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Abstract

Object classification is plagued by the issue of session
variation. Session variation describes any variation that
makes one instance of an object look different to another,
for instance due to pose or illumination variation. Recent
work in the challenging task of face verification has shown
that session variability modelling provides a mechanism to
overcome some of these limitations. However, for computer
vision purposes, it has only been applied in the limited set-
ting of face verification.

In this paper we propose a local region based inter-
session variability (ISV) modelling approach, and apply it
to challenging real-world data. We propose a region based
session variability modelling approach so that local ses-
sion variations can be modelled, termed Local ISV. We then
demonstrate the efficacy of this technique on a challenging
real-world fish image database which includes images taken
underwater, providing significant real-world session varia-
tions. This Local ISV approach provides a relative perfor-
mance improvement of, on average, 23% on the challenging
MOBIO, Multi-PIE and SCface face databases. It also pro-
vides a relative performance improvement of 35% on our
challenging fish image dataset.

1. Introduction

Object classification is a challenging problem due to
variations in the appearance of the objects and the envi-
ronment in which they appear. One of the best known and
most well investigated object classification problems is that
of face recognition, where variations in subject pose and
lighting present significant challenges [6]. A recent state-
of-the-art face recognition approach uses session variability
modelling [12] to provide a general model that describes the
differences that occur between instances of the same class,
whether that be from pose, illumination or expression varia-
tion. This session variability modelling approach is applied
in the context of a free-parts model [16], which discards po-

tentially useful spatial relationships.
The free-parts approach described in [16] divides the

face into blocks and each block is considered to be a in-
dependent observation of the same object (the face). The
distribution of these blocks is described by a Gaussian mix-
ture model (GMM) and has been investigated by several re-
searchers [16, 9, 10, 19]. Lucey and Chen [9] showed that
a relevance adaptation approach, similar to the one used
for speaker authentication [14], could be used to quickly
obtain client (class) specific GMMs by using a universal
background model (UBM). Furthermore, Lucey and Chen
showed that adding spatial constraints to this free-parts ap-
proach could yield state-of-the-art face recognition perfor-
mance on the BANCA dataset [13]. Sanderson et al. [15]
proposed a multi-region probabilistic histogram (MRH) ap-
proach which used the free-parts approach as its basis but
incorporates spatial constraints and also makes several sim-
plifications for efficiency purposes. This efficient method
provided state-of-the-art performance on the labeled faces
in the wild (LFW) dataset 1.

Recently in [18, 12] the GMM free-parts (GMM-FP)
model was extended to include an inter-session variability
(ISV) modelling component. ISV learns a sub-space which
models the differences in instances of the same object (the
face). Such an approach was initially proposed to cope with
similar problems in speaker authentication [17]. This model
of session variability is used to estimate session variations
in order to suppress, or account, for them. Using this model
yielded state-of-the-art performance on several well known
face datasets such as MOBIO [11] and Multi-PIE [6]. De-
spite this state-of-the-art performance, this approach has an
obvious limitation as it does not enforce any spatial rela-
tionships between the blocks (observations), which discards
spatial information which would help to disambiguate be-
tween the classes. Furthermore, its general applicability to
vision problems has not been shown as it has only ever been
applied to face recognition.

Contributions: In this paper we propose a local inter-

1http://itee.uq.edu.au/ conrad/lfwcrop/



session variability modelling approach that enforces local
spatial relationships that were previously discarded. This
approach is similar to [15] which adopts a multi-region
probabilistic histogram approach. However, rather than
using a probabilistic histogram that uses the zeroth order
statistics of a GMM [15], we apply this to the GMM-FP
and ISV approaches which, as has been shown in [12], uses
the zeroth and first order statistics which provide a better ap-
proximation of the underlying data. We also apply, for the
first time, the ISV model to the broader problem of object
classification to examine the general applicability of this
technique. To do this we use a large fish image dataset that
contains challenging real-world images consisting of fish
images captured in conditions ranging from controlled with
a constant background and illumination, through to under-
water imagery of fish in their natural habitat with significant
illumination and pose variations.

We show that introducing spatial constraints leads to
state-of-the-art performance for face and fish image clas-
sification. Spatial constraints are introduced by dividing the
images into 𝑅 regions and learning a model specific to each
region. This allows us to locally model session variability
and capture local identity information. For face recognition
this Local ISV approach provides an average relative im-
provement of 23% for the MOBIO [11], Multi-PIE [6] and
SCface [5] databases over the existing state-of-the-art. For
fish classification, we show that using Local ISV provides a
relative performance improvement of 35%.

Finally, we examine the sensitivity of the Local ISV ap-
proach to real-world problems such as errors in face locali-
sation. Using the real-world MOBIO database, which con-
sists of face images captured from a mobile phone, we intro-
duce noise to the manually annotated landmarks to simulate
misalignment, a problem often encountered in practical ap-
plications [7]. Empirically we show that the Local ISV ap-
proach is more sensitive to this misalignment, but still pro-
vides superior performance when the noise in the position
of the landmarks is less than 20% of the inter-eye distance.

The remainder of the paper is organized as follows. An
overview of existing work is presented in Section 2; the pro-
posed region based GMM and ISV based face authentica-
tion frame works are explained in Section 3. Databases and
protocols used in the experiments are presented in Section
4. In Section 5, we present the experimental results using
our novel fish image database and three face databases. We
conclude the paper in Section 6.

2. Prior work

2.1. GMM Free-Parts for Face Verification

Several researchers have examined the use of the GMM-
FP framework to perform face verification [16, 9, 19]. In-
troduced in [16], this approach divides the image (the face)

into 𝑁 overlapping blocks which are considered to be in-
dependent observations of the same underling signal (the
face), 𝑶. From each block a 2D-DCT feature vector of di-
mension 𝑀 is obtained to compactly represent each block,
such that the 𝑛-th block yields the feature vector 𝒐𝑛. Thus
the 𝑗-th image of the 𝑖-th client yields the set of 𝑛 observa-
tions 𝑶𝑖,𝑗 = [𝒐𝑖,𝑗,1, . . . ,𝒐𝑖,𝑗,𝑛]. The distribution of these
feature vectors is then modelled using a GMM,

𝑃𝑟 (𝑶 ∣ 𝜽) =
𝑁∏

𝑛=1

𝐶∑
𝑐=1

𝜔𝑐𝒩 [𝒐𝑛 ∣ 𝝁𝑐,Σ𝑐] , (1)

where 𝐶 is the number of components for the GMM, 𝜔𝑐 is
the weight for component 𝑐, 𝝁𝑐 is the mean for component
𝑐, and Σ𝑐 is the covariance matrix (usually considered to be
diagonal) for component 𝑐.

In order to overcome the limited number of samples per
client, 𝑖, mean-only relevance MAP adaptation [9] is used
to enrol the client (class). Originally proposed for speaker
authentication [14], mean-only relevance MAP adaptation
takes a prior model, usually referred to as a universal back-
ground model (UBM) GMM, and performs MAP adapta-
tion on the means using the observations of the 𝑖-th client,
𝑶𝑖, to obtain a model for the client. Since only the mean
vectors change, it has been shown [17] that this can be writ-
ten as,

𝒔𝑖 = 𝒎+𝑫𝒛𝑖, (2)

where 𝒔𝑖 is the mean super-vector for the 𝑖-th client, 𝒎 is
the mean super-vector of the UBM GMM (the prior), 𝒛𝑖

is a normally distributed latent variable, and 𝑫 is a diag-
onal matrix that incorporates the relevance factor and the
covariance matrix [17] and ensures the result is equivalent
to mean-only relevance MAP adaptation.

To evaluate the likelihood that image 𝑡, described by a
set of observations 𝑶𝑡, was produced by client 𝑖 a log-
likelihood ratio is used. In this case the positive class is
given by the claimed identity 𝑖 and the negative class is rep-
resented by the UBM GMM. Thus, the log-likelihood ratio
is,

ℎ (𝑶𝑡, 𝒔𝑖) = log [𝑝 (𝑶𝑡 ∣ 𝒔𝑖)]− log [𝑝 (𝑶𝑡 ∣ 𝒎)] . (3)

It was shown in [19] that this could be efficiently calculated
using the linear scoring approximation [4] leading to,

ℎ𝑙𝑖𝑛𝑒𝑎𝑟 (𝑶𝑡, 𝒔𝑖) = (𝒔𝑖 −𝒎)
𝑇
Σ−1𝒇 𝑡∣𝒎, (4)

where the diagonal matrix Σ is formed by concatenating
the diagonals of the UBM covariance matrices and 𝒇 𝑡∣𝒎 is
the super-vector of mean normalised first order statistics as
given in [12]. A decision threshold, 𝜏 , is applied to this
score to decide if the observations were generated by the
model, 𝒔𝑖. Image, 𝑶𝑡, is classified as being of client 𝑖 if
and only if ℎ𝑙𝑖𝑛𝑒𝑎𝑟 (𝑶𝑡, 𝒔𝑖) ≥ 𝜏 .



Super-vector notation is a way of compactly represent-
ing data for a GMM. It is particularly useful when we con-
sider mean-only relevance MAP adaptation as the only part
of the model that changes is the means. Since the weights,
[𝜔1, . . . , 𝜔𝐶 ], and variances, [Σ1, . . . ,Σ𝐶 ], are fixed each
model can be described by the concatenation of their means
to form a single super-vector 𝒂 = [𝝁𝑇

1 , . . . ,𝝁
𝑇
𝐶 ]

𝑇 . More
details for this notation can be found in [12].

2.2. Inter Session Variability Modelling

Inter-session variability modelling (ISV) has been ap-
plied successfully to speaker [17] and face verification [12].
ISV aims to model and suppress session variation, that is
variation that makes one image of the same class look dif-
ferent to another image of the same class. For face recog-
nition this is often considered to be illumination, pose or
expression variation. At enrollment time session variation
is suppressed by jointly estimating a latent session variable
along with a latent identity variable, the latent session vari-
able is then discarded. When scoring, an estimate of the la-
tent session variable, 𝒙𝑡, is obtained from the test samples,
𝑶𝑡. This estimate, 𝒙𝑡, is then used to offset the models so
that the likelihood function now takes into account the ses-
sion variation (noise), of the test samples; see [12] Section
3.5 for more details.

Enrolling a client for ISV consists of MAP adaptation,
similar to mean-only relevance MAP adaptation. The dif-
ference is that a sub-space, 𝑼 , is introduced to model ses-
sion variation and so restricts the movement for relevance
adaptation such that the model for the 𝑗-th image of the 𝑖-th
client (class) is,

𝒖𝑖,𝑗 = 𝒎+𝑼𝒙𝑖,𝑗 +𝑫𝒛𝑖, (5)

where 𝒙𝑖,𝑗 is the latent session variable and is assumed to
be normally distributed. In this way each image is consid-
ered to have been produced with its own session variation;
for instance due to pose or illumination variation. As pre-
viously mentioned when performing enrollment the session
varying part (𝑼𝒙𝑖,𝑗) is discarded and only those parts per-
taining to identity are retained. Thus, the ISV client model
is given by,

𝒔𝐼𝑆𝑉,𝑖 = 𝒎+𝑫𝒛𝑖. (6)

This should not be confused with mean-only relevance
MAP adaptation (see Equation 2) as the latent variables 𝒙𝑖,𝑗

and 𝒛𝑖 are jointly estimated for ISV.
Scoring with ISV is performed by first estimating the la-

tent session variable, 𝒙𝑡, for the test sample 𝑶𝑡. This is then
used to offset the client model (𝒔𝐼𝑆𝑉,𝑖) and the UBM (𝒎) so
that the log-likelihood is estimated in the session conditions
of the test samples. This provides a mechanism to com-
pensated for session variation. When used in the context
of linear scoring, this leads to the following log-likelihood

ratio (LLR),

ℎ𝐼𝑆𝑉 (𝑶𝑡, 𝒔𝐼𝑆𝑉,𝑖) = (𝒔𝐼𝑆𝑉,𝑖 −𝒎)
𝑇
Σ−1

(
𝒇 𝑡∣𝒎 −𝑵 𝑡𝑼𝒙𝑡∣𝑈𝐵𝑀

)
,

(7)

where 𝑵 𝑡 is the zeroth order statistics for the test sample in
a block diagonal matrix as defined in Equation 11 of [12].

3. Proposed approach

We propose to overcome one of the major limitations of
the ISV approach to image classification by dividing an im-
age into local regions. Doing this allows us to re-enforce
spatial constraints that were previously being discarded. To
properly evaluate the local ISV approach we also have to
evaluate the local GMM-FP approach to ensure that locally
modelling session variability is not being boosted solely by
being able to extract local class specific information.

The approach is similar to work conducted in [15] where
a probabilistic histogram for local regions was formed us-
ing a GMM, termed a multi-region probabilistic histogram
(MRH). This MRH approach collates the zeroth order statis-
tics, the occupation probabilities, of a GMM to perform
classification. By contrast, we propose to apply local re-
gion decomposition to the ISV approach due to their state-
of-the-art performance when used globally in [12]. These
techniques collate the zeroth and first order statistics of a
GMM to perform classification, furthermore, ISV provides
an additional constraint to the MAP equations to suppress
session variations (noise).

3.1. Local GMM Free-Parts Approach

We propose an extension to the GMM-FP approach
whereby the input images are divided into a set of 𝑅 re-
gions and each region is modelled independently. This ap-
proach, termed Local GMM-FP, allows us to derive local
descriptions of the identity variation. Similar to the GMM-
FP approach, the proposed Local GMM-FP technique di-
vides each region into a set of overlapping blocks from
which DCT features are extracted. A local GMM UBM is
then learnt for each specific region 𝑀𝑟, 𝒎𝑟, and local mod-
els of the identity are then obtained using region specific
mean-only relevance MAP adaptation,

𝒔𝑟,𝑖 = 𝒎𝑟 +𝑫𝑟𝒛𝑟,𝑖, (8)

where 𝒔𝑟,𝑖 is the 𝑖-th client model corresponding to region
𝑟, 𝒛𝑟,𝑖 is a normally distributed latent variable for region 𝑟,
and 𝑫𝑟 is a diagonal matrix that incorporates the relevance
factor and the covariance matrix [17] as per Section 2.1.

The 𝑡-th image is compared to the 𝑖-th client model in a
region specific manner. Thus the observations from the 𝑟-th
region of 𝑡-th image, 𝑶𝑟,𝑡, are compared to the 𝑖-th client’s



model for the 𝑟-th region, 𝑠𝑟,𝑖. Thus the LLR becomes re-
gion specific,

ℎ𝑙𝑖𝑛𝑒𝑎𝑟 (𝑶𝑟,𝑡, 𝒔𝑟,𝑖) = (𝒔𝑟,𝑖 −𝒎𝑟)
𝑇
Σ−1

𝑟 𝒇𝑟,𝑡∣𝑚𝑟
, (9)

where Σ𝑟 is the covariance matrix for the 𝑟-th region and
𝑓𝑟,𝑡∣𝑚𝑟

is the mean normalised first order statistics for the
𝑟-th region. Subsequently, all region specific scores are
summed and compared to the threshold, 𝜏 .

3.2. Local Inter-Session Variability Modelling

In this section we propose to apply ISV to local regions
so that we can locally model session variability and cap-
ture local identity information. We apply a similar con-
cept to Section 3.1 of dividing the image into 𝑅 regions
and again perform MAP adaptation for each region inde-
pendently. Thus for the 𝑗-th image of the 𝑖-th client in the
𝑟-th region we obtain the model,

𝒖𝑟,𝑖,𝑗 = 𝒎𝑟 +𝑼 𝑟𝒙𝑟,𝑖,𝑗 +𝑫𝑟𝒛𝑟,𝑖. (10)

A region specific ISV client model, 𝒔𝐼𝑆𝑉,𝑟,𝑖, is formed
by,

𝒔𝐼𝑆𝑉,𝑟,𝑖 = 𝒎𝑟 +𝑫𝑟𝒛𝑟,𝑖. (11)

During the evaluation process, the region specific latent ses-
sion variable 𝒙𝑟,𝑖 is estimated for 𝑶𝑟,𝑖 using the 𝑟-th re-
gion from the 𝑖-th client model. Then, session variation is
compensated for by adding this estimated session offset to
𝒔𝐼𝑆𝑉,𝑟,𝑖 prior to scoring.

4. Database and Evaluation Protocols

4.1. Fish Image Set

To evaluate the new ISV approach in the broader ob-
ject classification domain we introduce a new, large fish
image dataset consisting of 3, 960 images collected from
468 species. This data consists of real-world images of fish
captured in conditions defined as “controlled”, “out-of-the-
water” and “in-situ”. The “controlled” images consist of
fish specimens, with their fins spread, taken against a con-
stant background with controlled illumination, see Figure 2
(a) and (b). The “in-situ” images are underwater images of
fish in their natural habitat and so there is no control over
background or illumination, in addition there is the chal-
lenge of the unique underwater imaging environment, see
Figure 2 (c) and (d). The “out-of-the-water” images con-
sist of fish specimens, taken out of the water with a varying
background and limited control over the illumination con-
ditions, see Figure 2 (e) and (f).

There are two main difficulties when performing classi-
fication on the fish imagery. The first is that, in many cases,
different species are visually similar, as shown Figure 1 (a)-
(d) where it can be seen that four species are visually sim-
ilar. The second is that there is a high degree of variability

in the image quality and environmental conditions, see Fig-
ure 2 for example images 2 for some example images.

Approximately half of the images have been captured
in the “controlled” condition, where the image of the fish
has been captured out-of-the-water with a controlled back-
ground. The “in-situ” condition consists of images taken
underwater with no control over the background and with
significant pose and illumination variations. Approximately
one third of the data was captured in this manner. Finally,
the remaining images are captured “out-of-the-water”, but
without a controlled background and may contain some mi-
nor pose variation.

Evaluation Protocol: An evaluation protocol, similar
to [11] and [3], has been developed for experiments on this
dataset. We define three sets of data by splitting the data,
based upon species (class), into a training set (train) to
learn/derive models; a development set (dev) to determine
the optimal parameters for our models; and an evaluation
set (eval) to measure the final system performance.

Two protocols are defined to evaluate the system per-
formance when high quality (“controlled”) and low quality
(“in-situ”) data is used to enrol classes. Protocol 1a uses one
enrollment image per species from the “controlled” data.
Protocol 1b uses one enrollment image per species from the
“in-situ” data. For both protocols, the same test imagery
(a mix of “controlled”, “in-situ” and “out-of-the-water” im-
ages) is used. The train set consists of 1, 296 images from
169 species, and can be used to learn or derive models for
principal component analysis, probabilistic linear discrim-
inant analysis, or for learning the UBM GMM 3. The dev
set consists of 958 images from 93 species, and the eval
set consists of 963 images from 98 species. For these two
protocols the dev and eval partitions consist of the sub-set
of species for which we have at least three images, with at
least one “controlled” and one “in-situ” image.

We evaluate system performance by measuring the
Rank-𝑛 identification rate, using manually annotated
bounding boxes.

Rank-𝑛 refers to the percentage of queries for which the
correct result in within the top 𝑛 matches. We measure per-
formance at 𝑛 = 1, 𝑛 = 5 and 𝑛 = 10. The bounding
boxes were obtained by inscribing a region around the body
of each fish, an extra 3% margin was added to avoid losing
edge information, example bounding boxes are shown in
Figure 2. The new fish database which has been presented
will be made publicly available4.

2images (a) and (c) in the Figure 2 are from Australian National Fish
Collection CSIRO, (b) is taken by G. Edgar, and (d) is taken by Dennis
King

3to train ISV there we only use the 155 classes that have more than one
image per species

4see http://tiny.cc/fishdataset for details



(a) Thalassoma Trilobatum (b) Thalassoma Quinquevittatum (c) Thalassoma Purporeum (d) Thalassoma Hardwicke

Figure 1: Example images of four different fish species, all which have similar visual appearance despite being distinct
species. (Images taken by J.E. Randall)

(a) “controlled” (b) “controlled”

(c) “in-situ” (d) “in-situ”

(e) “out-of-the-water” (f) “out-of-the-water”

Figure 2: Example images of two different fish species cap-
tured under the three different capture conditions (from top
to bottom): “controlled”, “in-situ” and “out-of-the-water”.
Significant variation in appearance due to the changed
imaging conditions (session variation) is evident. Ground
truth bounding boxes are shown in red.

4.2. Face Databases

Three face databases are used to evaluate the proposed
approach: MOBIO [11], Multi-PIE [6], and SCface [5].
Face verification is still a challenging classification problem
and we want to compare the proposed approach to the cur-
rent state-of-the-art. The MOBIO and Multi-PIE databases
contain pose and illumination variations, while MOBIO and
SCface contain images captured with different sensors. SC-
face also contains variations in the resolution of the cap-
tured images.

When performing evaluations on each database we use
the well defined protocols that provide dedicated train, dev
and eval sets. In each case approximately one third of the
data is used for each set. The train, dev and eval datasets
are used in the same manner as outlined in Section 4.1. For
all three databases we use manually annotated eye locations
and examples images are provided in Figures 3, 4 and 5 for
the MOBIO, Multi-PIE and SCface databases respectively.
More details on the protocols for the MOBIO and SCface

Figure 3: Example images from the MOBIO [11] database.

Figure 4: Example images from the Multi-PIE [6] database.

Figure 5: Example images from the SCface [5] database.

databases are given in [18], and for the Multi-PIE database
in [3].

System performance is presented in terms of equal er-
ror rate (EER) and half total error rate (HTER) [11]. EER
is used for the development set and is the point at which
the false alarm rate equals the false rejection rate (a smaller
number is better). The threshold, 𝜏 , derived from the EER
on the development set is then used on the evaluation set
to obtain the HTER (the average of the false alarm rate
and false rejection rate) to present the final system perfor-
mance (a smaller number is better). Linear scoring and
ZT-Normalisation are used for all evaluated systems, as it
has previously been shown to be effective for face recogni-
tion [19].

4.3. Impact of Face Localisation Error

An issue for any real world face verification system is
it’s robustness to face mis-alignment; that is, the perfor-
mance degradation when the face image is not extracted per-
fectly (based on the eye positions). Therefore, we evaluate
the robustness of our proposed approach to errors in mis-



System Protocol 1a Protocol 1b
Dev Eval Dev Eval

PCA+PLDA 23.8 23.8 16.4 17.9
RBF-SVM (HoG) 31.8 31.4 24.2 25.5

GMM-FP 29.5 32.6 25.2 28.0
Local GMM-FP 37.4 43.0 34.6 40.2

ISV 34.9 37.8 30.9 33.5
Local ISV 43.1 49.3 40.8 46.7

Table 1: Fish Identification Results. Rank-1 identification
rate results are given, and the best performing system is
shown in bold.

alignment by introducing noise into the manually annotated
landmarks. We choose the MOBIO database for this eval-
uation, and add uniform random noise equal to 2%, 5%,
10% and 20% of the average inter-eye distance (119 pixels
for the MOBIO database). The new landmark points which
have been used in this experiment are publicly available 5.

5. Experiments

The proposed techniques have been implemented using
the the freely available signal processing and machine learn-
ing tool box, BOB [1].

5.1. Evaluation on Fish Image Set

The images are cropped with an extra margin of 3%
added to the ground truth bounding boxes. Images are then
converted to gray-scale and resized to 160×64 pixels. DCT
features are extracted exhaustively using a block size of
20 × 20 with 𝑀 = 65. Mean and standard deviation is
applied to each block, as such the zero𝑡ℎ DCT coefficient
is discarded. GMM based approaches use 512 components,
for the sub-space size is set to 64 for Protocol 1a and 32
for Protocol 1b. For the local approaches the optimal region
size was found to be 4× 4.

The fish image dataset is a new dataset and so in addition
to the proposed approaches we also present several baseline
systems. The baseline systems used in this work are proba-
bilistic linear discriminant analysis (PLDA) which achieves
state-of-the-art performance for face recognition [8], and
a support vector machine (SVM) approach similar to that
used for classifying pedestrians [2]. For both the PLDA and
SVM approaches we used the gray-scale images which have
been resized to 160×64 pixels. For PLDA we apply dimen-
sionality using principal component analysis (PCA) as this
showed improved performance, this is termed PCA+PLDA.
For the SVM approach we use a histogram of oriented gra-
dients as the feature and a radial basis function as this pro-

5visit https://wiki.qut.edu.au/display/saivt/Noisy+MOBIO+Landmarks
for details

Figure 6: Rank-1, Rank-5 and Rank-10 identification rates
for Protocol 1a on the evaluation set.

Figure 7: Rank-1, Rank-5 and Rank-10 identification rates
for Protocol 1b on the evaluation set.

vides superior performance over a linear SVM, referred to
as RBF-SVM.

Results presented in Table 1 show that the Local ISV ap-
proach outperforms all other approaches. The standard ISV
approach clearly outperforms the RBF-SVM and GMM-FP
approaches, and the Local ISV approach provides a rela-
tive performance gain of 35% when compared to ISV. The
next best system is the Local GMM-FP approach which pro-
vides a relative performance gain of 38% when compared to
GMM-FP. The Rank-5 and Rank-10 identification results,
in Figures 6 and 7, show that Local ISV and Local GMM-
FP provide consistently improved performance.

A general trend for all of the classifiers is that Protocol 1a
provides better performance than Protocol 1b. The average
relative performance difference for all classifiers between
Protocol 1a and Protocol 1b is 13%. This is likely due to
the fact that for Protocol 1a the enrollment data consists of
a “controlled” image, compared to Protocol 1b which uses
an “in-situ” image. This demonstrates the importance of
having high quality enrollment data with which to generate
a model, even when session variability modelling is used.



5.2. Evaluation on Face Verification Databases

When extracting the DCT features we use a block size
of 12 × 12 with 𝑀 = 44 for the MOBIO and Multi-PIE
databases. For the SCface database, we used a block size
of 20 × 20 with 𝑀 = 65. These optimal block and feature
sizes were taken from [19].

We evaluated the proposed local face verification ap-
proach on three databases as outlined in Section 4.2. Our
proposed technique is compared to three baseline tech-
niques: MRH, GMM-FP and ISV. In this experiment UBMs
are trained with 512 components for MOBIO and Multi-PIE
and 256 components for SCface. In the ISV and Local ISV
approaches a sub-space of 40 components is used for MO-
BIO and SCface, and 80 components is used for Multi-PIE.
For the Local GMM-FP approach we use a region size of
4× 4 for MOBIO and Multi-PIE, and 1× 2 for SCface. For
the Local ISV approach, we use region sizes of 4 × 4 for
MOBIO, 2× 2 for Multi-PIE and 2× 2 for SCface.

Table 2 shows the performance of the proposed ap-
proaches and the baselines. It was found that the Local
ISV approach performs best in all cases except for the SC-
face evaluation dataset, which obtains best performance us-
ing the ISV system. The Local ISV modelling technique
marginally improves the verification performance in the dev
set and marginally decreases the performance in the eval.
This marginal performance degradation is likely due to the
large block size used (20 × 20) in conjunction with many
images in the SCface database being up-sampled to have
an inter-eye distance of 33 pixels. The Local ISV system
provides an average relative performance improvement of
32% for the MOBIO and Multi-PIE databases. We also
note that the Local GMM-FP system consistently outper-
forms the GMM-FP system on all three databases, with an
average relative improvement of 18%, further demonstrat-
ing the value of a region based approach. The Local ISV ap-
proach outperforms the Local GMM-FP system on all three
databases, and demonstrates the value in modelling session
variability and capturing identity information locally.

5.3. Evaluation of Face Verification Performance in
the Presence of Localisation Error

The performance of face verification in the presence of
localisation noise is evaluated as outlined in Section 4.3.
Figures 8 and 9 show the half total error rate (HTER) of the
Local GMM-FP and Local ISV face verification systems
and their respective baselines (GMM-FP and ISV) in the
presence of increasing levels of face localisation noise on
the MOBIO database. The same systems configurations as
those in Section 5.2 are used. We evaluate performance at
five different noise levels: no noise; and with localisation
error of up to 2%, 5%, 10% and 20% of the average inter-
eye distance.

For both the proposed and baseline systems, system per-
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Figure 8: Performance of the Local GMM-FP and GMM-
FP face verification systems in the presence of face locali-
sation noise on MOBIO database evaluation set.
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Figure 9: Performance of the Local ISV and ISV face ver-
ification systems in the presence of face localisation noise
on MOBIO database evaluation set.

formance degrades as noise increases. At levels of noise up
to 20% of the average inter-eye distance the proposed ap-
proaches outperform their baselines. However, as noise is
increased above 10%, the proposed performance of all sys-
tems degrades considerably (see Figure 8).

This increased degradation is likely caused by the nature
of the region based systems. At high levels of noise and
with small region sizes, the locations of the regions relative
to the face changes significantly. Thus the assumption that
corresponding regions between the client model and probe
image are modelling the same portion of the face is increas-
ingly likely to be violated as noise increases. However this
effect could be mitigated by using fewer regions (i.e. 2× 2
rather than 4×4), which would incur a small drop in perfor-
mance under ideal conditions, but offer greater invariance to
localisation errors.

6. Conclusions and Future Work

This works shows that state-of-the-art performance can
be obtained for fish and face image classification through
a region based, Local ISV modelling technique. This ap-
proach allows noise (in the form of session variation) to be
modelled locally, while also capturing local identity infor-
mation. For the first time, we have applied the ISV model



System MOBIO (female) MOBIO (male) SCface Multi-PIE
Dev Eval Dev Eval Dev Eval Dev Eval

MRH [12] 14.5 21.9 13.6 13.0 28.3 30.3 4.8 6.2
GMM-FP 11.5 22.2 7.5 9.9 16.7 16.3 3.1 3.8

Local GMM-FP 10.3 20.9 4.8 7.7 15.7 15.9 1.1 2.3
ISV 6.7 12.7 4.1 6.2 13.6 12.8 1.6 2.2

Local ISV 5.2 10.5 2.5 4.5 12.0 13.4 0.6 1.1

Table 2: Face Verification Results. The MRH results are taken from [12]. Results for the Dev data are equal error rates, while
results for the Eval data are half total error rates. The best performing systems are shown in bold.

to challenging natural world images of fish to examine the
broad applicability of this technique to the more general ob-
ject classification domain, and have shown that the Local
ISV approach outperforms the standard ISV by 35%. In
the face verification task, the Local ISV technique outper-
forms the standard ISV technique by an average of 32% for
the MOBIO database and Multi-PIE unmatched illumina-
tion data set. We have shown that the Local GMM-FP sys-
tem also consistently outperforms the GMM-FP system on
all three face databases with an average relative improve-
ment of 18%, further demonstrating the value of a region
based approach.

In addition to this, we have evaluated the real-world ap-
plicability of the Local ISV approach to face verification in
the presence of face localisation error. It has been shown
that Local ISV outperforms baseline systems at noise lev-
els of up to 20% of the average inter-eye distance. Future
work will consider the selection of weights for combining
the region based models, and will investigate approaches to
incorporate features such as colour into the models, which
may be of particular use for classification of natural images.
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