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Abstract
The standard approach to HMM-based speech synthesis is in-
consistent in the enforcement of the deterministic constraints
between static and dynamic features. The trajectory HMM and
autoregressive HMM have been proposed as normalized mod-
els which rectify this inconsistency. This paper investigates the
practical effects of using these normalized models, and exam-
ines the strengths and weaknesses of the different models as
probabilistic models of speech. The most striking difference
observed is that the standard approach greatly underestimates
predictive variance. We argue that the normalized models have
better predictive distributions than the standard approach, but
that all the models we consider are still far from satisfactory
probabilistic models of speech. We also present evidence that
better intra-frame correlation modelling goes some way towards
improving existing normalized models.

Index terms: HMM-based speech synthesis, acoustic mod-
elling, autoregressive HMM, trajectory HMM, normalization

1. Introduction
The standard approach to HMM-based speech synthesis [1] is
inconsistent in the enforcement of the deterministic constraints
between static and dynamic features [2]. During synthesis we
explicitly impose these constraints [3] whereas the standard
model used during parameter estimation ignores them. Alter-
natively, the standard model used during parameter estimation
can be viewed as a model defined over static features only, in
which case it correctly enforces the constraints between static
and dynamic features but is unnormalized as a probability dis-
tribution, i.e. the probability of the set of all sequences of static
features is not one [2].

Previously models such as the trajectory HMM [2] and the
autoregressive HMM [4] have been proposed to address this
problem by using the same valid, normalized model for param-
eter estimation and synthesis.

The lack of normalization in the standard model used dur-
ing parameter estimation means that the probabilistic justifica-
tion for conventional training procedures in terms of maximiz-
ing the likelihood strictly speaking does not apply. However the
question remains what the practical consequences of this lack
of normalization are.

To investigate the effect of normalization we look at the
predictive distribution for the standard approach, the trajectory
HMM and the autoregressive HMM. We focus on the predictive
distribution since this is the quantity of interest when viewing
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the three approaches as probabilistic models of speech, and be-
cause it is the basis for almost all current synthesis algorithms.

We also investigate a possible improvement to current nor-
malized models, by using full covariance matrices to model the
correlations between different components of the feature vector.

The rest of this paper is organized as follows. Section 2
reviews the acoustic models used in the three approaches to sta-
tistical speech synthesis we will be comparing. Section 3 inves-
tigates the effect of normalization on the predictive distribution.
Section 4 considers improving current normalized models by
using full covariance modelling for the trajectory HMM.

2. Acoustic modelling in speech synthesis
2.1. Framework

In statistical parametric speech synthesis [5] we typically build
a probabilistic model P (C | l, λ), where C = [c1, . . . , cT ] is a
representation of speech as a sequence of acoustic feature vec-
tors, T is the number of frames in C, l = [l1, . . . , lJ ] is a
representation of text as a sequence of labels, J is the num-
ber of labels in l, and λ is a set of model parameters [5].
As an aid to modelling we introduce a hidden state sequence
q = [q1, . . . , qT ], where each qt is a label together with an
integer state index. We then decompose the model P (C | l, λ)
into a duration model P (q | l, λ) and an acoustic model P (C |
q, λ). We use the same semi-Markov form of duration model
throughout [6].

The sequence over time of a single component of the fea-
ture vector (e.g. the 6th mel-cepstral coefficient) forms a trajec-
tory. We will mostly follow the common assumption that the
trajectories c(1:T )i for different feature vector components i are
independent given the state sequence. From now on we will fo-
cus on one component of the feature vector sequence, and for
clarity of notation drop the index i. Thus ct ∈ R is a scalar,
c ∈ RT is a trajectory, and P (c | q, λ) is a distribution over
trajectories.

2.2. Model used in standard approach during training

The standard model used during parameter estimation is as fol-
lows. We augment the static feature vector ot0 , ct with dy-
namic features ot1 , 1

2
ct+1 − 1

2
ct−1 and ot2 , ct+1 − 2ct +

ct−1 (for the standard HTS windows) to obtain an observation
ot = [ot0, ot1, ot2]. Note that the map w : RT → RT×3

taking a static feature vector sequence c to its correspond-
ing observation sequence O = [o1, . . . ,oT ] is linear. We
then build a model over O instead of over c, setting Pobs(O |
q, λ) =

∏
t Pobs(ot | qt, λ) where

Pobs(ot | qt = q, λ) =

2∏
d=0

N
(
otd;µqd, σ

2
qd

)
(1)
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and λ =
[
µq,σ

2
q : q

]
. Note that this ignores the determin-

istic relationship between o(1:T )0, o(1:T )1 and o(1:T )2. The
model places almost all of its probability mass on observations
sequences that can never occur, since the set of realizable ob-
servation sequences {O : O = w(c) for some c} forms a thin
T -dimensional subspace of the overall 3T -dimensional space.

For a realizable sequence O = w(c) we have

Pobs(ot | qt = q, λ) = ψ(ct−L:t+L, qt, λ) (2)

where L = 1 for the standard settings of these windows. Here
logψ is a quadratic form in ct−L:t+L, i.e. ψ(·, qt, λ) can be
thought of as an unnormalized Gaussian [2, 7]. This follows
from the fact that w is linear and that [w(c)]t depends only on
ct−L:t+L.

Equivalently, rather than viewing the standard model above
as a model over O, we can view it as an unnormalized model
over c

“Pstd”(c | q, λ) , Pobs(w(c) | q, λ) (3)

=
∏
t

ψ(ct−L:t+L, qt, λ) (4)

This is unnormalized since integrating over all possible c does
not necessarily give 1.

Thus the standard model used during training can be viewed
either as a model overO that places most of its probability mass
on unrealizable sequences, or as an unnormalized model over c.

2.3. Trajectory HMM

The trajectory HMM [2] explicitly normalizes “Pstd”

Ptraj(c | q, λ) ,
1

Z(q, λ)
Pobs(w(c) | q, λ) (5)

=
1

Z(q, λ)

∏
t

ψ(ct−L:t+L, qt, λ) (6)

where Z(q, λ) is the normalization constant required to obtain
a valid probability distribution. This normalization constant
Z(q, λ) does not factorize over time with respect to q, which
means that training for the trajectory HMM is more computa-
tionally demanding than for the standard approach [2].

The trajectory HMM is globally normalized at the level of
c | q – we first take the product of the unnormalized individual
factors for each time t, then normalize.

2.4. Autoregressive HMM

The autoregressive HMM [4] achieves normalization by build-
ing up the overall distribution P (c | q, λ) from locally-
normalized pieces

Par(c | q, λ) ,
∏
t

Par(ct | qt, ct−K:t−1, λ) (7)

where

Par(ct | qt = q, ct−K:t−1, λ) , N

(
ct;

K∑
k=1

aqkct−k + bq, σ
2
q

)
(8)

and λ =
[
aq, bq, σ

2
q : q

]
. The individual factors Par(ct |

qt, ct−K:t−1, λ) are linear-Gaussian. Typically K = 3.
The autoregressive HMM is locally normalized – the over-

all distribution Par(c | q, λ) is the product of the individual fac-
tors for each time t, each of which is normalized. The fact that
ct only depends on the past c1:t−1 for each factor ensures that
the overall distribution is normalized.

approach model during training model during synth

std Pobs(o | q, λ)⇔ “Pstd”(c | q, λ) Ptraj(c | q, λ)
traj Ptraj(c | q, λ) Ptraj(c | q, λ)
AR Par(c | q, λ) Par(c | q, λ)

Table 1: Summary of how the various acoustic models are used.

2.5. Model used in standard approach during synthesis

In the standard approach we do take the constraints between
static and dynamic features into account during synthesis [3].
Rather than computing the most likely observation sequence
arg maxo Pobs(o | q, λ) we compute the most likely realizable
observation sequence arg maxc Pobs(w(c) | q, λ). Note that
this is equal to arg maxc Ptraj(c | q, λ) since the normalization
constant does not depend on c. Therefore we may say that the
standard approach is effectively to use Ptraj during synthesis.
Since Ptraj(c | q, λ) is Gaussian, the most likely trajectory is the
mean trajectory.

2.6. Summary

To summarize we have

“Pstd”(c | q, λ) =
∏
t

ψ(ct−L:t+L, qt, λ) (9)

Ptraj(c | q, λ) =
1

Z(q, λ)

∏
t

ψ(ct−L:t+L, qt, λ) (10)

Par(c | q, λ) =
∏
t

Par(ct | qt, ct−K:t−1, λ) (11)

A summary of how these acoustic models are used is given in
Table 1. The difference between the standard approach and the
trajectory HMM is the use of a normalized model during pa-
rameter estimation.

For all three of these models the distribution of c | q is
Gaussian, i.e. P (c | q, λ) = N (c;µq,Σq) for some mean tra-
jectory µq and covariance matrix Σq [2, 7].

3. Effect of normalization
In this section we investigate the effect of training with a nor-
malized model on the predictive distribution P (c | q, λ) used
during synthesis. We first compare the three models qualita-
tively by visualizing the predictive distribution for some unseen
test utterances. We hope this will give the reader some insight
into the qualitative differences between the models. We then
show that our observations based on these examples generalize
by looking at an objective measure.

For these experiments we randomly selected 50 test set ut-
terances from the CMU ARCTIC corpus, and trained standard,
autoregressive HMM and trajectory HMM systems on the re-
mainder of the corpus.1 For simplicity of computation and vi-
sualization we use a fixed state sequence q throughout. In all
cases alignments based on Pobs are used for the standard and
trajectory HMM systems, and alignments based on Par are used
for the autoregressive HMM system.2

1The standard and autoregressive HMM systems are as used in pre-
vious work [4]. The trajectory HMM system was trained using a Viterbi
alignment obtained from the standard system.

2Specifically the alignments used are median alignments obtained
by at each time picking the state with the median posterior occupancy.
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3.1. Visualization of the predictive distribution

3.1.1. Mean trajectory with pointwise variance

For each of the systems we plot the mean trajectory ±1.5 stan-
dard deviations along with the natural trajectory actually gen-
erated by the speaker. The standard deviation at time t is the
square root of the marginal or pointwise variance [Σq]tt pre-
dicted by the model. This gives some insight into the distribu-
tion over trajectories encoded by the various models by showing
the range of values each model expects to see at each time.

Figure 1 shows an example of a distribution over trajecto-
ries for the 6th mel-cepstral coefficient. We can see that the
standard approach underestimates the variance – the natural tra-
jectory is often outside the range predicted by the model, and we
see a few events that are so many standard deviations from the
mean that they should only happen extremely rarely according
to the model. The normalized models have much larger vari-
ances, and this looks more reasonable – the natural trajectory is
a long way outside the predicted range much less often.

The different models also have different mean trajectories,
though the effect of normalization on the mean trajectory is
smaller than the effect on the variance around the mean. In this
example the trajectory HMM has the mean trajectory that lies
closest to the natural trajectory.

3.1.2. Sampling trajectories from the predictive distribution

Another way to investigate the characteristics of the predictive
distribution is to sample from it. Our implicit assumption during
maximum likelihood parameter estimation is that the speaker
generated the training corpus by sampling from P (c | q, λ) for
each utterance. Therefore a good way to assess the accuracy
of our probabilistic model is to draw samples from our trained
model P (c | q, λ) and compare these to natural trajectories.

By modifying the procedure used to compute the mean tra-
jectory in conventional most likely (ML) synthesis [3], it is pos-
sible to efficiently sample trajectories [8]. To allow us to visu-
alize the trajectories for all mel-cepstral components simultane-
ously we plot running spectra derived from these trajectories.

Figure 2 compares a running spectrum for natural speech
with running spectra for sampled trajectories for the three ap-
proaches, all for the same utterance. We can see that for the
two normalized models, sampling produces a running spectrum
that looks qualitatively similar to natural speech, and captures
some of its characteristic roughness, whereas for the unnormal-
ized standard approach sampling produces a running spectrum
that is slightly too smooth, due to the fact the standard approach
underestimates predictive variance.

We can also see that sampling produces a much more
natural-looking running spectrum than taking the mean (illus-
trated here for the trajectory HMM), in keeping with our ob-
servation that maximum likelihood training implicitly assumes
that natural trajectories are generated by sampling.

3.2. Test set log probability

The log probability logP (c | l, λ) evaluated on a held out test
set provides a natural measure of the accuracy of each system
as a probabilistic model. As a score, test set log probability
provides a natural compromise between the model’s accuracy
in terms of the mean trajectory, the expected pointwise variation
around that mean, and the correlations over time present in the
variation around the mean. Here we look at the log probability
logP (c | q, λ) for a fixed state sequence q.
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(b) trajectory HMM
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(c) autoregressive HMM

Figure 1: Visualization of the distribution over trajectories for
each of the three models, together with the natural trajectory
actually generated by the speaker (6th mel-cepstral coefficient,
0.5 seconds of speech, given fixed state sequence).

system log prob

standard 29.3
trajectory HMM 47.6

autoregressive HMM 47.8

Table 2: Log probability on 50 unseen test set utterances for
the three systems (per frame, all mel-cepstral coefficients, given
fixed state sequence).
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Figure 2: Running spectra for natural speech, for sampled tra-
jectories for each of the three approaches, and for mean trajec-
tories (0.7 seconds of speech, given fixed state sequence).

Table 2 shows the test set log probability for the three sys-
tems. We can see that the normalized models have greatly in-
creased test set log probabilities compared to the unnormalized
standard approach. This suggests that the normalized models
are better as probabilistic models of speech.

The low test set log probability of the standard system is to
a large extent due to its lack of predictive variance – artificially
boosting the predictive variance by multiplying the covariance
matrix Σq by a factor of 3 while keeping the same mean trajec-
toryµq increased the test set log probability of the standard sys-
tem to 46.9. This is strong evidence that the standard approach
systematically underestimates predictive variance as Figure 1
and Figure 2 suggested.

4. Improving the model
We discussed in §3.1.2 that drawing samples from the predic-
tive distribution allows us to investigate whether the probabilis-
tic generative model we are using is reasonable or not. However
preliminary experiments showed that speech synthesized from
sampled trajectories sounds very artificial and unnatural for all
three models, and in particular it sounds much less natural than
speech synthesized using mean trajectories. This shows that
while current normalized models have better predictive distri-
butions than the unnormalized standard approach, they are still
far from good – they have some major deficiency as probabilis-
tic models of speech.

In this section we look at one possible improvement to cur-
rent models, namely using full rather than diagonal covariance
matrices. Full covariance matrices explicitly model the corre-
lations between different feature vector components within one
frame (ct·), which are ignored by current normalized models.

We conducted a subjective listening test to compare full
and diagonal covariance models. The speech samples to be
evaluated were synthesized from the standard HMM by synthe-
sis considering global variance, the full covariance trajectory
HMM by ML generation, the full covariance trajectory HMM
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Figure 3: MOS test results.

by random sampling with different values of Gaussian source
noise (σ = 0.2, 0.4, 0.6, 0.8 or 1.0, where σ = 1.0 corre-
sponds to true random sampling), and the diagonal covariance
trajectory HMM by random sampling. There were 800 (100
sentences × 8 systems) samples in the test. One subject could
evaluate up to 320 test samples in the test, which were randomly
chosen and presented for each subject. Each test sample was
evaluated by three subjects. In the test, after the subjects had
listened to a test sample, they were asked to assign it a similar-
ity score from a five-point Likert scale where 5 is completely
natural and 1 is completely unnatural. In total 16 subjects par-
ticipated in the MOS test. The full covariance trajectory HMM
system used feature-space MLLR to approximate a true full co-
variance system. Because of time constraints, only the trajec-
tory HMM was used.

Figure 3 shows the subjective listening test results. We can
see that sampled trajectories have significantly worse quality
than mean ones, but that samples from the full covariance tra-
jectory HMM do sound more natural than samples from the
standard trajectory HMM. This indicates that better intra-frame
correlation modelling improves the predictive distribution, but
that even this more powerful model is not a satisfactory proba-
bilistic model of speech.
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