
Dummy chapter

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/20331961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Reproducible Physical Science and the Declaratron

Peter Murray-Rust

pm286@cam.ac.uk
Department of Chemistry
University of Cambridge

Dave Murray-Rust

d.murray-rust@ed.ac.uk
Department of Informatics
University of Edinburgh

CONTENTS

1.1 Introduction . 2
1.1.1 What do we mean by reproducible computation? 2

1.1.1.1 An archetypal example of the problem 2
1.1.2 What’s wrong with business as usual? 5

1.2 Constructing Chemical Semantics . 6
1.2.1 A note about our software status and availability 7
1.2.2 CIF and CML as semantic languages 7
1.2.3 Dictionaries . 9

1.3 Components for Defining Computation . 10
1.3.1 Black-box Libraries . 10
1.3.2 JUMBOConverters and FoX . 11
1.3.3 MathML . 11
1.3.4 Executable MathML . 12

1.4 Semantic Physical Computation . 15
1.4.1 Bridging the gap between human- and

machine-readable semantics . 16
1.4.2 Example: Water — Energy Calculation 18

1.4.2.1 Set up the document . 18
1.4.2.2 Identify and verify chemical data 19
1.4.2.3 Specify the forcefield to be used 20
1.4.2.4 Specify the computation to be carried out . . . 21

1.4.3 Moving beyond toy examples . 22
1.4.4 Integrating Semantic Physical Computation with

emerging architectures and automation 22
1.5 Conclusions . 24

1

2 Dummy title

1.1 Introduction

In this chapter we address reproducibilitiy in the Physical Sciences (PhysSci). We focus
on disciplines concerned with chemistry, crystallography and materials science, although
the strategies, and the Declaratron software we describe, have much greater applicability.
While some scientific experiments are difficult or impossible to reproduce due to factors
such as resource constraints (the Large Hadron Collider [2]) or reliance on rare occurrences
(the Schoemaker-Levy Jupiter impact [15]), there is a long tradition of reproducibility in
PhysSci. This is based on the almost Platonic identity of materials: to a first practical
approximation, sodium chloride crystals have the same properties wherever and however
they are produced.

Over the last 50 years it has become possible to measure, and now calculate, the prop-
erties of substances to a high degree of consistency. Substances are key to both research
and technological exploitation (semiconductors, optical materials, piezoelectricity, second-
harmonic generation and much more). We estimate that over 1 billion USD is spent on
the computation of materials properties (c.f. the Material Genomics Project [16]). There
is a dynamic interplay between the measurement of observables, or properties which are
discovered through measurement of physical substances, and computables, which properties
that can be computed through computation and simulation of physical laws. As knowledge
and techniques are improved, sometimes one is more accessible or accurate, and sometimes
the other, as observations feed back into more accurate computation and vice versa. There
is also a fundamental reliance on instrumentation as a mechanism for reproducibility: given
instruments of similar quality, there is an expectation that if an experiment is performed
again, the results will be compatible with the original results.

The following instrumental techniques have now developed both automation (e.g. robot
sample feeders) and high-throughput (hundreds of samples per day or more): Single-crystal
X-ray crystallography, powder X-ray diffraction, IR/UV/VIS, [9], Nuclear Magnetic Reso-
nance spectroscopy [4], Mass spectrometry [8], and many more). There are a few standards
(e.g. JCAMP-DX 1 and AniML [18] 2) but most output is proprietary so there are very few
effective communal dictionaries and semantics.

As well as self-consistency of results, reproducibility increasingly requires agreement be-
tween experiment and theory. Computational experiments, including calculation and simu-
lation, are part of the architecture of an agreement between theory and experiment, through
the process of turning models of reality into numbers which can be compared to observed
results. This implies that there is a need for mechanisms and expectations of reproducibil-
ity to be applied equally to scientific computation as instrumentation. In this chapter we
describe how existing technologies can be combined with a novel approach to semantic cal-
culation to carry out reproducible scientific computation. To demonstrate this, we take as
a case study the task of reliably computing the properties of a material given a completely
well defined semantic specification.

1.1.1 What do we mean by reproducible computation?

1.1.1.1 An archetypal example of the problem

There are two main methods of computing the properties of matter. Quantum Mechan-
ics (QM) involves solving Schroedinger’s equation for a multinucleus-multi-electron system.

1http://www.jcamp-dx.org/
2http://animl.sourceforge.net/

Reproducible Physical Science and the Declaratron 3

FIGURE 1.1
Functional form of the AMBER forcefield

There is no analytical solution and the approximations can be very expensive often ris-
ing with N3 or greater. Accuracy requires additional expense. The cheaper alternative is
”Forcefields” (FF) with empirical parameterisation of Newton’s laws and this forms the
main example here.

In the FF approach the energy of a molecule can be approximated by a number of
empirical terms together making up a “forcefield”. A typical and widely used example
is AMBER which contains 5 terms (see Figure). The molecule is described (emprically)
by bonds, angles, torsions (dihedrals), non-bonded (”bumping atoms”) and electrostatic
. AMBER (the example here) will compute the energy as the sum over all components.
A typical protein molecule might have several thousand bonds and angles and even more
non-bonded interactions.

3

The point here is that it is formally impossible to relate the equation given to the actual
operation of the program. The enumeration of non-bonded terms, for example, is hidden
deep in the FORTRAN and may change during the progress of a calculation. An inspection
of the parameter data reveals that the sum of torsions should be a double sum (over Fourier
terms as well as torsions) and the electrostatics is in c.g.s. units and is missing a factor of
4πε0. It would be impossible for anyone to recreate the program from the documentation
or to formally record what had been computed.

At this point, it is necessary to discuss what we mean by reproducibility in scientific
computation. When dealing with observables, the definition is relatively clear: by following
the same experimental procedure, one should obtain the same results. However, with compu-
tation, there are alternative expectations and possibilities for what the same ”experimental
procedue” and ”results” should mean. Taking these separately, the ”same experimental
procedure” could mean:

• Download the original software and data and run it.

• Download the original software, compile it for a different machine and run it with the
original data.

3http://ambermd.org/doc11/Amber11.pdfp.19.. The last summation should be split into separate sums,
the first with A and B terms, and the last with the electrostatics (

qiqj/rij

) (Coulomb inverse power law)

4 Dummy title

• Download software which carries out the same operations as originally described, and
apply it to the original data.

• Read a paper, produce a new implementation of the algorithms described, and run it
on the original data.

• Run any of the above programs on a refined or updated data set

And the ”same results” could mean:

• Identical output at the bit level.

• Exactly the same numbers.

• Exactly the same numbers (when run on a similar machine)

• Numbers which are within some bound of error

• Ensembles of outputs which share certain characteristics (again, within the bound of
error).

This discussion of what the “same results” means is partially motivated by the chaotic
nature of some physical calcuations. Many algorithms in physical sciences are completely
deterministic - for example the bond length result should be identical no matter what code
is used (within the bounds of floating-point imprecision). However, some algorithms contain
branch points which are sensitive to precision and instabilities. The Quantum Mechanical
calculation of molecular energy requires two independent optimsations - the self-consistent
field (SCF) of the molecular orbitals; and the optimisation of energy against geometry to
get the minimum energy structure. For many molecules these are well-constrained and the
calculation proceeds essentially identically on different machines, and often with different
programs that use the same basic physical model. However calculations for some systems
are unstable (e.g. near a transition state in a reaction) and the behaviour is effectively
unpredictable on details. Similarly, the dynamics of molecules (e.g. simulated by Newton’s
laws) is inherently unpredictable. Although formally deterministic, small imprecisions cause
bifurcations in trajectories which rapidly diverge. When discussing reproducibility for cal-
culations of this type, it is problematic to talk at the level of reproducing individual runs,
or exact results, and the focus must be moved to ensemble or aggregate properties. Addi-
tionally, since there is no expermental validation—e.g.trajectories of individual molecules
are not usually observable—special human care is required to validate code and paremeters,
as mistakes will be very difficult to detect later.

For the purpose of this paper, we take semantically defined reproducible science to be
defined by:

“Can a computational scientist (or machine) with no intrinsic domain knowledge,
when given the specification, build a system which can be guaranteed to compute
problems in a scientific domain and produce results which are semantically consis-
tent, and in some sense similar4.”

4We will leave open the question of exactly what “similar” means here, but specify that numbers should
be approximately the same

Reproducible Physical Science and the Declaratron 5

1.1.2 What’s wrong with business as usual?

Currently, computable semantics are not commonplace within scientific practice. Indeed,
very few scientific domains have fully addressed computable semantics. While computa-
tional chemistry is more advanced than some areas, it is still far from i) having complete
computational semantics ii) integrating the use of computational semantics into the daily
lives of computational chemists. We will illustrate the problem of missing semantics us-
ing examples from widely used programs; these have been chosen as typical examples in
widespread use, rather than singling out egregious offences. Many other examples—most
commonly used programs—display the same issues.

This is one line of input for MOPAC, a widely used CompChem program, taken from
http://openmopac.net/manual/index.html:

1 H 1.092 0 120.615 1 179.979 1 10 9 11

In this single line, there are no explicit semantics at all. Taking each field (separated by
groups of spaces) in turn, the implicit semantics are:

1. H is the element symbol for Hydrogen. Although this seems like a precise, com-
monly accepted designation, many other programs use arbitrary, non-standard
abbreviations for elements, with integers or floats for nuclear charge, e.g. ‘W1’ 8
for oxygen in water, which could also be mistaken for tungsten

2. 1.092 is the distance in Angstrom units to 10th atom. The number 10 in field 8
is what specifies it is the 10th atom.

3. 0 is an integer flag: should this distance be allowed to vary during the computa-
tion. 0 means yes, it should be allowed to vary.

4. 120.615 is the angle in degrees between this, atom 10 and atom 9. Again, the
10th atom is specified by the 10 in field number 8, and 9th by the 9 in field 9.

5. 1 integer flag: do not allow this angle to change

6. 179.979 is the dihedral angle in degrees between this, atom 10 atom 9 atom 11

7. 1 integer flag: do not allow this dihedral angle to change

8. 10 means that bond length is between this atom and atom 10

9. 9 means that angle is between this atom, atom 10 and atom 9

10. 11 means that dihedral angles are between this atom and atoms 10,9,11

This is just a typical example, and similar issues can be found in the input specifications
of many programs. This type of ad-hoc, un-marked up yet implicitly meaningful data format
has enormous scope for catastrophic errors. Common causes of error include: fields are
mistyped when the file is edited by hand; users have an old copy of the documentation, so
column ordering or meaning can change without causing obvious errors; fields boundaries
can be misplaced: is it one space between each field or any number of spaces? are tabs or
spaces used as delimiters? do fields need to be justified to exact column positions? The
input modules of the programs usually have no validation. ‘User-friendly’ GUI editors are
usually program-specific and proprietary, although sometimes there is an ecology of ad hoc
converters; both of these situations bring a different set of issues.

In addition to the possibility for error when managing data, a huge burden is placed
on the programmers who maintain applications which read these files. They are forced
to maintain parsers for poorly defined specifications, and may have to deal with different
dialects of the data language as alternative interpretations come into fashion. It leads to
i) brittle code with poor error handling; ii) a high barrier to entry for new programmers

6 Dummy title

wanting to join projects; iii) an excessive proportion of programming effort being given over
to reading.

Output is similarly problematic. This example is taken from http://www.cup.

uni-muenchen.de/ch/compchem/energy/MOPAC_output.html:

1 ATOM NO. TYPE CHARGE ATOM ELECTRON DENSITY

2 1 O -.3827 6.3827

3 2 H .1914 .8086

4 3 H .1914 .8086

5 DIPOLE X Y Z TOTAL

6 POINT-CHG. .677 .859 .000 1.094

7 HYBRID .475 .602 .000 .767

8 SUM 1.151 1.461 .000 1.860

This cannot be understood without being a practitioner, and/or having a manual (often
out of date) and/or asking questions of humans. You must know or guess that charges are in
units of electrons and that dipoles are in Debyes - neither are SI units. We have no idea what
a HYBRID is or how it is calculated. It appears that SUM = POINT-CHG + HYBRID and so we
might infer that it is probably the predicted quantity. Without complete understanding of a
quantity it is by defintion irreproducible - although this particular calculation could be run
again to give the same numbers, it would be impossible to construct an alternative, clean
room implementation which computed the same result.

In certain cases, computations are not reproducible due to licensing restrictions on
distribution of the output of proprietary programs. One major program manufacturer legally
forbids the publication of complete output files; in order to have any chance of creating
reproducible science, it is fundamentally necessary to publish exactly these computational
details.

We believe that, in addition to inhibiting reproducibility, the issues outlined above are
responsible for many millions of hours of wasted work each year, by allowing errors to
go unvalidated and unnoticed, propogating through chains of experiments; through time
spent understanding unclear semantics and editing brittle config files; by forcing chemists
to learn to parse semi-structured text, and programmers to maintain code which has to be
compatible with a fuzzy, moving target data specification.

In an example from our own experience, we autogenerated input for the GAMESS pro-
gram. GAMESS has a limit of 80 characters per line (cf. Hollerith cards), and some lines
exceeded this. Although the program noted this in the (voluminous) output, it did not halt,
but quitely discarded the offending atom records. The result was that erroneous calcula-
tions were carried out, without a strongly visible warning. These errors were only discovered
when the output was re-used in further calculations, where it caused crashes. This could
have been avoided by carrying out syntactic and semantic validation in the input stage, and
refusing to produce output from invalid input. In general, not much trust can be placed
in legacy computational chemistry programs to carry out sufficient validation on input or
output; even when such validation is carried out, it is not clear how to verify that it has
happened.

Reproducible Physical Science and the Declaratron 7

1.2 Constructing Chemical Semantics

We have been inspired by the practice of Crystallography in developing a completely se-
mantic approach to physical science. For half a century IUCr 5 and the community have
insisted that crystallography is reproducible by such means as: comparing experimental
data, testing programs again experimenta, and most critically the creation of a computable
ontology (Crystallography Information Framework, CIF). PMR has been involved with CIF
for over 20 years and has taken it as a model for Chemical Markup Language (CML) [12]
which is now being adopted in computational and other chemistry. Fundamental chemistry
concepts were probably solidified 80 years ago and we therefore use simpler ontologies than
bioscience or HEP.

To promote awareness of the need for and value of semantics we ran two meetings
at Cambridge [11], [14], 6. These brought together a group of scientists who cared about
reproducibility and interpretability through developing shared semantics (dictionaries and
code). These have led to further meetings (e.g. at Pacific NorthWest Laboratory in 2011)
and the determination to make key tools such as NWChem [19] and Avogadro available.
We believe that if there are enough components available the world will come to see the
value of semantics and gradually change over a decade.

1.2.1 A note about our software status and availability

The software described here has been developed over 2 decades with a large focus on repro-
ducibility. The main parts (JUMBO, CML) have been distributed and are widely used, but
only implicitly for reproducibility. JUMBOConverters(templates) provides semantic cov-
ersion for legacy files during the transition to completely reproducible computation. The
Declaratron itself is novel and provides complete reproducibility. All software is in public
repositories. In order to give an indication to the reader of the status of any given software
component, we use the following symbols: � = vaporware; ? = prototype (has worked for
us); ?? = “alpha” (hackable by others); ??

? = usable by others; ??
?? = in widespread use.

Our software is written in Java, using XML and XPath libraries also in Java. Other
CML libraries have been written in C#, C++, Python as an Object-Oriented approach
is almost essential. However many of the main third-party legacy computational programs
are written in FORTRAN and are too expensive to change. To interface them into this
framework, therefore requires an XML/CML wrapper; the ??

?? library has been developed
by Toby White and Andrew Walker for this purpose. It deals with a subset of the languages
and concentrates on program output. [6].

1.2.2 CIF and CML as semantic languages

CIF ??
?? [1] uses a lightweight set of primitives (item or table) with data types (char or

numb) and a very extensive set of dictionaries compiled by the community and crystallog-
raphers (whether experimentalist, instrument manufacturers, or computational) use it for
interchange). CIF is also used for journal submission and supports computable semantic
articles.

In 1994 we 7 launched Chemical Markup Language (CML) [12] to support semantic

5International Union of Crystallography
6”Visions of a Semantic Molecular Future”, and ”Semantic Physical Science”, sponsored by the EPSRC

”Pathways to Impact” program, which supports the dissemination of research done under their auspices
7PMR and Henry Rzepa

8 Dummy title

chemistry. Because there are few other semantic tools in physical science we have had to
create a basic (non-chemical) infrastructure, STMML (STM (Scientific Technical Medical)
Markup Language) [13] 8. This supports basic quantities, error estimations, data types and
scientific units of measurement and we believe it is very widely applicable, certainly to any
discipline where typed quantities with units can be understood as standalone objects. Thus
temperature is not a specifically chemical quantity and we can write:

1 <html:p>It was a nice day, 21 degrees

2 (<cml:scalar dataType="xsd:double" dictRef="iupac:T06321"

3 min="19.1" max="23.1" units="nist:sp811.08.8.5"/>)</html:p>

The dictRef points to the IUPAC Goldbook [10] temperature 9 and the units points to
the National Institute of Standards and Technology 10 This illustrates some key virtues of
CML/STMML. It can be mixed with text (our ”Datument” approach (REF)) and other
markup languages (here HTML) through namespaces and it builds on W3C work (XSD
dataTypes). However even though STMML was published 11 years ago there has been very
little adoption of any markup languages in physical science. There is full support in CML
software , including FoX 11.

For this chapter we’ll use CML ??
?? and introduce a few self-explanatory terms:

<molecule> with <atom> and <bond> and a <propertyList> (measured or computed).
A <property> has a structureType (<scalar>, <array>or <matrix>) annotated with
@dataType (xsd:string, xsd:integer, xsd:double and annotated with a reference to a
dictionary (@dictRef). This covers the vast majority of compchem - larger dimensions are
supported by using CML pointers into (say) HDF or NETCDF.

Here is how a molecule with atoms and coordinates can be completely described

1 <molecule

2 xmlns="http://www.xml-cml.org/schema"

3 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

4 xmlns:units="http://www.xml-cml.org/schema/units"

5 xmlns:compchem="http://www.xml-cml.org/dict/compchem"

6 >

7 <atomArray>

8 <atom id="a1" elementType="O" x3="0.0" y3="0.0" z3="0.0"/>

9 <atom id="a2" elementType="H" x3="0.96" y3="0.0" z3="0.0"/>

10 <atom id="a3" elementType="H" x3="-0.23" y3="0.93" z3="0.0"/>

11 </atomArray>

12 <propertyList>

13 <property dictRef="compchem:dipole">

14 <scalar dataType="units:debye" dataType="xsd:double">1.85</scalar>

15 </property>

16 </propertyList>

17 </molecule>

8http://www.ch.ic.ac.uk/rzepa/codata2/, include CODATA ref
9http://goldbook.iupac.org/T06321.html

10http://physics.nist.gov/Pubs/SP811/sec08.html\#8.5
11Because MLs map well onto Object languages, FORTRAN needs special support and we thank Toby

White and Andrew Walker for writing a FORTRAN library for CML and XML

Reproducible Physical Science and the Declaratron 9

1.2.3 Dictionaries

Dictionaries are fundamental to semantic and therefore reproducible computing. There is a
hierarchy of power

• Give every semantic object or concept a unique ID. Where possible we re-use authorities,
so

– a float is defined as xsd:double (defined by W3C),

– temperature by IUPAC http://goldbook.iupac.org/T06321.html

– kelvin (units) NIST http://physics.nist.gov/cuu/Units/kelvin.html

These fit well into rdf/URI and could be written as nist:kelvin and iupac:T06321 using
standard prefix notations

• create a dictionary entry with an id and type, and if possible defitition and description

1 <cml:entry id="electricdipole" dataType="cml:vector3">

2 <cml:definition>The electric dipole a molecule</cml:definition>

3 <cml:description>Dipole moments in molecules are responsible for the

4 behavior of a substance in the presence of external electric fields.

5 See http://en.wikipedia.org/wiki/Electric_dipole_moment

6 </cml:description>

7 </cml:entry>

• add semantic validation of transformation to the entry. This might be done through OWL
ontologies or alternatively by adding CML / Declaratron snippets.

The IUCr dictionaries are an excellent example of community-created dictionaries. There
is a core dictionary, applicable to most crystallography and many sub-domain dictionaries
such as for proteins, diffraction, powder, etc. We recommend the use of multiple dictionar-
ies as this give a community a chance to create well-developed sub-components and then
rationalize later. For example we propose one dictionary per computational code (e.g. for
NWChem) and then rationalizing parts of these at a higher communal level where possible.

This illustrates the essentials of semantics. molecule, atom, etc are defined in the XML
schema. In addition there are thousands of unit tests in JUMBO 12 which act to resolve
possible ambiguities in the words in the schema. Some implicit semantics are unavoidable - in
chemistry we have defaulted coordinates to Angstrom units (and this information is omitted
in the example); other units can be applied explicitly if required. The use of namespaces
and semantic dictionary-based annotation is fundamental to CML (and to the MathML in
the Declaratron and the Declaratron itself). Here there are the following:

• http://www.xml-cml.org/schema. CML with its domain semantics hardcoded. We can
rely on a consistent interpretation of the chemistry

• http://www.w3.org/2001/XMLSchema. W3C XSD datatypes ??
?? . Complete semantic de-

scription of xsd:double, for example giving min/max values, representations, etc. It is
possible to use an XSD toolkit as blackbox to manage these with complete confidence.
xsd:date could be normalized with (say) JodaTime.

• http://www.xml-cml.org/schema/units. ?? Units are fundamental. Although NIST
started a UnitsML nearly 20 years ago it was aimed at a database of units ??

?? . There are
no agreed computable semantics for units and we use the ones we proposed in STMML.
Note the link later to a CML dictionary of units, which is somewhat ad hoc.

12”JUMBO” subsumes CMLXOM and XML Dom base on XOM

10 Dummy title

• http://www.xml-cml.org/dict/compchem. There are many hundreds of essential con-
cepts and property definitions required in compchem. Despite 40+ years of computational
chemistry programs there is no communal dictionary of terms, let alone a structured on-
tology. At the Cambridge SPS meeting we started a call for compchem dictionaries and
this is being taken forward in Cambridge, CSIRO, PNNL and Kitware and we hope will
spread to a wider community of Materials Science Informatics ? .

• atom, elementType, x3.... CML elements (e.g. atom) represent structured objects
and attributes (elementType, x3 represent properties with hardcoded semantics. Thus
@elementType must be found in a standard periodic table (avoiding the problem of, say,
"W1" authored for water, misread as tungsten). Similarly x3 is the Cartesian x-coordinate
of an atom in Angstrom; this avoids confusion with x2 (chemical formula) and xFract
(crystallography). Legacy formats very commonly ambiguate these concepts causing mas-
sive wasted work.

• property. This is a property of the molecule (atoms, bonds can also have properties). It
uses STMML syntax to define a scalar quantity with defined units, defined dataType and
defined semantics (through a linked dictionary). The dictionary can, in principle, contain
computable semantics for valiadation and transformation.

1.3 Components for Defining Computation

In this chapter we take the view that scientific computation can be broken down into three
components:

• data to use in computation. In a chemical calculation, this might consist of structures
representing atoms, bonds and molecules, their relationships and any parameterisation.

• formulae to be applied to the data—for example, the functional form of a molecular
forcefield.

• computational specifications detailing how the formulae should be applied, and to
which bits of data, e.g. which objects are we computing over, are we computing a single
value for a given formula, or is it being used as input to an optimiser etc.

We demonstrate techniques for representing data and formulae in a semantically well defined
manner, validated with unit tests. We then introduce a tool for specifying computation
which preserves semantics, supports data transclusion and sallows a separation of domain
knowledge and programming, allowing the combination of well tested “black box” domain
objects with declaratively specified computation.

1.3.1 Black-box Libraries

Because chemistry is stable we have been able to create a black-box library (JUMBO ??
??).

JUMBO was developed to act as a reference implementation for CML, with full unit testing.
However that also means it is deployable as a reliable component for the Declaratro — we
give an example:

1 public double getDistanceTo(CMLAtom atom2);

Reproducible Physical Science and the Declaratron 11

This returns the Euclidian distance between two atoms (or throws an Exception). (The
result is as well-defined in chemistry as a squareRoot is in mathematics). The method is
tested with a common set of fixtures and tolerances (EPS)

1 public final void testGetDistanceTo() {

2 double d = fixture.atom[0].getDistanceTo(fixture.atom[1]);

3 Assert.assertEquals("distance", Math.sqrt(3.), d, EPS);

4 d = fixture.atom[0].getDistanceTo(fixture.atom[0]);

5 Assert.assertEquals("distance", 0.0, d, EPS);

6 }

The test not only confirms the correct operation but gives guidance to a human devel-
oper. There are other Open libraries (e.g. the Chemistry Development Kit, CDK) which
can also be reliably used as BlackBoxes.

JUMBO is developed to compare XML documents which are much more suitable than
text whose syntactic equivalence suffers from character encoding, whitespace, line endings.
A typical JUMBO test:

1 JumboTestUtils.assertEqualsIncludingFloat(

2 "MOPAC", referenceXML, textXML, ignoreWhitespace, 1.0E-6)

1.3.2 JUMBOConverters and FoX

Because almost all physical science is in non-semantic form there have been many X-to-Y
converters written to get the output of one program into another; in chemistry an excellent
example is Openbabel. Obviously conversion can only be provided for those concepts which
exist in both programs, or can be generated algorithmically or looked up. The converters are
rarely completely and generally do not expose any semantics. We strongly recommend con-
version to a validatable semantic form and, for chemistry, provide the JUMBOConverter??

?
framework with currently about 60 programs being converted to CML.

Converters are often written where the source code is not visible so we have to guess.
There are two methods:

• Procedural, using Python, Java, C++ etc. The problem is that the semantics are not
visible and the tools do not validate against dictionaries.

• JUMBOConverter templates ??
? . Here the legacy output is mapped semantically onto the

validatable result. This forces the translator to define the dictionary entries used and also
leads to a robust implementation of unit and regression tests. It is also suited to analysing
large corpora.

1.3.3 MathML

MathML??
?? is a W3C math working group recommendation for representing mathematics

on the Web. At the time of writing, this is an emerging web standard, with some level of
support in popular browsers, and an ecosystem of supporting tools such as MathJax13 to
aid inline display. Although browser support is transitional, on the authoring side there are
many tools available: the W3C lists more than 30 editors and viewers14.

There are two distinct dialects of MathML, with different goals:

13http://www.mathjax.org/
14http://www.w3.org/Math/Software/mathml_software_cat_editors.html

12 Dummy title

Display MathML represents the visual layout of mathematical equations. It concerns
itself with how symbols are displayed and arranged on the page, but not what they mean.

Content MathML [3] is oriented towards represeting the semantics of mathematics: “to
provide an explicit encoding of the underlying mathematical meaning of an expression”[7].

Content MathML??
? (CoMML) is highly suited to representing computation in a se-

mantically aware manner - it has been designed to add an extra layer of formalism to the
communication of mathematical equations, removing several sources of potential ambiguity.

1.3.4 Executable MathML

In order to use CoMML in an executable document it must be linked to a tool which can run
the computations which it encodes. Here we use SCMathML15, a Scala engine for running
computations specified using CoMML. Scala is a functional language which runs on the
Java VM, combining the power of functional programming with easy interoperability with
Java code. It was used here because:

• it is very concise - most of the MathML entities are defined in about a hundred lines of
code;

• inbuilt XML support makes starting to work with XML easy - in the listings below, XML
blocks define real Scala objects, rather than strings to be parsed;

• support for building Domain Specific Languages, with flexible parsing.

SCMathML ‘parses’ CoMML into a tree of Scala objects which can carry out computa-
tion. We will illustrate, using unit tests from the framework, how this works, and how it can
be used for computation in the physical sciences. Unit tests are written using the ScalaTest
framework, which—along with some wrapper functions—leads to clean, self-documenting
test code: all of the code examples below are taken directly16 from the Unit Test files. For
example, to check that a MathML <cn> element is parsed into a SCMathML constant we
can write:

1 parsing(<cn>5.3</cn>) should equal(DoubleConstant(5.3))

Two of the basic elements of MathML are constant numbers (<cn> for content numeric)
and variables (<ci> for content identifier). Variables need to have values provided if a
function is to be computed - for example, when given y = x2 +c, if we want to get a number
out, we need to provide values for both x and c. In SCMathML, this is done through a
Context, where objects can be passed in:

1 evaluating(<ci>x</ci>, "x"->5) should equal(5)

In this example ”evaluating” is a function defined to take a MathML expression, and
some mappings of strings to objects, and evalute the expression. should and equal (and
later be, plusOrMinus) are ScalaTest functions which allow a natural reading of unit tests.
This example can be read that: if we take the expression <ci>x</ci>, parse it, and then
evaluate it in a context where x has been set to 5, we should get 5 out. This is an illus-
tration of how objects are bound to variables, and used to evaluate abstract mathematical
expressions and obtain concrete results.

CoMML is strongly influenced by Scheme and related languages: it uses <apply> tags to
denote function application, with the first argument being the function to apply. For example

15www.mo-seph.com/projects/SCMathML
16Formatting has been changed, and some variables have been renamed for clarity out of context

Reproducible Physical Science and the Declaratron 13

<apply><plus/><cn>2</cn><cn>2</cn></apply> is roughly equivalent to (plus 2 2)

in Scheme. Or:

1 evaluating(<apply><sin/><ci>x</ci></apply>, "x"->3)

2 should equal(Math.sin(3))

For a slightly larger example, we can implement Leibniz’s method of approximating π,

n∑
k=0

(−1)k

2k + 1
≈ π

4

1 evaluating(

2 <apply><times/><cn>4</cn>

3 <apply><sum/> <!--carry out a summation -->

4 <bvar><ci>k</ci></bvar> <!-- for k in ... -->

5 <lowlimit><cn>0</cn></lowlimit> <!-- start at 0 -->

6 <uplimit><ci>n</ci></uplimit> <!-- go up to the value bound to n -->

7 <apply><divide/>

8 <apply><power/><cn>-1</cn><ci>k</ci></apply>

9 <apply><plus/>

10 <apply><times/><cn>2</cn><ci>k</ci></apply>

11 <cn>1</cn>

12 </apply>

13 </apply>

14 </apply></apply>, "n"->4000) should be (3.1415 plusOrMinus 0.01)

Finally, there is often a need to work with values obtained from domain entities. In
order to do this, we have defined a small set of extensions to the MathML specification to
interface with existing objects, using the <csymbol> tag. Figure 1.2 gives a worked example
where values are extracted from domain objects. It is based on Hookes law, which would
typically be written as:

E =
∑
bonds

1

2
kx2

However, since it has been translated into MathML, with bindings added, it is clear that:

1. x actually refers to displacement from equilibrium length, and so has to be split
into l and l0.

2. all of the values are specific to a given spring, including the spring coefficient k

Contrast this with the first term in the AMBER forcefield equation (Figure 1.1) where it is
up to the reader to interpret that that i) b is a subscript for the current bond ii) b on its
own means the length of the current bond iii) b0 is the equilibrium length of the current
bond.

It should be noted, however, that this example only defines the mathematical
semantics—the operations to be carried out, and the bits of data to appply them to. It
does not deal with any domain semantics, as the Springs class is not semantically explicit.

14 Dummy title

1 var sum = //Define Hookes law in Content MathML

2 <apply>

3 <sum/>

4 <bvar><ci>spring</ci></bvar> <!-- this is the variable to bind -->

5 <condition> <!-- and this is the set to bind over -->

6 <apply><in/><ci>spring</ci><ci type=’set’>springs</ci></apply>

7 </condition>

8 <apply><times/>

9 <cn>0.5</cn>

10 <apply><times/>

11 <apply><csymbol function=’elasticity’>k</csymbol><ci>spring</ci></apply>

12 <apply><power/>

13 <apply><minus/>

14 <apply><csymbol function=’length’>l</csymbol><ci>bond</ci></apply>

15 <apply><csymbol function=’equilibrium’>l0</csymbol><ci>bond</ci></apply>

16 </apply>

17 <cn>2</cn>

18 </apply>

19 </apply>

20 </apply>

21 </apply>

22 //We have have a spring class which takes 3 arguments:

23 //length, equilibrium length, and elasticity

24 //Create two Springs to test:

25 var bonds = List(new Spring("A",8,7,3),new Spring("B",10,9,4))

26

27 // Target equation is: sum of

28 // 0.5 * elasticity(spring) * (length(spring)-equilibrium(spring))^2

29 // With the test springs, the expected value is:

30 val exp =

31 0.5 * 3 * Math.pow(8-7, 2) + //Spring A

32 0.5 * 4 * Math.pow(10-9, 2); //Spring B

33

34 //Now run the test:

35 evaluating(${sum}$, "bonds"->bonds) should equal(exp)

FIGURE 1.2
Example MathML equation, showing a test summation over a set of domain specific objects.

Target equation is E = k(l−l0)
2

2 . Note that this example is not semantically bound.

Reproducible Physical Science and the Declaratron 15

MathML

O
HkOH

rOH
forcefield

runtime calculation CML
mol.bonds[0].getLength()

semanticML
assembly

semanticML
runtime

dictionaries CML
<entry id="e"
term="molarEnergy"/>
<entry id="k"
term="forceConstant"/>

monitors

algorithms
(BOBYQA)

FIGURE 1.3
Declarative creation and execution of computationalDocument. The
mathematics is linked to domain sematics (e.g. for each element of
the summation l links (arrows) to reference equilibrium bond-length
l0inforcefield(e.g.foranO − Hbond)andktothereferenceO − Hforce −
constant.Dictionariesareusedtoensuresemanticmapping(e.g.thatEnergycanberelatedtoforce−
constantsandlengths)andalsotoprovidehumanprose.ThedocumentisassembledandmodifiedbyrepeatedbyXPathqueriestocreatenodeSets(partsofthetree)andthenapplicationofeditorcommands(copy, create,move, delete)tomodifyit.Inthiswayahuman−
friendly(minimal)documentisautomaticallyexpandedtoconstancyandmachine −
interpretability.Inthesecondphasethedocumentisexecutedusingvistorstotraversethe(nowconstant)treeandprocessnodes.Becausethetreeisconstantitispossibletoattachmonitorstothenodes(e.g.recordingwhichtermshadsignficantvaluesorwhichtooklongesttocompute.Singlefunctionsandnodesaredecalarativeitbecomespossibletochangalgorithms(e.g.foroptimization, suchasthesingle−
pointoptimizerBOBY QA).

1.4 Semantic Physical Computation

We have discussed the representation of scientific entities using domain specific markup
languages, and formalisation of computation using domain independent markup. Now, we
introduce a system—“The Declaratron”??—which brings these together to carry out repro-
ducible scientific calculations.

The Declaratron consists of:

1. An XML dialect for specifying declarative computation. Our current vocabulary
is:

•<sem:computationalDocument> the overall container and organizer;

•<sem:editor> which allows the document to modify itself using copy, trans-
form, move and delete operations;

•<sem:assert> allows components to be tested against scalar values or com-
plete (XML) files;

•@href allows input of files (transclusion-copy);

16 Dummy title

•<sem:writer> allows output of sections of the document;

•{<sem:functionalForm> specification of a MathML expression which can
be bound to other domain semantics;

•<sem:computation> evaluation of a <sem:functionalForm> either once or
in an algorithm.

2. Core libraries that support the operations in this dialect: transclusion, copying,
merging, validation.

3. support for replacing XML nodes with domain objects that bring useful code
with them (decoration). This includes decorating data structures (e.g. replacing
a plain <cml:atom/> element with a Java object, and creating executable objects,
such as unit converters.

4. links to domain libraries to bring in necessary semantics and computational ele-
ments, including:

•SCMathML for evaluating mathematical formulae in the context of a scien-
tific computation

•general STM information, such as units and their conversions

•CML/JUMBO for representing chemical data and computing common prop-
erties

It is entirely possible for users to add their own domain libraries.

Much of the power of the declaratron comes through the data structure of XML and
XPath - the latter being a formal language for addressing components of an XML document.
Xpath can reference any set of nodes in the tree (nodeSet) with a natutral and powerful
syntax (based on tree structures). A series of editor commands means documents can be
modified (including self-modification). XML acts as both input and output, and can provide
a full record of computations. Snippets from files such as schemas and dictionaries can be
included in the output so that it is clear exactly what versions of what were used and what
was done.

The Declaratron works as follows, illustrated in Figure 1.4:

1. read in a computational document;

2. manipulation: transclusion and substitution (see Section 1.4.1);

3. decoration: replacing standard XML elements with domain objects;

4. computation.

Validationis threaded through the entire process, to check that incoming data is in the
correct form, manipulated data has the right properties, and the results of computations
are correct.

We will use a case study—calculating the energy of water using a very simple forcefield—
to demonstrate this.

1.4.1 Bridging the gap between human- and machine-readable seman-
tics

Humans work with implicit semantics, and require documents to be small and non-repetitive
in order to extract meaning. Machines require explicit, formal semantics, and can work with
large (typically 10-100 times larger), repetitive documents that are deeply human-unfriendly.

Reproducible Physical Science and the Declaratron 17

JUMBO/CML

Computation

Validation

Molecules
Molecule:
href=...

Computation
Energy
formula=

Forcefield
Data

Database:
href=...

Assert: data
present

Computation

Validation

Molecules
Molecule:
href=...

Computation
Energy
formula=

Forcefield
Data

Database:
href=...

Assert: data
present

Computation

Validation

Molecules
Molecule:
href=...

Computation
Energy

formula=

Forcefield
Data

Database:
href=...

Assert: data
present

MathML

Computation

Validation

Molecules
Molecule:
href=...

Computation
Energy

formula=

Forcefield
Data

Database:
href=...

Assert: data
present

MathML

MathML

Transcluded XML Data

Domain Objects

Executable components

Computation

Result

Original
Document

Transclusion
and

manipulation

Decoration

Execution

Joined XML Data

FIGURE 1.4
Overview of Declaratron operation. i) original document; ii) manipulated XML document
iii) decorated document with executable domain objects iv) executing a computation

18 Dummy title

In order to address this division, the Declaratron can use documents which are written in
a relatively concise, human readable form, and automatically expanded to the complete,
explicit computable form. The human form uses:

• Key-value syntactic substitution, which both reduces repetition, and allows for human
readable names to be attached to complex structures. For example, replacing occurences of
xpath="//cml:molecule[@id=’molecule’]" with xpath="${molpath}" makes the doc-
ument more readable as the intent of the XPath expression is clear, and makes it more
robust as complex expressions can be defined and tested once, and then re-used.

• Transclusion of files; there is a <sem:editor> which expands href attributes re-
cursively. Again, this enhances readability, especially where large files are brought
in, and re-used, as common elements can be put into files and shared (e.g.
<maths href="${mathsPath}/hookesLaw.xml"/>. It also allows the use of data from
non-local sources, as any URI which provides an XML stream can be used.

Using this system of transclusion we have successfully computed the energy of acetic
acid (8 atoms) using the current AMBER (PARM94) forcefield, by expanding a human
readable input, to machine form and evaluating it. However the human form hides many
important details, and for this chapter we have therefore chosen a very simple complete
example (water — 3 atoms), using a highly simplified functional form (only bonds), with a
later indication of how this would be expanded to a more complete example.

1.4.2 Example: Water — Energy Calculation

To illustrate the Declaratron’s operation, we will walk though a calculation file step by
step? . This file carries out single point energy computation and atomic optimisation on
water, using the Hooke’s law term from the AMBER forcefield (

∑
bondsKb(b − b0)2) and

associated parameters17. This is described in four stages:

• setting up the document: namespaces and named variables;

• identifying the data to be used: the molecule, atoms and bonds;

• specifying the forcefield;

• specifying the computations to be carried out.

In a real-world file, the definitions of data and computations might be given in a different
order—for example, putting the computation first in files makes it easy for a human to find
out what a file does. The order of elements is fairly flexible, so in this explanation we start
with the data and then later specify what we intend to compute. As noted previously,
we also go through some elements which would typically be expanded from databases, or
refactored into individual files to make a humane document.

1.4.2.1 Set up the document

The <computationalDocument> node is a container for the entire computation. We also
define XML namespaces which can be used throughout the file:

1 <computation xmlns="http://www.xml-cml.org/semanticcomputation"

2 xmlns:m="http://www.w3.org/1998/Math/MathML"

3 xmlns:cml="http://www.xml-cml.org/schema"

4 xmlns:amber=’http://www.xml-cml.org/dict/amber:gaffType’>

17The full file can be found at: https://bitbucket.org/petermr/semantic-forcefield/src/

cf7ef9b03020/src/main/resources/org/xmlcml/cml/examples/amberNew.xml?at=default

Reproducible Physical Science and the Declaratron 19

In order to carry out XPath queries over namespaced documents, it it necessary to setup
namespace prefixes which can be used by the XPath engine:

5 <!-- setup XML namespaces for use in XPath queries -->

6 <queryNS prefix="semc" uri="http://www.xml-cml.org/semanticcomputation"/>

7 <queryNS prefix="semf" uri="http://www.xml-cml.org/semanticforcefields"/>

8 <queryNS prefix="cml" uri="http://www.xml-cml.org/schema"/>

9 <queryNS prefix="m" uri="http://www.w3.org/1998/Math/MathML"/>

10 <queryNS prefix="amber" uri="http://www.xml-cml.org/dict/amber:gaffType" />

11 <queryNS prefix="cmlx" uri="http://www.xml-cml.org/schema/cmlx" />

Throughout the file, key/value pairs can be used to reduce repetition. Here we set up
variables for XPath queries for i) the molecule to analyse, using an id to ensure only the
desired molecule is used; ii) finding all the bonds belonging to that molecule; iii) finding all
the atoms:

12 <!-- XPath references to molecule, atoms, bonds -->

13 <keyValue name="molpath" value="//cml:molecule[@id=’molecule’]"/>

14 <keyValue name="bondpath" value="${molpath}/cml:bondArray/cml:bond"/>

15 <keyValue name="atompath" value="${molpath}/cml:atomArray/cml:atom"/>

1.4.2.2 Identify and verify chemical data

Now we define the chemical data to be used. Firstly, the molecule. As this is a container for
chemistry, it defines some extra namespaces for chemical entities:

16 <cml:molecule

17 xmlns:cml="http://www.xml-cml.org/schema"

18 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

19 xmlns:units="http://www.xml-cml.org/schema/units"

20 xmlns:compchem="http://www.xml-cml.org/dict/compchem"

21 >

Next, the atoms. Note that each atom has a atomType defined by AMBER. This is not
the same as the elementType—AMBER uses atomTypes for as well as elementTypes for
atoms, the distinction being that atomTypes change depending on the surrounding atoms.
For example, an oxygen bonded to a hydrogen has atomType "OH". Bond parameters are
looked up using atomTypes rather than elementTypes, and bonds are often annotated with
different atomTypes in different communities of practice (i.e. different laboratories).

22 <cml:atomArray>

23 <cml:atom id="a1" elementType="O" x3="0.0" y3="0.0" z3="0.0">

24 <atomType dictRef="amber:parm94Type">OH</atomType>

25 </cml:atom>

26 <cml:atom id="a2" elementType="H" x3="0.96" y3="0.0" z3="0.0">

27 <atomType dictRef="amber:parm94Type">H</atomType>

28 </cml:atom>

29 <cml:atom id="a3" elementType="H" x3="-0.23" y3="0.93" z3="0.0">

30 <atomType dictRef="amber:parm94Type">H</atomType>

31 </cml:atom>

32 </cml:atomArray>

The id-structure is very important and is used to link components of the document (e.g.
the bonds reference the atom-ids) or even to aggregate them (through the editor).

The final component of the chemical data is a set of bonds, with parameters looked up
by atomType. For each bond, k is the spring constant, req is the equilibrium bond length
and desc is the formal description (e.g. a literature reference).

33 <cml:bondArray>

34 <cml:bond atomRefs2="a1 a2">

35 <cml:property>

36 <cml:list id="c_ct" cmlx:atomTypesId="OH__H">

20 Dummy title

37 <cml:atomType dictRef="amber:parm94Type">OH</atomType>

38 <cml:atomType dictRef="amber:parm94Type">H</atomType>

39 <cml:scalar dictRef="ff:k" dataType="xsd:double">317.0</scalar>

40 <cml:scalar dictRef="ff:req" dataType="xsd:double">1.522</scalar>

41 <cml:scalar dictRef="ff:desc" dataType="xsd:string">JCC,7,(1986),230;AA</scalar>

42 </cml:list>

43 </property>

44 </cml:bond>

45 <cml:bond atomRefs2="a1 a3"> <!-- contents omitted for brevity --> </cml:bond>

46 </cml:bondArray>

For the purposes of this example, we have declared the bond properties inline. In general,
these would be pulled in from a knowledgebase automatically, but this is too complex for
this chapter.

Once all of the data is in place, we can verify it. To ensure that all atoms can be
annotated with the AMBER parm94 dictionary, an <assert> element checks that i) there
are 0 atoms without a valid id and ii) there are 0 atoms without a valid atomType:

47 <!-- all atoms in the document must have ids and atomTypes (expressed as negation) -->

48 <assert count="0" xpath="${atompath}[not(@id)]"/>

49 <assert count="0" xpath="${atompath}[not(cml:atomType[@dictRef=’amber:parm94Type’])]"/>

1.4.2.3 Specify the forcefield to be used

After specifying the data, we specify the functional form of the forcefield (E = k(l−l0)
2

2). It
starts wuth the summation over bonds

50 <functionalForm id="hookes"

51 hrefSource="src/main/resources/org/xmlcml/cml/forcefield/functional/harmonicBond.xml"

52 xmlns="http://www.xml-cml.org/semanticforcefields">

53 <math xmlns="http://www.w3.org/1998/Math/MathML">

54 <apply><sum/> <!-- Sum -->

55 <bvar><ci>bond</ci></bvar> <!-- For bond -->

56 <condition> <!-- in bonds -->

57 <apply><in/><ci>bond</ci><ci type="set">bonds</ci></apply>

58 </condition>

59 <!-- This is what is inside the sum -->

60 <apply><times/><cn>0.5</cn> <!-- divide by 2 -->

We need to bind the value of k to the actual bond (property is child of bond). Again, note
the use of dictRef—this uses a defined id reference, whch means that the semantics of the
value to be used can be looked up in the dictionary:

61 <apply><times/> <!-- get k for the current bond -->

62 <apply>

63 <csymbol xpath="./cml:property/cml:list/cml:scalar[@dictRef=’ff:k’]">k</csymbol>

64 <ci>bond</ci>

65 </apply>

66 </apply>

67 <apply><power/> <!-- start the squared term -->

68 <apply><minus/> <!-- start l-l_0 -->

The value of l is bound to the result of calling the JUMBO function cml:bond.getBondLength()

for each bond:

69 <apply>

70 <csymbol function="getBondLength">l</csymbol>

71 <ci>bond</ci>

72 </apply>

and the reference (equilibrium) length is looked up for each bond with a XPath expression
that selects the relevant property from its descendants.

Reproducible Physical Science and the Declaratron 21

73 <apply>

74 <csymbol xpath="./cml:property/cml:list/cml:scalar[@dictRef=’ff:req’]">l0</csymbol>

75 <ci>bond</ci>

76 </apply>

77 </apply> <!-- end l-l_0 -->

78 <cn>2</cn> <!-- end of the squared term -->

79 </apply>

80 </apply>

81 </apply>

82 </math>

83 </functionalForm>

84 </computation>

At this point, we have defined a molecule, and the forcefield which is to be applied to it.

1.4.2.4 Specify the computation to be carried out

We now specify a computation co carry out with these entities (do we want simply to
evaluate the energy, or adjust the geometry to optimze the structure against its energy?).
First, let’s create a node (child of molecule to hold the result of a single point energy
calculation:

85 <editor method="createChild" xpath=".//molecule" element="cml:scalar" targetId="singlePoint"/>

Next, specify that an evaluation of the functional form with the molecule in its initial
configuration should be carried out. This will locate the functional form and ask it to
evaluate itself, using the molecule as input. When the molecule is passed in, the set of
bonds will be bound to the variable bonds. The functional given above will iterate over the
set of bonds, and for each bond call the JUMBO function to find the current bond length,
subtract the equilibrium length etc. as detailed above. After the calculation, we ensure that
the output has the correct value, and has the correct units:

86 <computation method="singleEvaluation"

87 formula="//functionalForm[@id=’hookes’]" input="${molpath}">

88 <variable name="bonds" xpath="${bondPath}"/>

89 </computation>

90 <assert value="1.234" xpath=".//scalar[@id=’singlePoint’]"/>

91 <assert value="units:joule" xpath=".//scalar[@id=’singlePoint’]@units"/>

The optimum geometry of a molecule is that of lowest energy and many calculations attempt
to find this using a variety of algorithms. We have chosen the recent BOBYQA method [17]
which does not require analytical derivatives (or second derivatives).

The same functional form can also be used in the optimisation of geometry to find the
minimum energy. Here we use the non-derivative optimiser BOBYQA by giving it i) a target
function to evaluate (the functional form); ii) the data to work over (the molecule); and
iii) an XPath expression to find the free variables in the optimisation. The optimisation
happens in place, so the modified atom positions are now part of the document:

92 <computation method="optimise" algorithm="BOBYQA"

93 formula="//functionalForm[@id=’hookes’]" input="${molpath}"

94 freeVariables=".//@x3 or .//@y3 or .//@z3"/>

Finally, we can compare the output geometry and energy with the a previous computation
stored in another file. This is a complete nodewise comparison of XML, which will ensure
both semantic identity and numerical identity, including a tolerance (eps) for floating point
variations.

95 <assert href="expected.xml" ref="${molpath}" eps="1.0E-06"/>

96 </computation>

22 Dummy title

1.4.3 Moving beyond toy examples

The Declaratron has a wider range of features than we have illustrated here. There is
a one-off cost to transforming legacy files to CML (some of which can be done with
JUMBOConverter-templates). Most problems then require a complex process of locating
transcludable information (see Section 1.4.1), extracting the desired nodes and inserting into
the growing semanticDocument. Although this is a complex operation, once constructed,
the semanticDocument subtrees can be re-used without change for future computations.
This means that computations can be stated very simply in terms of the major free vari-
ables and the operations to be performed on them.

As an example, to use the parm94 database in a semantic calculation, we would carry
out the following steps:

First, the JUMBO atomTypeTool can be used to add the required ids:

97 <!-- list is the default type for general data -->

98 <cml:list id="parm94Test" href="${forcefield}/amber/parm94test.xml"/>

99 <!-- transform (add id) to atomType children -->

100 <atomTypeTool method="addAtomTypesId" using="./cml:atomType"

101 xpath="//cml:list[@id=’parm94Test’]/cml:list/cml:list[count(cml:atomType)>0]" />

Then we can merge functional form and parameters for each bond from the database,
by copying the relevant information into each cml:bond element:

102

103 <moleculeTool method="getOrCreateBonds" xpath="${molpath}" setId="createdBonds"/>

104 <editor method="copyChild"

105 xpath="//cml:molecule[@id=’molecule’]/cml:bondArray"

106 from="//cml:list[@id=’parm94Test’]/cml:list[@title=’bonds’]/semf:functionalForm" />

We can also ensure that the bond angles are in the correct units:

107 <unitsVisitor xpath="//cml:list[@id=’parm94Test’]//cml:scalar[@dictRef=’ff:angeq’

108 or @dictRef=’ff:phase’]" method="degrees2Radians"/>

And finally, we can save this annotated molecule into its own file—coarse-grain
memoization—so we do not have to do the conversion again in the future:

109 <writer xpath="//cml:list[@id=’parm94Test’]" file="output/parm94testNew.xml" />

All this can be packaged into standard operations—a file can be created for any given
conversion and transcluded where necessary—so that the final calculation mirrors the human
readable form, and is expanded into the detailed semantic form at runtime.

The program output can contain as detailed a list as we like of the operations and their
outputs/results. It could contain fine grained information for debugging or simple summary
data. It will have a complete record of the input - not just the values but the semantic
parameters, the dictionaries and the functional forms. This means the output is immediately
re-runnable. Note that XML has a very wide range of Open document maniuplation tools
so we can build high-quality print or semantic indexes.

The output is directly transformable into the inputs of other programs which share
some or all of the semantics (e.g. chemistry and mathematics). In many cases these can be
understood without the wider context — a molecule optimised by a forcefield could then
be read into a QM program or posted in an online CML repository for use in chemical
informatics.

1.4.4 Integrating Semantic Physical Computation with emerging archi-
tectures and automation

Figure 1.5 shows an example computational chemistry (CompChem) architecture. The input
(LHS) consists of about 6 orthogonal axes: i) Molecules; (ii) Commands —the scientific

Reproducible Physical Science and the Declaratron 23

FIGURE 1.5
A multi-axis parameter sweep for computational chemistry using NWChem??

?? as a semantic
framework ? for computing properties of matter. The experiments often involve several axes
and could involve many thousands of jobs. Our architecture allows the automatic creation of
jobs with combinations of settings (”parameter sweeps”) which can be filtered semantically.
NWChem outputs CML through FoX calls; alternatively the legacy output is converted
by an NWChem JUMBO-comverter to CML. The output is semantically validated against
(a) NWChem (b) General Compchem (c) Units dictionaries and normalized, before archive
and redistribution in a Quixote repository [5]. Note: We thank PNNL for making NWChem
Open and agreesively CML-ising it.

24 Dummy title

problem to be solved; iii) Basis-Set—the quantum mechanical parameterisation; iv) Method
of solving QM equations; v) Physical Parameters, e.g. temperature, pressure; vi) Computer
Environment, e.g. CPU limits, memory, number of processors. While this is a particular
example, and would be used for experiments such as “run 1000 molecules with 3 basis
sets”, many experiments have a similar structure to this, i.e. “explore a defined subset of
the parameter space”.

The example in Figure 1.5 has several independent input axes and it is clear that these
must be semantically defined if the experiment is to be reproducible—ambiguity or the
possibility for disagreement about the meanings or intents of specifications will result in
different or unpredictable results. More generally, no science can be reproducible without
agreed semantics.

The Declaratron is very well suited to the flexible generation of input — it allows pa-
rameter axes to be declared semantically and combined through domain-specific commands
(expanding the scope and precision of ”Convolution”). It is also a critical part of marshalling
and validating output, especially transforming documents to have different structures and
components.

1.5 Conclusions

The adoption of semantics by long-tail physical science has been extremely slow and its
absence causes millions of lost hours and costs hundreds of millions of dollars. We do not
believe science is reproducible without a committed community (as in crystallography or
astronomy or much of bioscience).

Instrumental and sensor output is now massive, but there are very few semantic imple-
mentations or dictionaries; this is an essential task for the communities to tackle.

In this chapter we have demonstrated a system which addresses several of these con-
cerns. It integrates existing semantically aware components with legacy data, and provides a
strongly semantically grounded computation environment, with a high level of reproducibil-
ity.

The usefulness of any semantically aware, reproducible system is dependent on its con-
text: the further the semantic frontier is pushed back, the the more use we can make of each
component in the system. To make this happen we have a set of recommendations:

1. Build a community of practice around semantic computation and reproducibil-
ity. Ideally this should be through learned societies or International Scientific
Unions — without community semantics there is no interoperability and hence
no effective reproducibility.

2. Adopt STMML semantics where possible: using strongly typed quantities with
dictionaries. Dictionaries can be created in a semi-formal manner, being ratified
by formal groups when they are proved to work.

3. Create black-box libraries for fundamental domain-specific operations and algo-
rithms. These should be tested using declarative approaches, to allow for integra-
tion with semantic systems.

4. Build declarative validators for legacy code bases (e.g. AMBER) so that their
correctness can be verified on a wide range of archetypal problems.

5. Make all “documentation” semantic and computable: write examples in manuals
as executable code, so that the documentation is always in sync with the code.

Bibliography

[1] I David Brown and Brian McMahon. CIF: the computer language of crystallography.
Acta Crystallographica Section B: Structural Science, 58(3):317–324, 2002.

[2] Geoff Brumfiel et al. Beautiful theory collides with smashing particle data. Nature,
471(7336):13–14, 2011.

[3] David Carlisle. OpenMath, MathML, and XSL. ACM SIGSAM Bulletin, 34(2):6–11,
2000.

[4] Antony N Davies and Peter Lampen. JCAMP-DX for NMR. Applied spectroscopy,
47(8):1093–1099, 1993.

[5] Pablo de Castro, Pablo Echenique, Jorge Estrada, Marcus D Hanwell, Peter Murray-
Rust, and Jens Thomas. The quixote project: Collaborative and open quantum chem-
istry data management in the internet age.

[6] MT Dove, AM Walker, TOH White, RP Bruin, KF Austen, I Frame, GT Chiang,
P Murray-Rust, RP Tyer, PA Couch, et al. Usable grid infrastructures: practical
experiences from the eMinerals project. In Proc. UK e-Science All Hands Meeting
2007, pages 48–55, 2007.

[7] W3C Math Working Group. Content MathML. http://www.w3.org/TR/MathML3/

chapter4.html.

[8] Peter Lampen, Heinrich Hillig, Antony N Davies, and Michael Linscheid. JCAMP-DX
for mass spectrometry. Applied spectroscopy, 48(12):1545–1552, 1994.

[9] Robert S McDonald and Paul A Wilks. JCAMP-DX: A standard form for exchange
of infrared spectra in computer readable form. Applied Spectroscopy, 42(1):151–162,
1988.

[10] Alan D McNaught and Andrew Wilkinson. Compendium of chemical terminology,
volume 1669. Blackwell Science Oxford, 1997.

[11] Peter Murray-Rust. Semantic science and its communication-a personal view. Journal
of Cheminformatics, 3(1):1–7, 2011.

[12] Peter Murray-Rust and Henry S Rzepa. Chemical markup, XML, and the Worldwide
Web. 1. Basic principles. Journal of Chemical Information and Computer Sciences,
39(6):928–942, 1999.

[13] Peter Murray-Rust and Henry S Rzepa. STMML. A markup language for scientific,
technical and medical publishing. Data Science Journal, 1:128–192, 2002.

[14] Peter Murray-Rust and Henry S Rzepa. Semantic Physical Science. Journal of Chem-
informatics, 4(1):1–7, 2012.

25

26 Dummy title

[15] KS Noll, MA McGrath, LM Trafton, SK Atreya, JJ Caldwell, HA Weaver, RV Yelle,
C Barnet, and S Edgington. HST spectroscopic observations of Jupiter after the colli-
sion of comet Shoemaker-Levy 9. Science, 267(5202):1307–1313, 1995.

[16] Shyue Ping Ong, Anubhav Jain, Geoffroy Hautier, Michael Kocher, Shreyas Cholia,
Dan Gunter, David Bailey, David Skinner, Kristin A Persson, and Gerbrand Ceder.
The Materials Project, 2011.

[17] Michael JD Powell. The BOBYQA algorithm for bound constrained optimization with-
out derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cam-
bridge, 2009.

[18] Alexander Roth, Ronny Jopp, Reinhold Schäfer, and Gary W Kramer. Automated
generation of AnIML documents by analytical instruments. Journal of the Association
for Laboratory Automation, 11(4):247–253, 2006.

[19] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma,
Hubertus JJ Van Dam, Dunyou Wang, Jaroslaw Nieplocha, Edoardo Apra, Theresa L
Windus, et al. NWChem: a comprehensive and scalable open-source solution for large
scale molecular simulations. Computer Physics Communications, 181(9):1477–1489,
2010.

