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Abstract: In this paper, we consider single vendor–single buyer integrated 
inventory model with probabilistic demand and equal delivery lot size.  
The model contributes to the current literature by relaxing the deterministic 
demand assumption which has been used for almost all integrated inventory 
models. The objective is to minimise expected total costs incurred by the 
vendor and the buyer. We develop effective iterative procedures for finding the 
optimal solution. Numerical examples are used to illustrate the benefit of 
integration. A sensitivity analysis is performed to explore the effect of key 
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parameters on delivery lot size, safety factor, production lot size factor and the 
expected total cost. The results of the numerical examples indicate our 
integrated model gives a significant cost savings over independent model.  

Keywords: inventory; probabilistic demand; safety stock; supply chain. 
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1 Introduction 

The single vendor–single buyer integrated inventory problem received a lot of attention 
in recent years. This renewed interest is motivated by the growing focus on supply chain 
management where collaboration and integration have been considered as key factors in 
managing modern supply chain. Firms are realising that a more efficient management of 
inventories across the entire supply chain through better coordination and more 
cooperation are necessary for reducing costs and increasing service level. Such 
collaboration is facilitated by the advances in information technology providing faster 
and cheaper communication means. 

The integrated inventory model in the supply chain has been of interest since more 
than three decades ago. Goyal (1976) is among the earliest publication addressing the 
problem of two organisations in a supply chain jointly optimising production and delivery 
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quantities. Then, this paper is followed by various contributions including, for example, 
Banerjee (1986), Goyal (1988), Hill (1997), Goyal and Nebebe (2000), Pujawan and 
Kingsman (2002) and Hoque and Goyal (2000). Most of those papers, however, assume 
that the demand is deterministic. Considering that demand is almost always uncertain in 
real life, assuming demand to be deterministic is a too restrictive assumption. In this 
paper, we relax the deterministic assumption and take into account the uncertainty factor. 

More recently, Sarmah et al. (2006) and Ben-Daya et al. (2008) present a 
comprehensive literature review on vendor–buyer integrated model. They pointed out 
that there are opportunities in extending single vendor–single buyer inventory model. The 
extensions may lead to relaxing assumptions that may not be realistic such as the 
assumption of deterministic demand, perfect product quality and completely reliable 
production system. 

In this paper, we consider integrated inventory problem in a two-tier supply chain that 
consists of a single vendor and single buyer. A vendor produces batches of product and 
delivers them to the buyer with an equal shipment size. Both parties have flexibility in 
determining the order quantity and production batch based on optimal delivery lot size. 
The first research dealing with this problem is Pujawan and Kingsman (2002). They 
compared an inventory model with lot streaming and without lot streaming for two 
different cases. Finally, the model has shown that synchronising the order times and 
agreeing on the delivery lot size, allowing the buyer to determine the order quantity and 
the supplier the production lot size independently, is virtually as good as jointly agreeing 
on the relevant lot sizes. Furthermore, Chan and Kingsman (2007) extended this model 
by considering single vendor–multi-buyer supply chain model, but still assuming 
deterministic demand. 

When the assumption of deterministic demand is relaxed and demand coming to the 
buyer is assumed to be stochastic, it is possible for the buyer to experience out of stock 
for some period of time. To reduce the probability of having out of stock, the buyer has to 
have a certain level of safety stock. A solution procedure is developed for solving the 
proposed model and numerical examples are used to illustrate its application. Also, we 
explore the effect of changes in the value of key parameters on lot size, safety factor and 
the expected total cost. 

This paper is organised as follows. In Section 2, we review the related literature. In 
Section 3, we develop our integrated model for single vendor–single buyer incorporating 
stochastic demand. In Section 4, we present the solution procedure. Numerical examples 
from the mathematical model are presented in Section 5. Finally, Section 6 concludes this 
paper. 

2 Literature review 

There have been plenty of published works on integrated inventory model. The essence 
of the models is generally to show that by integrating inventory decisions across  
the supply chain, firms will receive benefits in terms of reduced costs. Goyal (1976) was 
one of the first researchers that developed integrated vendor–buyer inventory problem. 
The result of the model was that integrated lot sizing model reduces the total relevant cost 
which include inventory holding and ordering costs. Banerjee (1986) investigated the  
lot-for-lot policy in which the vendor manufactures a lot at a finite rate of production and 
delivers equal to the production batch size. By relaxing Banerjee’s lot-for-lot assumption, 
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Goyal (1988) proposed a more general joint economic lot size model that provided a 
lower-joint total relevant cost. He argued that producing a batch which is made up of 
equal shipments generally produced lower cost but the whole batch must be completed 
before the first shipment is made. Lu (1995), in considering heuristics for the single 
vendor–multi-buyer problem, gave an optimal solution to the single vendor–single buyer 
problem, again based on the assumption of a batch providing an integral number of equal 
shipments. A review of related literature is given by Goyal and Gupta (1989). 

A number of researchers, including Goyal (1995), Hill (1997), Hill (1999), Goyal and 
Nebebe (2000), Hoque and Goyal (2000), Hill and Omar (2006) and Zhou and Wang 
(2007) developed a model with unequal-sized shipments, in contrast to the previous 
models that assumed equal-sized shipment policy. Mathematically, it has been shown that 
allowing shipment size to vary from one shipment to the next results in lower total cost 
compared to the case when shipment size is restricted to a constant value overtime. 
However, although the unequal-sized shipment models give lower cost than others, they 
have some deficiencies. Goyal and Szendrovits (1986) pointed out that the capacity of the 
handling, packing and shipping equipment must be at least equal to the largest shipment 
size and hence, becomes under-utilised for smaller shipment sizes, which leads to idle-
capacity costs. Furthermore, Agrawal and Raju (1986) suggested that supply and receipt 
of unequal shipment size associated with order interval of different length cause a 
prohibitive operational planning and control effort for the vendor and the buyer. 

The above practical factors have led the present researchers to solve single vendor–
single buyer with equal shipment size in many different directions. It is beyond the scope 
of this paper to discuss all works in detail. Sarmah (2007) developed a model where both 
vendor and buyer have a certain amount of target profit. Ertogral et al. (2007) integrated 
transportation cost explicitly into integrated inventory model under equal shipment 
policy. Apichai and Ferrel (2007) incorporated cost of quality or rework cost into the 
model. And more recently, David and Eben-Chaime (2008) developed continuous model 
in integrated vendor–buyer problem with assuming demand and production to be 
continuous. However, the equal-sized shipments model still received a lot of attentions in 
recent years. 

Interesting studies in equal-sized shipments model were done by Pujawan and 
Kingsman (2002) and Kelle et al. (2003). They proposed a model to study the benefit of 
coordinating supply chain inventories through synchronising the order times and agreeing 
on the delivery lot size. Significant savings on total relevant cost could be gained from 
determining frequency of delivery and production batch. Chan and Kingsman (2007) then 
developed Pujawan and Kingsman’s (2002) model by considering single vendor–multi-
buyer supply chain model. The synchronisation was achieved by scheduling the actual 
buyer’s delivery days and coordinating them with the vendor’s production cycle. The 
results of this model showed that the synchronised-cycles policy works better than an 
independent optimisation and restricts buyers to adopt a common cycle. This model gave 
the flexibility to buyers in choosing their lot sizes and order cycle independently. This 
policy may be useful for the buyer in planning delivery based on some constraints related 
to inventory management in practical environments. 
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Sarmah et al. (2006) reviewed literature dealing in vendor–buyer coordination under 
deterministic environment. They investigated the quantity discount mechanism in 
vendor–buyer coordination model. Finally, some of future directions of the research was 
suggested, including the relaxation of deterministic demand. Furthermore, Ben-Daya 
et al. (2008) presented a more comprehensive review on deterministic single vendor–
single buyer problem. They provided general formulation of the problem and conducted a 
comparative empirical study among the policies. They suggested some extensions on the 
previous model. One of their suggestions is extending the model by relaxing the 
assumptions of deterministic demand. 

This paper reconsiders the equal-sized shipments policy in single vendor–single buyer 
integrated system. We consider stochastic demand and giving flexibility to buyer in 
choosing frequency of delivery independently. The model is also extended to the 
situation with shortages permitted to occur in a buyer side. A complete and detailed 
explanation of the model development will be given in Section 3. 

3 Development of the model 

3.1 Notations 

The following notations will be used to develop the model: 

D demand in units per unit time 

 standard deviation of demand per unit time 

P production rate in units per unit time 

K production setup cost 

A order cost incurred by the buyer for each order size of nq

F transportation cost for the buyer incurred with each shipment of size q

k safety factor 

SS safety stock for the buyer 

ES expected number of backorder 

hb holding cost per unit per unit time for buyer 

hv holding cost per unit per unit time for vendor 

 backorder cost 

n shipment lot size factor, which is a positive integer 

m production lot size factor, which is a positive integer 

q the size of equal shipments from the vendor to the buyer 

TCB total expected cost per unit time for the buyer 

TCV total expected cost per unit time for the vendor 

TC integrated vendor–buyer expected total cost per unit time 
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3.2 Problem description 

We consider a single item in a single buyer and single vendor inventory problem. The 
buyer sells items to the end customers whose demand follows a normal distribution with 
a mean of D per year. The buyer orders the item to the vendor in a constant lot of size nq 
(in a constant interval of nq/D). Each time an order is placed, a fixed ordering cost A
incurs. The vendor manufactures the product in a lot of size mq with a finite rate P and 
incurs a fixed setup cost K. The buyer determines n (the number of shipment) 
individually and incurs a transportation cost F with each shipment of size q. Each 
shipment size will be delivered from vendor to buyer in an interval of q/D period. Partial 
backordering is not permitted. This means that if an order can not be satisfied fully, the 
whole quantity is assumed to be backordered and incurs a backorder cost . In this 
model, we use a lot streaming policy, assuming an uninterrupted production run. Any 
shipments as long as the quantity is sufficient can be made before the production of the 
whole batch is completed. Hence, we use the basic model of Pujawan and Kingsman 
(2002) that considered lot streaming policy. The inventory profile for vendor and buyer is 
depicted in Figure 1. 

Figure 1 The inventory pattern of vendor and buyer 
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The demand during period q/D is assumed to be normally distributed with mean D(q/D)
and standard deviation / .q D  We use Hadley–Within’s (1963) expression 
(q/2 + safety stock) to approximate average inventory level in period q/D. Average 
inventory level can be approximated by the average net inventory if the backorder 
condition during a replenishment cycle is small compared with the cycle length (Johnson 
and Montgomery, 1974, p.60). If we assume linier decrease over the cycle (period q/D)
then, 

Average inventory =
2
q q

k
D

Since shortage is permissible, the expected demand shortage at the end of period q/D is 
given by 

ES ( )q
k

D
 (1) 

where, 
( ) ( ) 1 ( )s sk f k k F k

fs(k) is probability density function of standard normal distribution and Fs(k) is 
cumulative distribution function of standard normal distribution. The derivation of 
Equation (1) is shown in Appendix. 

Considering buyer’s ordering cost is A and the number of order per unit time is D/nq,
the expected ordering cost per unit time is given by DA/nq. Vendor will deliver a lot size 
q to the buyer and incurs transportation cost F. By formulating frequency of delivery is 
D/q, the transportation cost per unit time is given by DF/q.

Thus, the total expected cost per unit time for the buyer can be represented by: 

TC = ordering cost + transportation cost + holding cost + backorder costB

TC ES
2B b

DA DF q q Dh k
nq q D q

 (2) 

On the other hand, for the vendor, since K is the production setup cost and the production 
quantity for a vendor in a lot mq, the expected setup cost per unit time is given by 
DK/mq. During the production period, once the first q units are produced, the vendor 
delivers them to the buyer, and then continuous making the delivery on average q/D units 
of time until the inventory level falls to zero. The vendor’s inventory level is shown in 
Figure 1. From this figure, we know that the vendor’s inventory level is given by the area 
below the bold lines. The calculation of vendor’s inventory level can be done by 
subtracting the area above the bold lines, which represents the cumulative delivery 
quantity, from the area a–c–d–e, which is the cumulative production for one production 
cycle. The cumulative delivery area can be represented by: 

2 2 2 2 22 3 ( 1)
2

q q q mq m m q
D D D D D

 (3) 
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The cumulative production area consists of two areas, that is, the a–b–e area and the 
b–c–d–e area. The a–b–e area is a triangle, then 

2 21
2 2

mq m q
mq

P P
 (4) 

The b–c–d–e area is given by 

mq mq q
mq

D P P
 (5) 

Thus, the a–c–d–e area can be calculated by adding Equation (4) into Equation (5) 
2 2 ( 2)

2 2
m q mq mq q mq m q

mq mq
P D P P D P

 (6) 

The vendor’s inventory level for one cycle can be calculated by subtracting Equation (3) 
from Equation (6) 

2( 2) ( 1) ( 1) ( 2)
2 2 2 2

mq m q m m q m q m q
mq mq

D P D D P
 (7) 

Finally, vendor’s inventory level per unit time is given by 

( 1) ( 2) ( 1) ( 2)
2 2 2

m q m q D q D
mq m m

D P mq P
 (8) 

By considering vendor’s inventory level and the number of production setup (D/mq), we 
can formulate the total expected cost per unit time for the vendor 

TC = holding cost+setup costV

TC ( 1) ( 2)
2V v
q D DKh m m

P mq
 (9) 

The integrated vendor–buyer expected total cost per unit time is given by Equation (10) 
which is the total of cost incurred to the buyer (2) and the vendor (9): 

TC( , , ) = total expected cost for buyer+total expexted cost for vendorm q k

TC( , , ) ( )
2

( ) ( 1) ( 2)
2

b

v

D q q
m q k A Fn h k

nq D

D q q D DK
k h m m

q D P mq

 (10) 

Consequently, the integrated vendor–buyer expected total cost per unit time can be 
rewritten as 

TC( , , ) ( ) ( ) 1 ( )
2

( 1) ( 2)
2

b s s

v

D q q D q
m q k A Fn h k f k k F k

nq D q D

q D DK
h m m

P mq

 (11) 
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Taking the first partial derivatives of TC(m, q, k) with respect to k and q and equating 
them to zero, we obtain: 

( ) 1 b
s

h q
F k

D
 (12) 

2 ( )
*

( )( 1) ( 2)
1 ( )

b
b v

s

A K qD F k
n m D

q
hD kh h m m k

P F kqD
D

 (13) 

The derivation of Equations (12) and (13) is shown in Appendix. 

Proposition 1: For fixed q and k, TC(m,q,k) is convex in m. 

Proposition 2: For fixed m and k, TC(m, q, k) is convex in q. 

Proposition 3: For fixed q and m, TC(m, q, k) is convex in k. 

Therefore, for fixed m, TC(m, q, k) is a convex function in (q, k). Thus, the minimum 
value of TC(m, q, k) occurs at the point (q*, k*) which satisfies TC( , , ) / 0m q k q  and 

TC( , , ) / 0m q k k , simultaneously. In Section 4, we develop an iterative procedure to 
find the minimum total cost and the optimal value of q and k.

4 Solution methodology 

In this section, we develop an iterative procedure to determine the optimal values of m, q
and k which minimises total cost per unit time. In previous section, we known that the 
minimum value of total cost can be found from q* and k* that satisfied the first partial 
derivatives of TC(m, q, k) with respect to q and k, simultaneously. From Equations (12) 
and (13), we known that the optimal value of q is a function of k and the optimal value of 
k is a function of q. According to this condition, we need iterative procedure to find the 
convergence values of q and k. We use the basic idea of Ouyang et al. (2004) to solve this 
problem. We propose a heuristic method which is simple, easy to apply and 
computationally efficient. The algorithm to solve the above problem is as follows 

1 set m = 1 and * *
1 1TC( , , 1)m mq k m

2 start with shipment size 

2

( 1) ( 2)b v

A K
D F

n m
q

D
h h m m

P

3 substitute q into Equation (12) to find k
4 compute q using Equation (13) 
5 repeat steps 3–4 until no change occurs in the values of q and k
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6 set q* = q and k* = k and compute TC( , , )m mq k m  using Equation (11) 

7 if * * * *
1 1TC( , , ) TC( , , 1)m m m mq k m q k m  repeat steps 1–5 with m = m+1, otherwise 

go to step 8 

8 compute TC( *, *, *)q k m  = * *
1 1TC( , , 1),m mq k m  then (q*, k*, m*) is the optimal 

solution 

In our problem, the buyer has flexibility in determining the number of delivery. Our 
procedure accommodates this condition by giving a chance to user to determine the 
number of delivery before using this algorithm. We use m = 1 as an initial value of m and 

* *
1 1TC( , , 1)m mq k m  as an initial value of total cost. m = 1 means that the vendor will 

produce a production batch q in each production run. Hence, it is the minimum value 
of production batch. In step 2, we use optimal value of q in deterministic problem 
(See Pujawan and Kingsman, 2002, p.102) as our initial value. The q value in 
deterministic problem will always lower than the value in probabilistic problem. We use 
it as minimum value of q in our procedure. To solve in similar problem, Ben-Daya and 
Hariga (2004) used a deterministic value as an initial value of q.

Step 3 until step 5 will find the convergence value of q and k. We use the procedure 
that was developed by Ouyang et al. (2004). Then, procedure convergence can be proved 
by adopting a similar graphical technique used in Hadley and Within (1963). Step 6 use 
the value of q and k that was found in step 5 to calculate our new total cost * *TC( , , )m mq k m
and set them as our new value (q* and k*). In step 7, we compare the new total cost with 
the previous one. If the new total cost is less than our previous value, we replace the 
previous one with the new one. Then increase m by 1, which means that we use the 
bigger value of production batch, and repeat the above process of determining  
the minimal total cost and their associated values (m, q, k) until no change occurs in total 
cost. The final value of m, q and k give the minimal cost solution. 

5 Numerical example 

To illustrate the above solution procedure, let us consider a basic case with the data used 
in Ben-Daya and Hariga (2004): 

D 1,000 unit/year 

 5 unit/year 

P 3,200 unit/year 

A $50/order 

F $25/shipment 

hb $5/unit/year 

hv $4/unit/year 

 $15/unit 

K $400/setup 
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As we assume that demand is uncertain, it is interesting to explore how demand 
uncertainty affect performance of the system. In Table 1, we explore the effects of 
changes in standard deviation of demand on costs incurred to vendor and buyer. As the 
table shows, safety stock increases with the standard deviation of demand. Increasing 
demand uncertainty also results in higher stockout frequency. The table also shows that 
higher standard deviation of demand leads to lower shipment size and hence, higher 
shipment frequency, and higher cost incurred to the buyer. On the other hand, the cost to 
the vendor is relatively constant as the standard deviation of demand increases. This is 
understandable because the vendor delivers in equal size and intervals, so the buyer is the 
only party that is directly affected by the uncertainty in demand. 

A range of other problems are generated from a basic case above to explore the 
effects of changes in key parameters on buyer cost, vendor cost and total cost. We 
develop 14 sets problem with n = 1 and n = 5 to explore the model behaviour. The results 
of the problems are summarised in Table 2. When an ordering cost (A) increases with the 
values other model parameters (D, P, F, hb, hv and K) fixed at a particular level, it is 
found that in all cases (A = 50, 100), buyer cost and total cost increase while vendor cost 
decreases. This is logical because the buyer will order less frequently but with larger 
quantity leading to higher inventory to obtain a new balance between order cost and 
inventory holding cost, but obviously that balance is achieved at higher total cost. On the 
other side, supplier will receive larger, but less frequent orders from the buyer which is 
an advantage because the supplier can satisfy orders with less frequent production setup. 
However, the decrease of cost at vendor side can not meet the increase of cost at the 
buyer side, thus the total cost increases. 

With the increase of holding cost of buyer (hb), buyer will keep lower inventory level 
(q and k become smaller). The increase in vendor’s holding cost does not affect much 
buyer’s decision, but it leads to higher costs incurred to the vendor. Furthermore, a larger 
production rate results a larger vendor cost, buyer cost and total cost. However, vendor 
cost increases significantly due to the increase in inventory level. When vendor uses a 
larger production rate, production for a certain lot completed sooner and hence, inventory 
will sits for a longer period. 
Table 1 Computation results for various standard deviation of demand values 

Parameters 

Standard deviation of demand 

0 5 10 20 30 40 

Safety stock  3.29 6.57 13.12 19.66 26.19 
Q 175.65 176.15 175.65 174.69 173.76 172.85 

Buyer 

Inventory level 87.83 91.36 94.39 100.47 106.54 112.62 
Backorder  0.3 0.6 1.19 1.78 2.37 
Number of order 2.84 2.84 2.85 2.86 2.89 2.89 
Number of shipment 5.69 5.68 5.69 5.72 5.75 5.78 
Buyer cost 724.67 745.15 765.61 806.46 847.24 887.92 

Vendor 
Inventory level 148.2 148.63 148.21 147.39 146.61 145.84 
Number of setup 1.89 1.89 1.9 1.91 1.92 1.93 
Vendor cost 1,351.03 1,351.44 1,351.9 1,352.84 1,353.78 1,354.75 

Total cost 2,075.7 2,096.59 2,117.51 2,159.3 2,201 2,242.67 
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Table 2 The sensitivity analysis with respect to A, F, hb, hv, K and P

Parameters Value n m k q Buyer cost Vendor cost Total cost 
A 50 1 3 1.53 188 890 1,344 2,234 

5 4 1.69 136 617 1,381 1,998 
100 1 2 1.34 268 1,160 1,282 2,442 

5 3 1.57 174 714 1,354 2,068 
F 25 1 3 1.53 188 890 1,344 2,234 

5 4 1.69 136 617 1,381 1,998 
50 1 2 1.37 258 1,055 1,292 2,347 

5 3 1.55 181 805 1,348 2,153 
hb 5 1 3 1.53 188 890 1,344 2,234 

5 4 1.69 136 617 1,381 1,998 
10 1 4 1.35 134 1,262 1,383 2,646 

5 6 1.56 90 869 1,416 2,284 
hv 2 1 4 1.53 189 891 978 1,869 

5 6 1.72 127 612 1,001 1,613 
4 1 3 1.53 188 890 1,344 2,234 

5 4 1.69 136 617 1,381 1,998 
K 300 1 2 1.44 223 916 1,119 2,035 

5 3 1.64 151 629 1,172 1,801 
600 1 3 1.46 216 909 1,655 2,564 

5 5 1.7 134 615 1,716 2,332 
P 1,600 1 5 1.64 151 894 1,172 2,066 

5 7 1.81 105 614 1,148 1,762 
4,800 1 2 1.39 247 944 1,304 2,248 

5 3 1.6 166 646 1,398 2,045 

It is also informative to compare the integrated model with independent model.  
In integrated model, as our model, vendor and buyer agree to share cost information and 
determine their ordering, shipping and production decisions jointly while in independent 
model they make decisions individually. The results of each model are presented in  
Table 3. We find a number of interesting points when comparing the two models. Firstly, 
the integrated model always results a lower total cost comparing to independent model, 
but the cost savings are not always substantial. The average cost savings over all the 
values for n is 1.66%. The buyer is worse off by 1.39% on average whilst the vendor is 
better off by 3.13% when moving from independent model to integrated model. The 
buyer, however, is at a disadvantage position, since its annual cost increases. The 
increase in buyer’s cost is always smaller than the decrease in vendor’s cost, so there is 
an improvement in total cost. Nevertheless, in view of the greater total cost efficiency of 
the integrated policy, the total savings can and should be shared in some equitable 
manner through the mechanism of a side payment to the buyer from the vendor, or a price 
discount scheme (See Banerjee, 1986; Goyal, 1976). For example, if the vendor makes a 
side payment of $10/year to the buyer in order to induce it to adopt the integrated model, 
yet the vendor is about 2.42% better off in comparison to independent model. Moreover, 
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in other models, such as the case of vendor managed inventory (see Yao et al., 2007), the 
immediate solutions bring the disadvantages to the vendor.

The ratio of production batch between integrated model and independent model is an 
average of 0.94 across all the values of n. The average production batch is 543 for 
integrated model and 512 for independent model. Table 3 shows that the vendor always 
aiming to produce constant production batches to minimise the total cost. The vendor’s 
production batches might vary slightly because of integer requirement for m and n. In 
integrated model, we find that the vendor cost increases as there are increases in n, but 
when the vendor use m = 4, his cost is almost constant. 

Table 3 Comparison of independent model and integrated model 

n

Independent model Integrated model 

m q 
Vendor 

cost 
Buyer 
cost 

Total 
cost m q 

Vendor 
cost 

Buyer 
cost 

Total 
cost Saving (%) 

1 3 110 1,587 887 2,474 3 188 1,344 890 2,234 9.69 
2 4 108 1,437 727 2,164 3 176 1,351 745 2,097 3.12 
3 4 128 1,389 665 2,054 4 139 1,380 667 2,046 0.36 
4 4 121 1,401 631 2,032 4 137 1,381 636 2,016 0.75 
5 5 117 1,400 610 2,011 4 136 1,381 617 1,998 0.63 
6 5 114 1,400 596 1,996 4 135 1,382 604 1,986 0.50 
7 5 112 1,400 585 1,986 4 135 1,382 595 1,977 0.43 
8 5 111 1,401 577 1,978 4 134 1,383 588 1,970 0.39 
9 5 109 1,401 571 1,972 4 134 1,383 582 1,965 0.36 
10 5 108 1,402 566 1,968 4 134 1,383 578 1,961 0.35 

6 Conclusions 

In this study, we analyse the single vendor–single buyer lot sizing problem under equal-
size shipment policy. Previous works on this problem mostly focused on the production 
shipment schedule in terms of the number and size of batches transferred between both 
parties under deterministic demand. Here, we assume that demand is stochastic. Besides, 
we allow the occurrence of shortages and it is assumed to be fully backordered. We seek 
to minimise the total cost by simultaneously optimising shipment size, safety factor and 
production lot size factor. A simple procedure is suggested to obtain an approximate 
solution of our proposed model. The results of the numerical examples consistently show 
that the integrated model results in lower total costs compared to the independent model 
across various different parameters’ values. As demand uncertainty increases, we found 
that there is a significant increase in the buyer’s cost but interestingly, the vendor can 
maintain approximately the same level of total costs. This is due to the fact that demand 
uncertainty from the end customer is absorbed entirely by the buyer (the buyer passed on 
to the vendor a deterministic and constant demand). 
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For future developments, it would be interesting to extend this model to incorporate 
the influence of variable lead time on the model. Another extension of this work may be 
conducted by considering the deteriorating items into the integrated inventory model. 
Furthermore, the results obtained here under a simplistic scenario, involving a single 
buyer, a single vendor and a single product, may provide valuable insights in analysing 
more complex inventory replenishment situations, dealing with multiple buyers, vendors 
and products within a supply network. As an immediate extension of this paper, the case 
of multiple buyers for a single product is not likely to pose serious analytical problems. 
Further extensions dealing with multiple buyers, as well as multiple products, even for a 
single vendor, are, however, likely to present some interesting and challenging 
computational problems. Finally, we suggest that future investigations in this area 
consider economic and other aspects of set-up cost/time reduction in conjunction with lot 
sizing issues. 
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Appendix 

Derivations and proofs 

Derivation of Equation (1)

Let x denote continue random variable with normal distribution with mean  and 
standard deviation  > 0. Hence, the probability density function of x is formulated as 

2

2
1 ( )( ) exp
2 2

x
f x (14)

If demand in period q/D is formulated as ( / )D q D  with standard deviation / ,q D
then inventory level in that period is given by 

qP q k
D

 (15) 

Shortage occurs in period q/D when x > P. The expected number of shortages in period 
q/D can be formulated as: 

ES ( ) ( )d
x P

x P f x x  (16) 

Substitute Equations (14) and (15) into Equation (16), we have 
2

2
( )

2 /

SS

1ES ( SS) d
2 /

x q

q D

x q
x q e x

q D
 (17) 

Substitute ( )
/

x q
z

q D
 and d / dx q D z  into Equation (17), then we have 

2 / 2

/( / )

1ES SS d
2

z

x SS q D

q
z e z

D

2 2/ 2 / 2

/( / ) /( / )

1 1ES SS d d
2 2

z z

z SS q D z SS q D

q
e z z e z

D
 (18) 

Recall that Fs(.) cumulative distribution function and fs(.) is probability density function 
with mean 0 and standard deviation 1. Using fs(.) formula and definition of standard 
normal distribution, we have 

2 /2

1 ( ) ( )d

1 d
2

s s
z y

z

z y

F y f z z

e z



      

      

   176 W.A. Jauhari et al.    

      

      

      

Substituting 2 / 2w z  into Equation (18), we have 

2 2/(2( / ) )

1ES SS 1 SS / d
2

w
s

w SS q D

q q
F e w

D D

ES SS 1 SS / SS /s s
q q q

F f
D D D

ES ( ) 1 ( )s s
q

f k k F k
D

ES ( )q
k

D

Derivation of Equation (12)

We formulated in Equation (11), the integrated vendor–buyer expected total cost per unit 
time as 

TC( , , ) ( ) ( ) 1 ( )
2

( 1) ( 2)
2

b s s

v

D q q D q
m q k A Fn h k f k k F k

nq D q D

q D DK
h m m

P mq

The optimal value of k can be formulated by taking the first partial derivatives of 
TC(m, q, k) with respect to k and equating it to zero 

TC( , , ) 0m q k
k

From Silver and Peterson (1985), we found that ( ) 1 ( ) / ( ) 1,s s sf k k F k k F k

than the derivation of Equation (11) with respect to k becomes 

/ ( ) 1
0s

b
D q D F kq

h
D q

( ) 1 b
s

h q
F k

D

Derivation of Equation (13)

For the given total cost function, 

TC( , , ) ( ) ( ) 1 ( )
2

( 1) ( 2)
2

b s s

v

D q q D q
m q k A Fn h k f k k F k

nq D q D

q D DK
h m m
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The optimal value of q can be formulated by taking the first partial derivatives of 
TC(m, q, k) with respect to q and equating it to zero 

TC( , , )
0

m q k
q

2 2

2

/
2 /

( ) ( )
2 2 /

( 1) ( 2) 0
2

b b

v

q
q D

D q Dh h kD
A Fn D k

nq D q D q

h D DK
m m

P mq  (19) 

Rearranging Equation (19), we obtain 

2
2

( ) / ( 1) ( 2)

( )
/ /

b v

b

D A K D
F k q D h h m m

n m Pq
h k k

D q D q q D

Substituting Equation (12) into Equation (18) we have 

2
2

( ) / ( 1) ( 2)

( )
1 ( )/

b v

b

s

D A K D
F k q D h h m m

n m Pq

h k
k

F kD q D

 (20) 

From Equation (20), we can find the optimal value of q as 

2 ( ) /
*

( )( 1) ( 2)
1 ( )/

b
b v

s

A KD F k q D
n m

q
hD kh h m m k

P F kD q D

Proof of Proposition 1:

For the given total cost function, 

TC( , , ) ( ) / /
2

( ) 1 ( ) ( 1) ( 2)
2

b

s s v

D q D
m q k A Fn h k q D q D

nq q

q D DK
f k k F k h m m

P mq

Taking second partial derivatives of TC(m, q, k) with respect to m, we have 

2

2 3
TC( , , ) 2 0m q k DK

m m q
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Therefore, TC(m, q, k) is convex in m for fixed q and k. This completes the proof of 
proposition 1. 

Proof of Proposition 2:

For the given total cost function, 

TC( , , ) ( ) / /
2

( ) 1 ( ) ( 1) ( 2)
2

b

s s v

D q D
m q k A Fn h k q D q D

nq q

q D DK
f k k F k h m m

P mq

Taking second partial derivatives of TC(m, q, k) with respect to q, we have 
2

2 3 2 3

2 ( ) 1TC( , , ) 2 2 0
4 4

sb D F kh km q k D DKA Fn
q nq q qD q qD mq

Therefore, TC(m, q, k) is convex in q for fixed m and k. This completes the proof of 
Proposition 2. 

Proof of Proposition 3:

For the given total cost function, 

TC( , , ) ( ) / /
2

( ) 1 ( ) ( 1) ( 2)
2

b

s s v

D q D
m q k A Fn h k q D q D

nq q

q D DK
f k k F k h m m

P mq

Taking second partial derivatives of TC(m, q, k) with respect to k, we have 
2

2
( )TC( , , ) 0sqD f km q k

qk

Therefore, TC(m, q, k) is convex in k for fixed q and m. This completes the proof of 
Proposition 3. 


