fall short of the theoretically achievable bound imposed by the
time-memory tradeoff attack. The reason for this is to avoid lack of usability.

In this paper, we propose a protocol that achieves better security than the
aforementioned protocols while preserving similar usability. We also propose a
new time-memory tradeoff attack on human identification protocols that has
lower time-complexity than the one sketched in [1, §6]. The main component of
the attack is Coppersmith’s baby-step giant-step algorithm which has its appli-
cation in solving the restricted hamming weight discrete logarithm problem [15].
Once again, this attack can be applied to all k-out-of-n protocols. It performs

better than the attack mentioned in [1] on the two proposed protocols in that
paper, further reducing their security. Our protocol shows better security under
both time-memory tradeoff attacks. We also rigorously analyze other possible
attacks to demonstrate their efficacy, or lack thereof, in breaking our protocol.
Our focus is restricted to passive adversaries.

2 Related Work

The first human identification protocol that was constructed to be secure in the
aforesaid threat model was proposed by Matsumoto and Imai in [4]. This scheme
was shown to be insecure by Wang, Hwang and Tsai in [6] and the authors
proposed some improvements but with a severe loss in usability. Matsumoto
proposed another scheme in [7] based on techniques from linear algebra, but
it can only be used for a small number of authentication sessions. Yang and
Teng proposed a couple of protocols in [8] which with the suggested memory
requirement of three 20 to 40-bit secrets, is surely infeasible for most humans.
Hopper and Blum proposed two human identification protocols in [1]. One of
them is the k-weight HB protocol and the best known attack on this protocol is
the meet-in-the-middle attack [1, §3.1, pp. 58]. The protocol requires the human
to toss a coin with a fixed probability between 0 and 0.5, which is arguably
not achievable without additional aid. The other proposal by the authors is
the sum of k mins protocol. The version of this protocol secure against passive
adversaries is, in our opinion, the most secure and usable protocol published to
date. Our protocol performs slightly better, in that it does not use ordered pairs
and hence the user does not necessarily have to remember the secret objects in
a specific order. Furthermore, the security of our protocol is much higher for
similar parameter values.

Li and Shum [14] describe two protocols which resist a large number of passive
attacks and can be used for a large number of authentication sessions. However,
the security analysis of their protocols does not take time-memory tradeoff at-
tacks into account. Weinshall [10] proposed a slightly different protocol in which
the user has to remember images instead of alphanumeric secrets. However, the
main structure of the secret is the same as before; the secret is a small subset
of k objects out of n. The protocol was cryptanalyzed and broken by Golle and
Wagner in [11]. Use of images as memory aids has been employed previously,
such as in [5]. However, straightforward protocols in which the user is required
to click on a subset of secret pictures in a set of given pictures is susceptible to
shoulder-surfing or passive observer attacks. For a comprehensive survey of these
protocols and others see [9]. More recently, the authors of [2] and [3] proposed
a slightly different concept in which the internal properties of images are used
as secrets. However, the security of the protocols cannot be concretely demon-
strated as it relies on some unproven assumptions. Another recent attempt is
by Bai et. al. in [12], but their protocol can only be used for a small number
of authentications; precisely 10, using the default parameters. A different line
of research is to develop special purpose hardware that utilizes other human

senses (such as the sense of touch). Assuming the device to be tamper-proof,
this makes the protocol secure against shoulder-surfers. The protocol from [13]
is an example.

3 Preliminaries: Definitions and Threat Model

Throughout this text, the prover is denoted by H and the verifier by C. This
is to acknowledge that in the real world, the prover will be a human user and
the verifier will be a remote computer (server). The goal of an identification
protocol is to authenticate H to C3. We restate the definitions of identification
protocols and human executable protocols from [1] for reference. A protocol is
defined as a sequence of interactions between a pair of public and probabilistic
interactive turing machines (ITMs) (H, C). The result of the interaction between
these two (ITMs) with respective inputs x and y is denoted by 〈H(x), C(y)〉. The
transcripts of bits exchanged between H and C during this interaction is denoted
by T (H(x), C(y)).

Definition 1. An identification protocol is a pair of public, probabilistic inter-
active turing machinces (ITMs) (H, C) with shared auxiliary input z, such that
the following conditions hold:
– For all auxiliary inputs z, Pr [〈H (z) , C (z)〉 = accept] > p0

– For each pair x 6= y, Pr [〈H (x) , C (y)〉 = accept] < 1− p0 where 0.5 < p0 ≤ 1.

When 〈H, C〉 = accept, we say that H authenticates to C. The above definition
also takes those protocols into account which even reject legitimate provers, al-
beit with a small probability. An example is the Hopper and Blum (HB) protocol
proposed in [1]. For human computational ability, we shall use the following def-
inition from [1], which states that the computations done by the probabilistic
turing machine H should be easy enough to be carried out by a human.

Definition 2. An identification protocol (H, C) is (α, β, τ)-human executable if
at least a (1− α) portion of the human population can perform the calculations
H unaided and without errors in at most τ seconds with probability greater than
(1− β).

The goal is to minimize α, β and τ . Concrete values to these parameters can be
assigned by either an intuitive approximation or where it is hard to do so, actual
user experiments can be carried out [1]. As an exemplary use of these definitions,
we see that the traditional password-based authentication system satisfies the
definition of an identification protocol, since if H and C share the same password,
then H authenticates to C with probability 1. Otherwise, H is accepted with
probability 0. Also, we can conjecture that it is (≈ 0,≈ 0, 5)-human executable
for say a length 10 password, based on our everyday experience.

3 While mutual authentication is desirable, in general it is much harder to construct
such a protocol. Partly due to the inability of humans to construct truly random
challenges.

3.1 Security Definitions

The adversary, denoted by A, has passive access to the channel between H and
C. In this light, the adversary views both H and C as oracles. The following
definition treats H and C as Interactive Turing Machines. In the identification
protocols discussed in this paper the computations done by H have to be carried
out by a human user. Therefore, all such computations should be done by the
human mentally, or else any security proved against A will be superfluous.

The following security definition is taken from [1] and involves the passive
adversary A defined above.

Definition 3. An identification protocol (H, C) is (p,m) secure against passive
adversaries if for all computationally bounded adversaries A and for all auxiliary
inputs z,

Pr [〈A (Tm (H (z) , C (z))) , C (z)〉 = accept] ≤ p

Here Tm (., .) represents the transcript of m independent communication sessions
between H and C.

If 〈A(Tm(H, C)), C〉 = accept for some m, we say that A impersonates H. In
some identification protocols, if less than a threshold number of communication
sessions are observed, even information theoretic security is achievable. However,
this threshold is generally too low and hence information theoretic security can
only be guaranteed for a handful of communication sessions. As a toy example,
consider a protocol in which H and C share an ordered pair of letters selected
uniformly at random from the lower case English alphabet as a secret. Suppose
the secret is (a,b). On a communication session, C sends H one of the following
challenges: (1, 0), (1, 1), (0, 1). If C prompts for (0, 1), the reply fromH is b. Thus,
after observing this communication session, even a computationally unbounded
adversary can not impersonate H with probability better than 1/26, as it does
not know the other letter.

We define a challenge-response identification protocol as the following se-
quence of messages communicated between H and C:

request, (c1, r1), (c2, r2), . . . , (cm, rm), accept/reject

The message request is sent by H to C. It symbolizes a request to start a protocol
and contains information about H such as its identity. Each pair (ci, ri) consists
of a challenge ci drawn from some challenge space by C and a response ri com-
posed from a response space by H. At the end of m challenge-response pairs,
C sends the message accept or reject. We call this sequence of messages as one
session (or an authentication session) of the challenge-response identification
protocol.

4 Proposed Protocol

Notation We refer to a vector of n elements or an n-tuple as an ordered list of
n elements. If c is a vector of n-elements, then c[i] denotes the ith element of c,

for 0 ≤ i ≤ n− 1; the index i is called the ith location in c. Let n be such that
n = ab for positive integers a and b. We call a the jump constant for reasons
that will be clear later. Let k and d be positive integers. Let c be a vector of n
integers drawn uniformly at random from the set {0, 1, . . . , d− 1}.

We first describe the protocol formally and then show an implementation
that is human friendly. Sections 4.1 and 4.2 give a less technical description of
the protocol with example values for the parameters.

Protocol 1.
Setup: Let n, a, b, m, k and d be public parameters, with n = ab. C and H

choose k + 1 locations in c. These locations are essentially a set of integers:
s0, s1, . . . , sk, where 0 ≤ si ≤ n − 1. s0 is called the starting location. All
these locations constitute the secret.

1: repeat
2: C updates m← m− 1, generates the vector c and sends it to H.
3: H assigns t← s0.
4: H updates t← (t+ a · c[s0]) mod n.
5: for 1 ≤ i ≤ k do
6: H updates t← (t+ c[si]) mod n.
7: H sends c[t] to C.
8: if the answer is incorrect then
9: C outputs reject.

10: until m = 0
11: C outputs accept.

Lemma 1. Let S1 and S2 be two sets of secret locations in c. Then, Protocol
1 is an identification protocol with:

Pr [〈H (S1) , C (S2)〉 = accept] ≤ d−m

if S1 6= S2 and 1 otherwise.

Proof. Since the protocol is deterministic, if S1 = S2, C will accept H with
probability 1. For S1 6= S2, we see that since each element of c is generated
uniformly at random from the integers {0, 1, . . . , d−1}, the probability that two
different sets of locations generate the same output for c is at most 1/d. The
result follows for m iterations. ut

4.1 User Friendly Implementations

Both graphical and textual implementations are possible for our protocol. In a
graphical implementation, we can use n graphical objects such as software icons.
In this case, the user’s secret is a set of k icons out of n. Here we illustrate an
example test-based implementation.

We represent the secret space, i.e. the locations in c by an alphabet. For
instance, the English alphabet is a candidate. In this subsection, we abuse the

notation a little to denote the human user by H. The vector c is presented to
H in the form of a grid with a × b cells, where b = n/a (a is chosen such that
it divides n). Each location in c is mapped to a unique character in the secret
space alphabet. Each cell in the grid contains a unique character from the secret
space, below which is the corresponding random digit from c. The secret is then
a string from this alphabet, instead of a set of integers of vector locations. Thus,
the starting location is also a character from this alphabet.

Given a challenge “grid”, H locates the cell containing the starting character.
This corresponds to the location s0 in the formal description.H then looks at the
digit corresponding to this cell. Let the digit be d0. H moves d0 steps vertically
downwards, in a circular way, thus reaching a new character location in the same
grid. Call this location l0. H then looks at the digit in the cell containing s1.
Let d1 be the digit. It now moves horizontally to the right of the location l0 and
moving to the start of the next row if the end of the row is reached. This results
in the new location l1. H continues to move horizontally according to the digits
corresponding to the rest of its secret locations. If the bottom right corner of
the grid is reached, H moves to the top left corner, thus moving in a cycle. At
the end of this procedure, H simply outputs the digit corresponding to the final
character location thus reached. Figure 1 shows an example. Here a = 12 and
b = 6, which implies that n = 72. In this example and also through most of the
text, we will choose d = 10, as this is a common base for humans. The alphabet
is composed of the characters a, . . . , z, A, . . . ,Z, 0, . . . , 9 and special characters:
!,@,#, $,%,∧,&, ∗, (,). Notice that the order of the characters remains the same
for all challenges and only the digits corresponding to these characters change
for different challenges. For the graphical implementation, we simply replace the

a b c d e f g h i j k l
3 2 6 9 2 1 7 5 4 4 6 8

m n o p q r s t u v w x
1 6 7 4 9 7 5 3 2 7 6 1

y z A B C D E F G H I J
3 2 5 1 5 2 9 6 6 8 6 0

K L M N O P Q R S T U V
3 1 7 4 9 7 5 3 4 7 6 1

W X Y Z 0 1 2 3 4 5 6 7
6 3 8 2 6 8 3 2 9 5 8 0

8 9 ! @ # $ % ∧ & ∗ ()
4 7 2 0 9 1 5 3 6 3 4 9

Fig. 1. An example challenge grid.

alphabet with a corresponding set of graphical objects. While the text-based
implementation is shown here as an illustration of our protocol, we recommend
graphical implementation as it is more user-friendly and has less security issues,
such as resistence to dictionary attacks.

4.2 Different Ways of Computation

The above mentioned procedure is one way the human user can perform the
protocol steps. There are a number of other ways in which the protocol can be
executed. The user can choose any method he or she prefers.

For instance, a different and probably more efficient way is sketched here.

1. Ignore the starting location and add all the digits corresponding to the re-
maining k secret locations.

2. From the starting location, move d0 steps vertically downwards (continuing
from the top if the bottom of the grid is reached), where d0 is the digit
corresponding to the starting location.

3. Divide the sum obtained in Step 1 by the jump constant a to get a quotient
and a remainder. The quotient is the number of vertical steps and the re-
mainder is the number of horizontal steps to be taken. The user can then
follows these steps from the location reached in Step 2 and finally output
the digit corresponding to the location thus reached.

If the jump constant a is a multiple of 10 then the above division can be per-
formed by most humans mentally. Thus to make this method easy for most users,
n and a can be chosen to be 200 and 20 respectively. These parameters are easy
for humans to use. k can be chosen somewhere between 10 and 15.

5 Security Analysis

Recall that for security, we consider the computationally bounded passive ad-
versary of Definition 3. The adversary can view every challenge-response pair.
The adversary knows the description of Protocol 1 and the public parameters
specified in that protocol. The only thing hidden from the adversary is the set
of secret locations shared by C and H. In this section, we assume that the cal-
culations H can be performed by a human mentally without any additional aid
and thus A gains no advantage in observing the human user’s behavior. We also
assume that the secret locations are chosen uniformly at random from the set of
all possible secret locations.

Given m challenge-response pairs (c1, r1), . . . , (cm, rm), the goal of A is to
impersonate H either by partially or completely learning the secret locations or
by impersonating H by guessing the answers without knowledge of the secret.
We assume that all these challenge-response pairs correspond to successful au-
thentication sessions between H and C. We first look at some obvious attacks
following which we shall show more sophisticated attacks.

5.1 Some Obvious Attacks

Random Guess 1 The most obvious impersonation attack is to randomly guess
the answers when prompted for a challenge. Since the output is in the range
{0, 1, . . . , d−1}, a random guess from this set will be successful with probability
1/d for each challenge. For m challenges, this probability is d−m.

Random Guess 2 Another method for impersonation is to guess the secret and
then answer a challenge by following the steps of Protocol 1 correctly. We see
that there are a total of nk+1 possible ways of choosing k + 1 locations in c.
However, due to the commutativity of the addition operation, any permutation
of a given set of locations will generate the same output. Thus we are looking at
the number of ways of choosing the starting location times the number of ways
of choosing k locations from a set of n locations with replacement and without
order, which is exactly: n

(
n+k−1

k

)
. Thus the probability of success in guessing

the correct secret is (n
(
n+k−1

k

)
)−1.

The hitherto mentioned attacks are online attacks and effective measures ex-
ist to prevent them. For instance, if there are more than a threshold number (say
3) of unsuccessful consecutive login attempts, the user account can be blocked.

Brute Force The bruteforce attack has complexity O(n
(
n+k−1

k

)
). It works by try-

ing all possible secret locations satisfying m challenge-response pairs. In the next
section, we shall see that after observingm challenge-response pairs, the expected
number of candidates for the secret is: n

(
n+k−1

k

)
/dm. To reduce this number to

a unique secret, A needs on average: n
(
n+k−1

k

)
/dm ≈ 1 ⇒ m ≈ logd(n

(
n+k−1

k

)
)

challenge-response pairs. Thus O(logd(n
(
n+k−1

k

)
)) challenge-response pairs are

enough to find the secret uniquely. With a lower number of challenge-response
pairs, there are multiple candidates and even a computationally unbounded ad-
versary cannot distinguish between them. For concrete values, we see that if
n = 200 and k = 15, the brute force attack has complexity roughly 283. An
attack with this complexity is generally considered intractable.

5.2 Algebraic Interpretation

Given m challenge-response pairs (c1, r1), . . . , (cm, rm), we now consider the
problem of finding the secret locations s0, . . . , sk. We attempt to describe this
problem algebraically. The following notations will be used henceforward: If A is
a set, then |A| denotes the number of elements in A. If x and y are two strings,
then x||y represents their concatenation. If x and y are two integers, [x, y] rep-
resents the interval of integers between x and y inclusive. A string of n-elements
can be transformed into a vector of n-elements in a natural way, and the two
terms will be used interchangeably in the following.

For any challenge-response pair (c, r), a location r̂ satisfying c[r̂] = r is called
a satisfying location for (c, r). For 1 ≤ i ≤ m, let Ri be the set of all satisfying
locations for (ci, ri). Let Rm = R1 × · · · ×Rm be the m-ary cartesian product
over these m sets. We represent the elements of Rm as m-element vectors, r̂ =
[r̂1 · · · r̂m]T , in an obvious way. For any vector x, let |x| denote the number of
elements in x. Define the weight of x as:

wt(x) =
∑|x|

i=1
xi

where xi = x[i], the ith element of x. Define the matrix C as:

C =

c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n
...

...
...

...
cm,1 cm,2 · · · cm,n

where ci,j = ci[j]. Then, for each r̂ ∈ Rm we have:

[
aC C

] [x
y

]
= r̂ mod n (1)

where x and y are n-element vectors with wt(x) = 1 and wt(y) = k. Clearly, x
corresponds to the starting secret location and y corresponds to the k remaining
secret locations. Notice that y need not be a binary vector since each location
can be chosen more than once. There are |Rm| such equations and we cannot
write this as a system of fewer equations as for each satisfying location r̂ for
a challenge-response pair (c, r), r is independent of r̂. This is true since each
element of c is generated uniformly at random from {0, 1, . . . , d− 1}.

We first estimate |Rm|.

Lemma 2. For 1 ≤ i ≤ m, E[|Ri|] = n/d. And E[|Rm|] = (n/d)m.

Proof. Let i ∈ [1,m]. In each pair (ci, ri), if every element of ci is generated
uniformly at random from {0, 1, . . . , d}, then the expected number of times ri
occurs in ci is n/d. This is exactly the expected number of satisfying locations
for ri. The result for |Rm| follows from its definition. ut

There is exactly one element in Rm that contains the satisfying locations corre-
sponding to H’s secret. We denote this by r̂s. For more compact notation, define
s = [x y]T and C ′ = [aC C]. Finding a unique s satisfying C ′s = r̂s mod n
thus translates into finding the secret locations of H. There are 2n unknowns in
s. If m is small, the number of solutions for s is very large. On the other hand,
higher m means a higher value of E[|Rm|] = (n/d)m, which in turn means more
equations to be solved, since A has no way to distinguish r̂s from other elements
in Rm.

Let Solve Equations be an algorithm that finds solutions (possibly multi-
ple) to the linear system defined in Equation 1. Further, let τ(n, k,m, d) be the
time complexity of this algorithm. We have the following probabilistic algorithm
for finding s.

Algorithm 1.
Input: The matrix C ′ and the set Rm.
1: Initialize an empty set S.
2: for each r̂ ∈ Rm do
3: Run Solve Equations on input C ′s = r̂ mod n. If any solutions are

found, assign them to the set S.

4: Output an element uniformly at random from S.

This algorithm will perform well probabilistically if |S| is small. As we have
found before, the expected size of Rm is (n/d)m. There are a total of nm possible
different output vectors for C ′s mod n. Therefore, the probability that an s,
different from H’s secret, is in the set S can be estimated as (n/d)m

nm = 1/dm.
Thus this probability becomes lower as m increases. Therefore, we can assume
that the performance of this algorithm is good. The expected time complexity
of Algorithm 1 is:

O
(
τ (n, k,m, d)

(n
d

)m)
If gaussian elimination is used as the Solve Equations algorithm, we require
m ≥ 2n, but this means that the expected size of Rm will be greater than or
equal to (n/d)2n. We can see the complexity of this algorithm with concrete
values. Let n = 100, d = 10 and k = 16. Then, we have m ≥ 2n = 200. Gaussian
elimination takes time O(n3) giving a total approximate time 2687, which is
surely infeasible.

Since the weights of x and y are restricted, we might still be able to use other
methods with a smaller value of m. To this end, given m, we find the number of
possible solutions of the following equation:

C ′s = r̂ mod n (2)

where r̂ ∈ Rm. Since wt(x) = 1 and wt(y) = k, with m = 0 there are a total of
n
(
n+k−1

k

)
possible choices for s. With m = 1, we expect a 1/n fraction of these

choices to satisfy the above equation. Continuing on this way, we see that the
expected number of possible choices for s are:

n
(
n+k−1

k

)
nm

=

(
n+k−1

k

)
nm−1

Since the expected size of Rm is (n/d)m, we see that the combined expected
number of solutions are:

n
(
n+k−1

k

)
dm

Equating the above expression to 1, we get:

m = logd n+ logd

(
n+ k − 1

k

)
(3)

Thus m = O(logd n+ logd
(
n+k−1

k

)
) is required on average to find a unique value

of s in Equation 2. By using the concrete values as above, we find that the
resulting value of m from Equation 3 is approximately 29. Thus in theory, we
can have an algorithm that solves the problem with m = 29. However, this value
of m implies that (n/d)m ≈ 296. Thus whether or not a Solve Equations
algorithm that works for smaller values of m can be found, the overall time
complexity of Algorithm 1 is still very high. Thus it is not possible to improve this

complexity without a different approach. Informally speaking, the main reason
for this interesting result is that in our protocol, the computations are also done
on the location indices and not just the digits corresponding to these locations
as in previously proposed protocols. Since the digits are generated uniformly at
random, the final answer is not linearly dependent on the location indices. Next,
we present a time-space tradeoff algorithm that utilizes fewer challenge-response
pairs and has better time complexity.

5.3 Time-Memory Tradeoff

In [1, §6], Hopper and Blum sketched a meet-in-the-middle algorithm which, on
k-out-of-n protocols, has average-case time complexity of:

O
(
nk(1−

ln d
2 ln Q)

)
(4)

Here Q is an intermediate result, which in our protocol corresponds to the range
of the intermediate locations during the computation of the protocol. Thus in our
protocol, Q = n. Our protocol and the protocols from [1] as well as many other
protocols in literature loosely fall in this category of protocols (the only difference
in our protocol is that we have a starting location that is computed differently
from the k remaining locations). For the k-weight HB protocol, the average-case
time complexity of this attack is: O(

(
n
k/2

)
) [1, §3.1, pp. 58]. This is true due to two

reasons. First the protocol uses the addition operation, which is commutative,
and the user has to choose k unique locations as a secret. Therefore, the number
of possible secrets are

(
n
k

)
instead of nk. Secondly, Q equals d in their protocol.

Similarly, for the sum of k mins protocol the average-case time complexity of this
attack is O(

(
n(n−1)/2

k/2

)
)[1, §3.2, pp. 59]. However, since the size of the secret is

exactly twice than in the k-weight HB protocol, the comparative time complexity
is O(

(
n(n−1)/2

k/4

)
).

This attack is essentially a time-memory tradeoff. The time-memory tradeoff
attack that we present here employs a deterministic baby-step giant-step algo-
rithm by Coppersmith summarised in [17, pp. 109] and detailed in [15, §2.1]. On
k-out-of-n protocols, the resulting attack has average-case time complexity of:

O

(
nk(1−

ln d
2 ln Q)n

ln d
ln Q

2
k
2

ln d
ln Q

)

which is better than the former if 2k/2 < n or k < 2 log2 n. The space complexi-
ties of the two attacks are the same. While the time complexity is comparable to
the previously mentioned meet-in-the-middle attack for generic k-out-of-n pro-
tocols, our attack however, performs much better on the two protocols in [1].
The average-case time complexity of our algorithm on the k-weight HB pro-
tocol is O(

(
n/2
k/2

)
) and on the sum of k mins protocol is O(

(
n(n−1)/4

k/4

)
). This is

substantially smaller than the previous result.

The original application of Coppersmith’s algorithm is to solve the restricted
hamming weight discrete logarithm problem [16]. But since this algorithm essen-
tially utilizes the knowledge of the restricted hamming weight, we can modify
it to solve our problem. We notice that there are several other deterministic
algorithms that perform asymptotically better than Coppersmith’s algorithm
like the one proposed by Stinson of time complexity O

(
k3/2(lnn)

(
n/2
k/2

))
[15].

However, for the choice of parameters used in this paper, the performance is
comparable to Coppersmith’s algorithm if not worse. There are also some prob-
abilistic variants, but which cannot be applied here since the discrete logarithm
is always unique and this is not necessarily the case with the candidate locations
in our problem for small values of m. For larger values of m time-memory trade-
off algorithms become infeasible. We now describe the attack on our protocol
and derive its time complexity. The derivations of the other results mentioned
above are similar.

For simplicity, we assume n and k to be even integers. For arbitrary n and
k, the attack can be carried out with minor differences [15, §5]. For 0 ≤ i ≤
n − 1, define bi to be a vector of length n such that bi[l + 1] = 1 whenever,
l ≡ i + j mod n, for 0 ≤ j ≤ n/2− 1, and 0 otherwise. Clearly, for all i, bi is a
binary vector with wt(bi) = n/2. Let B = {bi : 0 ≤ i ≤ n/2−1}. Now, let Y be
the set of all n-element vectors. From [15, §2.1], we see that for all y ∈ Y with
wt(y) = k, there exists a b ∈ B, such that:

y · b =
k

2

For any y1,y2 ∈ Y, y2 is called the sub of y1, denoted y2 ≺ y1, if y1[l] = 0 ⇒
y2[l] = 0 for 1 ≤ l ≤ n. Let 1 denote the binary vector of weight n. Let y=k/2

denote a vector whose weight is k/2. We divide s into two parts: s1 = [x y=k/2]T

and s2 = [0 y=k/2]T . We assume there to be a hash table, initially empty, which
will be used as a data structure in this attack.

Algorithm 2.
Input: The set B and m challenge-response pairs.
1: Initialize an empty set S.
2: for 0 ≤ i ≤ n/2− 1 do
3: for each possible vector s1 = [x y=k/2]T such that y=k/2 ≺ bi do
4: Compute the string q ← c1 · s1 mod n|| · · · ||cm · s1 mod n.
5: Insert this m-digit string q along with s1 in the hash table.
6: for each vector s2 = [0 y=k/2]T such that y=k/2 ≺ 1− bi do
7: for 1 ≤ i ≤ m do
8: Initialize an empty set Qi.
9: For 1 ≤ j ≤ n, if ri ≡ (j+ci ·s2) mod n, update Qi ← {j}∪Qi.

10: Insert each string q ∈ Q1 × · · · ×Qm in the hash table along with
s2.

11: For each collision in the hash table, construct s = s1 + s2 and update S←
{s} ∪S.

12: Output S.

Once Algorithm 2 is executed, we need another algorithm to uniquely deter-
mine the vector in S that satisfies m ≥ logd(n

(
n+k−1

k

)
) challenge-response pairs.

Algorithm 3.
Input: The set S and m ≥ logd(n

(
n+k−1

k

)
) challenge-response pairs.

1: for each s ∈ S do
2: If ci · s ≡ ri mod n for 1 ≤ i ≤ m, output s and halt.

The memory requirement of Algorithm 2 is O(n
(
n+k/2−1

k/2

)
). The combined

running time of Algorithm 2 and 3 is:

O
(
n

(
2mn

(
n/2 + k/2− 1

k/2

)
+
(n
d

)m(n/2 + k/2− 1
k/2

))
+ logd

(
n

(
n+ k − 1

k

)) (n+k−1
k

)
dm

)
Neglecting the logarithmic terms as well as the quadratic term in n, we get:

O

(
nm+1

dm

(
n/2 + k/2− 1

k/2

)
+

(
n+k−1

k

)
dm

)

Following a similar procedure to that of [1, §6], in Appendix A, we show that to
minimize this quantity the optimum value of m for Algorithm 2 is:

m =
ln
(

(n+k−1
k) ln d

(n/2+k/2−1
k/2) ln(n/d)

)
lnn

− 1

And this value of m gives the running time:

O

((
n+ k − 1

k

)1−ln d/ lnn(
n/2 + k/2− 1

k/2

)ln d/ lnn
)

In contrast, if we use the meet-in-the-middle algorithm from [1], we get a running
time of:

O

((
n+ k − 1

k

)1−ln d/ lnn(
n+ k/2− 1

k/2

)ln d/ lnn
)

which is considerably larger in the second term. Table 1 shows various choices of
the parameters n and k and the resulting combined time and space complexity
of Algorithms 2 and 3. We assume d = 10 and the time and space complexities
are represented by the symbols τ and µ respectively.

Table 1. The time complexity τ and space complexity µ of the time-memory tradeoff
attack with the optimum value of m against n and k.

n k τ µ n k τ µ n k τ µ

100 10 233 233 120 10 236 235 150 10 239 237

20 255 252 20 260 255 20 265 258

30 272 267 30 279 271 30 286 276

200 10 243 239 300 10 248 243 500 10 255 247

20 272 263 20 283 269 20 296 277

30 297 283 30 2112 292 30 2132 2104

5.4 Comparative Time Complexities

The main motivation behind our protocol was to increase Q relative to d in
Equation 4 without compromising too much on usability. If Q roughly equals
the square of d, then we can choose smaller values of k, as the time complexity of
the attack will increase. This is not straightforwardly possible in the k-weight HB
protocol and the sum of k mins protocol. For instance, if Q = 100 = 102 = d2,
these protocols will require k additions of 2 digit numbers in a single round.
This is prohibitively difficult for most humans since the additions have to be
performed mentally. Our protocol achieves this by shifting the computations to
the locations rather than the values of those locations. At each step, the user
only has to add a 2 or 3 digit number to a single digit number. As a result,
usability is preserved while the time-memory tradeoff attacks perform worse in
our case. Table 2 shows a direct comparison of the three protocols in terms
of the time-complexity of our attack. The time complexity of the meet-in-the-
middle attack from [1] is labeled “Old”, whereas our attack is labeled “New”.
As can be seen, our attack is efficient than the previous attack by a few orders
of magnitude. Time-memory tradeoff attacks is one way to attack our protocol.
The next section looks at a different way to attack the protocol.

5.5 Significance of the Jump Constant a

Let r̂ denote a location. Clearly it is an integer modulo n. We first attempt
to find the probability distribution of obtaining r̂ as a sum of the values of k
locations, ignoring the starting location and hence the jump constant a. To this
end, let p(k, r̂) be the probability that r̂ is the final location after the sum of the
values of k locations as in our protocol. In other words, it denotes the probability
that r̂ is the sum of k integers (not necessarily unique): s1, . . . , sk ∈ Zd. Clearly,
p(1, r̂) = 1/d for 0 ≤ r̂ ≤ d − 1 and p(1, r̂) = 0 for d ≤ r̂ ≤ n − 1. For any
subsequent k, we see that the probability p(k, r̂) can be obtained by:

p (k, r̂) =
∑n−1

i=0
p (k − 1, r̂ − i mod n)p (1, i)

Table 2. The time complexities of the time-memory tradeoff attacks on the k-weight
HB protocol, the sum of k mins protocol and our protocol.

k-weight HB Sum of k mins Our Protocol
n k Old New Old New Old New

100 8 222 218 224 222 230 228

12 230 224 234 231 241 238

16 237 229 245 241 251 247

200 8 226 222 228 226 237 236

12 236 230 240 237 252 249

16 246 237 253 249 265 261

300 8 228 224 230 228 242 240

12 240 234 244 241 258 256

16 250 242 257 253 273 270

This is similar to [1, §3.2]. The following dynamic programming algorithm of
time complexity O(kn2) then computes these probabilities:

Algorithm 4.
Input: n,k and d.
1: Assign p(1, r̂)← 1/d for 0 ≤ r̂ ≤ d− 1 and p(1, r̂)← 0 for d ≤ r̂ ≤ n− 1.
2: for 2 ≤ i ≤ k do
3: for 1 ≤ j ≤ n do
4: p← 0.
5: for 1 ≤ l ≤ n do
6: p← p+ p(i− 1, j − l mod n)p(1, l).
7: p(i, j)← p.
8: Output p(k, r̂) for 0 ≤ r̂ ≤ n− 1.

Now, let q(a, k, r̂) denote the probability of obtaining the location r̂ as the
sum of k integers and the starting location, thus including the jump constant a.
Then, we can see that:

q (a, k, r̂) =
1
d

∑d−1

i=0
p (k, r̂ + ia mod n)

Let U denote the uniform distribution over Zn. Let Q denote the distribution
of the q (a, k, r̂)’s. ∆(Q,U) = 1

2

∑n−1
i=0 |q (a, k, i)− 1

n | is defined as the statistical
distance between the two probability distributions.

Lemma 3. Fix a k. Suppose d divides n. Then ∆(Q,U) is minimum if a = n
d .

Proof. a divides n into d blocks, each of length a. Since the starting location is
uniform over Zd, its product with a will then be uniformly distributed over n. If
a 6= n

d , then either ad < n or ad > n. In both cases, the numbers between ad and
n will have different probabilities of occurence than the remaining numbers. ut

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

n

P
ro

ba
bi

lit
y

p
q

Fig. 2. The jump constant a makes the distribution nearly uniform over n.

Figure 2 shows the distribution of q(a, k, r̂) against p(a, k, r̂) with n = 120,
k = 30 and a = 12. Table 3 shows ∆(Q,U) with different values of n and k (a is
chosen such that n = ab). Based on these results, we see that if the statistical

Table 3. The statistical distance ∆(Q,U) against n and k. Greater value of n requires
larger value of k to make ∆(Q,U) small.

n k ∆(Q,U) n k ∆(Q,U) n k ∆(Q,U)

100 10 3.5× 10−16 120 10 4.9× 10−8 150 10 1.0× 10−4

20 7.0× 10−16 20 3.3× 10−15 20 1.6× 10−8

30 9.9× 10−16 30 1.0× 10−15 30 2.5× 10−12

200 10 7.2× 10−3 300 10 9.7× 10−2 500 10 3.3× 10−1

20 8.2× 10−5 20 1.5× 10−2 20 1.7× 10−1

30 9.3× 10−7 30 2.3× 10−3 30 8.8× 10−2

distance is small, an adversary can distinguish from the uniform distribution
after observing 1

∆(Q,U) challenge-response pairs on average. The adversary can
then (possibly) use some statistical methods to guess the starting location and
then use the following algorithm to guess the answer to a challenge probabilis-
tically:

Algorithm 5.
Input: n, k, d and a challenge c.
1: Run Algorithm 4 to obtain an interval of locations, δ ⊆ [0, n− 1], such that∑

r̂∈δ p (k, r̂) = p (δ), for some probability p(δ).

2: Guess a starting location and shift the interval δ accordingly.
3: Given a challenge c, pick a location r̂ uniformly at random from δ and output

c[r̂].

Then the success probability of this algorithm is:

p (δ)
nδ

+
(1− p (δ))

n2

Considering p(δ) to be high, we can see that the quantity 1/nδ is less than 1/n2.
If the adversary knows the starting location, then the probability of success
becomes 1/δ. As an example, for the parameters used in Figure 2, if δ = [0, 49]∪
[100, 119], then p(δ) = 0.93 and the success probability of the algorithm is:
1.34 × 10−4 which is considerably better than the naive guess which succeeds
with probability 7.0× 10−5.

Notice that each session in our protocol consists of m rounds. Therefore, in
light of the discussion above, we mandate the use of our protocol for 1

m∆(Q,U)

sessions only, before secret renewal.

6 Usability

To demonstrate comparable usability, we use similar parameters as used in the
experiment in [1]. We use n = 200, k = 15 andm = 6. With these parameters, the
time and space complexity of our time-memory tradeoff attack is proportional
to 261 and 254 respectively. The statistical distance ∆(Q,U) is 4.9×10−4, which
means that the quantity (∆(Q,U))−1

m ≈ 340. Thus, with these parameters our
scheme can be used securely for at least 340 authentication sessions.

With n = 200, k = 15 and m = 7, the experiment done for the k-weight HB
protocol by the authors in [1] gave an average time of 166 seconds. Notice that
there are m = 7 rounds instead of 6. This is important to add noise into the
answer. The user sends the wrong answer to one of the challenges. To compare
with our protocol, we can see that apart from the starting location, the user
has to add two numbers for each secret location. One of these numbers is in the
range [0, 199] and the other is in the range [0, 9]. Thus arguably, adding a single
digit number to a number in the range [0, 199] will take approximately the same
time, as we are well versed with doing such computations in our heads. For the
starting location, we see that the user can move vertically (in a circular way)
according to the digit corresponding to the starting location. The user reaches to
a new location this way. The result of the remaining k = 15 locations can then
be divided by 20 to get a quotient and a remainder. The quotient is the number
of vertical steps and the remainder is the number of horizontal steps to be taken.
The user can then follows these steps and output the digit corresponding to the
location thus reached. Thus while this last step takes more time than the other
steps, it can surely be done within half the time required for the computation of
the k = 15 other secret locations. Now, one round of k-weight HB protocol takes

166/7 ≈ 23.7 seconds on average. This implies that according to our argument,
the computation of the last part takes ≈ 12 seconds. Thus, conjecturing that the
calculations for the remaining k = 15 locations amounts to time 166, we can see
that for m = 6 rounds, this amounts to a total time of ≈ 213 seconds.

From this discussion, we can say that for low values of α and β, our protocol is
approximately (α, β, 213)-human executable. While it takes slightly more time
than the k-weight HB protocol, it is more usable as the user does not have
to send a wrong answer with probability 1/7, which is not possible for most
humans. Furthermore, for these parameter choices, the time complexity of the
time-memory tradeoff attack is proportional to 237 in the case of k-weight HB
protocol. In our case, the complexity is 261. The comparative time-complexity
of the attack on the sum of k mins protocol with similar parameters is 249.
Again, lower than the time-complexity for our protocol. To increase usability,
one can further reduce m from 6 to 4 and get a time of approximately 143
seconds. Some of the common authentication mechanisms, such as PIN number
authentication, use 4-digit numbers for security. We acknowledge the absence of
actual experiments on users.

6.1 Handling Errors

Whenever humans are involved in performing computations, errors are unavoid-
able. With the default setting of the protocol, the legitimate user can be rejected
if he/she does one mistake in any of the m rounds of the protocol. We can handle
this by requiring that the user’s answers be correct in most of the rounds. For
instance, if m = 6, then the server accepts the user if 5 or more of the answers
are correct. Although, the probability of success of a random guess attack will
increase, it will still be considerably low. An interesting area of research would
be to devise a protocol that handles user errors by using error correcting codes.

6.2 Suggested Parameters

Table 4 shows choices of parameter values for different security requirements
and the resulting parameterized security against different attacks. In the table,
m stands for the number of iterations (rounds) in one authentication session. R
stands for the success probability of the random guess attack. B stands for the
complexity of the brute force attack. τ/µ shows the time/space complexity of
the time-space tradeoff algorithm. Finally, Sessions, represents the number of au-
thentication sessions a particular secret can be used. It is obtained as (∆(Q,U))−1

m .
Notice that, space complexity can be a severe limitation as well (263/8 ≈ 1018,
i.e. about 1 eta byte). For low and medium level security, the restriction on the
number of sessions can be relaxed.

Notice that in comparison with some other protocols found in literature,
the number of sessions is quite high. For instance, the cognitive authentication
scheme of Weinshall [10] can only be used for approximately 40 sessions even
when the size of the user’s secret is as large as 150 [11, §4.1]. For more practical

Table 4. Suggested Parameters.

Security n k m R B τ/µ ∆(Q,U) Sessions

Low 200 12 4 10−4 271 249/244 2.9× 10−3 85
Medium 200 16 4 10−4 287 261/254 4.9× 10−4 500

High 200 20 6 10−6 2101 272/263 8.2× 10−5 2, 000
Paranoid 200 24 6 10−6 2114 283/271 1.4× 10−5 12, 000

sizes of the secret, the number of allowable sessions is even lower. Similarly, Bai
et al.’s scheme can be used for 10 authentication sessions only [12]. For these
reasons, we have restricted our comparison to the two protocols in [1]. Li and
Shum’s protocols [14] seem promising, but their security has not been extensively
analyzed; especially against time-memory tradeoff attacks.

7 Conclusion

Recently, many human identification protocols secure against passive adversaries
have been proposed in the literature. However, they can only be used for a few
authentication sessions before secret renewal. Furthermore, many of them lack a
detailed security analysis. Some of them have ignored the impact of time-memory
tradeoff attacks. We attempted to construct a protocol with security against
time-memory tradeoff attacks in mind. The resulting protocol offers reasonable
usability and good security. We acknowledge that the protocol can not be used
frequently, as authentication seems to require about 2-3 minutes time. However,
it can be used under certain circumstances such as when the user is using an
insecure computer. An interesting question is whether improvements can be
made to find a solution that achieves better security with progressively smaller
values of parameters such as the size of the secret. Another area of interest is
to find other variants of time-memory tradeoff attacks that can be applied to
human identification protocols.

Acknowledgements. Hassan Jameel Asghar was supported by Macquarie Uni-
versity Research Excellence Scholarship (MQRES). Josef Pieprzyk was sup-
ported by the Australian Research Council under Grant DP0987734. The work
of H. Wang is supported in part by the Australian Research Council under
ARC Discovery Project DP0665035, the Singapore National Research Founda-
tion under Research Grant NRF-CRP2-2007-03 and the Singapore Ministry of
Education under Research Grant T206B2204.

References

1. Hopper, N.J., Blum, M. Secure Human Identification Protocols. Advances in Cryp-
tology - Asiacrypt 2001, Lecture Notes in Computer Science, Springer-Verlag, 52-66,

2001.

2. Hassan Jameel, Riaz Ahmed Shaikh, Heejo Lee and Sungyoung Lee: Human Iden-
tification Through Image Evaluation Using Secret Predicates. Topics in Cryptology
- CT-RSA 07, Lecture Notes in Computer Science, Springer-Verlag. 4377 (2007)
67–84

3. Hassan Jameel, Riaz Shaikh, Le Hung, Yuan Wei, Syed Raazi, Ngo Canh, Sungyoung
Lee, Heejo Lee, Yuseung Son, and Miguel Fernandes. Image-feature based human
identification protocols on limited display devices. In Information Security Appli-
cations (WISA2008), volume 5379 of Lecture Notes in Computer Science, pages
211224. Springer, 2009.

4. Matsumoto, T., Imai, H.: Human Identification through Insecure Channel. Advances
in Cryptology - EUROCRYPT 91, Lecture Notes in Computer Science, Springer-
Verlag. 547 (1991) 409–421

5. Jermyn, I., Mayer, A., Monrose, F., Reiter, M., Rubin, A.: The design and analysis
of graphical passwords. 8th USENIX Security Symposium (1999).

6. Wang, C.H., Hwang, T., Tsai, J.J.: On the Matsumoto and Imai’s Human Iden-
tification Scheme. Advances in Cryptology - EUROCRYPT 95, Lecture Notes in
Computer Science, Springer-Verlag. 921 (1995) 382–392

7. Matsumoto, T.: Human-computer cryptography: An attempt. 3rd ACM Conference
on Computer and Communications Security, ACM Press. (1996) 68–75

8. Xiang-Yang Li, Shang-Hua Teng: Practical Human-Machine Identification over In-
secure Channels. Journal of Combinatorial Optimization. 3 (1999) 347–361

9. Shujun Li, Heung-Yeung Shum: Secure Human-computer Identification against
Peeping Attacks (SecHCI): A Survey. Unpublished report, available at Elsevier’s
Computer Science Preprint Server. (2002)

10. Daphna Weinshall: Cognitive Authentication Schemes Safe Against Spyware (Short
Paper). 2006 IEEE Symposium on Security and Privacy. (2006) 295–300

11. Philippe Golle and David Wagner: Cryptanalysis of a Cognitive Authentication
Scheme. Cryptology ePrint Archive, Report 2006/258. http://eprint.iacr.org/.

12. Xiaole Bai, Wenjun Gu, Sriram Chellappan, Xun Wang, Dong Xuan, Bin Ma:
PAS: Predicate-Based Authentication Services Against Powerful Passive Adver-
saries. acsac,pp.433-442, 2008 Annual Computer Security Applications Conference,
2008.

13. Hirokazu Sasamoto, Nicolas Christin, and Eiji Hayashi. Undercover: Authentica-
tion Usable in Front of Prying Eyes. In Proceedings of the 2008 ACM Conference on
Human Factors in Computing Systems (CHI 2008), pages 183-192. Florence, Italy,
April 2008.

14. Shujun Li and Heung-Yeung Shum: Secure human-computer identification (inter-
face) systems against peeping attacks:SecHCI. IACRs Cryptology ePrint Archive:
Report 2005/268, August 2005.

15. D. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming Weight
Discrete Logarithm Problem. Math. Comp., 71:379391, 2002.

16. G. Agnew, R. Mullin, I. Onyschuk, and S. Vanstone, An Implementation for a Fast
Public-Key Cryptosystem, J. Cryptography, vol. 3, 1991.

17. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of applied
cryptography, CRC Press, 1997.

A Optimum Value of m

We have:
nm+1

dm

(
n/2 + k/2− 1

k/2

)
+

(
n+k−1

k

)
dm

Let C1 =
(
n+k−1

k

)
and C2 =

(
n/2+k/2−1

k/2

)
. Taking the first derivative test to find

the minimum:

nC2
d

dm

(n
d

)m
+ C1

d
dm

(
1
dm

)
= 0

⇒ nC2

(n
d

)m
ln
(n
d

)
+ C1

(
1
dm

)
ln
(

1
d

)
= 0

⇒ nC2

(n
d

)m
ln
(n
d

)
=
C1

dm
ln d

⇒ nm+1 =
C1 ln d

C2 ln (n/d)

⇒ m =
ln
(

C1 ln d
C2 ln(n/d)

)
lnn

− 1

⇒ m =
ln
(

(n+k−1
k) ln d

(n/2+k/2−1
k/2) ln(n/d)

)
lnn

− 1 (5)

Let,

A =

(
n+k−1

k

)
ln d(

n/2+k/2−1
k/2

)
ln (n/d)

(6)

Then putting the value of A from Equation 6 into Equation 5, we get:

m =
lnA
lnn

− 1 (7)

Also re-arranging Equation 7 gives us:

nm+1 = A (8)

Now let,

W =
nm+1

dm
C2 +

C1

dm

⇒ dmW = nm+1C2 + C1 (9)

Putting the value of nm+1 from Equation 8 into Equation 9:

dmW = AC2 + C1

Now, putting the value of A from Equation 6, we have:

dmW =
C1 ln d

C2 ln (n/d)
C2 + C1

⇒ dmW = C1

(
ln d

ln (n/d)
+ 1
)

⇒ dmW = C1

(
ln d+ ln (n/d)

ln (n/d)

)
⇒ dmW = C1

(
lnn

ln (n/d)

)
(10)

Let,

D =
lnn

ln (n/d)
(11)

Then Equation 10 becomes:

dmW = C1D

⇒ m ln d+ lnW = lnC1 + lnD
⇒ lnW = lnC1 + lnD −m ln d (12)

Putting in the value of m from Equation 7 into Equation 12:

lnW = lnC1 + lnD −
(

lnA
lnn

− 1
)

ln d

⇒ lnW = lnC1 + lnD − lnA
lnn

ln d+ ln d

⇒W = C1D
(
e− lnA

)ln d/ lnn
d

⇒W = C1DdA
− ln d/ lnn (13)

Now, putting the values of D and A from Equations 11 and 6 respectively into
Equation 13, we get:

W = C1 ·
lnn

ln (n/d)
· d ·

(
C1 ln d

C2 ln (n/d)

)− ln d/ lnn

⇒W =
lnn

ln (n/d)

(
ln d

ln (n/d)

)− ln d/ lnn

dC
1−ln d/ lnn
1 C

ln d/ lnn
2

And by neglecting the logarithmic terms in the product:

W = O
(
dC

1−ln d/ lnn
1 C

ln d/ lnn
2

)
Assuming d to be small, and putting in the values of C1 and C2, we see that the
total computational time required is:

O

((
n+ k − 1

k

)1−ln d/ lnn(
n/2 + k/2− 1

k

)ln d/ lnn
)

(14)

