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Abstract 
The failure of the pharmaceutical industry to increase the delivery of 

new drugs into the market is driving a re-assessment of practices and 

methods in drug discovery and development. In particular alternative 

strategies are being pursued to find therapeutics that are more selective, 

including small molecules that target protein-protein interactions. However, 

success depends on improving our understanding of the recognition of small 

molecules by interfaces in order to develop better methods for maximising 

their affinity and selectivity, whilst trying to confer an appropriate therapeutic 

profile.  

 

This thesis starts with the description of the creation of TIMBAL, a 

database that holds small molecules disrupting protein-protein interactions. 

The thesis then focuses on the analysis of these molecules and their 

interactions in a medicinal chemistry and structural biology context. TIMBAL 

molecules are profiled against other sets of molecules (drugs, drug-like and 

screening compounds) in terms of molecular properties. Using the structural 

databases in the Blundell group, the atomic detail of the interaction patterns 

of TIMBAL molecules with their protein targets are compared with other 

molecules interacting with proteins, comprising natural molecules, small 

peptides, synthetic small molecules (including drug-like and drugs) and other 

proteins. The structural features and composition of the binding sites of these 

complexes are also analysed. Keeping in mind that current drug candidates 

are somewhat too lipophilic to succeed, these interaction profiles are defined 

in terms of polar and apolar contacts, with the aim of migrating natural 

patterns into the design of new therapeutics. 
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Nomenclature 

Acronyms and definitions 

 

2P2I Database of structures of protein-protein complexes with known 
inhibitors 

3D Three Dimensional 
AASA Apolar Solvent Accessible Surface Area 
ACD-SC Available Chemical Directory for Screening Compounds 
ADMET Absorption Distribution Metabolism Excretion and Toxicity 
ADP Adenosine Diphosphate 
AMP Adenosine Monophosphate 
AND 3-Beta-Hydroxy-5-Androsten-17-one 
ASA Solvent Accessible Surface Area 
ATP Adenosine Triphosphate 
B-catenin Beta Catenin 
BAD Bcl-2 Associated Death promoter  
Bcl-2 B-cell lymphoma 2 
Bcl-XL B-cell lymphoma-extra large 
BEI Binding Efficiency Index 
BIPA Database of protein-nucleic acid atomic interactions 
CATH Class Architecture Topology Homologous Superfamily 
CCDC Cambridge Crystallographic Data Centre 
CD80 T-lymphocyte activation antigen CD80 
CDR Complementary Determining Region 
ChEMBL Database of bioactive drug-like small molecules 
CMR1 Esport Receptor CMR1 
cMyc Myc proto-oncogene protein 
COA Coenzyme A 
CREDO Database of protein-ligand atomic interactions 
CSD Cambridge Structural Database 
CTGFA Combinatorial Target-Guided Fragment Assembly 
CTLA4 Cytotoxic T-lymphocyte protein 4 
distFC Distance From Centre 
DL Drug Like 
DMPK Distribution Metabolism and Pharmacokinetics 
DNA Deoxyribonucleic Acid 
DOS Diversity Oriented Synthesis 
E1 Replication protein E1 
E2 Regulatory protein E2 
EBI European Bioinformatics Institute 
ELISA Enzyme-Linked Immunosorbent Assay 
ELM Eukaryotic Linear Motif Database 
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Nomenclature 

 
   

ER Estrogen Receptor 
ESP Electrostatic Potential 
EST Estradiol 
ESX Epithelial-specific transcription factor 
FAD Flavin Adenine Dinucleotide 
FCPI Flow Cytometry Protein Interaction assay 
FDA The Food and Drug Administration 
FMN Flavin Mononucleotide 
FPA Fluorescence Polarization Assay 
FtsZ Cell Division protein FtsZ 
GFRP GTP-cyclohydrolase I Feedback Regulatory Protein 
GLC Alpha-D-Glucose 
GTP Guanosine-5'-Triphosphate 
GTPCHI GTP-cyclohydrolase I 
GV Gap Volume 
HB Hydrogen Bond 
HBA Hydrogen Bond Acceptor 
HBD Hydrogen Bond Donor 
HBPLUS Software to calculate hydrogen bonds in proteins 
HEM Heme 
HIV-1 Human Immunodeficiency Virus I 
HMDB The Human Metabolome Database  
HSP90 Heat Shock Protein 90 
HSV-Pol Herpes Simplex Virus DNA polymerase catalitic subunit Pol 
HTS High Throughput Screening 
HYP Hydroxyproline 
IgE-FC Immunoglobulin-E bound to FC receptor 
IGF-1 Insulin-like Growth Factor I 
IL2 Interleukin 2 
IL2Ra Interleukin 2 Receptor Alpha subunit 
Inh Inhibitor 
iNOS Nitric Oxide Synthase, inducible 
IRAK-4 Interleukin-1 Receptor Associated Kinase 4 
ITC Isothermal Titration Calorimetry 
IUPAC International Union of Pure and Applied Chemistry 
KEGG Kyoto Encyclopedia of Genes and Genomes 
LBDD Ligand-Based Drug Design 
LC Long Chain 
LE Ligand Efficiency 
LLE Ligand Lipophilicity Efficiency 
LM Linear Motif 
logP Octanol-Water Partition Coefficient 
Max Myc-Associated factor X 
mc Main chain atoms 
MDDR MDL Drug Data Report 
MDL Molecular Design Limited 
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Nomenclature 

 
   

MDM2 Murine Double Minute 
MGEx Pure natural products list from AnalytiCon Discovery 
MK2 MAPK-activated Protein Kinase-2 
MLR Multiple Linear Regression 
MLY Methyllysine 
mmCIF Macromolecular Crystallographic Information Files 
MSE Selenomethionine 
MW Molecular Weight 
MySQL Open source database engine 
NAD Nicotinamide Adenine Dinucleotide 
NAP Nicotinamide Adenine Dinucleotide Phosphate 
NCC Neighbouring Chemical Compounds 
NES Nuclear Export Signal 
NME New Molecular Entity 
NMR Nuclear Magnetic Resonance 
NP Natural Product 
NPDDS Nanoparticle Drug Delivery System 
NR-LBD Nuclear Receptor Ligand Binding Domain 
nsSNP Non-synonymous Single Nucleotide Polymorphisms 
OEChem OpenEye Chemical toolkit 
OLS Ordinary Least Squares 
p53 Protein 53 
PASA Polar Solvent Accessible Surface Area 
PCA Principal Component Analysis 
PCY Pactamycin 
PDB Protein Data Bank 
PDBBind Database of experimentally measured affinity data for PDB 

entries 
PICCOLO Database of protein-protein atomic interactions 
PISA Protein Interactions Surfaces and Assemblies 
PO4 Phosphate 
PP Protein-Protein 
PPI Protein-Protein Interactions 
PPI-Net Protein-Protein Interactions Network 
PQS Protein Quaternary Structure 
PSA Polar Surface Area 
PTPP Phosphotyrosine Protein Phosphatase 
R&D Research and Development 
RGS4 Regulator of G-protein Signaling Protein 4 
RNA Ribonucleic Acid 
S100B S100 calcium binding protein B 
SAH S-Adenosyl-L-Homocysteine 
SAM S-Adenosylmethionine 
SAR Structure Activity Relationship 
SBDD Structure-Based Drug Design 
Sc Shape Complementarity 
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Nomenclature 

 
   

SC Short Chain 
sc Side chain atoms 
SCOP Structural Classification of Proteins 
SEI Surface Efficiency Index 
SLiM Short Linear Motif 
SLM Short Linear Motif 
SM Small Molecule 
Smac Second Mitochondria-derived Activator of Caspases 
SMARTS SMiles ARbitrary Target Specification 
SMILES Simplified Molecular Input Line Entry System 
SPR Surface Plasmon Resonance 
Sur-2 Ras-linked subunit  
Tcf4 Transcription Factor 4 
TIMBAL Database of small molecule inhibitors of protein-protein 

interactions 
TNF Tumor Necrosis Factor 
ToxT Virulence transcriptional activator 
UL42 DNA-binding protein UL42 
UniProt Universal Protein Resource 
vdw Van der Waals 
VS Virtual Screening 
XIAP X-linked Inhibitor of Apoptosis Protein  
ZipA Cell Division protein ZipA 

 

 

Chemical structures 

The true protonation state of a molecule depends upon its environment 

and experimental conditions. Therefore, chemical structures are represented 

in the neutral form (unless they are permanent ions such as NAD) by a single 

tautomer. Hydrogens bound to heteroatoms are drawn explicitly. 
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During my time as a molecular modeller at UCB Pharma, both my 

employer and I became interested in the emerging field of protein-protein 

interactions as drug targets. This interest is shared by many researchers in 

the field, as noted by the recent creation of PPI-Net, a UK network for 

protein-protein interactions founded by several Research Councils (http://ppi-

net.org/). The project described in this thesis focuses on protein-protein and 

protein-small molecule interactions in the context of drug discovery enhanced 

by the structural biochemistry expertise and databases of the Department of 

Biochemistry. 

 

1.1 Drug discovery 

1.1.1 Decline in drug discovery productivity 

The decrease in productivity in drug discovery and development (as 

the number of approved drugs per average R&D cost to put them in the 

market) is a many fold problem (Garnier 2008). It is now well documented 

and accepted that one of the main reasons for this decline is the poor quality 

of drug candidates entering into clinical trials ((Leeson et al. 2007; Keserü et 

al. 2009; Gleeson et al. 2011) and the references therein). The weakness of 

the current candidates can be pinned down to inadequate target selection 

(Paul et al. 2010) but also to an inappropriate profile of the chemical entities. 

These candidates are far too lipophilic to have good chances of success as 

safe drugs, as logP (octanol-water partition coefficient) correlates positively 

with compound promiscuity (Leeson et al. 2007). Lipophilicity of oral drugs is 

generally considered a requirement for their absorption by passive diffusion in 

the membranes, although there is increasing debate about the possibility of 

active transport. (Dobson et al. 2008; Sugano et al. 2010). Another 

explanation for the lipophilic trend of drug candidates is that it is a 

consequence of the standard medicinal chemistry practices, and these will be 

discussed in the next section. Several studies and opinion articles encourage 

medicinal chemists to keep lipophilicity as low as possible (Cooper et al. 2010; 
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Leeson et al. 2010; Hann 2011), as well as revising the standard medicinal 

chemistry settings and screening cascades that pursue maximizing affinity for 

single targets in isolated assays (Gleeson et al. 2011). 

 

1.1.2 Medicinal chemistry practises 

 

F igure 1.1.  Stages of  the drug d iscovery process.  Repr inted from 
(Lombardino  et  a l .  2004).  

 

Keseru and Makara (Keserü et al. 2009) analysed the properties of hits 

and their follow-up leads that were published between the years 2000-2007. 

The authors found that fragment-based screening and natural products 

deliver better quality hits, in terms of low lipophilicity, than hits selected by 

HTS (High Throughput Screening). However, the profile of final leads was the 

same (high logP), whatever the starting point, highlighting the tendency of 

increasing potency by adding lipophilicity. Furthermore, a recent analysis by 

Walters et al. (Walters et al. 2011) of the molecules, published in Journal of 

Medicinal Chemistry between 1959 and 2009, revealed that the properties of 

the synthetic molecules over time, in particular lipophilicity and carbon sp3 

content, have diverged from those of marketed drugs since the 80’s.  
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Why, after so many reports analysing the properties of drugs, do we 

still make molecules that move away from the intended profile? Walters and 

co-workers argued that many of the advances applied in drug discovery are 

contributing to increase this tendency. For example, progress in synthetic and 

analytical techniques has lowered the difficulty of making and purifying bigger 

and more complex molecules. Development of robust scalable reactions like 

sp2-sp2 couplings, have yielded corporate collections richer in flatter 

molecules and scarce in natural product-like compounds (Lovering et al. 

2009). Improvements in formulation enable discovery projects to progress 

compounds with less optimised properties. However, doing so it seems we 

are only delaying the failure to the development phase (Hann 2011). Finally, 

the advances in molecular biology have led to target-based drug discovery 

where optimisation of the compound properties happens sequentially. Usually, 

primary screens are competitive binding assays of the isolated target, which 

in turn facilitates the increase of affinity regardless of other molecular 

properties; these will be optimised later in the screening cascade. Even the 

structure-based drug design has been partially misused, as it has encouraged 

medicinal chemists to target hydrophobic pockets where a burst of potency 

can be gained (Walters et al. 2011).  

 

In the past, before the explosion of genomics and projects with 

defined molecular targets, medicinal chemists evolved compounds with 

feedback from in vivo primary screens (Lombardino et al. 2004) where most 

of the pharmacokinetic problems we face today were solved “on the fly” with 

the efficacy on animal models. Indeed, a recent analysis by Swinney et al. 

(Swinney et al. 2011) reported that although the widespread focus of target-

based small molecule drug discovery, the majority of the first-in-class small 

molecule new molecular entities (NME) approved between 1999 and 2008 

have been discovered by phenotypic-based approaches. Most of the self-

criticisms in the field recognised that there was a “wrong turn” (Hirschler 

2009) that converted the art of drug discovery into an industrial process 

(Garnier 2008). In particular, early stages of this process are driven by a 
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“perceived need for potency” (Hann 2011) and a sense of urgency to deliver 

leads into development. In practical terms this translates into more lipophilic 

candidates, as there is not much room to elaborate more risky exploratory 

molecules (Keserü et al. 2009).  

 

To match these chemical challenges, more adventurous exploration of 

the chemical space is emerging, like DOS (diversity oriented synthesis) 

(Galloway et al. 2010), stapled peptides (Walensky 2004; Gavathiotis et al. 

2008; Bird et al. 2010), or the rescue of NP (natural products) for drug 

discovery (Li et al. 2009; Bauer et al. 2010). As well as this, new technologies 

with microfluidics and microreactors have been developed to enable faster 

exploration of the biology and chemistry space of a project (Wong-Hawkes et 

al. 2007; Kang 2008). In addition, the consolidation and several successful 

outcomes of the fragment-based lead discovery, even for challenging targets 

including protein-protein interactions (Coyne et al. 2010), seem to have come 

to the rescue, at least for projects where fragment approaches can be used.  

 

Fragment-based technologies require fragment solutions in high 

concentration, which in turn deliver almost exclusively polar hits (Congreve et 

al. 2008; Keserü et al. 2009; Ladbury et al. 2010). The conscious effort to 

optimise these hits containing hydrophobicity as much as possible is regarded 

as the new paradigm in drug discovery (Hann 2011). The ligand lipophilicity 

efficiency (LLE) index (Leeson et al. 2007) and other ligand efficiency indices, 

including polarity of molecules (Abad-Zapatero et al. 2010), are currently 

used towards this end. 

 

1.1.3 New targets: protein‐protein interactions 

In parallel, researchers pursue alternative strategies to find 

therapeutics, one of which is a new area in drug discovery: targeting protein-

protein interactions with small molecules (Wells et al. 2007). Multi-protein 

complexes orchestrate most functions in living organisms; therefore they are 
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attractive targets for therapeutic intervention. However, traditional drugs are 

taken orally and orally bioavailable drugs are usually small molecules (Lipinski 

et al. 1997). Consequently, it is usually assumed that the biological intended 

target must have a small pocket or cleft where our candidate drug (or lead 

molecule) can maximise its interactions in order to show the required high 

affinity.  

 

In 2002 Hopkins and Groom coined the term “the druggable genome” 

(Hopkins et al. 2002). They defined a druggable target as a protein that is not 

only linked with a disease but also has a ‘beautiful’ pocket where a small 

drug-like molecule can bind. Classical drug targets are enzymes and receptors, 

usually treated as monomeric proteins with an active site for an endogenous 

small ligand. Moreover, the existence of these small endogenous mediators 

has influenced the way pharmaceutical companies classically seek hit 

molecules. Hit identification campaigns often rely upon competition assays 

and those that monitor enzymatic turnover, which can be easily scaled up for 

HTS, where medium or large drug-like (or lead-like) chemical libraries are 

screened against the biological target. In this context, protein-protein 

interactions have long been believed to be undruggable (Whitty et al. 2006). 

This belief has been supported by the assumption that a small molecule is 

unable to compete with one of the partners in a multi-protein complex, where 

the average surface area buried at interfaces is 2000Å2 with an average of 23 

residues in each protomer (Janin et al. 2007), see Figure 1.2. 
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F igure 1.2.  Concept of  undruggable surfaces.  a:  Prote in (green) with a 
cav i ty evolved to recognise an endogenous l igand (grey) with mult ip le  
interact ions converg ing in a smal l  vo lume. b: C lass ica l  drug target where 
the drug molecule (magenta) occupies the vo lume maximis ing interact ions,  
as most of  i ts  surface is  in contact  with the prote in target.  c:  Prote in-
prote in complex (green and grey) with a large surface with spread 
interact ions.  d: Smal l  drug molecule (magenta) cannot engage many 
interact ions as the absence of  grooves trans lates into smal l  contact  areas.  
B lue arrows represent hydrogen bonds and ye l low patches represent 
hydrophobic contacts .  Repr inted from (Whit ty  et  a l .  2006).   

 

1.1.3.1 Challenging undruggability 

Whitty and Kumaravel (Whitty et al. 2006) classified drug targets in 

terms of two types of risk. Biological risk accounts for the potential 

therapeutic effect of the modulation of the target under evaluation, and the 

chemical risk relates to the likelihood of finding a small molecule modulator 

for that target. As mentioned previously, protein-protein interactions are 

attractive targets for drug discovery due to their omnipresence in disease 

processes. In fact, particularly in the case of extra-cellular targets, antibody-

based drugs are a validation of this concept (Adair et al. 2005). Many protein-

protein interactions are considered low biological risk drug targets. The key 
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question is then the chemical risk for protein complexes, or in other words the 

probability of finding a small molecule capable of disrupting the interactions 

between proteins. Without considering the possibility of allosteric modulation 

(Christopoulos 2002), two experimental findings have lowered this chemical 

risk: the existence of energetic hot spots at the interfaces and site 

adaptability. 

 

Hot spots 

One of the most striking characteristics of the protein-protein 

interacting surfaces is the existence of so called “hot spots”. In 1995, 

Clackson and Wells (Clackson et al. 1995), using a technique called alanine 

scanning mutagenesis, systematically mutated to alanine the receptor 

residues at the interface between the human growth hormone and its 

receptor and measured the energy of binding of the resulting complex 

mutants. In this pioneering work, the authors found that certain residues 

were responsible for most of the interaction energy of the complex. Many 

other experimental studies have proved that this is a common characteristic 

of almost all interfaces of the protein complexes (Reichmann et al. 2007). 

Publically accessible databases hold both experimental data for alanine 

scanning mutagenesis (Thorn et al. 2001) and computationally predicted hot 

spots, see for example (Guney et al. 2008; Segura et al. 2011). The accepted 

criteria used to define a residue as part of a hot spot is that upon its mutation 

to alanine, the free energy of complex binding increases by at least 2 

kcal/mol. Hot spots are concentrated patches of such residues, called “hot 

regions” as discussed below.  

 

Bogan and Thorn (Bogan et al. 1998) analysed datasets from alanine 

scanning mutagenesis experiments and found that all the hot spots share 

common characteristics. Their work led them to postulate the “O-ring” 

hypothesis for hot spot residues in protein-protein binding interfaces. 

Energetically, hot spot residues are usually clustered at the centre of the 
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interface and are surrounded by energetically neutral residues. The role of 

these neutral residues is to shield the hot spots from the solvent by creating a 

microenvironment around the hot spot with a lower dielectric constant, thus 

enhancing electrostatic interactions and reducing the desolvation cost of 

binding. It is no surprise then, that the most frequent hot spots residues Trp, 

Tyr and Arg are capable of both hydrophobic and electrostatic interactions. 

Bogan and Thorn also found that hot spots are self-complementary across the 

interfaces (Bogan et al. 1998).  

 

Nussinov and co-workers (Keskin et al. 2005) found that hot spot 

residues, identified by experimental alanine scanning, tended to be 

evolutionarily conserved. They went on to study the organization of hot spots 

identified by sequence analysis and found that they are not evenly distributed 

in the interface as they cluster together in “hot regions”. These areas are 

tightly packed and within a region, hot spots form networks of cooperative 

interactions. In contrast, the contribution to the global energy of binding is 

additive between hot regions. In addition, clustered hot spots in dense hot 

regions mean that the removal of water molecules is easier, strengthening 

the electrostatic interactions in a similar same way to the O-ring arrangement. 

Furthermore, these regions are more rigid as they are densely packed and 

therefore pay a lower entropy penalty upon binding, whereas non-optimal 

packed regions are responsible for site flexibility. 

 

In conclusion, protein-protein interactions are locally optimised in these 

hot regions, whereas the rest of the interface is less specific. This fact could 

explain the diversity in protein binding partners often accepted at a particular 

interface (Keskin et al. 2005). Furthermore, the existence of these locally 

optimised regions, responsible for most of the binding energy between 

proteins, makes competitive small molecules more credible. Indeed, several 

studies report the first small molecules interfering with protein-protein 

interactions, and this will be the focus of the chapter 2 of this thesis. 
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Site adaptability 

According to one of the principles of druggability described previously 

(Hopkins et al. 2002), biological targets need to present pockets or clefts in 

order to accommodate small molecule drugs. Interfaces of protein complexes 

are usually relatively flat. Nevertheless, structural evidence of flexible 

adaptability in these regions (for instance in IL-2 (Arkin et al. 2003; Thanos et 

al. 2006)), opens the prospect of the existence of more druggable protein 

complexes as targets. Indeed, druggability predictions are dependent on the 

flexibility of the target, as Brown and Hajduk showed (Hajduk et al. 2005; 

Brown et al. 2006).  

 

Recent analyses of the protein-protein interfaces inhibited by small 

molecules have suggested that this adaptability occurs mainly through the 

flexibility of side chains (Fuller et al. 2009; Bourgeas et al. 2010). Although 

flexibility is fundamental to molecular recognition and is a key factor to 

consider in the quest to find small molecule drugs to modulate protein-protein 

interactions, it is still difficult to predict. However, increasing computing 

power is making longer molecular dynamic simulations feasible, and several 

bioinformatic tools are being used to evaluate plasticity in proteins (Gonzalez-

Ruiz et al. 2006).  
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1.2  Molecular  recognition  from  atomic 

interactions 
In an editorial in the Journal of Molecular Recognition, van 

Regenmortel defined molecular recognition as “the non-covalent specific 

interaction between two or more biological molecules” (van Regenmortel 

1999). The van Regenmortel perspective, however, emphasised the 

limitations of static structures to explain dynamic activities between 

biomolecules; and how molecular recognition is a “mutual adaptation” rather 

than a frozen lock-and-key model. Furthermore, biological interactions are 

cooperative (positively or negatively) and rarely additive (Williams et al. 2004) 

i.e. the final outcome is rarely the sum of their parts.  

 

In addition, it is worth remembering the inherent limitation of crystal 

structures (85% of the content of the PDB (PDB Team 2011)), which are the 

interpretation of the experimental diffraction patterns of a crystallised sample 

(Davis et al. 2003). In turn, only a portion of molecules will be amenable to 

be crystallised, and if they are, the conformations in the crystal lattice might 

not be biologically relevant (Acharya et al. 2005), although it is worth noting 

that crystal structures are “wet”, as most crystals have 35 to 70% of their 

content as solvent.  

 

In the case of small molecules, refinement methods developed for 

proteins are used to fit the electron density of the ligand with an accuracy 

that is difficult to assess (Böhm et al. 1996). It is clear then, that it is not 

possible to determine the fundamental laws of molecular recognition from the 

current atomic models. However, insights can be gained from the 

characterised structures. Going back to van Regenmortel’s definition, 

molecular recognition derives from the non-covalent interactions between the 

molecules involved. In this way, trends in these non-covalent interactions can 
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be elucidated between different types of molecules with the aim of identifying 

possible different modes of recognition. 

 

1.2.1 Non‐covalent forces 

Although conformational adaptability, long-range interactions, solvation 

and desolvation processes are key components in the binding event, they are 

not discussed here. I will focus in the specific non-covalent atomic 

intermolecular interactions between binding partners. 

 

1.2.1.1 van der Waals attractions 

The transient polarization of the electron cloud of a nonpolar atom will 

induce in turn an opposite polarization in the nearby nonpolar atom, which 

will create a tiny attraction force between them, known as London dispersion 

force. Although small, these attractions sum up to a significant interaction at 

interfaces where two molecules are close together (Voet et al. 1992). These 

forces are distance dependent and they will become repulsive if the two 

entities are too close together due to steric hindrance of the electron cloud. 

The physical model commonly used to describe this behaviour is the Lennard-

Jones 6-12 potential: 

𝑉(𝑟)!" = 4𝜀
𝜎
𝑟

!"
−

𝜎
𝑟

!
 

where r is the distance between two atoms, εandσ are two constants 

defined by the system. Figure 1.3 shows that the potential becomes 

increasingly repulsive for close distances due to the first term and attractive 

for an optimal range, in which atomic van der Waals radii are derived from 

experimental structures. 
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F igure 1.3.  Lennard-Jones potent ia l  (V) for  Argon d imer as funct ion of  the 
interatomic d istance (r) .  The min imum of potent ia l  corresponds to ε and 
potent ia l  is  equal  to zero when the d istance is  σ .  

 

1.2.1.2 Hydrogen bonds 

I quote here the new definition of the hydrogen bond recommended 

by IUPAC (Arunan et al. 2011): “The hydrogen bond is an attractive 

interaction between a hydrogen atom from a molecule or a molecular 

fragment X–H in which X is more electronegative than H, and an atom or a 

group of atoms in the same or a different molecule, in which there is 

evidence of bond formation”. This definition also comprises the weak 

hydrogen bonds described later. Classical hydrogen bonds are highly 

directional polar interactions between two electronegative atoms sharing a 

hydrogen. The usual geometrical ranges to identify a hydrogen bond are 

(McDonald et al. 1994): 

 

 Distance(HBD,HBA) < 3.9Å 

 Distance(H,HBA) < 2.5Å 

 Angle(HBD,H,HBA) > 90° 
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Hydrogen bond strengths depend on the electronegativity of the heavy 

atoms involved and on the environment where the atoms are located, as well 

as the surrounding hydrogen bond network. Due to the restricted 

directionality of this type of interaction, hydrogen bonds play an important 

role in molecular recognition giving specificity to the binding event. However, 

they don't usually contribute much to the free energy as the desolvation of 

both donor and acceptor compensate the hydrogen bond formation energy. 

Estimates based on ITC data and burial of polar surface, range from 4-

11KJ/mol (Olsson et al. 2008). Regarding protein structure, the NH and CO 

backbone groups are usually forming hydrogen bonds (McDonald et al. 1994) 

(in fact virtually all buried NH form hydrogen bonds), and are usually 

positioned correctly with respect to each other, especially in high-resolution 

crystal structures. It is also found that higher losses in affinity occur on ligand 

binding when removing a hydrogen bond from a backbone NH than a 

backbone CO. For example, in kinase inhibitor crystal structures only one 

structure is reported with an orphan NH in the hinge region, whereas it is 

more common to have the CO unpaired (Bissantz et al. 2010). 

 

1.2.1.3 Weak hydrogen bonds 

As the broad IUPAC definition describes (Arunan et al. 2011), the 

ability to share a hydrogen is not limited to strong electronegative atoms (N 

and O). It has become apparent in recent years that weak hydrogen bonds do 

occur in protein structures and protein-ligand binding. Weak hydrogen bond 

donors are polarized C-H, Calpha-H and NH in proteins, whereas weak 

hydrogen bond acceptors are the πorbitals of aromatic rings. In addition, 

interactions between CF and XH (X= N,O) and C-H engaged with O and N in 

aromatic heterocycles are also observed. Analysis of the CSD (The Cambridge 

Structural Database - The world repository of small molecule crystal 

structures, http://www.ccdc.cam.ac.uk/products/csd) and the PDB (The 

Protein Data Bank - An Information Portal to Biological Macromolecular 

Structures, http://www.pdb.org) shows that although interactions between 
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XH  (X= N,O) and weak acceptors (πorbitals of aromatic rings or donor-pi) 

are observed, they are very rare (Bissantz et al. 2010). 

 

1.2.1.4 Ionic interactions 

Ionic interactions are electrostatic attractions between atoms with 

opposite charge. In an aqueous environment, these attractive forces are 

attenuated by the water molecules interacting with the charge (Voet et al. 

1992), or in other words the high dielectric constant of the water diminishes 

the attraction force between two opposite charges following Coulomb’s law. 

These interactions are only distance dependent and do not have preferred 

geometries. Indeed, analysis of relative geometries of charged side chains for 

NMR ensembles of 11 non-homologous proteins show clear distance 

dependency for each ion-pair type (Kumar et al. 2002), whereas the relative 

orientation is spread across the whole range, see Figure 1.4. 
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F igure 1.4.  Re lat ive geometr ies of  s ide chain charged groups in prote ins.  
Colour coded per ion-pair  type: Sa l t  br idges (b lue, s ide chain centro ids and 
O-N pairs  f rom Glu/Asp-Arg/Lys/His are with in 4Å),  N-O br idges (green, only 
O-N pairs  are with in 4Å, but not the s ide chain centro ids) and longer range 
ion pa irs  (red, centro ids and N-O pairs  more than 4Å apart) .  Geometry of  
the ion-pairs  is  represented by the d istance between centro ids of  the 
charged groups (rad i i  of  the polar  p lot)  and by the re lat ive angular 
or ientat ion between s ide chains (angle of  the polar  p lot  measured as the 
angle between the vectors formed by the C-a lpha and the s ide chain 
centro id of  each res idue).  Most ion pa irs  with d istances ≤ 5Å are stab i l iz ing 
of  the structure and destabi l iz ing for  longer d istances. See or ig ina l  paper 
for  deta i ls .  Repr inted from (Kumar  et  a l .  2002).  

 

1.2.1.5 Hydrophobic interactions 

The generic definition for hydrophobic interaction is the preference of 

nonpolar regions to pack closely together instead of interacting with water. 

According to this definition, the energy is gained by displacing water 
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molecules and therefore this interaction is entropy driven and not specific. 

However, Bissantz et al (Bissantz et al. 2010) discuss several examples in 

their review, arguing that there is more to it than solely displacement of 

water molecules. Indeed, protein surfaces or ligand chemical groups are not 

in a binary scale of polar and hydrophobic; instead they present a continuum 

of polarizability, where shape matching and close contacts will contribute 

enthalpically to the free energy of the association. Furthermore, several 

studies (reviewed at (Bissantz et al. 2010)) suggest that part of the affinity 

gained by filling a protein hydrophobic pocket is due to the poorly solvated 

state of the pocket in the apo form, where water molecules are rarely 

detected as they are not positionally fixed or not making many hydrogen 

bonds. These examples highlight the difficulty to deconvolute the binding 

energy into independent non-cooperative contributions. 

 

1.2.1.6 Aromatic interactions 

Aromaticity is a chemical property found extensively in natural and 

synthetic molecules. All five nucleotides and four of the 20 standard amino 

acids have an aromatic ring in their side chains. In medicinal chemistry, 

aromatic rings are habitual components of drug-like molecules (Pitt et al. 

2009). Aromatic rings are planar structures with 4n+2 (n = 0,1,2…) 

delocalised π  electrons (Hückel rule). The delocalised π  system has 

maximum electron density on each side of the ring and a minimum in the ring 

itself, which translates into a small positive partial charge in the peripheral 

hydrogens. Indeed, aromatic protons are significantly deshielded and present 

greater NMR (Nuclear Magnetic Resonance) chemical shifts than standard sp2 

hydrogens. These special shapes and electronic properties guide their 

interactions to specific geometries. In protein structures, there is a wide 

range of orientations that depend on the residue type and local environment, 

although typically the preferred orientation is displaced parallel stacking of 

the rings (off-centred) followed by edge-to-face or T-shape (Chakrabarti et al. 

2007).  
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For ligands bound to proteins, the relative geometry of the aromatic 

rings depends on the substituents of the ring that confer specific electron 

properties to the conjugated system. Thus, electron poor rings (with electro 

withdrawing groups) interact with electron rich (with electro donating groups) 

in a preferred stacking geometry. Electro withdrawing groups in para or ortho 

position to a CH, make this hydrogen more acidic, favoring the T-shape 

arrangement with another ring. Regarding heteroaromatic rings, the preferred 

geometries follow the alignment of partial charges in the ring depending on 

its composition and substituents (Bissantz et al. 2010). 

 

1.2.1.7 pi‐cation interactions 

Due to the electron density of the delocalised π  system, attractive 

forces occur between a cation and the face of an aromatic ring. Singh and 

Thornton identified this type of interaction during a study of interactions 

between all residue types in proteins (Singh et al. 1992). Gallivan and 

Dougherty (Gallivan et al. 1999) further studied pi-cation interactions and 

found they were common in high-resolution protein structures, with Trp and 

Arg being the two residues with highest propensity to engage a pi-cation 

arrangement. Several examples have also been reviewed for this type of 

interaction in protein-ligand complexes (Bissantz et al. 2010). 

 

1.2.1.8 Halogen bonds 

Halogens are common components in drug-like molecules, they are 

used to fine tune electrostatic properties of aromatic rings, to fix optimal 

conformations adding steric impediments, to increase metabolic stability by 

blocking reactive positions and to modulate lipophilicity. Traditionally, halogen 

interactions have been considered mainly as van der Waals, hydrophobic by 

water displacement and shape complementarity, especially for the heavier 

halogens with the softer electron cloud. Recently, the importance of halogen 

bonds as weak but specific interactions is gaining relevance in drug design. 
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Heavy halogens (Cl, Br and I) bound to carbon present a small positive 

electrostatic potential opposite to the sigma bond (Bissantz et al. 2010), 

which interacts favourably, for example with the oxygen atom of the carbonyl 

backbone with specific geometry (linear C-X…O=C). Conversely, as discussed 

for weak hydrogen bonds, fluorine acts as hydrogen bond acceptor with polar 

hydrogens HX (X = N,O). 

 

1.2.1.9 Sulphur interactions 

In protein structures the sulphur of the Cys can form a covalent 

disulphide bond with other Cys by oxidation of both atoms. In free form, the 

sulphur of the Cys is a hydrogen bond donor and can form hydrogen bonds 

especially with the backbone carbonyl oxygen (Zhou et al. 2009). Sulphur 

atoms from Met residues have a dual behaviour as they can interact with 

electron rich and electron poor groups. Indeed, methionine interacts with 

aromatic rings through both the face (electron rich) and the edge (electron 

poor) of the ring (Pal et al. 2001). Analysis of the CSD and PDB of ligands 

containing sulphur, highlight the versatile interaction pattern of the sulphonyl 

moieties, as they can act as weak hydrogen bond acceptors and hydrophobic 

groups (Bissantz et al. 2010). 

 

1.2.2 Structural characteristics of protein‐protein complexes 

In the quest to understand and predict protein-protein interactions, in 

particular interaction sites, the structural analysis of known complexes is key. 

However the diversity, both in terms of function and constituents, makes the 

task of finding universal rules for protein complexes an extraordinarily difficult 

one (Reichmann et al. 2007). It has also been argued that the small number 

of protein complexes analysed so far leads to contradictory conclusions (Ofran 

et al. 2003). It may be that a systematic distinction regarding function, 

constituents and lifetime of complexes is needed to reduce noise in 
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experimental structural data, together with an increase in the number of 

complexes structurally resolved. 

 

1.2.2.1 Functional protein complexes 

The huge versatility and often overlapping functions of proteins in the 

cell make their classification difficult. There is not a definitive consensus 

regarding functional classification of proteins. In general terms, they can be 

categorised as enzymes, hormones, receptors, antibodies, structural proteins, 

motor proteins, transport proteins, signalling proteins and storage proteins 

(Ruzheinikov 2007). Structural studies of protein-protein complexes typically 

split them into four general groups (Jones et al. 2000; Cho et al. 2006; Janin 

et al. 2007).  

 

The first group comprises antibody-antigen complexes. Antibody 

structures contain six CDR (complementary-determining regions) that identify 

the protein-antigen with high specificity (Braden et al. 2000); these regions 

are highly variable yet enriched with serines and tyrosines (Livesay et al. 

2004; Birtalan et al. 2008). Antibody-antigen interfaces are of standard size, 

ranging from 1200 to 2000Å2 (Janin et al. 2007).  

 

The second group of protein complexes consists of enzyme-inhibitor 

assemblies. These complexes can be further divided into two subsets 

depending on their interface size, standard (1200-2000Å2) or bigger 

(>2000Å2) (Chakrabarti et al. 2002). Usually, standard interfaces show a 

single recognition patch, whereas the larger interfaces present more than one 

recognition site (Chakrabarti et al. 2002).  

 

Electron-transfer complexes comprise the third group of protein-protein 

interactions. These complexes have a short half-life and low affinity and it is 

therefore difficult to obtain them in crystal form. Most of the few electron-
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transfer proteins characterised so far have interfaces of 900-1200Å2 in size 

(Mathews et al. 2000).  

 

The last group can be described generically as comprising complexes 

taking part in signal transduction and cell cycle regulation, such as G-proteins 

and protein-receptor assemblies. These complexes exhibit exquisite sensitivity 

to changes in the environment, usually forming transient interactions and 

presenting low-to-medium affinity range (low mM to high nM) (Hyvönen et al. 

2000; Janin et al. 2007). 

 

Although this categorisation is often useful, especially as the great 

majority of complexes are enzyme-inhibitor and antibody-antigen, this is 

generally unsatisfactory as it is mostly a reflection of what has been feasible 

to study. For example structural proteins are not well represented and not 

included in the categories. 

 

Specific vs. crystallographic complexes 

X-ray crystallography provides the majority of the experimental 

structures of protein complexes. However, the distinction between functional 

complexes and crystallographic artefacts must be drawn in order to extract 

information pertaining to specificity, evolution and function. Artificial crystal 

contacts can occur simply as a result of the protein packing in the crystals. 

The task of identifying these unnatural contacts is far from trivial and 

automatic classification is still an open challenge. Nevertheless, the size and 

composition of interfaces is a useful guide to identifying the correct interface. 

These predictions can be improved if the sequence conservation of related 

proteins and estimates of the stability of the predicted assembly are utilised. 

The PISA resource (Protein Interactions, Surfaces and Assemblies, 

http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html, (Krissinel et al. 2007)) is 

an example of automated software that predicts quaternary structure from 

estimation of its thermodynamic stability. Janin and co-workers compared a 



 

58 

 
1.2 Molecular recognition from atomic interactions  

 
   

set of specific interactions (without including short-lived assemblies or 

electron-transfer complexes) to a set of non-specific interactions (Bahadur et 

al. 2004). In this comparison, crystal contacts were found not only to be 

smaller than specific ones, with average interface area of 570Å2, but also 

contained fewer hydrogen bonds per unit surface area. In addition, interfaces 

between monomers in crystals were less closely packed than interfaces 

between protomers in multimeric complexes. 

 

1.2.2.2 Constituents and lifetime of protein complexes 

With regard to the constituents and the lifetime of the protein-protein 

complexes, Nooren and Thornton (Nooren et al. 2003) suggested three ways 

to classify protein-protein interactions. The first divides complexes into those 

that are homo-oligomeric (composed by identical chains) or hetero-oligomeric 

(non-identical chains). Homo-oligomers can be further sub-divided into those 

that are isologous, where interfaces are composed of the same region from 

each protomer and those that are heterologous, where protomers interact 

through different regions. Heterologous homo-oligomers can either form a 

cyclic structure or aggregate into an endless repeated structure. The second 

distinction that Nooren and Thornton considered is whether the protomers 

forming the complexes can exist independently in vivo.  An obligate complex 

has to be denatured in order to dissociate, whereas a non-obligate complex is 

formed by stable self-standing monomers. Examples of non-obligate 

assemblies include antibody-antigen, enzyme-inhibitor and signal transduction 

complexes. The third division is by complex lifetime; one can distinguish 

between permanent and transient interactions in vivo. Usually obligate 

interactions are permanent, like most homodimers, whereas transient 

interactions present a whole range of affinities and kinetics. The authors 

emphasised these classifications aren't discreet absolute values, but a 

continuum in the scales of lifetime and stability, see Figure 1.5. Nevertheless, 

these definitions could be important tools in the quest to understand protein-

protein interactions. For example, it is apparent that interfaces of permanent 
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complexes are more similar to those in the protein interior than on the 

surface. In addition, permanent interfaces tend to be dryer, more 

hydrophobic and larger than the interfaces of transient complexes (De et al. 

2005; Janin et al. 2007). However, as mentioned before, the vast diversity of 

function, flexibility, affinity and specificity of protein assemblies is difficult to 

capture in a set of general rules. 

 

 

F igure 1.5.  Def in i t ion of  types of  prote in-prote in interact ions by funct ion of  
the ir  b ind ing af f in i ty  (Y ax is)  and the loca l isat ion of  the protomers (X ax is) .  
In red the factors that af fect  t rans ient interact ions.  * denotes large 
conformat ional  changes that usual ly  occur with the assoc iat ion. Repr inted 
from (Nooren  et  a l .  2003).  

 

1.2.2.3 Descriptors and topology of protein‐protein interfaces 

Classical computational characterisation of interfaces includes size, 

shape, packing, electrostatic interactions, amino acid composition and amino 

acid pairing preferences. 
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Size 

The size of an interface is commonly expressed as the change in the 

ASA (solvent-accessible surface area) between the monomers/protomers and 

the complex. For example, for a hetero-dimer, the interface size B, is B = 

ASA1 + ASA2 – ASA12 (Janin 2000). Some authors prefer to report B/2 in 

spite of the fact the ASA is not exactly the same for both surfaces unless they 

are completely flat. The average size of protein complex interfaces is between 

1200-2000Å2 with an average of 23 residues in each protomer (Janin et al. 

2007). Richard Bickerton’s analysis of the PICCOLO database (Bickerton 2009) 

found that the average size of the protein-protein interfaces is greater than 

previously reported. The improvement of the structural characterisation 

techniques allows larger complexes to be resolved. Bickerton found that the 

average of interface size is 2400 ± 1900Å2. Looking at the type of interface, 

obligate complexes interact on average through larger interfaces than the 

transient ones. 

 

Shape 

Interacting protein surfaces are usually flat overall, but examples of 

concave-convex interfaced have been found. In these cases, generally, the 

smaller partner shows convexity, binding to the concave cavity on the bigger 

component. An exception to this trend is the antibody-antigen complexes 

where the antigenic site is generally convex independent of antigen size 

(Janin et al. 2007). For large interfaces (> 2000Å2) it has been found that the 

binding site is closer to the centre of mass of the protein than the average 

location of the surface (Nicola et al. 2007). 

 

Packing 

Packing density is another measured structural feature of the 

interacting protein surfaces. This measure is used to estimate the degree of 

steric complementarity of monomers. The most reported packing indices are 
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Shape Complementarity score (Sc) (Lawrence et al. 1993) and Gap Volume 

index (GV) between proteins (Laskowski 1995). It has been found that 

homodimers, enzyme-inhibitor and permanent hetero-complexes are more 

closely packed than antibody-antigen and transient hetero-complexes (Jones 

et al. 2000). 

 

Electrostatic interactions 

It is known that electrostatic complementarity between partners in the 

complexes confers specificity (Jones et al. 2000). On average, there is one 

hydrogen bond per 200Å2 of interface area (B) (Janin 2000). Typically, 

obligate protein complexes have fewer intermolecular hydrogen bonds per 

buried ASA than non-obligate complexes with 0.9 HB per 100Å2 in 

homodimers, compared to enzyme-inhibitor complexes, which have 1.4 

HB/100Å2 and antibody-antigen with 1.1 HB/100Å2 (Jones et al. 2000). 

Additionally, protein-protein interfaces have water-mediated hydrogen bonds, 

which present the same average distribution as the direct protein-protein 

hydrogen bonds, that is 10 water molecules per 1000Å2 (B/2). However, 

these waters are not always evenly distributed across the interface; in fact 

interacting surfaces present a whole topology range of dry/wet patches 

(Rodier et al. 2005). Salt bridges or hydrogen bonds involving at least one 

charged residue do occur; Lo Conte et al. found that 30% of the hydrogen 

bonds in their data set that occur at the interfaces were salt bridges (Lo 

Conte et al. 1999). However, almost half of the homodimeric structures 

analysed do not have this type of interaction (Jones et al. 2000). Disulphide 

bonds can be also found between interacting proteins but they are rare 

(Jones et al. 2000). 

 

Amino acid composition 

Analysis of the amino acid composition of protein-protein interfaces 

and pairing preferences between chains have demonstrated different 
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frequencies that are probably due to the different datasets used and how the 

interface is defined (Ofran et al. 2003; Headd et al. 2007). Ofran and Rost 

(Ofran et al. 2003) divided their data set into six different types of protein-

protein interfaces. While they found each interface had its own residue 

propensities, there were some generalities. For example, lysine was found to 

be underrepresented in all types of interfaces, whereas arginine was 

overrepresented. However, arginine is common on all protein surfaces, not 

only protein-protein interfaces (Janin et al. 2007). Large hydrophobic amino 

acids were found to be favoured in all interfaces (His, Met, Try), whereas Ser, 

Ala and Gly were underrepresented. They corroborated previous findings that 

hydrophobic residues were more frequent at homo-multimers than hetero 

complexes. However, when they further divided their dataset into transient 

and obligate interaction, this distinction no longer held (Ofran et al. 2003). 

Nevertheless, Bickerton (Bickerton 2009) found in his analysis that the 

obligate interfaces are more hydrophobic than the transient ones. Bickerton’s 

findings also highlight the parallelism between the interface core and the 

protein core, and the interface periphery and the exposed protein surface. 

The core of the interface is more hydrophobic than the interface periphery; it 

is enriched with hydrophobic residues (Ile, Val, Leu, Phe, Met and Ala) and 

depleted of polar and charged residues (Asp, Gln, Asn, Glu, Lys and Arg). 

 

Pairing preferences 

With respect to the residue interactions at protein-protein interfaces, 

Ofran and Rost (Ofran et al. 2003) found hydrophobic-hydrophilic contacts 

were prevalent at intra-domain, inter-domain and transient hetero-complex 

interfaces; disulfide bridges occurred more often than expected; salt bridges 

were less frequent at homo-complexes interfaces and identical amino acid 

interaction was favoured by obligate homo-complexes. Additionally, Headd et 

al. (Headd et al. 2007) studied 135 transient hetero complexes and found 

that 32% of contacts at the interfaces are formed by interactions involving 

backbone atoms. After separating backbone from side chain atoms and 
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calculating relative frequencies (both per residue count and area-weighted 

per residue at the interface), they found Glu, Ser, Asp, Lys and Arg were the 

most frequent interacting side chains at the interface, each forming more 

than 7% of contacts. Whereas Met, Cys, Trp and His were the least frequent 

with less than 3.5%. In this data set, the most frequent occurring amino acid 

pairs are salt bridges (Glu-Arg, Asp-Arg, Glu-Lys and Asp-Lys, when only side 

chains are taken into account and they are weighted by the area they occupy). 

This evidence highlights the importance of electrostatic complementarity 

between interacting surfaces, at least for the dataset analysed. After the 

charge-charge interactions, the next most frequent interactions are Tyr with 

Arg, Asn, Lys and Glu, followed by Arg with Trp and Asn. Similar results were 

found by Bickerton (Bickerton 2009), namely hydrophobic interactions, salt 

bridges and disulphide bonds are important in macromolecular recognition. 

Pairing preferences are normalised by residue abundance in the data set and 

also by solvent accessible area per residue. These show that hydrophobic 

residues favour other hydrophobic ones and avoid polar and charged residues. 

Aromatic residues prefer other aromatic or hydrophobic residues, although 

they also engage pi-cation and NH-aromatic interactions. Prolines interact 

significantly more with aromatic than other residue types. Positive charged 

residues (Arg, Lys and His) favour negative charged ones (Glu and Asp) but 

Arg-Arg, His-His and Arg-His are also common due to the versatile capability 

of these side chains: aromatic interactions, pi-cation and hydrogen bond (with 

the main chain atoms). 

 

1.2.3  Structural  characteristics  of  protein‐small  molecule 

complexes 

In a similar way to protein-protein complexes, the immense diversity 

both in terms of chemical composition and function of the ligands bound to 

proteins makes it virtually impossible to find general rules for the 

characteristics of protein-small molecule complexes. Indeed, disparate results 

are found depending on the type of molecules studied, the accepted level of 
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redundancy and the size of the sample analysed. This section starts with a 

broad classification of the types of small molecules found in biology, and 

follows with a brief summary of the relevant studies published to date 

regarding molecular recognition for protein-small molecules from 

experimental structures. For convenience, the section is further divided by the 

type of molecules considered in these studies. 

 

1.2.3.1 Classification of small molecules bound to proteins 

In the context of therapeutic applications, perhaps the broadest 

classification that one can make is to distinguish between natural small 

molecules that are products of evolutionary selection and synthetic small 

molecules produced in a lab. 

 

1.2.3.1.1 Natural molecules 

In general terms, natural molecules are produced by living organisms 

and they are the result of evolutionary selection. Therefore, they sit in the 

biologically relevant section of the chemical space (Koch et al. 2005). 

However, their production “in situ” often does not confer them with the 

appropriate properties to cross membranes and distribute elsewhere in the 

organism. Nevertheless, many natural molecules produced in one organism 

can be active in another. For example, hormones, therapeutically used plant 

extracts or penicillin, just to mention a few. The KEGG resource provides a 

classification of “Compounds with biological roles” from the KEGG BRITE 

hierarchies (Kanehisa et al. 2008). These include carbohydrates (including 

lipids), nucleic acids, peptides, cofactors, steroids, hormones and transmitters, 

phytochemical compounds (biological active molecules from plants), marine 

natural products and antibiotics. In addition, KEGG RPAIR (reactant pairs) 

labels compounds as substrate or product when they are involved in 

enzymatic transformations. 
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1.2.3.1.2 Synthetic small molecules 

Synthetic molecules do not have the many millennia to evolve but they 

are the products of a vast range of chemical transformations and starting 

materials. In the context of drug discovery, the interest is centred on 

synthetic molecules with drug-like properties. However, the definition of drug 

likeness is far from trivial, and typically involves a range of molecular 

properties derived from known drugs. The pioneer Lipinski’s “rule of five” 

(Lipinski et al. 1997) set simple ranges of molecular weight, partition 

coefficient and hydrogen bond features count, for molecules with increasing 

likelihood of being absorbed (a crucial characteristic oral drugs must have). 

Recently, and especially for new targets, it has been argued that more 

adventurous exploration of the chemical space may be needed, in particular 

regions sampled by natural products (see for example (Dobson 2004; Bauer 

et al. 2010)). Several studies compare properties of natural products with 

drugs and synthetic drug-like molecules, (see for example (Feher et al. 2002; 

Singh et al. 2009)) and all conclude that natural molecules occupy a different 

region of the chemical space to that occupied by synthetic molecules. In 

particular, drug-like molecules are more hydrophobic, have less 3D and 

stereochemical complexity and have more aromatic rings than natural 

molecules. These properties may reflect the characteristics a synthetic 

molecule must possess to overcome all the hurdles before reaching its target 

in the body. However, these properties are also influenced by the drug 

discovery settings where these molecules are generated, as we have seen in 

previous sections. 

 

1.2.3.2 Peptide binding sites 

Peptides bound to proteins have been studied mainly in the context of 

short linear motifs (SLM, LM or SLiMs). These motifs are defined as short 

regulatory modules, around ten contiguous residues, which are recognised by 

globular domains in transient manner with typically low affinities (Dinkel et al. 
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2011). These modules are often part of a larger usually disordered structure, 

but can bind to their globular targets often adopting an organised structure 

upon binding, often described as concerted folding and binding. The 

importance of these motifs has been recognised in recent years, not only for 

the crucial role they play in cell function but also for being attractive drug 

targets (Blundell et al. 2006; Neduva et al. 2006). Stein and Aloy (Stein et al. 

2008) analysed SLiMs found in the PDB using computational alanine scanning. 

The authors differentiate between the residues in the motifs as defined by the 

ELM (eukaryotic linear motif database) and the residues (they called them 

context) that interact with the globular domain but are not defined in the 

motif pattern. Computing the contribution to binding for each residue, Stein 

and Aloy found that the amino acids in the motifs are optimised for maximal 

affinity while the residues in “the context” form suboptimal interactions, 

however they are most likely to be crucial for specificity. Their argument was 

that motifs are large enough to secure binding but too small to justify the 

exquisite specificity in vivo. 

 

1.2.3.3 Nucleotide and natural molecule binding sites 

Kahraman et al. challenged the common assumption that different 

proteins binding similar ligands would have similar binding sites in terms of 

physical and chemical properties (Kahraman et al. 2007; Kahraman et al. 

2010). In order to address this question, a special data set was manually 

collected. Biological relevant protein structures were selected from the PQS 

resource (protein quaternary structure) binding to its cognate ligand. Proteins 

were defined as belonging to a distinct CATH homologous superfamily and 

the resolution of the crystal structure was used to select the representative 

structure from each family. For each ligand found, only those bound to at 

least five distinct proteins were kept. On this basis, one hundred protein-

ligand complexes were selected comprising ten different chemical ligands 

(Figure 1.6). These ligands are common natural substrates, products and 

cofactors. Therefore, in order to avoid generic misleading statements, the 
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results derived from this analysis have to be kept within the functional 

context where the molecules operate. 

 

 

F igure 1.6.  Chemica l  s tructures of  the set  of  molecules studied by Kahraman 
et a l .  (Kahraman  et  a l .  2007; Kahraman  et  a l .  2010).  The labe ls  show the 
three- let ter  code of  the molecule in the HET entry and the number in 
parenthes is  denotes the number of  instances used in the Kahraman study.  

 

For these natural molecules, the authors found that the binding 

pockets were on average three times larger than the volume of the ligand 

bound. This led to the definition of a “buffer zone” as the free space between 

the protein and the ligand partially occupied by water (Kahraman et al. 2007), 

and arguably by the partners of these cofactors as discussed below. The 

authors concluded that the assumption of similar geometrical characteristics 

for diverse pockets binding the same ligand is only partially true. Looking at 

the structures and their frequencies used in this study (Figure 1.6), it is worth 

highlighting that these molecules would need extra room in their binding 

pockets to bind cofactors or to transfer groups to carry out their function. It 
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seems unsurprising then, that authors could not find a single perfect fit in the 

dataset after careful inspection of the crystal structures. In addition, residual 

flexibility upon binding is entropically favourable (Böhm et al. 1996) and 

arguably it is fundamental for function. 

 

In a more recent analysis of the same data set, Kahraman and co-

workers (Kahraman et al. 2010) studied the variation of physicochemical 

environments these ligands experienced in the non-homologous binding sites. 

For each ligand-protein complex, electrostatic potentials (ESP), hydrophobicity 

scores, hydrogen bonds and van der Waals potential energies were calculated 

and used graphically to visualise the physicochemical fields that the ligand 

experiences in each binding site. The analysis showed that there was no 

correlation between the average physicochemical properties of the binding 

site and the ligand bound to them, in other words, the same ligand can be 

recognised by one protein by electrostatic interactions and by entropic effects 

by another. In terms of the electrostatic potential experienced by the same 

ligand in different binding sites, the authors found significant variation, often 

assisted by the diversity of the neighbouring chemical compounds (NCC such 

as metals, cofactors and coenzymes within 9Å of any ligand atom). In 

comparison, the hydrophobicity to which the ligands were exposed in the 

different cavities varied much less. The authors warned about the use of 

methods that predict function from structure based on similarity of known 

functional sites, as their results shown no complementarity between sites 

binding the same ligand. 

 

This divergence can be explained in terms of binding-site modularity 

(Gherardini et al. 2010) derived by the intrinsic modularity of the nucleotides 

(base, sugar, phosphates and cofactors). Protein sites binding nucleotides are 

normally composed by 3D motifs repeated in different protein folds, which 

recognise the same nucleotide moiety. For example, the acceptor-donor-

acceptor motif interacting with the nucleotide base, or the glycine rich loop 

that often recognises the phosphate groups. Gherardini and co-workers 
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discuss the evolutionary implications of this modularity. If functional sites are 

not single functional entities but can be decomposed into small modules 

instead, the convergence of the whole binding site is a rare event. 

 

1.2.3.4 Synthetic molecule binding sites 

After the seminal paper by Hopkins and Groom, “The druggable 

genome” (Hopkins et al. 2002), many studies have tried to capture the 

characteristics of “druggable pockets” by analysing the known structures of 

protein-drug or drug-like molecules. Often, these analyses are driven by the 

development of pocket detection algorithms and scoring schemes in order to 

differentiate “druggable” cavities (i.e. will bind preferentially a small molecule 

drug) from those that are “non-druggable”. Few analyse the interactions 

between the drug-like molecules and the proteins, which is the focus of this 

section. 

 

In 2005 the Abagyan group developed the program PocketFinder (An 

et al. 2005), an algorithm based on estimating the potential for van der Waals 

interactions with the protein in order to identify binding envelopes. The 

authors validated the method, predicting 96.8% of known protein-ligand 

binding sites. These binding sites were extracted from the PDB, removing 

entries with common cofactors and substrates (like heme, ATP and other high 

frequent ligands) or with ligands with less than seven atoms. Further filters 

were applied to remove entries with proteins outside the length range of 50-

2000 residues, structures with resolution poorer than 2.5Å were also removed. 

The final set contained 5,616 protein-ligand binding sites. The results from 

this analysis confirmed previous results from smaller data sets. The number 

of envelopes is roughly proportional to the overall volume of the protein, 

approximately one pocket per 10,000Å3. For the majority (81%) of cases, the 

ligand-binding pocket coincided with the largest of the predicted envelopes 

and for 12% the second largest. Regarding the volume of the pockets with 

respect to the volume of the bound ligands, this study found that on average 
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the pockets were 1.4 times larger than the ligands they encapsulate. In 

addition, the surface area buried by the predicted envelope had an average 

surface ratio with the whole protein surface of 4.7%. In further investigation 

focussed on binding pockets for human proteins (943 sites from 160 human 

proteins), An and co-workers (An et al. 2005) clustered the binding sites 

based on shape, hydrophobicity and electrostatic descriptors and compared 

the resulting tree with the clustering based on the chemical similarity of the 

ligands. In most cases, similar ligands bound to similar pockets and proteins, 

however there were also instances of the same ligand binding to different 

pockets, as well as one pocket binding to chemically diverse ligands. These 

differences, the authors concluded, highlight the complex relationship 

between chemical properties of the ligands and the protein sites where they 

bind. In other words, there is no an absolute prevalent matching of site and 

ligand properties. 

 

In 2009, Chen and Kurgan (Chen et al. 2009) published an analysis of 

the atomic interactions between proteins and small molecules. Their data set 

was extracted from the PDB removing entries with proteins bound to peptides 

or nucleotides. The level of redundancy for the proteins studied was low, as 

only proteins with less that 25% sequence identity were accepted. In contrast, 

the level of redundancy of the small molecules is very high, as all ligands in 

all pockets were kept, yielding 7,759 ligand-protein pockets from 2,320 

protein chains. Indeed, 59% of the protein-ligand complexes analysed 

involved ligands that were bound in more than 100 pockets. The authors 

classified these ligands into four categories based on the ligands with high 

occurrence, namely organic compounds, metals, inorganic anions and 

inorganic cluster. The analysis focussed in the organic compounds subset 

composed by 3,685 pockets of 560 distinct small molecules. However, the 

high level of redundancy of small molecules biased the results presented by 

this analysis. Although the explicit content of the organic subset was not 

disclosed, the examples of the organic compounds present more than 100 

times were disappointing: acetate, glycerol and 1,2-ethandiol. In addition, 
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calculation of hydrogen bonds was performed with programs developed to 

work only with proteins and therefore hydrogen bond estimation might be 

approximate at best. For example, the authors found that the most commonly 

observed hydrogen bond involved the backbone NH and an oxygen atom in 

the ligand. Whether or not this is a genuine result, the oxygen content in the 

ligands analysed and the redundancy of high oxygen content ligands was not 

taken into consideration. 

 

In a recent report, Schmidtke and Barril (Schmidtke et al. 2010) 

argued that druggability predictions can also underline the keys of molecular 

recognition between drugs and their targets. Previous models scored 

druggable pockets by only taking into account shape and hydrophobicity, but 

the authors reminded us that polar interactions give selectivity by assisting 3D 

specific orientations. Moreover, druggable cavities have on average fewer 

polar atoms than non-druggable ones (20-40% versus 40-60%); therefore 

electrostatic interactions are stronger due to the hydrophobic environment. In 

addition, analysis of the change in the ratio of polar and apolar surface areas 

with the radii of the probe to calculate the surface show that in druggable 

pockets polar atoms stick out from the cavity surface as anchor points for 

molecular recognition. 

 

This is not an exclusive observation for drug-binding sites. In protein 

folding the importance of polar interactions compared to the hydrophobic 

effect is being reassessed. For instance, in the energetics of protein folding 

(Baldwin 2007), the hydrophobic effect has been long considered the driving 

force and most relevant factor. However, the importance of the peptide 

hydrogen bond is increasingly gaining relevance, and compelling evidence is 

accumulating to justify its place as one of the two major factors for protein 

folding. 

 

In thermodynamic terms, it is worth highlighting here that polar 

interactions contribute enthalpically to binding but not in a linear fashion. 
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Polar groups lose the enthalpy of their hydrogen bonds with water to gain 

only a little more enthalpy by forming successful contacts with the protein, as 

well as eventually forcing hydrophobic groups to be exposed to the solvent 

(Freire 2008). Besides, correlation of structural interactions with entropic and 

enthalpic changes upon binding is still a major challenge (Klebe 2006; 

Ladbury 2010). Analysis of ITC data from protein complexes with biological 

and synthetic ligands (Olsson et al. 2008) found no correlation between burial 

of polar and apolar surface with enthalpy and entropy respectively, however it 

is accepted that that successful polar interactions will increase the enthalpic 

component of the free Gibbs energy and apolar interactions will reflect in the 

entropic part.  

 

1.2.3.5  Comparisons  between  different  types  of  small  molecules 

binding sites 

In 2007, Ji and colleagues (Ji et al. 2007) analysed the content of the 

sc-PDB (annotated database of druggable binding sites from the PDB, 

(Kellenberger et al. 2006)). This set was composed of 2,186 small molecules 

(MW 70-800Da) bound to 5,740 different SCOP domains belonging to 591 

different folds. Water molecules, metals, solvents, detergents and covalently 

bound ligands were removed, as well as ligands that had more than 50% 

solvent exposed surface. Ji and co-workers (Ji et al. 2007) found that the 

number of ligands versus the number of domains they bound to follows a 

power law. Almost one third of the ligands interact with two or more domains, 

and few ligands are bound to more than 100 distinct domains. These most 

promiscuous ligands are the hubs for metabolic networks, like for example 

ATP, the most common ligand in this set bound to 35 different folds.  

 

Furthermore, the authors compared these two thousand small 

molecules bound to proteins (ligands) with a similar number of random 

screening molecules extracted from the ACD-SC (available chemical directory 

for screening compounds, from MDL). The comparison was based on factor 
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analysis using principal component analysis (PCA) of 70 molecular descriptors. 

The loadings of the two components explaining most of the variance revealed 

that polar surface area (PSA), hydrogen bond donor count (HBD), hydrogen 

bond acceptor count (HBA) and partition coefficient (logP) could discriminate 

between random screening compounds and ligands. Further analysis of the 

distributions of these properties for the two sets of molecules highlighted that 

on average ligands had higher PSA, HBD and HBA and lower logP than 

screening molecules. However, this study was centred on the chronology of 

evolution of protein-ligand binding and no further insight or distinction into 

the types of ligands considered was given. 

 

Adrian Schreyer found results more relevant to drug discovery in his 

analysis of the CREDO database (Schreyer 2010). Schreyer compared the 

atomic interactions of proteins with drug-like molecules (several filters 

yielding a group of molecules with molecular weight range of 100-600Da) and 

with endogenous molecules (identified with the KEGG database (Kanehisa et 

al. 2008)). Drug-like molecules engaged on average more hydrophobic and 

aromatic interactions and less hydrogen bonds than the endogenous 

molecules. Analysis of the polar and apolar accessible surface area (PASA and 

AASA) versus molecular weight (MW) of these molecules revealed that drug-

like molecules only increase AASA with MW whereas PASA remains constant. 

Conversely, endogenous molecules increased PASA with MW while AASA 

remained constant in comparison with drug-like molecules. This result is in 

agreement with findings by Olsson and co-workers (Olsson et al. 2008), 

which revealed that on average synthetic ligands have greater entropic 

contributions than native ones, in consonance with the higher lipophilic 

character of drug-like molecules.  
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1.3 Aims of this thesis 
Drug discovery is at an inflexion point: old practises are being 

scrutinized to try to optimise outcomes and new areas, such as tackling 

protein-protein complexes with small molecule therapeutics, are being 

explored.  

 

In chapter 2 of this thesis, a resource to aid the latter is described and 

analysed. Published reports of small molecule inhibitors are collected into a 

relational database called TIMBAL. Analysis of these successful small 

molecules in comparison with other compounds relevant to medicinal 

chemistry is discussed. 

 

The Blundell group has established structural databases with atomic 

interaction and annotated data for all protein complexes in the PDB. These 

are: CREDO, holding protein-small molecules complexes (Schreyer et al. 

2009); BIPA, protein-nucleic acids complexes (Lee et al. 2009) and PICCOLO, 

protein-protein complexes (Bickerton 2009). These databases are powerful 

tools that enable the study of molecular recognition at atomic level from the 

different types of molecules. The interest in small molecules disrupting 

protein-protein interfaces leads to the question of how these small molecules 

mimic the interactions of the protein partner. Thus, much insight can be 

gained extracting interactions profiles for protein-small molecules (CREDO) 

and protein-protein complexes (PICCOLO).  

 

Chapter 3 of this thesis examines CREDO and PICCOLO with the 

objective of assessing whether comparisons across both databases are 

feasible. For example, calculation of atomic interactions, specifically hydrogen 

bonds, is not a trivial task, and the possibilities of making accurate 

calculations varies with the knowledge of tautomeric forms, atomic 

hybridisation and formal charges that have to be assigned in order to ensure 

compliance with the geometrical constraints that this directional interaction 



 

75 

 
1.3 Aims of this thesis 

 
   

requires. In chapter 3, differences between databases arising from such 

challenges are highlighted and the development of simpler atomic contacts 

that allow straightforward comparisons between them is described. 

 

Chapter 4 defines non-redundant subsets of molecules - drugs, drug-

like, small peptides, natural molecules and proteins - interacting with proteins 

and explores the atomic interaction patterns presented by these subsets in 

the context of medicinal chemistry. The objective of these analyses is to learn 

from natural patterns and migrate this knowledge into the design of new 

therapeutics.  

 

Finally, chapter 5 studies the structural features of the binding sites 

and interaction surfaces of the same subsets of molecules. 
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2.1 Introduction 

2.1.1 Protein‐Protein interactions (PPI) as drug targets 

The central role played by protein-protein interactions in living 

organisms make them attractive targets for therapeutic intervention. 

Successes in antibody therapies targeting extracellular protein complexes 

(Adair et al. 2005) encourage drug researchers to seek small molecules that 

modulate these pivotal interactions. Small molecules bring a number of 

advantages over antibody therapies, not least in cost of goods and ease of 

delivery. However, the quest for an ideal small molecule, which can compete 

with one of the partners in a multi-protein complex, will be challenging. Just a 

decade ago, this quest was thought to be insurmountable; nevertheless two 

experimental findings have made protein-protein interactions more attractive 

for drug discovery: the existence of hot spots and the adaptability of the 

interfaces targeted (Whitty et al. 2006). In fact, in recent years there have 

been an increasing number of studies reporting small molecules disrupting 

protein-protein interactions. Figure 2.1 shows the increase of citations 

regarding protein-protein interactions, including inhibition by small molecules. 
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F igure 2.1.  Number of  publ icat ions per year (normal ised by the tota l  number 
of  publ icat ions per year) conta in ing in the t i t le  “prote in-prote in interact ion”.  
The co lour code is  as fo l lows: b lue, on ly PPI in the t i t le;  red, pp i  and smal l  
molecule (SM) in the t i t le;  orange, ppi  and inh ib i tor  ( inh) in the t i t le;  ye l low, 
a l l  the above in the t i t le .  Searches have been done in PubMed. 

 

2.1.2 Survey of literature reviews of small molecules inhibitors 

of PPI 

One of the first reviews of protein-protein interactions, which included 

non-peptidic small molecules, was published in 2000. Cochran described 

(Cochran 2000) several approaches to disrupt protein complexes, one of 

which was small molecules that modulate (agonize or antagonize) cytokine 

signalling. This review collates four molecules and highlights the rigidity of the 

scaffolds and their richness in aromatic rings and indoles. 

 

In 2002, Toogood (Toogood 2002) wrote the first dedicated 

perspective/review of the use of small molecules to inhibit protein-protein 

interfaces with therapeutic purpose. This review describes in detail the 

methods and frameworks of the early projects delivering small molecules 

inhibiting protein complexes. However, not all these have validated binding to 
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one of the protein partners. The author did not try to derive common features 

of these molecules, but rather advocated doing this when the field had 

become more consolidated. 

 

It was not until 2004 that the first analysis of small molecules inhibiting 

PPI was published. Pagliaro and co-workers (Pagliaro et al. 2004) collected 19 

molecules from 12 different multi-protein complexes, half of which were not 

covered by the standard screening libraries and only eight of which fulfilled 

the Lipinski drug-like criteria (Lipinski et al. 1997). 

 

Since then, several studies have focused on subsets of small molecules 

that disrupt protein-protein interactions. In 2005, Fischer reviewed protein-

protein interactions in drug discovery (Fischer 2005) and collected 38 small 

molecules from 11 complexes. Again, only a small proportion of these 

molecules passed the Lipinski (Lipinski et al. 1997) and Veber (Veber et al. 

2002) drug-like criteria. In the same year, Fry and Vassilev (Fry et al. 2005) 

reviewed targeting protein-protein interactions for cancer therapy. From the 

few cases where small molecules were found to inhibit protein complexes, 

most of these small molecules had properties that were not drug-like, such as 

too many rotatable bonds, insolubility issues, charged moieties or reactive 

groups. In 2007, Neugebauer and co-workers (Neugebauer et al. 2007) 

extracted known inhibitors from the literature excluding peptides and small 

proteins. These authors collected 25 structurally diverse small molecules (all 

of them with a molecular weight higher than 400 Da) from seven targets and 

compared them with 1057 FDA (The Food and Drug Administration) approved 

drugs. More than 600 molecular descriptors were calculated and decision 

trees discriminated between PPI inhibitors and FDA drugs. The most relevant 

descriptor to distinguish PPI inhibitors was based in molecular shape and size, 

however no clear guidelines of the value range was given. Later in the same 

year, Wells and McClendon (Wells et al. 2007) analysed six multi-protein 

complexes where structural and binding data showed small molecules 

competing directly with one of the partners. In most of the cases, site 
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adaptability occurs when the small molecule binds to the interface. The 

authors compared these small molecules with other sets of drug-like small 

molecules and found little similarity. For 13 diverse molecules, each optimised 

against one of these six complexes, they demonstrated a linear correlation 

between number of atoms of the small molecule and its energy upon binding 

with the protein. This ratio, known as the ligand efficiency, LE (Hopkins et al. 

2004), had a value of about ~0.24 for these molecules. Assuming that this is 

a general threshold for these interfaces, the authors concluded that a 10nM 

binder would require a molecular weight of 645Da, which is well above the 

classical 500Da Lipinski limit (Lipinski et al. 1997). Similar findings were 

reported by Fry (Fry 2008); small molecules binding to protein interfaces tend 

to be large rigid structures with complex 3D shape.  

 

At that time we were developing and analysing the resource described 

in this chapter, results of which were published in 2009 (Higueruelo et al. 

2009) and which I report here in greater detail. Since then, other studies 

have also been published. 

 

In 2010, Sperandio et al. (Sperandio et al. 2010) studied the chemical 

space occupied by small molecules inhibitors of protein-protein interfaces. 

These authors suggested that as the interfaces are richer in tyrosine, 

phenylalanine, tryptophan and methionine the primary chemistry to tackle 

these interfaces would be aromatic and hydrophobic. Analysing 66 PPI 

inhibitors versus 557 small molecule drugs from the DrugBank (Knox et al. 

2011), both sets passing filters of structural diversity and loose drug-like 

properties, Sperandio and co-workers found that PPI inhibitors were bigger 

and more lipophilic than the drug set (mean of molecular weight 421 vs 341 

and mean of alogP 3.58 vs 2.61, P values 5E10-9 and 6E10-6 respectively). In 

the same study, more than 1600 molecular descriptors were used to derive 

decision trees, which found that shape descriptors and accounting for 

unsaturated bonds had the most discriminative power for distinguishing PPI 

inhibitors from standard drugs. Being complex shapes and high number of 
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unsaturated (including aromatic) bonds favoured by PPI inhibitors. This result, 

matches the previous findings of Neugebauer (Neugebauer et al. 2007) and 

Fry (Fry 2008), as well as ours as we will see in further sections. The same 

research group published a second report (Reynes et al. 2010) about the 

applicability of these findings to the design of focused libraries to target 

protein-protein interactions. 

 

In the same year, Bourgeas et al. (Bourgeas et al. 2010) released the 

2P2I database, a hand curated database of the structures of protein-protein 

complexes with known inhibitors. Only targets with structural information for 

both the protein-protein complex and the protein-inhibitor complex were 

included in the database, which described 17 protein-protein complexes and 

56 protein-small molecule inhibitors. These authors focused the published 

study on the characteristics of the protein interfaces and this is discussed in 

chapter 5 of this thesis. Interestingly a more recent update of the 2P2I 

database has less complexes and small molecules as the authors have 

removed some of the previous entries (Morelli et al. 2011). The 2P2I 

database has now 12 protein-protein complexes with a non-redundant set of 

39 small molecules bound to their protein-protein targets. In this latest study, 

the authors analysed the molecular properties of the small molecule inhibitors, 

along side their binding and surface efficiency indexes (BEI and SEI) as 

defined by Abad-Zapatero et al. (Abad-Zapatero et al. 2005; Abad-Zapatero 

et al. 2010). The Rule of 4 is proposed as general profile for possible protein-

protein small molecules inhibitors, based in the average of MW 547±154 thus 

MW>400, alogP 3.99±2.37 thus alogP>4, number of rings 4.44±1.02 thus 

NoR>4 and number of hydrogen bond acceptor 6.62±2.60 thus HBA>4. 

When the small molecules inhibiting protein-protein complexes were mapped 

to the BEI and SEI space of the marketed oral drugs, they appeared in the 

zone of “sub-optimal series that could not get optimised”, as they are too 

large and lipophilic to fit in the classical oral drug space. However, one of 

these large molecules, Navitoclax (ABT-263) is progressing in phase II clinical 

trials for cancer. The authors concluded this report advocating shifting the 
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paradigm of what it takes to be a drug for this class of targets as well as 

developing alternative and parallel technologies, like the nanoparticle drug 

delivery system (NPDDS) (Morelli et al. 2011). 

 

2.1.3 Need  for  collecting existing data and derive knowledge 

from it 

It is clear then, that drug discovery for these challenging targets is in 

an uncharted area, where we may need to reassess the concept of drug-

likeness for this type of target. Classical drug-like properties are largely 

derived from competitive inhibitors of endogenous small molecules. Current 

screening decks may not be well suited to identify protein-protein small 

molecule modulators. We must also increase our understanding of the mutual 

recognition between small molecules and interfaces in order to develop better 

methods for growing initial hits and to efficiently maximise their affinity and 

selectivity, whilst trying to confer on them the appropriate profile of a 

therapeutic agent. 

 

In order to find hits in this context, tools for the accurate prediction of 

hot spots and protein flexibility are needed as well as knowledge of which 

types of molecular interaction are best exploited by small molecules on 

protein surfaces. I addressed this last point with the creation of a relational 

database that holds the current small molecules disrupting protein-protein 

interactions. This database, called TIMBAL, is compatible with other structural 

databases of protein-protein (Bickerton et al. 2011) and protein-ligand 

interactions (Schreyer et al. 2009), providing a useful framework to study 

small molecule interactions at protein-protein interfaces. This compatibility 

allows the exploration and comparison of the structural features and 

interactions of small molecule modulators of protein-protein interactions and 

the multi-protein complexes they inhibit. This resource also allows profiling 

and analysing the molecular characteristics of the small molecules that 

successfully inhibit protein-protein interactions. 
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2.2 Methods 

2.2.1  Creation  of  a  database  of  small  molecule  inhibitors  of 

PPI: TIMBAL 

TIMBAL is a relational database containing small molecules that inhibit 

protein-protein interactions. These molecules and the information regarding 

the systems affected by them have been retrieved from relevant scientific 

publications. The literature up to 2008 was searched and analysed in order to 

identify all the known small molecules modulators of protein complexes. Short 

peptides or peptidomimetic molecules were not included at this stage. Manual 

updates until 2011 have been carried out only for molecules deposited in the 

PDB (Berman et al. 2000). The growth of data (see Figure 2.1) in the past 

years makes hand-curated databases a phenomenally time-consuming task. 

The feasibility of maintaining high quality data alongside other research duties 

is low. The maintenance of TIMBAL has been envisaged through automated 

searches on the CHeMBL database (Gaulton et al. 2011). 

 

Literature searches were carried out using Ovid (UCB access, 

http://ovidsp.tx.ovid.com/) and Pubmed (public access, 

http://www.ncbi.nlm.nih.gov/sites/entrez). Automated queries were set up in 

Ovid to keep the data source up to date until 2008. 

 

Data extraction was achieved by critically reading the papers and 

manually sketching molecules into an Excel spreadsheet with Accord 

functionality, (http://accelrys.com/products/informatics/desktop-software.html) to 

handle chemical structures. 

 

Not only is it of great importance to collate all known small molecule 

modulators of protein-protein interactions, but also to relate them to the 

structure-based database projects within the department, in order to 
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maximise the information that can be derived for this type of molecule. For 

this reason it became apparent that TIMBAL should be compatible with other 

databases within the Biocomputing Group in the Department of Biochemistry 

(CREDO, (Schreyer et al. 2009); PICCOLO, (Bickerton et al. 2011) and BIPA, 

(Lee et al. 2009)). To achieve this compatibility the spreadsheet mentioned 

above is post-processed with a Python script, which generates TIMBAL as a 

relational database in MyQSL (open source database engine, 

http://www.mysql.org). The database is normalised to remove redundancy 

and is constituted by different tables. The TIMBAL schema is shown in Figure 

2.2. 

 

 

F igure 2.2.  Complete schema of TIMBAL database. Chemica l  s tructures are 
he ld as SMILES (S impl i f ied Molecular  Input L ine Entry System), generated 
with the Accord funct ional i ty  with in Exce l .  These sets of  tab les have been 
def ined to normal ise TIMBAL and avoid redundancy.  

 

The subset of TIMBAL molecules present in the PDB are also a subset 

of the CREDO database, consequently the CREDO database has a TIMBAL 

table which allows profiling of the protein-protein modulators and comparison 

with other ligands in the PDB. 
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2.2.2 Profile and analysis of TIMBAL 

2.2.2.1 TIMBAL profile 

The TIMBAL database has been profiled in terms of the molecular 

properties of the small molecules in it. Typical molecular properties like 

molecular weight, alogP, polar surface area (PSA) and rotatable bonds have 

been calculated with Scitegic Pipeline Pilot software 

(http://accelrys.com/products/pipeline-pilot/). In order to put TIMBAL 

molecules in a medicinal chemistry and structural context four other sets of 

molecules have also been profiled. The aim is to analyse possible trends and 

differences between sets. These are: 

• Drugs: Preclinical, phase I to IV, and launched drugs from the 

MDDR database (MDL® drug data report) with molecular weights 

below 900Da; this cut-off has been set up to have only small 

molecules. The biggest molecule in TIMBAL now has a molecular 

weight of 813Da. An amino acid SMARTS (Smiles ARbitrary Target 

Specification, query extension of SMILES) filter (Daylight) is applied 

to these molecules in order to remove peptide-like molecules from 

the set. This set contains 11,843 molecules. 

• Screening compounds: A random selection of small molecule 

screening compounds from the catalogues of three different 

suppliers: Enamine, Asinex and Maybridge. The same cut-offs have 

been applied, and molecular weights below 900Da and peptide-like 

molecules filtered out. This set contains 12,022 molecules. 

• Ligands from the PDB: Molecules in CREDO that are not in 

TIMBAL. The same cut-offs have been applied: molecular weight 

bellow 900Da and removal of peptide-like molecules. Molecules with 

10 atoms or less have been also filtered out to remove most of the 

small molecules solvent and salts. This set contains 7,841 

molecules. 

• DL-ligands from the PDB: The drug-like subset from the above 

set. Ligands in the PDB (as extracted from the HETATM entries) are 

very diverse. These small molecules are not appropriate for a drug-
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like comparison. For example, they can be heavy metal complexes, 

detergents and nucleotide analogues. However, the distinction 

between drug-like molecule and non drug-like is not trivial. The 

pragmatic approach used to select this drug-like subset is as 

follows: molecules from the above CREDO set with at least one 

carbon atom; with composition of carbon, nitrogen, oxygen, sulphur 

and halogen only; with at least one ring; and with no chains longer 

than six carbons sp3-CH2. The resulting molecules have been 

clustered based on chemical structure using MDL public keys as 

descriptors and maximum dissimilarity method to find the centre of 

the clusters as implemented in Scitegic Pipeline Pilot software. 

Clusters with nucleotide analogues or detergents have been 

removed. This subset contains 3,048 molecules. 

 

2.2.2.2 Pharmacophoric analysis of the interface 

TIMBAL has also been profiled and compared with the three sets of 

small molecules described in 2.2.2.1 in terms of the chemical functionality of 

the compounds that are present. Thirty-nine medicinal chemistry functional 

groups have been used in a single substructure search against all the 

molecules in the different sets. Scitegic Pipeline Pilot software has been used 

to perform these searches. This analysis should highlight any particular 

functional group favoured within the small molecules modulators of protein-

protein interactions. 

 

The TIMBAL subset that it is contained in CREDO (i.e. structural data is 

available for the complex small molecule protein) has been analysed and 

compared with the rest of CREDO molecules in terms of types of interactions 

and contacts between the ligand and the protein. This has been done using 

all the pre-calculated contacts derived from the structural data developed by 

Adrian Schreyer in CREDO. These contacts are defined by distance and atom 

type between atoms in the ligand and the protein. I have used: covalent, van 

der Waals clash, van der Waals, hydrogen bond, ionic, piCation, aromatic and 
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hydrophobic. These contacts are also pre-calculated in the PICCOLO database 

containing protein-protein interactions in the PDB. Therefore a cross 

comparison between PICCOLO, CREDO and TIMBAL interactions has also 

been analysed, in order to plot trends regarding the type of interactions and 

contacts favoured by TIMBAL molecules. 

 

CREDO also pre-calculates the protein surface buried by ligand binding. 

This measurement has been compared between the TIMBAL subset and the 

rest of CREDO molecules. 

 

Affinity data for TIMBAL molecules have been also collected from 

literature when available. Ligand Efficiency (LE (Hopkins et al. 2004), free 

energy of ligand binding divided by number of non-hydrogen 

atoms) has been calculated on the assumption that Ki and IC50 are good 

approximations of Kd and the temperature is set to 300K. This LE has been 

compared with the threshold described in literature by Wells and McClendon 

(Wells et al. 2007) for the most optimised small molecule inhibitors of protein-

protein interactions (~0.24). 

dKLnRTG −=Δ
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2.3 Results and discussion 

2.3.1 TIMBAL database 

TIMBAL can be publicly accessed through the Department web site 

(http://www-cryst.bioc.cam.ac.uk/timbal). It now contains 117 small 

molecules of which 39 are in the PDB co-crystallised with their PPI targets 

and therefore are also included in CREDO database. The analysis described 

here however was performed in 2008 when the database was created; at that 

time TIMBAL had 104 small molecules, 27 of which were in the PDB. TIMBAL 

also holds 247 small fragments; these are tether (Erlanson et al. 2004) hits 

from Cys mutations in the IL-2 cytokine (Arkin et al. 2003). This set of 

fragment molecules has not been included in the analysis, as they would bias 

towards the IL-2 interface. Overall, the TIMBAL database contains small 

molecules disrupting 17 protein-protein complexes, a summary of the 

contents of TIMBAL in terms of protein-protein systems, techniques used to 

identify the small molecules and number of compounds per system at the 

time of the analysis is shown in Table 2.1. 
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E
xt

ra
-c

el
lu

la
r 

Complex Complex Type Therapeutic 
Area Techniques N of SM 

(series) 

IL-2/IL-2Rα Heterodimer Immuno-
suppressor 

Peptidomimetics 6 (2) 
+ 247 
tethers Tethering25 

CD80/CD28 Heterodimer 
Immuno-
suppressor 

Cell based screening 
4 (2) 

HTS ELISA 

TNFα  trimer Homotrimer Inflammation CTGFA with ELISA 2 (1) 

ZipA/FtsZ Heterodimer 
(small peptide) 

Antibacterial 
Screening SPR and FPA 

21 (7) 
SBDD 

 

In
tr

a-
ce

llu
la

r 

Bcl2 or BclXL 
/Bax or Bak or 
Bid 

Heterodimer 
(small peptide) Oncology 

SBDD. VS-Docking. FPA 

26 (9) HTS FPA 

SAR by NMR 

β-Catenin 
/Tcf4 or Tcf3 

Heterodimer 
(flexible peptide) 

Oncology 

SBDD. VS-Docking. NMR 
and ITC 4 (2) 
ELISA screening 

c-Myc/Max Heterodimer 
binding to DNA 

Oncology Screening FPA 1 

ESX/Sur-2 Heterodimer 
(small peptide) 

Oncology 
Cell based screening + 
binding assay 

1 

p53/MDM2 Heterodimer 
(small peptide) 

Oncology 

SBDD. VS-Docking. FPA 

16 (7) 

LBDD. VS-
Pharmacophore. FPA 
Peptidomimetics. 
Natural products 
HTS ThermoFluor® 27, 
ELISA, SPR, FPA 

p53/S100B Heterodimer 
(small peptide) 

Oncology SBDD. VS-Docking. Trp 
Fluorescence assay 

7 (4) 

XIAP/Casp-9 
or SMAC Heterodimer Oncology 

Peptidomimetics. 
Natural products 5 (2) 
SBDD. VS-Docking. FPA 

UL30(Pol) 
/UL42 Subunits HSV Antiviral HTS FPA 3 (3) 

E1-E2 
/DNA(HPV) 

Heterodimer 
binding to DNA 

Antiviral SAR by NMR 4 (2) 

ToxT dimer Homodimer Antimicrobial HTS phenotypic screen 1 

iNOS dimer Homodimer Inflammation 
Immunology 

CombiChem 1 

RGS4/Gαo Heterodimer Modulation of 
GPCRs 

Screen FCPI assay 1 

CMR1/NES Heterodimer Antiviral Cell based screen 2 (1) 

Table 2.1.  Prote in-prote in complexes found in l i terature modulated by smal l  
molecules.  Green background for systems with structura l  informat ion. Red 
background for systems without structura l  informat ion. B lue background 
h ighl ights the systems with more smal l  molecules.  
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Table 2.1 key:  Tether ing (Er lanson  et  a l .  2004).  HTS (High Throughput 
Screening).  ELISA (Enzyme-L inked Immunosorbent Assay).  CTGFA 
(Combinator ia l  target-guided fragment assembly,  Sunes is) .  SPR (Surface 
P lasmon Resonance).  FPA (F luorescence Polar izat ion Assay).  SBDD 
(Structure-Based Drug Des ign).  VS (V ir tua l  Screening).  SAR (Structure 
Act iv i ty  Re lat ionship).  NMR (Nuclear Magnet ic  Resonance).  SAR by NMR 
(Hajduk 2006).  ITC (Isothermal t i t rat ion ca lor imetry) .  LBDD (L igand-Based 
Drug Des ign).  ThermoFluor® (Cummings  et  a l .  2006).  CombiChem 
(Combinator ia l  Chemistry) .  FCPI (F low Cytometry Prote in Interact ion assay). 

 

The data shown in Table 2.1 highlight the importance of structural 

information for these challenging targets. Virtually all PPIs that have been 

successfully disrupted by small molecules have crystallographic or NMR 

structural data for the protein-protein complex (IL2/IL2Ra, Bcl-XL/Bad, 

MDM2/p53, S100B/p53, TNF trimer, XIAP/Smac, B-catenin/Tcf4, ZipA/FtsZ, 

cMyc/Max, E1/E2, iNOS dimer, and UL42/HSV-Pol); or for one of the complex 

components (CD80, CMR1). Also apparent from the table is the connection 

(highlighted in blue in Table 2.1) between complexes where one of the 

partners is a small peptide and the success in finding small molecules binding 

to the interface. These examples lead to the hypothesis that these types of 

interfaces are more druggable than the interfaces from globular constituents, 

as the existence of one partner that becomes ordered on binding allows a 

larger interaction surface between ligand and protein and often better formed 

pockets (Blundell et al. 2006). In addition, these complexes may be more 

amenable to the development of scalable competitive binding assays to 

identify small molecule inhibitors. A good example of this is the Fluorescence 

Polarisation Assay (FPA), a homogeneous assay that gives robust results if 

the size ratio between components of the complex is high (Berg 2003). The 

small peptide is fluorescent labelled and put in solution with its bigger partner. 

The whole complex is excited with polarized radiation, which emits highly 

polarized fluorescence as the bigger protein maintains the orientation of the 

fluorescent peptide. If a competitive inhibitor is added to the system, the 

peptide is released in solution free to rotate and translate which will cause 

decrease of the polarization of the emitted fluorescence. 
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Another point to highlight from the structural data of these complexes 

is that almost all targets with a large number of reported successful small 

molecules modulators have preformed small and deep pockets in the interface 

(Bcl-XL, MDM2, S100B) with ZipA as a remarkable exception. Small molecules 

have successfully modulated the interaction between ZipA and FtsZ, binding 

to a shallow hydrophobic interface. However, these molecules did not 

progress in the path to be therapeutic agents because the required cell 

penetration, solubility and specificity were not married to their ability to bind 

to ZipA. This example suggests that assessment of druggability for a PPI 

target cannot be limited to finding small molecules bound to the interface. 

However extraordinary, PPI binders need to also have the appropriate 

molecular profile to achieve the approved drug status.  

 

2.3.2 Profile and analysis of TIMBAL 

2.3.2.1 TIMBAL profile 

The molecular properties profile of the TIMBAL database is shown in 

Figure 2.3 and Figure 2.4, as well as the profile of the other four sets 

described in the Methods section. In order to have all profiles on the same 

scale, the frequencies for the binned properties have been normalised by the 

total number of molecules per set. TIMBAL profile (in pink) is more spiky as a 

consequence of the smaller number of molecules in this set. Table 2.2 

summarises the average value and standard deviation for each molecular 

property and set. 
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F igure 2.3.  D istr ibut ion of  molecular  propert ies for  the d i f ferent sets of  
molecules descr ibed in the main text .  See sect ion 2.2.1.  Colour coded: dark 
b lue (PDB l igands),  gr id dark b lue (PDB l igands drug- l ike subset) ,  ye l low 
(Drugs from MDDR), cyan (Screening compounds),  p ink (TIMBAL, smal l  
molecule inh ib i tors of  prote in-prote in interact ions).  MW: Molecular  weight;  
a logP: Calcu lated logar i thm of the part i t ion coeff ic ient;  NRings: Number of  
r ings; RotBonds: Rotatable bonds.  
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F igure 2.4.  D istr ibut ion of  molecular  propert ies for  the d i f ferent sets of  
molecules descr ibed in the main text .  See sect ion 2.2.1.  Colour coded: dark 
b lue (PDB l igands),  gr id dark b lue (PDB l igands drug- l ike subset) ,  ye l low 
(Drugs from MDDR), cyan (Screening compounds),  p ink (TIMBAL, smal l  
molecule inh ib i tors of  prote in-prote in interact ions).  PSA: Polar  surface area; 
HBA: Number of  hydrogen bond acceptors;  HBD: Number of  hydrogen bond 
donors.  
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 PDB 
Ligands 

PDB 
Ligands−DL 

Drugs Screening 
compounds 

PPI 
Inhibitors 

MW 352 ± 172 

330 | 340 

360 ± 139 

350 | 380 

417 ± 140 

400 | 380 

384 ± 79 

380 | 370 

420 ± 156 

400 | 690 

alogP 0.9 ± 3.4 

0.9 | 1.0 

2.6 ± 2.3 

2.6 | 2.2 

2.9 ± 2.6 

3.1 | 3.8 

3.3 ± 1.5 

3.3 | 3.6 

4.0 ± 2.0 

3.9 | 3.1 

NRings 2.3 ± 1.8 

2 | 2 

2.9 ± 1.4 

3 | 3 

3.3 ± 1.5 

3 | 3 

3.2 ± 1.1 

3 | 3 

3.7 ± 1.4 

4 | 4 

NAromRings 1.3 ± 1.3 

1 | 0 

2.0 ± 1.3 

2 | 2 

2.0 ± 1.3 

2 | 2 

2.5 ± 1.0 

2 | 2 

2.8 ± 1.3 

3 | 3 

RotBonds 6.5 ± 5.8 

5 | 4 

5.4 ± 4.1 

5 | 4 

6.9 ± 4.7 

6 | 4 

5.6 ± 2.2 

6 | 5 

5.7 ± 3.7 

5 | 6 

PSA 122 ± 77 

105 | 65 

95 ± 46 

90 | 65 

98 ± 57 

85 | 60 

90 ± 32 

90 | 85 

95 ± 46 

85 | 65 

HBA+HBD 9.4 ± 6.2 

8 | 6 

6.9 ± 3.3 

6 | 6 

7.4 ± 4.1 

7 | 6 

5.6 ± 1.9 

5 | 5 

6.5 ± 3.0 

6 | 6 

HBA 6.2 ± 4.2 

5 | 4 

4.7 ± 2.2 

4 | 4 

5.4 ± 2.9 

5 | 4 

4.5 ± 1.6 

4 | 4 

4.8 ± 2.3 

4 | 4 

HBD 3.2 ± 2.3 

3 | 2 

2.3 ± 1.5 

2 | 2 

2.0 ± 1.8 

2 | 1 

1.1 ± 0.8 

1 | 1 

1.7 ± 1.3 

2 | 2 

Table 2.2.  Mean ± standard dev iat ion, median and mode of the molecular  
propert ies for  each set .  To ca lcu late the median and the mode, Molecular  
Weight was b inned in 10Da and rounded to integer.  Topologica l  po lar  
surface area was b inned in 5Å2 and rounded to integer.  A logP was rounded 
to one dec imal p lace. 

 

Although TIMBAL molecules present a spread of molecular properties, 

for example molecular weight goes from 148Da to 813Da, their overall profile 

shows a tendency for being big lipophilic molecules. In addition, they have 

more rings and less rotatable bonds than the molecules from the drugs and 

DL-ligands from the PDB sets. In spite of the fact of being on the average 

bigger, TIMBAL molecules show in proportion less features than the 

molecules from the other sets, as captured by the hydrogen bond donor and 

acceptor counts. The ratio of hydrogen bond donor and acceptor count by 

molecular weight for TIMBAL molecules is significantly (P < 0.05) smaller 

than the same ratio for the drugs and DL-ligands from the PDB. In drug 

discovery, molecules with a similar profile will be regarded as promiscuous 

and little attractive. It will be interesting to profile these molecules against a 
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panel of PPI targets to evaluate their selectivity, however there aren’t many 

PPI targets with validated assays, and this type of data has not been found in 

literature. The same applies to classical later stage properties in the drug 

discovery time frame like DMPK (Distribution, Metabolism and 

Pharmacokinetics). These inhibitors are in the very early stage of discovery 

(with Bcl as a remarkable exception) and the publicly available data are 

limited. 

 

It is interesting to note that PPI small molecules modulators show a 

closer profile to the drug set than the screening compounds group. However, 

only one molecule, an analogue of ABT-737 (TIMBAL molecule of 813Da), has 

reached the phase I/II of clinical trials (Morelli et al. 2011) thus far showing 

acceptable oral bioavailability despite its huge molecular weight. This might 

suggest broadening the type of molecules that get screened against a PPI 

target, in terms of property profile as well as more diverse sources, like 

natural products for example. On the other hand, products from DOS (Diverse 

Oriented Synthesis) (Di Micco et al. 2009) may be attractive screening 

candidates as complex shape is common amongst PPI inhibitors (Neugebauer 

et al. 2007; Fry 2008; Sperandio et al. 2010). 

 

In order to assess if this profile of TIMBAL molecules is general and not 

biased by target, Figure 2.5 and Figure 2.6 show the distribution of molecular 

weight and alogP for TIMBAL molecules colour coded by target. Only targets 

with more than one molecule have been included in the graph. Seven out of 

nine targets have molecules with molecular weight greater than 500Da, and 

all of them have molecules with alogP greater of 4. These properties do not 

depend on whether the researchers who synthesised the molecules are in an 

industrial or academic environment (48% molecules generated in industry, 

39% in academia and 13% in collaborative efforts). Therefore the general 

trend for small molecule modulators of protein-protein interactions is being 

bigger, more rigid, more lipophilic and less hydrogen bonding than molecules 

in the drug and screening sets. 



 

97 

 
2.3 Results and discussion 

 
   

 

F igure 2.5.  D istr ibut ion of  the Molecular  Weight (MW) of the TIMBAL 
molecules co lour coded by target.  Only targets with more than one molecule 
are p lotted. 
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F igure 2.6.  D istr ibut ion of  the ca lcu lated logar i thm of the part i t ion 
coeff ic ient (a logP) of  the TIMBAL molecules co lour coded by target.  Only 
targets with more than one molecules are p lotted. 

 

In order to evaluate the similarity or dissimilarity, in terms of molecular 

properties, between the TIMBAL molecules and the other sets of molecules, a 

principal component analysis has been applied. For this analysis only 

molecules from the PDB ligand drug-like subset have been used to represent 

ligands in PDB, as many of the ligands in the PDB are not relevant for drug-

like profiling as described in the methods section (2.2.1). The loadings of this 

PCA are shown in Table 2.3. 
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Property PC1 PC2 PC3 

StandardDeviation 2.051 1.369 0.953 

VarianceExplained 0.526 0.234 0.114 

TotalVarianceExplained 0.526 0.760 0.874 

MW 0.367 0.438 -0.028 

RotBonds 0.319 0.219 -0.666 

HBA 0.442 -0.019 0.145 

HBD 0.350 -0.271 -0.067 

HBA+HBD 0.470 -0.135 0.072 

NRings 0.119 0.510 0.664 

PSA 0.445 -0.120 0.083 

ALogP -0.114 0.627 -0.280 

Table 2.3.  Pr inc ipa l  Component Analys is  (PCA) 
Loadings for  molecular  propert ies used as 
descr iptors of  the molecules in the d i f ferent sets .  

 

Figure 2.7 represents the molecules with their PCA scores, i.e. the 

projections of the molecular properties onto the first three principal 

components. As can be seen in the top right quadrant, the drug molecules 

are spread broadly in this space and it captures most of the TIMBAL 

molecules. In the bottom left and right quadrants, TIMBAL molecules are less 

covered by the PDB ligands-DL set and Screening compounds respectively. 
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F igure 2.7.  Three-d imensional  project ion of  the pr inc ipa l  components of  the 
molecular  propert ies for  the d i f ferent sets of  molecules.  

 

In order to have a quantitative measure of the distribution of the 

molecules from different sets within this PCA space (3-dimensional: PC1, PC2, 

PC3), the distance from the arithmetic centre of this space (distFC) has been 

calculated for all molecules. The average of this distance is 2.18 with a 

standard deviation of 1.49. Figure 2.8 shows the distribution of this distance 

for each set of molecules. As we have seen previously, in terms of molecular 

properties TIMBAL molecules are closer to developed drug molecules rather 

than starting point molecules (screening compounds). 
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F igure 2.8.  D istr ibut ion of  the d istances to the ar i thmet ic  centre of  the PCA 
space for  each set  of  molecules.  TIMBAL molecules represented by dots for  
c lar i ty .  The mean of th is  d istance is  2.18 with a standard dev iat ion of  1.49. 
Table 2.4 shows the percentage of  molecules in each b in.  

 

µ = 2.18, 
σ  = 1.49 

% in  

Screening comp 

% in 

DL-lig PDB 

% in 

Drugs 

% in 

PPI inhib 

µ ± 1σ   92 84 80 83 

µ ± 2σ  8 12 12 15 

µ ± 3σ   0 3 4 2 

µ ± more  3σ  0 1 4 0 

Table 2.4.  Percentage of  each molecule set  for  each standard dev iat ion b in 
in the d istr ibut ion of  d istances to the centre in the PCA space. D istr ibut ions 
are shown in F igure 2.8.  

 

In conclusion, molecules disrupting protein-protein interactions tend to 

be big lipophilic molecules with fewer hydrogen bonds than the average drug-

like molecules. In order to assess whether these characteristics are due to 

surface complementarity and molecular recognition, the next section analyses 

the interface of these complexes. 
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2.3.2.2 Pharmacophoric analysis of the interface 

2.3.2.2.1 Chemical functionality 

In terms of chemical functionality, TIMBAL molecules contain more 

carboxylic acids and sulfonamides and less ether groups than drugs but 

similar proportions to the DL-ligands from the PDB set. Carboxylic acids are 

present in drugs, in DL-ligands from the PDB and TIMBAL sets but 

underrepresented in the Screening compounds. As reported previously 

(Whitty et al. 2006), PPI inhibitors tend to contain aromatic rings. Table 2.2 

shows they have the highest content of aromatic rings and phenyls of the 

different sets. Perhaps the most surprising result is the high nitro-group 

content of TIMBAL molecules. This holds true across series, originator 

environment and target. Six out of the 17 TIMBAL targets have molecules 

with a nitro group. In general, aromatic nitro groups are avoided in drug 

development due to toxicity problems when the nitro group is reduced in the 

body (Boelsterli et al. 2006). This could explain the lower proportion of nitro 

groups in the drug like sets. However, nitro aromatic rings are poor in 

electrons due to the strong electron withdrawing effect of the nitro group. 

This result could lead to further investigation of the properties of these rings 

in the context of the molecular recognition at the protein interfaces. Table 2.5 

shows the details of the functional group analysis for the different sets of 

molecules. 
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 PDB 

Ligands 
PDB 

Ligands−DL 
Drugs 

Screening 

compounds 
PPI 

Inhibitors 
OH 71 52 46 13 41 

NH 68 68 64 68 67 

Aldehyde 3 2 0 0 1 

Ketone 9 12 14 10 17 

Amide 37 42 44 70 54 

Alkyne 1 1 2 0 3 

AkylHalide 1 1 1 1 0 

Carbamate 3 3 5 1 2 

Imide 5 6 5 2 6 

COO 28 23 16 2 22 

Epoxide 1 1 1 0 0 

Ester 10 11 18 17 8 

Ether 24 29 41 42 29 

Pyridine 7 11 14 13 7 

4ari_Nitrogen 1 0 1 0 0 

1ari_aniline 2 2 2 0 2 

2ari_aniline 8 15 13 31 33 

3ari_aniline 4 7 12 14 17 

Acetal 5 4 5 4 3 

Butyl 6 2 6 2 3 

CF3 2 4 5 5 3 

Cyano 1 3 4 6 2 

IsoPropyl 7 8 8 5 12 

Nitro 2 3 3 7 15 

tBu 2 3 4 3 5 

sulfonamide 6 12 7 16 17 

thioether 4 3 5 19 12 

Phenol 9 15 9 2 11 

urea 8 6 8 7 5 

AminoPyr 2 5 2 1 2 

sulfoxide 0 0 1 0 0 

N 81 85 91 98 88 

O 93 91 93 96 89 

S 21 26 26 54 25 

Halogen 18 30 35 43 42 

Table 2.5.  Percentage of  molecules per set  that have a least  one 
of  the funct ional  groups present in the chemica l  s tructure.  
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2.3.2.2.2 Atomic contacts 

With respect to the types of interactions and contacts favoured by 

TIMBAL molecules, Table 2.6 shows the average and standard deviation of 

the contact types (in percentage) extracted from the CREDO (PDB ligand 

subsets analysed so far) and PICCOLO databases. TIMBAL molecules 

considered in this analysis are the subset present in CREDO (in total 27 

molecules from 26 PDB entries, see Table 2.7 for details). The last column of 

Table 2.6, PICCOLO(T), shows the average numbers of contacts for the 

protein interfaces of the multi-protein complexes that are disrupted by 

TIMBAL molecules (in total 28 interfaces from 16 PDB entries, note only 

relevant interfaces are considered, see Table 2.7 for details). 

Table 2.6 shows that on the average the 27 molecules co-crystallised 

with protein interfaces from multi-protein complexes (see column headed 

TIMBAL) present more hydrophobic and aromatic and less hydrogen bond 

contacts than the average CREDO-DL and PICCOLO interfaces. This result 

correlates with the molecular property profile described in section 3.2.1 for 

these molecules and with slightly more hydrophobic character than the 

TIMBAL interfaces in PICCOLO. An interesting result that emerges from this 

analysis is that the PICCOLO interfaces (slightly higher even in the TIMBAL 

subset) are more ionic in character than the CREDO (including TIMBAL) 

molecules. This result will be further investigated in chapter 3, as the contacts 

in PICCOLO and CREDO are calculated with different algorithms and 

estimation of the ionisation state for small molecules is not a trivial task. 
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avg ± STD CREDO CREDO-DL TIMBAL PICCOLO PICCOLO(T) 

Covalent 3.1±9.6 0.1±0.6 0±0 0.1±0.5 0.0±0.12 

vdW 54.2±22.4 60.4±11.7 56.1±8.0 52.3±17.7 47.0±8.8 

vdWclash 34.2±23.5 15.7±9.1 11.7±6.5 11.9±9.0 11.9±5.8 

Hbond 7.3±10.1 5.3±4.9 2.3±3.1 4.2±4.9 3.3±1.3 

Ionic 7.1±18.2 4.1±8.5 2.5±4.2 13.1±17.4 16.1±8.8 

piCation 0.1±0.6 0.1±1.0 0.4±1.0 8.9±13.6 8.1±7.7 

Aromatic 2.3±7.0 7.8±12.1 9.3±9.3 6.8±12.5 6.8±8.1 

Hydrop. 9.8±20.6 37.3±22.4 53.0±13.9 33.8±19.2 41.2±9.9 

Buried_PA 360±193 281±135 386±106 1788±1909 1953±1106 

Surface_A 613±285 533±246 754±167   

Table 2.6.  Average and standard dev iat ion of  the contact  types in 
percentage extracted from the CREDO ( l ig-prote in complexes,  and DL ‘drug-
l ike ’  subset)  and PICCOLO (prote in-prote in complexes) databases.  For 
instance, TIMBAL hav ing 57% of hydrophobic contacts means that the 
TIMBAL molecules on average have 57% of the tota l  contacts as 
hydrophobic .  TIMBAL molecules cons idered in th is  analys is  are the subset 
present in CREDO ( in tota l  27 molecules f rom 26 PDB entr ies,  see Table 2.7 
for  deta i ls) .  The last  co lumn, PICCOLO(T),  shows the average numbers of  
contacts for  the prote in interfaces of  the mult i -prote in complexes that are 
d isrupted by TIMBAL molecules ( in tota l  28 interfaces from 16 PDB entr ies,  
note only re levant interfaces are cons idered, see Table 2.7 for  deta i ls) .  
Bur ied_PA: bur ied prote in area upon b inding. Surface_A: surface area of  the 
smal l  molecules in the b ind ing conformat ion. Va lues in bo ld denote 
s ign i f icant d i f ferences between TIMBAL and CREDO-DL (P < 0.05).  
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Target Complex PDB PICCOLO PDB CREDO 

IL-2 IL-2/IL-2Ra 1Z92 (A:B) 
1M48 
1PW6 
1PY2 

Bcl-2 Bcl-XL 
Bcl-2 and Bcl-XL with 

BAX; BAK and BID 

2BZW (A:B) 
1G5J (A:B) 
1BXL (A:B) 

1YSG 
1YSI 
1YSN 
1YSW 
2O1Y 
2O21 
2O22 
2O2F 
2O2M 
2O2N 
2YXJ 

MDM2 p53-MDM2 1YCR (A:B) 
1T4F (M:P) 

1RV1 
2AXI 
1T4E 

CD80 (B7-1) 
CD80-CD28 

(or CTLA4) 
1I8L (A:C) 
1I8L (B:D) 

 

S100B S100B-p53 1DT7 (A:X) 
1DT7 (B:Y) 

 

TNFa TNFa trimer 1TNF (A:B) 2AZ5 

XIAP 

XIAP/Caspase9 or 

SMAC (BIR3 

domanin) 
1G3F (A:B) 

1TFQ 
1TFT 

Beta-catenin 
BetaCatenin/Tcf4 and 

Tcf3 

1JPW (A:D) 
1JPW (B:E) 
1JPW (C:F) 

 

ZipA ZipA-FtsZ 1F47 (A:B) 

1S1J 
1S1S 
1Y2F 
1Y2G 

c-Myc/Max c-Myc/Max 1A93 (A:B)  

E2 E1-E2-DNA 

1TUE (A:B) 
1TUE (D:E) 
1TUE (F:G) 
1TUE (H:J) 
1TUE (K:L) 
1TUE (M:Q) 

1R6N 

iNOS iNOS dimerization 3NOS (A:B) 1DD7 

UL42 
UL30(Pol)-UL42 

subunits of HSV 

1DML (A:B) 
1DML (C:D) 
1DML (E:F) 
1DML (G:H) 

 

Table 2.7.  Summary of  the PDB entr ies for  the PPI systems used in th is  
analys is .  PDB entry 1YSG has 2 SM. 
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2.3.2.2.3 Buried surface area 

Buried surface area by TIMBAL molecules is higher on average than 

the CREDO-DL molecules, but this is due to the bigger size of TIMBAL 

molecules. In fact the ratio between buried surface and molecular surface is 

the same for both sets. 

 

2.3.2.2.4 Ligand efficiency 

Finally, the affinity data for the TIMBAL molecules have been analysed 

in terms of the Ligand Efficiency (LE (Hopkins et al. 2004)). The threshold 

described by Wells and McClendon (Wells et al. 2007) for the most optimised 

small molecules inhibitors of protein-protein interactions with structural data 

is 0.24. 

 

TIMBAL holds at the moment 76 affinity data points for all the targets 

present in the database. Figure 2.9 shows the spread of Ligand Efficiency per 

target. Most of the data points fall in the range of 0.15 - 0.35 LE with an 

average LE of 0.27 with a standard deviation of 0.10 for all 76 molecules. 

Three targets are above this average, XIAP with 5 molecules averaging 0.40 

(range 0.29-0.57), beta-catenin with 4 molecules averaging 0.37 (range 0.18-

0.6) and CD80 with 4 molecules averaging 0.37 (range 0.36-0.38). None of 

these three targets were considered in the analysis of Wells and McClendon 

(Wells et al. 2007). 
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F igure 2.9.  Range of L igand Eff ic iency, LE (X ax is)  of  the TIMBAL molecules 
separated by target.  

 

As mentioned previously, only one TIMBAL molecule has reached 

phase-I/II clinical trials. Therefore, it is interesting to compare these LE 

values with typical ranges of LE in a hit to lead medicinal chemistry campaign 

for traditional targets. Table 2.8 shows these ranges. The average LE of 0.27 

is reached for these TIMBAL molecules with an average of 30 atoms. 

Therefore, TIMBAL molecules are slightly less efficient than typical medicinal 

chemistry leads with the same number of atoms (LE range 0.32) 
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Kd(µM) MW N atoms(*) LE 

10 200-250 15-19 0.46-0.36 

1 250-300 19-23 0.44-0.36 

0.1 300-400 23-30 0.43-0.32 

0.001 500 38 0.33 

Table 2.8.  Range of af f in i t ies and s izes for  a typ ica l  medic ina l  chemistry 
campaign from hit  to lead. L igand Eff ic iency and number of  atoms are 
ca lcu lated fo l lowing the or ig ina l  paper.   

 

In addition, Figure 2.10 shows the average molecular property values 

for TIMBAL molecules binned by LE. By definition of LE the black bars 

(average of number of atoms) in Figure 2.10 should decrease for higher LE, 

in fact one can see this trend, as well as alogP which correlates with 

molecular weight (and therefore with number of atoms). The interesting 

result of this plot is that more efficient binders as well as the lesser ones have 

virtually the same average of hydrogen bond features. This recalls the 

previous result that TIMBAL molecules make fewer hydrogen bond contacts, 

but what this plot suggests is that the few hydrogen bonds achieved by the 

efficient binders should be kept. Moreover, the hydrogen bond features 

remain more or less constant with the increase of molecular size. This 

observation is in agreement with those made by Olsson et al. (Olsson et al. 

2008) and it will be explored in detail in chapter 4. 
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F igure 2.10. Average of  the molecular  propert ies for  TIMBAL molecules 
b inned by LE. B lue: Average of  the sum of hydrogen bond donors and 
acceptors.  Red: Average or rotatable bonds. Ye l low: Average of  a logP. 
B lack: Average of  number of  atoms. 

 

The calculated ΔG from the affinity data in the TIMBAL database has 

been plotted against all molecular properties and contact types (16 TIMBAL 

molecules with affinity data are also present in CREDO), but no correlation 

has been found. Further filtering and classification might be needed to extract 

meaningful relationships, like for example compare contacts per surface area 

(suggestion from Richard Bickerton, personal communication) rather than 

absolute numbers. 
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2.4 Conclusions 
I have described the creation of a database containing small molecule 

modulators of protein-protein interactions. The database has been profiled 

and compared with other sets of molecules and interactions. TIMBAL 

molecules tend to be bigger, more rigid, more lipophilic and less hydrogen 

bonding than molecules in the drug and screening sets. This result is 

consistent with types of interactions these molecules make; as has been 

discussed, TIMBAL molecules present more hydrophobic and aromatic and 

less hydrogen bond contacts than the average CREDO-DL and PICCOLO 

interfaces. In terms of functional groups, protein-protein modulators seem to 

favour nitro groups, carboxylic acids and sulfonamides. LE for these molecules 

has been found to be slightly lower than the typical hits and leads from more 

traditional targets. 

 

Several analyses have highlighted the ease with which medicinal 

chemistry programs can deliver high affinity molecules by increasing the 

lipophilicity, see for example (van de Waterbeemd et al. 2001; Leeson et al. 

2007; Keserü et al. 2009). However, increasing the hydrophobicity of small 

molecules also increases the likelihood of a compound failing in the 

development phase (Leeson et al. 2007). This observation seems to be 

particularly relevant for protein-protein targets. These molecules are not 

classical drug-like molecules, and their profile suggests they may not be 

selective binders either. Lesson and Springthorpe (Leeson et al. 2007) have 

shown in their analysis of small molecule drugs a positive correlation between 

clogP and promiscuity. However, these are the first small molecule 

modulators of a class of targets long believed to be undruggable. Drug-like 

properties are derived from drugs developed many years ago that hit a 

limited set of historical targets. Perhaps druggability as well as selectivity 

have to be addressed on a case-by-case basis for this diverse target class, 

see for example ABT-263/Bcl2 (Morelli et al. 2011). My conclusion is that we 

should continue to collate and connect the available information regarding the 
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small molecules and systems they modulate in order to extract any trends 

and thereby be in a better position to develop new therapeutic agents for 

these emerging targets. This will be the focus of the following chapters. 
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3.1 Introduction 
Structural databases are powerful resources to study molecular 

interactions. In chapter 2, we have seen an application of these resources, 

namely CREDO (protein-ligand interactions (Schreyer et al. 2009)) and 

PICCOLO (protein-protein interactions (Bickerton et al. 2011)), which I used 

to compare atomic contacts of different sets of molecules. However, atomic 

contacts are not defined in the same way in these two databases. Indeed, 

one of the results reported in chapter 2 – that protein-protein interfaces have 

a more ionic character than those of protein-small molecules - prompted me 

to examine in detail the contact definitions and frameworks of the two 

databases. Using the definitions in the original databases, 13% on average of 

the atomic contacts made at protein-protein interfaces were ionic compared 

to 7% of those at the protein-ligand interfaces. If genuine, that was a 

remarkable result. Thus, efforts were made to make sure the differences in 

contact patterns were really due to differences between the molecules and 

not due to database definitions. My objective in this chapter is to examine the 

differences of definitions between the structural databases used in this thesis 

and to resolve problems where they arise. 

 

3.1.1 CREDO 

CREDO is a comprehensive database of protein-ligand interactions, 

storing structural data, sequence annotation and chemical information 

(Schreyer et al. 2009). It is the centre of Adrian Schreyer’s PhD thesis 

(Schreyer 2010), and it was developed as a resource to support drug 

discovery and virtual screening. 

 

CREDO identifies ligands in the Protein Data Bank (PDB) through 

information stored in the mmCIF dictionaries (macromolecular 

Crystallographic Information Files). Ligands are either single residues in the 

non-polymer entities, or short polypeptides up to eight residues long. These 
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ligands are used to extract ligand-protein complexes from the PDB. CREDO 

does not consider entries with ligands only, nucleic acid ligand complexes, 

protein backbone-only structures and entries violating the PDB format. 

 

The interatomic protein-ligand contact data are then derived using 

OpenEye’s OEChem toolkit (http://www.eyesopen.com). With this toolkit, all 

protein atoms within a radial distance of 6.5Å to any ligand atom are found. 

Atom types are assigned and hydrogens atoms are added to classify each 

atom pair into the following non-exclusive contact types: covalent, van der 

Waals, van der Waals clash, hydrogen bond types depending on atom types 

and geometries, halogen bond, ionic, metal complex, pi-cation, pi-donor, pi-

carbon, aromatic types depending on the geometries of the aromatic rings 

involved, hydrophobic and carbonyl. CREDO was updated weekly in an 

automated manner until April 2010. 

 

3.1.2 PICCOLO 

PICCOLO is a comprehensive database of structurally characterized 

protein interactions; storing structural data and sequence annotation 

(Bickerton et al. 2011). It is the main focus of Richard Bickerton PhD thesis 

(Bickerton 2009), and it was developed as a resource for protein modelling 

including protein-protein docking, prediction of the effect of non-synonymous 

Single Nucleotide Polymorphisms (nsSNPs) on protein stability and function, 

derivation of environment-specific substitution tables and analysis of hot 

spots at protein interfaces. 

  

PICCOLO derives data from the mmCIF dictionaries at structure, chain 

and residue levels. Structures are handled with the PDB module in BioPython 

(Hamelryck et al. 2003) and are “sanitized” into clean PDB flat files to ensure 

every protein residue is uniquely identified and inconsistencies are removed. 

Only polymer protein standard residues are considered and the three most 

common non-standard amino acids are modified into their standard analogue. 
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These are selenomethionine (MSE), methyllysine (MLY) and hydroxyproline 

(HYP). PICCOLO uses the PISA resource at the EBI (Krissinel et al. 2007) to 

generate quaternary assemblies from these clean files. PICCOLO considers 

protein-protein interactions as pairwise interactions between chains in the 

generated files. Therefore, PICCOLO has two flavours: “PDB” that stores 

interactions between chains of the entry in the PDB as they are in the 

asymmetric unit, and “Quaternary” that stores interactions between the 

chains of the quaternary assemblies generated by PISA transformations. 

  

The interatomic protein-protein contact data are derived in a pairwise 

manner between two distinct chains in the same structure. The PDB module 

in BioPython is used to find all atoms in one chain that neighbour any atom in 

the second chain with a cut-off distance of 6.05Å. PICCOLO structures are 

composed of only 20 standard amino acids, thus atom types and atomic radii 

are tabulated and manually curated. HBPLUS (McDonald et al. 1994) is used 

to derive hydrogen bonds and water-mediated hydrogen bonds. The other 

contact types assigned in PICCOLO are: covalent, van der Waals, van der 

Waals clash, ionic, pi-cation, several aromatic types depending on the 

geometries of the aromatic rings involved, hydrophobic, disulphide and 

aromatic-sulfur. PICCOLO did not have an update procedure in place and the 

exponential growth of the PDB required the group to provide one. I undertook 

this responsibility by testing and merging more than 30 scripts (written by 

Richard Bickerton to create PICCOLO) into a single procedure that runs 

monthly. Information about this process can be found at: 

http://tetra.bioc.cam.ac.uk/mediawiki/index.php/PICCOLO_AliciaNotes 
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3.2 Methods 

3.2.1 PICCOLO‐CREDO intersection 

The fact that CREDO considers polypeptides up to eight residues long 

as ligands allows straightforward comparison between both databases. 

Structures with these short peptides are the intersection of PICCOLO and 

CREDO. The number of contacts (for each common contact type) from each 

resource can be plotted against each other. If the databases are identical 

these plots will show a straight line of slope one. 

 

Further filtering of these structures is required, as PICCOLO considers 

only standard amino acids and CREDO considers only the asymmetric unit 

deposited in the PDB. For these reasons, the contacts analysed here are from 

the PDB flavour of PICCOLO, and from CREDO only protein-ligand complexes 

with standard amino acids are considered. PICCOLO stores the interatomic 

interactions from pairwise protein chains; therefore the queries used in 

CREDO consider pairwise interactions only. For example, for a ligand 

interacting with two different protein chains, the query retrieves the contacts 

to compare them with PICCOLO and then sums them by ligand-one-chain-

protein at the time instead of summing all the interactions that the ligand 

presents, which is the normal philosophy in CREDO. The subset for the 

PICCOLO-CREDO comparison is composed of 962 pairs from 468 distinct PDB 

entries, summing more half a million atomic contact pairs. 
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3.3 Results and discussion 
Figure 3.1 shows the differences found between the original PICCOLO 

and CREDO databases for the subset of structures that were present in both.  

 

 

F igure 3.1.  Scatter  p lots of  the compar ison of  PICCOLO and CREDO contacts.  
In a l l  n ine p lots ,  X-axes are for  CREDO contacts and Y-axes for  PICCOLO 
contacts.  Each scatter  p lot  is  for  one of  the common contact  types in both 
databases,  f rom top lef t  to bottom r ight:  covalent,  van der Waals ,  van der 
Waals c lash, hydrogen bond, ion ic ,  p i -cat ion, hydrophobic and prox imal .  
Prox imal is  def ined as when the two atoms are less than or equal  to 6.05Å 
apart ,  the maximal d istance of  a water-mediated hydrogen bond. The red 
l ine in each p lot  denotes the s lope that is  g iven when the two databases 
g ive ident ica l  resu l ts .  
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3.3.1 Stored distances 

The scatter plot of proximal contacts for CREDO and PICCOLO in 

Figure 3.1 shows that there were minor differences between databases. Two 

factors were found to explain these differences. First, CREDO stores distances 

with two decimal places whereas PICCOLO stores distances with three 

decimal places. Secondly, from the half a million contacts studied in this 

comparison, 0.06% of them had different stored distances, i.e. the absolute 

difference between them was greater than 0.005. One of the reasons for this 

difference is the conformers for certain residues that CREDO retains and 

PICCOLO cleans up. In addition, the fact that PICCOLO pre-processes PDB 

files and uses BioPython to extract neighbour atoms and distances, whereas 

CREDO uses raw PDB files and uses the OEChem toolkit causes minor 

differences in recorded distances too. 

 

Although there are discrepancies between databases caused by these 

stored distance issues, the proportion of these differences is small and the 

differences are comparable to the standard experimental error. 

 

3.3.2 Atomic radii 

The differences in covalent, van der Waals and van der Waals clash 

contacts seen in Figure 3.1 are due to different atomic radii used for each 

database. Both databases use the same criteria to define these contact types 

(essentially sum of radii). However, CREDO used the radii from the OEChem 

implementation, which in turn uses data from the Cambridge Crystallographic 

Data Centre (CCDC) for covalent atomic radius and from (Bondi 1964) for van 

der Waals radii. PICCOLO used, for both covalent and van der Waals radii, the 

set of residue-specific atomic radii from (Tsai et al. 1999). 

 

The resolution of these differences was for CREDO to use the same 

residue-specific atomic radius as PICCOLO for the protein atoms. Therefore, 
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extra tables with hybridisation labels and PICCOLO radii for each atom type in 

the 20 standard amino acids were generated to allow CREDO to use the same 

van der Waals radii for protein atoms. 

 

3.3.3 Ionic, pi‐cation, hydrophobic and aromatic contacts 

For ionic, pi-cation, hydrophobic and aromatic contact types, both 

databases initially used the same SMARTs queries to label atoms as positive 

ionisable, negative ionisable, aromatic and hydrophobe. Continuous and 

independent development of the resources led to divergence in the initial 

queries and certain atoms were labelled differently. A detailed assessment of 

the atom labels for the 20 standard residues in both databases was 

performed, and atom types were modified to be identical in both CREDO and 

PICCOLO. In addition, the distance cut-off criterion for each contact type was 

different in each database. Therefore, a consensus for these distances was 

also reached. Table 3.1 describes details of these contact criteria. 

 PICCOLO CREDO Consensus References 

Ionic d(pi-ni) 

<= 6 Å 

d(pi-ni) 

<= 4 Å 

d(pi-ni) 

<= 4 Å 

(Barlow et al. 

1983) 

(Marcou et al. 

2007) 

Pi-cation d(pi-ar) 

<= 6Å 

d(pi-ce) 

<= 4Å 

arcsin >= 30 

d(pi-ce) 

<= 5Å 

(Gallivan et al. 

1999) 

Hydrophobic d(hyd-hyd) 

<= 5Å 

d(hyd-hyd) 

<= 4.5Å 

d(hyd-hyd) 

<= 4.5Å 

(Tina et al. 2007) 

(Marcou et al. 

2007) 

Aromatic d(ar-ar) 

<= 6Å 

d(ar-ar) 

<= 4Å 

d(ar-ar) 

<= 5Å 

(Chakrabarti et al. 

2007) 

(Marcou et al. 

2007) 

Table 3.1.  Deta i ls  of  the cr i ter ia  for  the d i f ferent contact  types.  D istances 
are between atom types: p i  (pos i t ive ion isable) ,  n i  (negat ive ion isable) ,  ar  
(aromat ic) ,  ce (centro id of  aromat ic  r ing),  hyd (hydrophobe).   
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The differences in distances indicate that contact definitions are not 

canonically established. These definitions depend of the context in which they 

are applied. For instance, the original CREDO criteria were tighter than those 

used in PICCOLO. This can be understood in terms of the accuracy and 

disorder level of the side chains of a small molecule-binding site in 

comparison with the side chains at protein-protein interfaces. In addition, 

resolutions of the crystal structures deposited in the PDB differ. Therefore, 

the exact numerical distance used is less important than the consistency 

across comparisons. 

 

3.3.4 Hydrogen bonds 

The differences in the hydrogen bond contacts were due to different 

algorithms used to calculate these contact types. CREDO uses OEChem to add 

hydrogens to the structures and SMARTs (SMiles ARbitrary Target 

Specification, www.daylight.com/dayhtml/doc/theory/theory.smarts.html) 

queries, to label heavy atoms as donors or acceptors. A contact is then 

labelled as a hydrogen bond if it meets the distance and angle criteria 

described in Table 3.2. PICCOLO uses an external program HBPLUS 

(McDonald et al. 1994) to assign hydrogen bonds. This program adds 

hydrogen to the structures, assigns donor, acceptor, donor antecedent and 

acceptor antecedent labels to heavy atoms, and calculates hydrogen bond 

contacts with the geometry criteria described in Figure 3.2 and Table 3.2. In 

addition, for structures with resolution greater than 1.0Å, hybridisation and 

atom type of the atoms in the side chains of asparagine, glutamine and 

histidine are also assigned to optimise hydrogen bonds for these residues. 
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F igure 3.2.  Geometr ic  cr i ter ia  for  hydrogen bonds used in HBPLUS, adapted 
from f igure 1 in (McDonald  et  a l .  1994).  D is  the donor heavy atom. H is  
hydrogen, A is  the acceptor heavy atom. DD is  donor antecedent (an atom 
two covalent bonds away from the hydrogen).  AA is  acceptor antecedent.  A l l  
three angles h ighl ighted in the f igure are required to be greater than or 
equal  to 90 degrees to meet the hydrogen bond cr i ter ion. 

 

 PICCOLO CREDO Consensus 

Atom types D, DD, A and AA 

from HBPLUS, 

see Fig 3.2 

Donor and 

acceptor from 

SMARTS queries 

Not possible 

Distance d(D-A) <= 3.9Å 

d(H-A) <= 2.5Å 

d(D-A) <= 3.6Å d(D-A) <= 3.9Å 

Angle a(D-H-A) >= 90 

a(H-A-AA) >= 90 

a(D-A-AA) >= 90 

a(DHA) >= 120 a(DHA) >= 90 

Table 3.2.  Deta i ls  of  the or ig ina l  hydrogen bond ca lcu lat ion in PICCOLO and 
CREDO databases and the consensus achieved. 

 

The initial discrepancy in geometrical criteria used in the two databases 

was resolved. Both databases currently use the same distance and angle 

criteria for hydrogen bonds. However, after these modifications, the 

differences remained and the CREDO hydrogen bond count was greater than 

the PICCOLO hydrogen bond count for the subset studied, as described below. 
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Unfortunately deriving hydrogen bond contacts from PDB files is not a 

trivial task. On the one hand, most structures deposited in the PDB do not 

have hydrogens, therefore algorithms to add them need to be in place taking 

into account the likely uncertainties in the structural models. For example, the 

tautomeric form of histidine and the true positions of the O and N atoms in 

the amide groups of asparagine and glutamine will all depend on their 

environments. In the case of proteins where there is a finite set of building 

blocks, this challenge can be addressed with a high percentage of success 

using algorithms like HBPLUS. However, this is not easily solved for small 

molecules where the diversity and lack of connectivity information for them in 

the PDB files means that a pragmatic approach must be taken. 

 

In PICCOLO, computation of hydrogen bonds between proteins is 

achieved using the aforementioned HBPLUS program, which gives high 

specificity (low rate of false positives). In CREDO, the addition of hydrogens 

and donor-acceptor labelling uses the OEChem toolkit. Due to the difficulty of 

estimating pKa and tautomerism for small molecules in protein environments, 

the calculation of hydrogen bonds is somewhat more generous and less 

specific than that for the protein complexes. In practical terms, comparison 

across databases is not possible for these types of contacts. 

 

3.3.5 Creation of simple contact definitions 

Although consensus has been achieved between CREDO and PICCOLO, 

the issues identified with respect to computation of hydrogen bonds 

prevented full compatibility between the two databases. At this point, three 

options seemed feasible. First, use the OEChem toolkit in PICCOLO to derive 

hydrogen bond contacts. However, this option would be somewhat 

detrimental to PICCOLO and would inevitably lead to its regeneration and the 

maintenance of two parallel versions. In addition, the performance of the 

hydrogen-bond calculations for protein-ligand complexes compared to 

protein-protein complexes is unknown and should be investigated before 
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interpreting any results. The second option was to develop a hydrogen bond 

calculator that was not biased by molecule type. The third was to define 

simple contact definitions that were software and molecule-type independent. 

The pragmatic option chosen was the last due to the time that remained for 

me to complete the project. The first two options could easily be stand-alone 

projects. 

 

Therefore, new tables with simple contacts were generated from the 

existing CREDO and PICCOLO tables. These contacts are simple distance cut-

offs between atom pairs, labelled as polar or apolar depending on which atom 

types constitute the pair. The distance criterion used for all pairs is 4.5Å. The 

selection of this distance is somewhat arbitrary. As mentioned earlier, 

resolutions of the experimental structures analysed are not homogeneous, 

therefore it is best to keep this cut-off consistent and simple across 

comparisons (both for sets of molecules analysed and atomic types). 4.5Å 

was favoured as a compromise between the distances used to define 

hydrophobic (4.5Å) and ionic (4.0Å) contacts in the different databases. Using 

this distance, then, the polar and apolar contacts were defined as follows: 

 

Protein-protein complexes 

Apolar contacts: C…C, C…S, S…S (not in Cys-Cys bridges) 

Polar contacts: N…O, O…O, N…N, O…S, N…S (S from Cys) 

Protein-small molecules complexes 

Apolar contacts: C…C, C…S, C…X, S…X (X = Cl, Br, I) 

Polar contacts: N…O, O…O, N…N, O…S, N…S, N…F, O…F, S…F (S from Cys) 

 

Figure 3.3 shows that, as expected, these simple contacts are less 

specific and introduce false positives. In fact, the majority of the points are 

above the green line of slope = 1, i.e. there is a greater number of simple 

contacts (y axis) than specific contacts (x axis). Nevertheless, there is a 

strong correlation (r value > 0.9, (Townend 2002)) between specific and 

simple apolar contacts, and that dominates the global correlation for the sum 



 

125 

 
3.3 Results and discussion 

 
   

of contacts. However, there is a poor correlation between specific and simple 

polar contacts. This can be explained by two opposing effects. Firstly, simple 

polar contacts do not have the geometric and atom type constraints that 

hydrogen bonds must meet, nor the charge complementarity that is required 

of ionic contacts. Secondly, polar specific contacts such as pi-cation will not 

be considered in the simple polar definition.  

 

 

F igure 3.3.  Scatter  p lots of  spec i f ic  contacts versus s imple contacts for  each 
database and type for  the subset common to both databases.  S imple polar  
and apolar  contacts are d istance cut-of fs  between polar-polar  and apolar-
apolar  atom type as descr ibed in the text .  Spec i f ic  contacts refer to the 
contacts def ined in CREDO and PICCOLO. Hydrogen bond, p i-cat ion and 
ion ic  are cons idered as polar  contacts and hydrophobic is  cons idered as 
apolar .  The green l ine has a s lope = 1 to a id v isua l isat ion. See Table 3.3 for  
deta i ls  of  the l inear corre lat ion.  
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Database Contact type r value P value 

PICCOLO Sum of contacts 0.90 0.00 

Polar  0.65 0.00 

Apolar  0.90 0.00 

CREDO Sum of contacts 0.91 0.00 

Polar  0.72 0.00 

apolar  0.90 0.00 

Table 3.3.  r  and P va lues from l inear corre lat ion ca lcu lat ions between 
spec i f ic  and s imple contacts .  The P va lue has been rounded to zero when P 
< 1E-100. 

 

Although much less specific, these simple contact types can unravel 

patterns in molecular recognition. The number of contacts at the binding 

interface is analogous to the burial of surface area upon binding. Indeed, 

Figure 3.4 shows strong correlation between the number of contacts and the 

buried surface area. This correlation is maintained through polar, apolar and 

sum of contacts with r values of 0.95, 0.90 and 0.94 respectively. All three 

correlations are significant with P values < 1E-100. 

 

 

F igure 3.4.  Scatter  p lots of  bur ied surface area upon b inding and the 
number of  atomic contacts (po lar ,  apolar  and sum of contacts)  for  the 
subset of  complexes common to both databases.  The sum of contacts has 
been ca lcu lated over a l l  interact ing chains for  compar ison with bur ied area.  
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3.4 Conclusions 
PICCOLO and CREDO were created with different research questions in 

mind. They were designed to deal with different types of molecules and 

therefore used different software to parse them. In addition, they are the 

product of PhD projects addressing specific needs to resolve these different 

questions. As a result, a database consolidation step was needed before 

performing any analysis that involved cross comparison of data from the 

different resources. 

 

Detailed analyses of the database generation process and the contact 

definitions led us to reach a consensus in order to unify PICCOLO and CREDO. 

However, there were issues that could not be resolved. PICCOLO does not 

consider non-standard amino acids, and contacts involving them are simply 

not recorded. This in turn allows PICCOLO to use more accurate calculations 

of hydrogen bonds because it deals only with a finite number of atom types. 

In contrast, CREDO covers all residue types occurring in small molecule 

ligands and therefore cannot calculate hydrogen bonds with the same level of 

accuracy. On the other hand, PICCOLO stores inter-chain interactions, 

including assemblies predicted to be biologically relevant, whereas CREDO 

only considers interactions between proteins and ligands from the deposited 

asymmetric unit in the PDB. Inter-ligand interactions are not contemplated in 

CREDO. Furthermore, neither database registers interactions with nucleic 

acids or carbohydrates. 

 

The results of this analysis and the feedback generated using both 

databases has helped Adrian Schreyer, now a post-doc in the group, to define 

a “new CREDO” database that negotiates these issues. The new database 

includes quaternary assemblies and considers interactions between all 

different entities in the PDB: proteins, polypeptides, nucleic acids, 

carbohydrates and other chemical entities. The database also stores 

interactions between the same types of entity; in this way it encloses under 
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one umbrella, protein-protein, protein-nucleic acids, ligand-ligand and so forth. 

It also stores intra-chain interactions for all atoms within a 5Å threshold 

distance, excluding atoms in close contact where the length of the shortest 

covalent bond path between them is less than three. The contact definitions 

are identical regardless of the type of molecules analysed. Hydrogen bonds 

are computed with the OEChem toolkit. This new database will be released in 

the first quarter of 2012. In addition, PICCOLO is maintained to keep the 

higher level of specificity only possible for the subset of protein-protein 

interactions. 

 

Before this new resource is available, simple contact definitions have 

been generated. Although, these contacts are less specific, they allow cross 

comparisons between databases and resemble the measurement of buried 

surface area used in other studies, providing a coarse description of the 

interfaces. These contacts are the ones used in the remainder of this thesis. 
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4.1 Introduction 
In chapter 2 we have seen how the first small molecule inhibitors of 

protein-protein interactions are large, lipophilic and with few polar features. 

As I have discussed in the introduction of this thesis, lipophilic molecules are 

bad news for drug discovery, as they have to overcome more hurdles to 

become safe drugs. This in turn not only increases the cost of development 

but also the probability of failure as drug candidates. It seems natural to ask 

if this size and lipophilicity is a requirement that small molecules need to fill in 

order to bind to protein interfaces. The aim of this chapter is to understand 

how nature effects interactions in order to migrate this knowledge to the 

design of small molecule modulators of biological targets. However, molecular 

recognition laws are far from simple and unravelling their complexity is not 

achievable from representative frozen structures only (van Regenmortel 

1999). Reality is closer to dynamic molecular ensembles living in crowded 

cellular environments, where solvent and local concentrations have a role that 

is difficult to model. In addition, multi-protein complexes present a huge 

diversity of protein-protein interfaces in terms of function, lifetime, size, 

shape, affinity, plasticity and specificity, making it almost impossible to 

establish common rules for all protein-protein complexes in order to translate 

them into the design of small molecules. However, one can elucidate general 

trends of molecular recognition in terms of atomic interactions from the 

experimentally determined structures of natural protein complexes (not only 

multi-protein complexes but also endogenous small-molecule protein 

complexes) and compare them with trends from drug-like small molecule 

protein complexes. In this way, we can guide the design of synthetic 

molecules to resemble better their natural counterparts. 

 

I generated modified versions of our in-house databases derived from 

the PDB (Berman et al. 2000), PICCOLO (Bickerton et al. 2011) and CREDO 

(Schreyer et al. 2009) in order to analyse, in atomic detail, the patterns of 

interactions between the different classes of molecules. With the caveat that 
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data are from static structures instead of the dynamic ensembles, I looked 

into the interaction profiles that characterise different complexes namely: 

protein-protein, protein-natural molecules, protein-small peptides and protein-

synthetic small molecules. Keeping in mind that current drug candidates and 

hits for protein-protein interactions are somewhat too lipophilic to succeed, it 

is appropriate to define these interaction profiles in terms of polar and apolar 

contacts, with the aim of migrating natural patterns into the design of new 

therapeutics. 
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4.2 Methods 

4.2.1 General considerations and filtering 

All subsets of protein coordinates were extracted from two of the in-

house structural databases derived from the PDB: CREDO (protein-ligand 

interactions) and PICCOLO (protein-protein interactions). The PDB holds 

almost 75,000 (August 2011) experimentally determined structures of 

proteins, nucleic acids and complex assemblies. This wealth of data allows 

researchers to investigate the various aspects of molecular folding and 

recognition. However, it also brings the challenges of removing redundancy to 

avoid bias and data curation to minimise the noise. The size of the data held 

requires automated treatment for clustering and data-cleaning procedures. 

The approach applied here has been to minimise the amount of noise in order 

to have cleaner sets of molecules, even when this implies reducing the 

number of structures analysed. 

 

4.2.1.1 Interactions outside of each database scope 

Small molecules and small peptides were identified using the CREDO 

database, protein-protein interfaces were extracted from the PICCOLO 

database. These resources are powerful tools, but they also have limitations 

that have to be taken into account when comparing structures across and 

within databases. 

 

For instance, neither CREDO nor PICCOLO considers interactions with 

nucleic acids. Therefore atomic contacts that ligands or proteins engage with 

nucleic acids are not recorded. A good example of these cases is 1HNX, 30S 

ribosomal subunit in complex with Pactamycin (Figure 4.1) (Brodersen et al. 

2000). This structure has 22 chains, two of which are polyribonucleotide. The 

ligand Pactamycin (PCY, 40 heavy atoms) is interacting mainly with the 

ribosomal RNA (chain A) and a fragment of messenger RNA (chain X), 
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however it is also proximal to protein S7 (chain G) engaging in a single 

hydrogen bond interaction with it. In the same fashion, protein S7 is 

interacting with RNA but it is also proximal to protein S11 (chain K). In this 

case, both CREDO and PICCOLO under estimate the atomic contacts for these 

entities. 

 

 

F igure 4.1.  Structure 1HNX (30S r ibosomal subunit  in complex with 
Pactamycin).  Smal l  molecule l igand (PCY) represented by red spheres.  
R ibosomal RNA in cyan cartoon, f ragment of  messenger RNA in orange 
cartoon. Prote in S7 in b lue cartoon with surface and Prote in S11 in magenta 
cartoon with surface. 

 

The filter applied to avoid these cases was to remove structures that 

contain nucleic acids interacting with proteins, using BIPA database 

(containing 2380 structures from PDB, June 2010). 

 

The same situation can be observed when there is a saturation of 

ligands in the protein crystal or solution. Proximal ligands can interact 

between themselves making atomic interactions that are not recorded in the 

database. For example, 1F6A, Fc fragment of human IgE bound to its 
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receptor (Figure 4.2) (Garman et al. 2000), where five ligands sit between 

two protein chains. 

 

 

F igure 4.2.  B ind ing interface between human immunoglobul in eps i lon chain 
C (IgE-FC in cyan) and i ts  h igh af f in i ty  immunoglobul in eps i lon receptor 
a lpha subunit  (magenta) f rom PDB entry 1F6A. At th is  interface, e lectron 
dens i ty is  a lso observed for f ive molecules of  the CHAPS detergent (only 
stero id heads reso lved, in st ick representat ion with d i f ferent co lour for  each 
CHAPS molecule) .  

 

The filter applied was to remove ligands that share one or more 

residues in the binding site. In CREDO, residues in the binding site are those 

that are within 6.5Å of the ligand. To avoid removal of structures with ligands 

in remote sites not interacting with each other, only residues that are at 4.5Å 

around the ligand are considered as binding site residues. 
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This filter also removed ligands that interact with metal in catalytic 

sites. The CREDO database considers these metals as independent ligands, 

therefore metal interactions with organic ligands are not recorded. An 

example of these cases is depicted in Figure 4.3, where the ligand 

brinzolamide binds to the human carbonic anhydrase II through the catalytic 

Zinc coordinated with 3 histidines (Stams et al. 1998). 

 

 

F igure 4.3.  Structure 1A42, human carbonic anhydrase II  complexed with 
br inzo lamide. Z inc atom is  represented by a b lack sphere,  prote in atoms by 
pa le p ink l ines and br inzo lamide l igand by magenta st icks.  

 

4.2.1.2 Crystallographic interactions 

By definition, PDB shows interactions only within the asymmetric unit, 

defined by the crystallographer, and not those between them in the crystal 

lattice, and therefore these possible interactions are not stored in CREDO. 

Unless one simulates the crystal lattice and recomputes the interactions, there 

is no trivial filter that can be applied to flag these cases. However, it is 

relatively easy to avoid structures where the ligands or proteins seem to be 
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floating in the solvent for this or other reasons. The filter applied to remove 

these situations involving small molecules (example 1T6J, phenylalanine 

ammonia-lyase (Calabrese et al. 2004), Figure 4.4 left) is to keep only those 

structures that have at least twice as many contacts as the number of ligand 

atoms. For structures that have more than one ligand bound to independent 

sites, the ligand with more contacts is kept (example 1T9U, Acriflavine 

resistance protein B (Yu et al. 2005), Figure 4.4 right). 

 

 

F igure 4.4.  Left :  Structure 1T6J,  phenyla lan ine ammonia- lyase with 
carboxyc innamic ac id (magenta spheres).  R ight:  Acr i f lav ine res is tance 
prote in B with C iprof loxac in.  This  molecule (st ick representat ion) b inds into 
two independent s i tes,  the interact ion with more atomic contacts is  kept for  
the analys is .  

 

In the case of protein complexes, the asymmetric unit may or may not 

be the same as the biological assembly (quaternary structure). The protein-

protein interfaces studied here are from the predicted quaternary assemblies 

using the PISA resource from the EBI (Krissinel et al. 2007). Moreover, the 

database stores interactions between pairs of chains of these assemblies. For 

example, in a trimer with chains A, B and C, PICCOLO stores the contacts 

between AB, AC and BC. For this reason, in the set of categorised complexes 

(Obligate and Transient, see 4.2.3.6) only structures that are true dimers are 

kept. An example of a transient complex not considered in the analysis is 

structure 1IS8, composed by 15 protein chains that are the complex of GTP-

cyclohydrolase I (GTPCHI) with its feedback regulatory protein (GFRP) (Maita 

et al. 2002). The transient interaction is between the GTPCHI decamer and 
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the two GFRP pentamers; thus the transient interface is between different 

chains in the PDB.  

 

4.2.1.3 Ligands to remove 

Before selecting complexes for the small molecule sets, entries with 

certain type of ligands were omitted. These included complexes with ligands 

that: 

- Have covalent or metal bonds with proteins 

- Are recognised solvents (initial set from (Hartshorn et al. 2007) and 

manually extended by Adrian Schreyer in CREDO) or have less than 

10 atoms 

- Belong to structures containing nucleic acids 

- Are small molecule inhibitors of protein-protein interactions (from 

TIMBAL) 

- Have alternate locations for the ligands or residues in the interface 

- Resolution of the crystal structures is lower than 3.5Å 

 

4.2.1.4 Identifiers 

For proteins I have used the UniProt identifier (The UniProt 2011), for 

SCOP domains the SCOP family identifier (Murzin et al. 1995) and for small 

molecules the HET identifier (hetID, from the PDB 

[http://www.wwpdb.org/documentation/format23/sect4.html]). HetID is a 

three letter code used in the HETATM entries to group heteroatoms in 

residue-like level. These entries are also known as Het Groups or Chemical 

Components. Ligands can also be composed of more than one hetID, as in 

the case of small polymeric peptides. For these ligands, the list of 

concatenated hetIDs is used as an identifier. 

 

4.2.1.5 Redundancy removal 

For protein-protein interfaces, the non-redundant set in PICCOLO 

(Bickerton 2009; Bickerton et al. 2011) was used. Pairwise interfaces were 
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clustered based on unique UniProt pair identifiers with more than 75% of 

identical residue interacting pairs. This clustering sampled complexes with the 

same constituent proteins but different binding modes. 

 

For small molecules I recorded the number of interacting chains and 

kept entries with distinct ligand names (as hetID or list of hetIDs), UniProt 

identifiers and numbers of interacting chains. When more than one entry had 

the same three identifiers, the one with highest quality score was kept. This 

Qscore was implemented in PICCOLO, for the whole PDB, by Richard 

Bickerton. 

𝑄𝑠𝑐𝑜𝑟𝑒 =  
1

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 0.1− 𝑅!"#$%& × 1− 𝑃𝑀𝑅  

where PMR means proportion of missing residues. Note that this score 

prioritises X-ray structures. Assessment of the redundancy of small molecules 

has been done by unique hetID or list of hetIDs, redundancy at protein level 

by unique UniProt identifier and redundancy of SCOP domains by SCOP family 

identifier. 

 

4.2.2 Contact definitions 

As discussed in chapter 3, software to calculate hydrogen bonds for all 

types of molecules (proteins, nucleic acids and small molecules), with the 

same level of specificity, is not available at the moment. For this reason, 

simple polar and apolar contacts were defined. See 3.3.5 for details. In brief, 

distance criterion used for all pairs is 4.5Å, depending on the atom type of the 

pair, they are labelled as follows: 

Protein-protein complexes 

Apolar contacts: C…C, C…S, S…S (not in Cys-Cys bridges) 

Polar contacts: N…O, O…O, N…N, O…S, N…S (S from Cys) 

Protein-small molecules complexes 

Apolar contacts: C…C, C…S, C…X, S…X (X = Cl, Br, I) 

Polar contacts: N…O, O…O, N…N, O…S, N…S, N…F, O…F, S…F (S from Cys) 
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4.2.3 Subset definitions 

4.2.3.1 Small molecule protein‐protein interactions inhibitors 

Small molecules inhibiting protein complexes were identified using 

TIMBAL. The subset analysed here is composed of the TIMBAL molecules 

present in CREDO. As this subset is small, it was possible to curate manually 

the entries in order to have a clean set. 

 

4.2.3.2 Natural molecules 

Natural small molecules were identified with KEGG (Kanehisa et al. 

2010), HMDB (Wishart et al. 2009), ChEMBL (Gaulton et al. 2011), MGEx 

(pure natural products from AnalytiCon Discovery, http://www.ac-

discovery.com) databases implemented in CREDO. This set contains 

molecules that are flagged as substrate, product or cofactor from KEGG and 

ligands that are labelled as endogenous from the HMDB. Also, natural 

products from MGEx and molecules classified as such in ChEMBL. For the 

ChEMBL natural products, the Openeye OEChem toolkit 

(http://www.eyesopen.com/oechem-tk) was used to find ligands in CREDO 

that were at least 90% similar to them. There was no overlap with the small 

molecules from the previous set. Filters and redundancy removal (described 

in section 4.2.1) were used to produce a non-redundant set of small natural 

molecules interacting with proteins. Further manual classification was 

performed with these molecules based in their chemical structure and 

annotated function, so they were labelled as antibiotics, lipids, natural-

product-like, nucleotides, peptide-like, steroids and sugars. 

 

4.2.3.3 Small peptides 

CREDO includes small peptide ligands up to eight residues long, 

containing both standard and non-standard amino acids. The criterion to 

belong to this set was that at least half of the chemical components (i.e. a 
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HET group or residue) are standard amino acids. Small molecules from the 

previous set were removed to avoid overlap between sets. The same filters 

and redundancy removal were applied here.  

 

4.2.3.4 Drug‐like molecules 

Small molecules in the PDB have been extracted from CREDO, applying 

the same procedure as in chapter 2 (section 2.2.2.1) to select drug-like 

ligands and to filter out small molecules belonging to the previous sets to 

avoid overlap. The same filters and redundancy removal was applied here as 

for previous sets. 

 

4.2.3.5 Approved and oral drugs 

Approved drugs characterised in the PDB were retrieved from the 

implementation of DrugBank (Knox et al. 2011) in CREDO. ChEMBL (Gaulton 

et al. 2011) resource was queried to retrieve oral drugs and Scitegic Pipeline 

Pilot (http://accelrys.com/products/pipeline-pilot/) software was used to find 

the subset of these that are present in CREDO. The same filters and 

redundancy treatment were applied as before. This set is the only one 

allowed to overlap with the other ones. In this way, it was possible to identify 

approved drugs, for instance those that come from natural sources or are 

peptide like. Further manual classification was performed with these 

molecules based on their chemical structure and annotated function, so they 

were labelled as antibiotics, lipids, natural-product-like, nucleotides, peptide-

like, steroids, sugars or nota (none of the above, which captures more 

classical drug-like synthetic molecules). 

 

4.2.3.6 Obligate and transient dimers 

These sets were extracted from PICCOLO. Data were taken from two 

published sets (Zhu et al. 2006) and (Mintseris et al. 2005). Protein 

redundancy was removed using UniProt identifiers for the protein pairs, 
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keeping the structures with the highest Qscore. As discussed previously, only 

true dimeric entries were kept for these sets. Crystal structures with 

resolution higher than 3.5Å have also been removed. 

 

4.2.3.7 Quaternary interfaces 

As discussed in 4.2.1.5 the non-redundant set of protein interfaces has 

been extracted from PICCOLO as described in G.R. Bickerton PhD Thesis 

(Bickerton 2009). In summary, pairwise interfaces with proteins constituted 

by less than 15 amino acid residues are not considered. Also, interfaces in 

which the product of the number of interacting residues in each chain is less 

than 25 are also removed. The remaining pairwise interfaces are clustered 

together where they have the same pair UniProt identifier and more than 

75% of the interface residues are identical. From each cluster the pair with 

the highest Qscore (see 4.2.1.5) is chosen as representative for that cluster. 

Pairwise interacting interfaces have been divided into homo and hetero 

according to whether the proteins in the pair are the same or different 

respectively. Crystal structures with resolution higher than 3.5Å have also 

been removed. 

 

4.2.4 Data representation 

4.2.4.1 Scissors plots 

It has been shown by Olsson et al (Olsson et al. 2008) that molecular 

recognition as a binding event can be studied in terms of polar and apolar 

interactions due to the aqueous environment where biological interactions 

occur. The authors show correlation between binding ΔG and burial of apolar 

surface in the complex formed, due to the more constant contribution of the 

polar interactions. The authors display this observation in a scatter plot 

presenting the polar and apolar buried area versus the total buried area upon 

binding. We call this representation "Scissors plot" (Figure 4.5). I found these 

graphs useful in detecting different interaction patterns between different 
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types of molecules. Domination of apolar contacts present a “scissors open” 

pattern, whereas an increase of polar interactions “closes” the scissors. In 

addition, the way they are constructed imposes interesting trigonometric 

proprieties that are used to compare different graphs. 

 

F igure 4.5.  Example of  a sc issor p lot .  X ax is  represents sum of contacts (as 
polar  + apolar) .  Y ax is  represents the contacts,  apolar  in b lue and polar  in 
red. See text  for  d iscuss ion about these graphs. 

 

Each ligand (or interface) represented in these plots will have two 

points (x,y)a for apolar contacts (blue in Figure 4.5) and (x,y)p for polar 

contacts (red in Figure 4.5). As the sum of contacts is defined as apolar plus 

polar, for each ligand the pair of points will have the same X = Xa = Xp (= Ya 

+ Yp). This confers certain properties to these graphs. First, all points will be 

under the line y = x (green diagonal in Figure 4.5). Secondly, if we applied 

linear regression to each contact type the sum of the slopes will be equal to 1 

and the intercepts at the origin will have the same absolute value with 

opposite signs. This is an important characteristic, as we can compare only 

one of these regression lines across different sets of molecules. In other 
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words, in these plots one regression line determines the other. Demonstration 

of these properties is as follows: 

 

 

 

4.2.4.2 Multiple linear regression 

Scissors plots for different sets of molecules can be compared in terms 

of comparison for only one of the regression lines. I choose to compare the 

apolar contacts versus the sum of contacts across sets due to the consistent 

superior r value in all the sets analysed. I follow the method described by 

Townend (Townend 2002) and the OLS (Ordinary Least Squares) module in 

Python. However the residuals of these regression lines present 

heteroscedasticity, i.e. the residuals versus the independent variable are not 

homogeneously distributed (Figure 4.6). In the case of the scissors plots, the 

residuals are fan shaped and so errors increase with the independent variable. 

When heteroscedasticity is pronounced, the chances of Type I error (rejecting 

true null hypothesis) increases (Osborne et al. 2002). For this reason I have 
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backed up these comparisons with histograms distributing the ratio of polar 

versus sum of contacts  (polar + apolar). 

 

F igure 4.6.  Heteroscedast ic i ty .  Fan shape of  the res iduals  for  the apolar  
regress ion l ine of  the drug- l ike (DL) set .  

 

4.2.4.3 Distribution polar versus sum of contacts 

Another way to compare the interaction characteristics in the different 

sets of molecules is to compare the distribution (with normalised smoothed 

histogram charts) of the ratio of polar contacts with the apolar contacts. This 

ratio is described by the number of polar contacts divided by the total number 

of contacts, as suggested by Dr Will Pitt. In this way, the ratio gives 

normalised proportion of the polar and apolar contacts. For example a ratio of 

0.4 means 40% of the contacts are polar and 60% apolar. As some of these 

histograms are not normal distributions, non-parametric tests are used for 

comparison. The Kolmogorov-Smirnov test was used for this purpose and the 

Kruskal-Wallis test for comparison of medians. I used the stats Python module 

(Jones et al. 2001 - ). 
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4.2.4.4  Bar  charts  of  the  polar/sumContacts  ratio  binned  by  sum  of 

contacts 

These graphs show the mean and standard errors of the polar versus 

sum of contacts ratio binned by sum of contacts. For clarity, only contacts up 

to 300 are shown, as that is the maximum number of contacts for small 

molecules. Sum of contacts is polar + apolar contacts. 

 

4.2.4.5 Contour plots 

Dr Will Pitt has developed these charts. They show a scatter plot of 

ratio of polar contacts by sum of contacts versus the sum of contacts in the X 

axis; superimposed with the population of each grid square (10 x 0.1) in the 

scatter plots. This population is represented by a heat map (red to blue), with 

contour lines in a similar fashion to the contour lines of a topographic map 

showing elevation. 

 

4.2.4.6 Molecular properties 

The number of rotatable bonds and the number of heteroatoms for the 

small molecule subsets were calculated with Scitegic Pipeline Pilot 

(http://accelrys.com/products/pipeline-pilot/). 

 

4.2.4.7 Bar charts of matched and unmatched atoms 

For each subset, the polar and apolar atoms within 4.5Å of the 

interacting parts, i.e. small molecule-protein or protein-protein, are 

considered. Then, I record how many of these atoms are engaged in polar 

and apolar interactions, respectively. These graphs represent first, the mean 

and standard error of the percentage of matched atoms (within 4.5Å radius, 

polar atoms doing polar interactions in red and apolar atoms doing apolar 

interactions in blue) for both binding partners. Secondly, they represent the 

mean and standard error of the percentage of unmatched atoms (within 4.5Å 
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radius, polar atoms not making polar contacts in red and apolar atoms not 

making apolar contacts in blue) for both binding partners.   

 

4.2.4.8 Buried surface area calculation 

For the small molecule sets, PyMOL (http://www.pymol.org/) has been 

used to calculate the surface area of the unbound protein, unbound ligand 

and the complex protein-ligand. In this way, the buried surface area was 

calculated as follows (sa stands for surface area, psa polar surface area and 

asa apolar surface area): 

Buried_sa  = (protein_sa + ligand_sa – complex_sa ) / 2 

Buried_psa  = (protein_psa + ligand_psa – complex_psa ) / 2 

Buried_asa  = (protein_asa + ligand_asa – complex_asa ) / 2 

Polar surface area for the ligand is calculated from atoms N,O and F. In the 

protein side, polar surface area is calculated considering N and O atoms and S 

from cysteine not involved in disulphide bonds. Apolar surface area for the 

ligand is from atoms C, S, Cl, Br and I. In the protein side, apolar surface 

area is from C and S from methionine. 

 

4.2.5 Hann’s complexity model 

This refers to a theoretical model than Mike Hann and co-workers 

developed at GlaxoSmithKline in 2001 (Hann et al. 2001). I summarise it here 

for its relevance to the results of this chapter. 

   

Although High Throughput Screening (HTS) was widely popular in the 

90's, the in-house collections of pharmaceutical companies have often proved 

insufficient and too costly for the identification of initial hits for lead-

development programs. In a seminal paper Hann and colleagues (Hann et al. 

2001) showed how molecular complexity works against the chances of finding 

a hit in a biological assay. This analysis is widely considered to provide the 
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theoretical background that identifies the limitations of HTS and supports a 

fragment-based approach. 

 

The authors elaborated a simple model to describe the binding event 

as a match of all ligand features with the features of the surface of the 

receptor. Ligand and receptor features are conceptually reduced to +/- 

localized recognition points where a + ligand needs to match a – in the 

receptor. In this way one can calculate the probability of a binding event for a 

randomly chosen ligand of a particular size (accounted as number of features) 

within a given active site described by a finite number of points or features. 

This probability is computed by enumeration of all possible configurations of 

ligand and active site and considering the binding event as a complete match 

of all the ligand recognition points with those of the receptor. For a given 

active site, this probability can be plotted against the number of ligand 

features (as a measure of complexity). Although this model is simple and 

takes into account neither the molecular flexibility that may lead to structural 

reorganisation upon binding, nor the uneven distribution of binding energy at 

the receptor interface, it clearly shows how the chances of finding a matching 

molecule decrease as the complexity of the molecule increases. 

 

Having very simple molecules reduces the likelihood of actually 

achieving measurable binding events. In addition, low complexity ligands can 

have multiple binding modes. Although a small number of features are easier 

to match in the active site, they might not give sufficient affinity for binding to 

be experimentally detected in a biological assay. Therefore, there is an 

“optimal” complexity that balances the chances of having a perfect fit 

between ligand and receptor, and enough interactions to reach a detectable 

binding. 

 

However, complexity is a relative concept rather than a calculable 

property. Although one can estimate complexity in many different ways (e.g. 

molecular weight, fingerprints), the precise values that would optimise the 
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chances of having a binding ligand and the ability of measuring it, would 

depend on the system being studied and the assays employed. 
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4.3 Results 

4.3.1 Data sets 

I extracted from CREDO database non-redundant sets of protein-ligand 

complexes classified by the type of small molecule involved: drug-like, 

approved non-oral and oral drugs, protein-protein interactions inhibitors, 

natural small molecules and small peptides. For each group, bias was 

assessed in terms of distinct proteins (by unique UniProt), distinct fold (by 

unique SCOP family) and distinct small molecules (by unique hetID). These 

more restricted sets (unique by UniProt, SCOP families or small molecules) 

presented the same trends as the non-redundant groups. Therefore the 

statistical analysis has been carried out with the bigger non-redundant-by-

complex set of interactions. Affinity data from the PDBBind (Wang et al. 

2004) implementation in CREDO was included in these sets when available. 

From PICCOLO database I extracted non-redundant sets of protein complexes 

as obligate dimers, transient dimers, homo and hetero pairwise interfaces 

from quaternary assemblies, as shown in Table 4.1, which summarises the 

number of entries of each set. PDB codes for each subset are available to 

download at: 

http://www-cryst.bioc.cam.ac.uk/members/alicia 
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Set Unique by 
Complex 

Unique UniProt Unique SCOP 
families 

Drug-like 1,525 (1,206) 518 (385) 165 (143) 

Approved drugs 201 (95) 155 (76) 67 (46) 

Oral drugs 134 (68) 93 (49) 24 (19) 

Protein-protein 

interaction 

inhibitors 

30 (25) 9 (9) 7 (7) 

Natural 

molecules 
1505 (283) 1159 (216) 346 (134) 

Small peptides 557 (467) 288 (238) 98 (83) 

Obligate  

dimers 
161 161 293 

Transient 

dimers 
154 154 183 

Homo 

quaternary 

interfaces 

12,034 7,177 2,711 

Hetero 

quaternary 

interfaces 

2,271 1,709 897 

Protein-protein 

complexes SM 

inhibited 

15 15 13 

Table 4.1.  Number of  entr ies in each set  of  molecules.  The non-redundant 
sets are cons ider ing non-redundant set  of  interact ions for  the complexes 
(prote in- l igand or prote in-prote in interact ion).  From these sets I  removed 
prote in redundancy by se lect ing unique UniProt  ident i f iers  and removed 
structura l  domains redundancy by se lect ing unique SCOP fami l ies.  Numbers 
in parenthes is  are the number of  unique smal l  molecules in each set .  
Numbers for  unique UniProt  and SCOP fami l ies for  prote in complexes refer 
to d ist inct  pa irs  of  UniProt  ident i f iers  or  SCOP fami ly  respect ive ly .  See 
Methods for  deta i ls .  
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The generation of these molecular subsets, mainly for the small 

molecules, has been an iterative trial-and-error exercise. As discussed in the 

general considerations and filtering (4.2.1 section of this chapter), the vast 

amounts of data available compel researchers to use automated filters and 

selection protocols, which are not perfect. For example, ligands covalently 

bound to proteins are removed. However, covalent contact is defined in 

CREDO when the distance between two atoms is less than or equal to the 

sum of their covalent radius (defined by the Cambridge Crystallographic Data 

Centre (CCDC), this is a really accurate measure that sometimes outperforms 

the data in the PDB). Example: PDB entry 1FCN (Patera et al. 2000), the 

ligand Loracarbef is covalently acylated to serine 61 in chain A, the distance 

reported between the carbon of the ligand and the serine oxygen is 1.46Å 

whereas the sum of covalent radii (CCDC) for O-C is 1.36Å. On the other 

hand, data in some cases show a certain degree of ambiguity, for example 

the definition of “natural product” is somewhat variable within the community. 

By the same argument, “drug-like molecule” classification is not unequivocal; 

it is more a continuous “likeness” property without rigorous thresholds. 

Furthermore, the emerging new targets have forced debate about what it 

takes to be a drug (Macarron et al. 2011). In other cases, the annotation 

seems to be accurate and straightforward but misinterpretation occurs 

nevertheless. For example, the case of the “citrate anion”, a common buffer 

to maintain neutral pH in experimental conditions and therefore a common 

ligand in the PDB. Due to its size (13 atoms), this ligand can be easily labelled 

as an oral drug, as lithium citrate (or carbonate) is commonly used to treat 

depression. However, the active ingredient is the lithium, not the counter 

anion. 

 

4.3.1.1 Small molecule protein‐protein interaction inhibitors 

Small molecule inhibitors of protein-protein complexes were identified 

using TIMBAL. Visual inspection of the 39 PDB entries stored in TIMBAL 

yielded 28 non-redundant protein-small molecule complexes. Entries with 
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non-biological contacts were removed, example 1PW6 (Thanos et al. 2003), 

Figure 4.7. Figure 4.8 shows examples of chemical structures from this set. 

 

 

F igure 4.7.  PDB 1PW6, crysta l  s tructure of  IL-2 bound to inh ib i tor  SP2456. 
This  entry was not cons idered for the non-redundant subset of  inh ib i tors of  
prote in-prote in interact ions because the smal l  molecule ( in st ick 
representat ion, green and ye l low) interacts with i tse l f  in  the crysta l  pack ing. 
Note these are ident ica l  molecules packed in the asymmetr ic  unit .  
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F igure 4.8.  Examples of  chemica l  s tructures of  the smal l  molecules inh ib i t ing 
prote in-prote in complexes.  Each structure is  labe l led with the prote in 
complex i t  inh ib i ts .  

 

4.3.1.2 Natural molecules 

Natural small molecules in this set are: 

• Ligands flagged as substrate, product or cofactor from KEGG 

• Ligands labelled as endogenous from the HMDB 

• Natural products from MGEx 

• Ligands that are a least 90% similar to small molecules classified in 

ChEMBL as natural products 

 
Filters and redundancy removal yielded 1,505 non-redundant 

complexes between natural small molecules and proteins, from which there 

were only 283 distinct small molecules. Figure 4.9 shows that half of this non-

redundant subset of interactions was composed of eight nucleotide small 

molecules: ADP, NAD, NAP, ATP, AMP, FAD, SAH and COA. This redundancy 

and the chemical composition are taken into account in the discussion. For 
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example, all of these eight molecules have sugar rings and all but SAH (S-

adenosyl-l-homocysteine) have phosphates, therefore these molecules have a 

high content in heteroatoms. 

 

 

F igure 4.9.  D istr ibut ion of  the natura l  smal l  molecule subset in terms of 
entr ies per chemica l  s tructure of  the smal l  molecule bound to prote in.  Only 
h igher f requency entr ies are labe l led for  c lar i ty .  Note more than hal f  of  the 
subset is  composed of the complexes with e ight d i f ferent molecules: ADP, 
NAD, NAP, ATP, AMP, FAD, SAH and COA. 

 

This diverse set of molecules was classified as antibiotics (13 chemical 

structures), lipids (13 chemical structures), natural- product-like (72 chemical 

structures), nucleotides (104 chemical structures), peptide-like (16 chemical 

structures), steroids (37 chemical structures) and sugars (28 chemical 

structures). Figure 4.10 shows an example of chemical structures from each 

category for this set. 
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F igure 4.10. Examples of  chemica l  s tructures in the natura l  molecules set .  
Labels  correspond to the manual  c lass i f icat ion based in the ir  s tructures and 
funct ions,  so these molecules are categor ised into natura l  product l ike,  
pept ide l ike,  stero id l ike,  sugar l ike,  l ip id l ike,  ant ib iot ic  l ike and nuc leot ide 
l ike.  

4.3.1.3 Small peptides 

This subset includes short peptides of up to eight residues. These 

residues can be standard and non-standard amino acids as well as any other 

residue type, as long as at least half of them are standard amino acids. 

Examples of molecules in this subset can be seen in Table 4.2. 

PDB Chain id Residue list Std_aa/ 
length 

2IFR B ACE-PHE-LYS-PHE-TA2-ALA-LEU-ARG 6/8 

1BZH I ASP-ALA-ASP-GLU-FLT-LEU-AEA 5/7 cyclic 

2FNX P VAL-ILE-ALA-LYS 4/4 

1CE1 P GLY-THR-SER-SER-PRO-SER-ALA-ASP 8/8 

Table 4.2.  Examples of  l igands in the smal l  pept ide set .  Last  co lumn refers 
to the rat io of  number of  standard amino ac ids by the tota l  res idue length of  
the l igand. 
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4.3.1.4 Drug‐like molecules 

As discussed before, drug-likeness is not a precise definition. In order 

to avoid overlapping, molecules of this set have been selected from the PDB 

after extracting the small molecules from the previous sets. Therefore, this 

drug-like set comprises mainly synthetic man-made molecules. The molecular 

property thresholds applied here are somewhat loose, for instance the 

molecular weight cut-off is 900. The reason for these broad filters is to be 

able to compare like to like with the small molecules inhibiting protein-protein 

complexes (molecular weight range: 150-815Da). Molecules in this set have 

passed the following filters: 

• Not in the ligands to remove set (section 4.2.1.3) 

• Not in the small molecule inhibitors of protein-protein complexes, 

natural molecules or small peptides sets 

• At least one carbon atom and one ring, composed only by carbon, 

nitrogen, oxygen, sulphur, halogen and chains no longer than six 

sp3-CH2 

• Not similar to nucleotide analogues or detergents 

 

Figure 4.11 shows the chemical diversity of this set and the fine line 

between definitions, for example ligand MVB could be selected as natural 

molecule and ligand 8PP as lipid-like one. 
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F igure 4.11. Examples of  chemica l  s tructures in the drug- l ike subset.  
Molecules are labe l led with the ir  hetID (res idue) ident i f ier  f rom the PDB. 
L igand 8PP is  depicted here as an extreme example of  the resu lt  of  the 
broad f i l ters appl ied to se lect  these molecules.  

 

4.3.1.5 Approved and oral drugs 

Molecules from this set were selected from the classification in 

DrugBank as approved drugs and from the classification in ChEMBL as oral 

drugs. However, molecules in the approved set can have any administration 

route, including oral. The same categorization applied to the natural molecule 

set was also done here. In this way, the drug set can be subdivided into 

antibiotics (25 chemical structures), lipids (two chemical structures), natural-

product-like (29 chemical structures), nucleotides (six chemical structures), 

peptide-like (10 chemical structures), steroids (14 chemical structures), 

sugars (six chemical structures) and nota, none of the above (65 chemical 

structures). Figure 4.12 shows an example of chemical structures from each 

category for this set. It is worth noticing that the complexes studied are not 

necessarily the ligand drug with its intended target. For example, in PDB 2BXF 
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(Ghuman et al. 2005) Diazepam (Valium, positive allosteric modulator of 

GABAA receptor) is bound to human serum albumin. Furthermore, the 

“approved drug” label also comprises molecules like Thiamin (vitamin B1, 

example of natural-product-like in Figure 4.12) or Ascorbic acid (vitamin C, 

example of sugar-like in Figure 4.12). There are also cases of molecules that 

were marketed but were later withdrawn, for example Bextra (Valdecoxib, 

example of nota in Figure 4.12). All these data are not easily accessible, 

either stored in a standardised manner, however molecules in this set were 

kept as models of small molecules that successfully made their way into the 

body with a therapeutic effect. 

 

In terms of the size, it is worth remembering that molecules with less 

than 10 atoms have been removed from all sets. However, there are 

approved drugs that small. For example, guanidine with four atoms is an 

approved oral treatment of myasthenia (DrugBank ID DB00536), or dimethyl 

sufoxide, also with four atoms, is a common solvent but also an approved 

topical analgesic (DrugBank ID DB01093). Nevertheless, the filter of a 

minimum of 10 atoms has been maintained even for this set, as such small 

molecules are more common as additives in the experimental solutions than 

as biologically relevant entities. 
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F igure 4.12. Examples of  chemica l  s tructures in the approved and ora l  drugs 
set .  Labels  correspond to the manual  c lass i f icat ion based on the ir  s tructures,  
so these molecules are categor ised into natura l  product l ike,  pept ide l ike,  
stero id l ike,  sugar l ike,  l ip id l ike,  ant ib iot ic  l ike,  nuc leot ide l ike and none of  
the above (NOTA). 

 

4.3.1.6 Protein‐protein sets 

No further classification has been done in the protein sets. In this 

study, only protein interfaces are considered regardless of their function, or 

which constituents form the complex, for example antigen-antibody, enzyme-

inhibitor or protein-receptor. The only categorization used refers to the 

lifetime of the complexes: obligate and transient dimers from the publicly 

available sets ((Zhu et al. 2006) and (Mintseris et al. 2005)). These were 

small sets (315 entries with both dimer classes), but were kept in order to 

capture any difference in binding pattern, such as transient complexes are 

more likely to be targeted by a small molecule drug. On the other hand, the 

general non-redundant set of protein-protein interfaces was considered from 

PICCOLO, from the quaternary structures predicted by PISA (Krissinel et al. 
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2007). These interfaces were further divided into hetero- (different proteins) 

and homo- (same protein interacting). 

 

4.3.1.7 Resolution dependency 

Crystal structures used in this study have a resolution of at least 3.5Å 

or better. Figure 4.13 shows that there is no dependency of the polar ratio of 

the atomic contacts with the resolution of the crystal structures. Furthermore, 

it also shows that the majority of the complexes studied have a resolution 

around 2Å, as structures with a better quality score, Qscore (section 2.1.5) 

have been prioritised. 

 

 

F igure 4.13. Resolut ion versus rat io of  po lar  contacts as (polar/[polar  + 
apolar])  for  the prote in-smal l  molecule complexes ( le f t)  and for the prote in-
prote in complexes (r ight) .  Contour leve ls  show the dens i ty of  po ints in the 
graphs, where red denotes h igh dens i ty and pale b lue low dens i ty .  

 

4.3.2 Polarity of the interactions 

Following Olsson and co-workers (Olsson et al. 2008), who studied the 

binding between small molecules and proteins from the Scorpio database 

(ITC data) in terms of polar and apolar proportion of buried surface area 

upon binding, I have based comparisons between different sets of molecules 

on the extent of polar and apolar atomic contacts that they make. See 4.2.2 
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for the definition of these contacts. As seen in chapter 3, this discrete count 

of atomic interactions resembles the measurement of buried surface area 

used in other studies, providing a coarse description of the interfaces. Figure 

4.14 shows the linear correlation of the buried surface area and the number 

of contacts for all the small molecules used in the analysis. Table 4.3 shows 

the r and P value for each subset and contact type. In all cases there was 

significant linear correlation between the surface area buried upon binding 

and the atomic contacts the small molecule made with the protein. For all 

cases, r value was 0.8 which shows a medium-strong correlation between the 

data (Townend 2002). 

 

 

F igure 4.14. Scatter  p lot  of  bur ied surface area upon b inding and the 
number of  atomic contacts (po lar  and apolar)  the smal l  molecules made. 
Po ints are from a l l  smal l  molecule sets:  drug- l ike,  approved drugs,  ora l  
drugs,  prote in-prote in interact ion inh ib i tors ,  natura l  molecules and smal l  
pept ides.  
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Subset Contact type r value P value 

Drug-like 

all 0.82 0.00 

polar 0.85 0.00 

apolar 0.82 0.00 

Approved drugs 

all 0.79 3.86E-45 

polar 0.83 4.36E-53 

apolar 0.76 4.11E-39 

Oral drugs 

all 0.89 1.04E-67 

polar 0.85 1.37E-56 

apolar 0.90 1.54E-73 

Protein-protein 

interaction 

inhibitors 

all 0.84 2.03E-08 

polar 0.89 1.52E-10 

apolar 0.81 1.34E-07 

Natural 

molecules 

all 0.85 0.00 

polar 0.91 0.00 

apolar 0.81 0.00 

Small peptides 

all 0.79 0.00 

polar 0.84 0.00 

apolar 0.73 8.77E-93 

All (Figure 4.14) 

all 0.82 0.00 

polar 0.90 0.00 

apolar 0.82 0.00 

Table 4.3.  r  and P va lues from l inear corre lat ion ca lcu lat ions between bur ied 
surface upon b inding and number of  atomic contacts smal l  molecules make 
with prote ins.  P va lue has been rounded to zero when P < 1E-100. 

 

4.3.3 More polar interactions in natural subsets 

For each set of molecules, plotting the sum of contacts versus either 

the polar or apolar contacts generates the 'scissors plot' (see Methods for 

details). In these graphs, the openness of the trend lines gives the ratio of 

polar versus apolar contacts. Figure 4.15 shows the scissors plots for the 
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drug-like and PPI inhibitors (scissors open), natural small molecules (scissors 

closed) and small peptides and protein complexes (scissors half way). For the 

drug-like molecules, these plots show that molecular interactions are 

dominated by apolar contacts, whereas the polar contacts remain somewhat 

constant with the increase of ligand size (which correlates with sum of 

contacts). Similar conclusions were reached by Olsson and co-workers in their 

analysis of the SCORPIO database (Olsson et al. 2008). It is more pronounced 

in small molecules inhibiting protein-protein interactions as we have seen in 

chapter 2. On the other hand, natural small molecules, small peptides and 

protein complexes present a different trend where the polar interactions play 

a larger role. One aspect of this may be that evolutionary processes have 

produced a better fit than achieved by medicinal chemists. But more 

importantly, endogenous molecules have not been constrained to be 

absorbed or transported in the circulation or across membranes into cells of 

other living organisms. On the other hand, it is now recognised that medicinal 

chemists have tended to increase lipophilicity to gain potency (van de 

Waterbeemd et al. 2001; Leeson et al. 2007; Hann 2011). Interestingly, the 

lower part of the graphs, i.e. smaller molecular size (fragments), present a 

more balanced ratio between polar and apolar contacts. Firstly, this result 

agrees with Hann complexity model (Hann et al. 2001), where it is easier for 

a smaller molecule to match target features; and secondly, it also supports 

the strategy of fragment-based drug design where the initial fragments 

anchor in the site with specific interactions (Congreve et al. 2008) and deliver 

less lipophilic hits (Keserü et al. 2009). Natural molecules have a bimodal 

distribution as shown in Figure 4.15 (D and E) and Figure 4.16 (A); this is due 

to the presence of steroid-like molecules presenting an apolar profile, while 

the rest follow a polar trend. To evaluate whether the high proportion of polar 

contacts is because many of the natural molecules have phosphate groups, 

Figure 4.15 (E) shows the scissors plot for the subset of natural molecules 

without phosphorus. The graph has fewer points, but the trends are the same, 

and the bimodal distribution is maintained. 
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F igure 4.15. Sc issors p lots for  the non-redundant-by-complex (tab le 1) sets 
of  prote in complexes.  A: drug- l ike smal l  molecules bound to prote ins.  B: 
Prote in-prote in interact ions smal l  molecule inh ib i tors bound to prote ins.  C: 
Smal l  pept ides bound to prote ins.  D: Natura l  smal l  molecules bound to 
prote ins.  E: Natura l  smal l  molecules without conta in ing phosphor bound to 
prote ins.  F:  Trans ient prote in-prote in d imers.  G: Obl igate prote in-prote in 
d imers.  H: Homo prote in-prote in interfaces from quaternary structures.  I :  
Hetero prote in-prote in interfaces from quaternary structures.  Po lar  (red) 
and apolar  (b lue) contacts are scattered against  sum of contacts .  Deta i ls  of  
the regress ion l ines for  each graph and contact  type can be found in Table 
4.4.  
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Subset Type Slope Intercept R value P value angle 
Drug-like polar 0.09 5.87 0.38 4.73E-53 5 
Drug-like apolar 0.91 -5.87 0.97 0.00 42 
PPI inh polar 0.07 2.57 0.44 1.45E-02 4 
PPI inh apolar 0.93 -2.57 0.99 2.93E-24 43 
Small pep polar 0.27 2.61 0.77 0.00 15 
Small pep apolar 0.73 -2.61 0.96 0.00 36 
Nat mol polar 0.37 4.04 0.73 0.00 21 
Nat mol apolar 0.63 -4.04 0.87 0.00 32 
Nat mol -P polar 0.20 5.44 0.46 1.15E-24 11 
Nat mol -P apolar 0.80 -5.44 0.91 0.00 39 
Transient polar 0.31 -1.92 0.92 2.41E-65 17 
Transient apolar 0.69 1.92 0.98 0.00 35 
Obligate polar 0.25 5.04 0.94 1.42E-75 14 
Obligate apolar 0.75 -5.04 0.99 0.00 37 
Homo interf polar 0.24 2.20 0.92 0.00 14 
Homo interf apolar 0.76 -2.20 0.99 0.00 37 
Hetero interf polar 0.24 3.17 0.92 0.00 13 
Hetero interf apolar 0.76 -3.17 0.99 0.00 37 
Table 4.4.  L inear regress ion deta i ls  for  each subset and contact  type in 
F igure 4.15. Subsets:  Drug- l ike,  PPI inh (prote in-prote in interact ions 
inh ib i tors) ,  Nat mol (natura l  molecules) ,  Nat mol –P (natura l  molecules that 
do not conta in phosphor) ,  Smal l  pep (smal l  pept ides),  Obl igate (obl igate 
d imers),  Trans ient ( t rans ient d imers),  Homo interf  (homo quaternary 
interfaces),  Het interf  (hetero quaternary interfaces).  Angle co lumn denotes 
the angle that the regress ion l ine makes with the X ax is ,  i t  is  a t rans lat ion 
of  the s lope into degrees.  P va lue has been rounded to zero when P < 1E-
100. 

 

In order to define the statistical significance of these plots Multiple 

Linear Regression (MLR using OLS, Ordinary Least Squares) was used 

between the apolar regression lines of each set. In addition, the distribution 

of polar/apolar contact ratio (normalised as polar/[polar+apolar]) between 

sets was analysed with non-parametrical tests, as not all the sets have normal 

distribution of the contact ratio. This was done to minimise Type I error 

(concluding there is a significant difference when there is not) due to the 

heteroscedasticity of the residuals of the regression lines in the scissors plots. 

See Methods section for details. Table 4.5 summarises the comparisons 

across all data sets. Figure 4.16, Figure 4.17 and Figure 4.18 show 

comparison of the distribution of polar/sumContacts ratio for selected subsets. 
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  App 
drugs 

Oral 
drugs 

PPI 
Inh 

Nat 
mol 

Nat 
mol -P 

Small 
pep 

Drug-like -0.03 0.00 0.06 -0.29 -0.14 -0.15 
App drugs  0.04 0.09 -0.26 -0.11 -0.11 
Oral drugs   0.05 -0.30 -0.15 -0.15 
PPI inh    -0.35 -0.20 -0.20 
Nat mol     0.15 0.15 
Nat mol -P      0.00 

 

  Obligate Transient Homo 
interf 

Hetero 
interf 

PPI inh by 
SM  

Drug-like -0.13 -0.16 -0.12 -0.12 -0.07 
App drugs -0.09 -0.12 -0.08 -0.08 -0.03 
Oral drugs -0.13 -0.16 -0.12 -0.12 -0.07 
PPI inh -0.18 -0.21 -0.17 -0.17 -0.12 
Nat mol 0.17 0.13 0.17 0.18 0.22 
Nat mol –P 0.02 -0.01 0.03 0.03 0.08 
Small pep 0.02 -0.01 0.03 0.03 0.08 
Obligate 

 
-0.03 0.01 0.01 0.06 

Transient   0.04 0.04 0.09 
Homo interf 

   
0.00 0.05 

Hetero interf     0.05 
Table 4.5.  D i f ferences in medians of  the contact  rat ios (polar/[polar  + 
apolar])  between the d i f ferent sets of  molecules (row - co lumn). Table is  
d iv ided in two for c lar i ty .  Subsets:  Drug- l ike,  App drugs (approved drugs 
inc lud ing ora l) ,  Ora l  drugs,  PPI inh (prote in-prote in interact ions inh ib i tors) ,  
Nat mol (natura l  molecules) ,  Nat mol –P (natura l  molecules that do not 
conta in phosphor) ,  Smal l  pep (smal l  pept ides),  Obl igate (obl igate d imers),  
Trans ient ( t rans ient d imers),  Homo interf  (homo quaternary interfaces),  Het 
interf  (hetero quaternary interfaces),  PPI inh by SM (prote in-prote in 
interfaces inh ib i ted by smal l  molecules) .  Va lues in bo ld denote s ign i f icant 
d i f ferences in medians (P<0.05).  Note both subsets of  PPI SM Inhib i tors and 
PPI SM Inhib i ted are smal l  (28 and 15 respect ive ly);  they are inc luded for 
the except ional  ins ight these cases present rather than the ir  s tat is t ica l  
s ign i f icance. 

 

Values in Table 4.5 are the difference in medians of the ratio 

polar/sumContacts for each subset. Drug-like molecules bound to proteins 

present on average less polar contacts than the other sets, with the exception 

of the PPI inhibitors that have more apolar contacts. Approved and oral drugs 

analysed here present the same interaction profile as drug-like molecules. 

The group with more polar contacts on average is the natural molecules. 

When molecules containing phosphorus are removed from the natural set, the 
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average polar contacts decreases 15%, nevertheless this is the set that 

engages the most polar interactions. Amongst protein oligomers, the 

quaternary interfaces present the same profile for homo and hetero interfaces, 

which is similar to the subset of obligate dimers, whereas the transient dimers 

are slightly (3-4% on average) more polar (in agreement with previous 

findings (Nooren et al. 2003)) and more similar to the subset of small 

peptides. Interestingly, the small subset of protein-protein complexes 

inhibited by small molecules shows a trend that is similar to other protein 

complexes. However, the small molecules inhibiting them present a more 

apolar profile than the drug-like molecules. 

 

 

F igure 4.16. Normal ised d istr ibut ions of  the rat io of  po lar  contacts 
(represented by polar/[polar+apolar]) ,  each chart  compares drug- l ike 
against  the others.  A: drug- l ike versus natura l  smal l  molecules with and 
without phosphor.  B: drug- l ike versus approved and ora l  drugs.  C: drug- l ike 
versus smal l  pept ides,  ob l igate and trans ient prote in-prote in d imers,  homo 
and hetero quaternary prote in-prote in interfaces.  D: drug- l ike versus PPI 
inh ib i tors .  
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Figure 4.16 is a graphical representation of the data discussed in the 

previous paragraph. Drug-like molecules and drugs bound to proteins have, 

with the small molecules inhibiting PPI (in magenta, chart D), the most apolar 

interaction profile. All the other distributions are shifted to the right (more 

polar interactions) with respect to these. In chart A, Figure 4.16, the 

distribution of the natural molecules (in purple) is dominated by nucleotides 

with high content of phosphates, this distribution has 44% of polar contacts 

on average (median). When phosphor-containing molecules are removed 

from this set, the bimodal distribution seen in the scissors plots emerges 

again; natural molecules can engage few polar contacts (for example 

steroids) or many (for example heteroatom-rich molecules). In chart B, Figure 

4.16 the distributions of the approved and oral drugs are virtually identical of 

the drug-like. In chart C, Figure 4.16 the small peptide and protein oligomer 

sets have similar distributions, less polar than natural molecules but more 

polar than synthetic drug-like molecules. 
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F igure 4.17. Compar isons of  po lar/sumContacts rat io means, b inned by sum 
of contacts (po lar+apolar) ,  each chart  compares drug- l ike against  the others.  
A: drug- l ike versus approved and ora l  drugs.  B: drug- l ike versus PPI 
inh ib i tors .  C: drug- l ike versus smal l  pept ides.  D: drug- l ike versus natura l  
molecules.  E: drug- l ike versus natura l  molecules without phosphor.  F:  drug-
l ike versus trans ient prote in-prote in d imers.  G: drug- l ike versus obl igate 
prote in-prote in d imers.  H: drug- l ike versus homo quaternary prote in-prote in 
interfaces.  I :  drug- l ike versus hetero quaternary prote in-prote in interfaces.  
Error bars denote the standard error of  the mean. 

 

Figure 4.17 looks at the same ratio of polar versus sum of contacts, 

but it is binned by sum of contacts. With this representation, it becomes clear 

that the molecules engaging more polar contacts, for example in the drug-like 

set have fewer contacts overall and they are generally smaller molecules. This 

effect is more pronounced in the small molecule inhibitors of protein 

interfaces. A similar situation occurs with natural molecules without 

phosphorus, the polar proportion of contacts decreases with ligand size. This 

becomes more evident in Figure 4.18, where the upper right quadrant of the 

nine charts is empty. In these graphs (Figure 4.18), the proportion of polar 

contacts (Y axis) decreases with molecular size (X axis as sum of contacts). 
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This result can be justified in terms of the Hann’s complexity model (Hann et 

al. 2001), the chances of matching at the same time different polar 

interactions decreases with the number of interactions to match. Furthermore, 

the flexibility required to match many different specific interactions goes 

against spontaneous binding due to entropic penalty.   

 

 

F igure 4.18. Rat io of  po lar/(polar+apolar)  versus sum of contacts 
(po lar+apolar) .  Contour leve ls  show the dens i ty of  po ints in the graphs, 
where red denotes h igh dens i ty and pale b lue low dens i ty .  The b lack l ine in 
a l l  the graphs goes between 0.9 rat io to 200 sum of contacts to have the 
same reference to a id compar ison between sets.  A: drug- l ike smal l  
molecules bound to prote ins.  B: Approved and ora l  drugs bound to prote ins.  
C: Smal l  pept ides bound to prote ins.  D: Natura l  smal l  molecules bound to 
prote ins.  E: Natura l  smal l  molecules without conta in ing phosphor bound to 
prote ins.  F:  Trans ient prote in-prote in d imers.  G: Obl igate prote in-prote in 
d imers.  H: Homo prote in-prote in interfaces from quaternary structures.  I :  
Hetero prote in-prote in interfaces from quaternary structures.  For c lar i ty ,  
graphs for  prote in-prote in complexes are p lotted up to 600 contacts only.  

 

The analyses shown in Table 4.5 and Figure 4.15, Figure 4.16, Figure 

4.17 and Figure 4.18 demonstrate that natural molecules have a higher 

proportion of polar contacts than their synthetic counterparts. In order to pin 
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down these different interaction profiles, the following sections analyse the 

atomic composition of the ligands, in terms of heteroatom content and 

rotatable bonds, and the proportion of matched and unmatched atoms at the 

interfaces. Detailed analysis of the binding sites is discussed in chapter 5. 

 

4.3.4 Atomic composition and molecular flexibility 

For small molecules and small peptides, the number of heteroatoms 

and rotatable bonds are straightforward to calculate and interpret. For 

proteins, their interpretation is more difficult due to intramolecular hydrogen 

bonds and atomic occlusion from solvent. Therefore, this section discusses 

the interaction profile of small molecules in terms of their atomic composition 

and flexibility.  

 

Natural small molecules and small peptides engage on average more 

polar contacts with their targets than synthetic molecules. Analysis of the 

content of heteroatoms (ratio of number of heteroatoms and total number of 

atoms) and rotatable bonds (ratio of number of rotatable bonds and total 

number of atoms) shows that the more polar interaction profile presented by 

natural molecules is due to a higher content of heteroatoms (19% more on 

average than drug-like molecules), arguably placed in the right conformation 

for interaction with the protein target. Whereas the lower content of 

heteroatoms in peptides in comparison with natural molecules (9% less on 

average) is compensated by greater flexibility (20% more on average) to 

match the more directionally constrained polar interactions. Table 4.6 and 

Figure 4.19 summarise these comparisons. The apolar interaction profile of 

synthetic molecules corresponds to rigid ligands with low content in 

heteroatoms. In contrast, natural molecules are also rigid but rich in 

heteroatoms, whereas small peptides are flexible with fewer heteroatoms. 

These observations are for the general trends, however it is worth noting that 

natural molecules can also be rigid and lipophilic, for example steroids like 

testosterone (see Figure 4.19, A and C). In fact, natural molecules cover the 
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whole range of polarity (0 to 0.9 in the polar/sumContacts scale), but the 

overall behaviour is predominantly polar, especially when compared with 

synthetic molecules. 

 

Het/N_at App 
drugs 

Oral 
drugs 

PPI 
inh 

Nat 
mol 

Nat mol 
-P 

Small 
pep 

Drug-like -0.01 -0.02 0.01 -0.19 0.02 -0.10 
App drugs -0.01 0.02 -0.18 0.03 -0.09 
Oral drugs  0.04 -0.16 0.04 -0.08 
PPI inh    -0.20 0.00 -0.11 
Nat mol     0.20 0.09 
Nat mol -P     -0.12 

 

Rot/N_at App 
drugs 

Oral 
drugs 

PPI 
inh 

Nat 
mol 

Nat mol 
-P 

Small 
pep 

Drug-like -0.01 -0.01 -0.07 -0.04 0.00 -0.24 
App drugs 0.00 -0.07 -0.03 0.01 -0.24 
Oral drugs  -0.07 -0.03 0.01 -0.24 
PPI inh    0.03 0.08 -0.17 
Nat mol     0.04 -0.20 
Nat mol -P     -0.25 
Table 4.6.  D i f ference in medians of  the rat ios (number of  
heteroatoms/number of  heavy atoms, upper tab le) and  (number of  rotatable 
bonds/number of  heavy atoms, lower tab le) .  D i f ferences are between the 
d i f ferent set  of  smal l  molecules (row – co lumn). Subsets:  Drug- l ike,  App 
drugs (approved drugs inc lud ing ora l) ,  Ora l  drugs,  PPI inh (prote in-prote in 
interact ions inh ib i tors) ,  Nat mol (natura l  molecules) ,  Nat mol –P (natura l  
molecules that do not conta in phosphor) ,  Smal l  pep (smal l  pept ides).  Va lues 
in bo ld denote s ign i f icant d i f ferences in medians (P<0.05).  
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F igure 4.19. A: D istr ibut ion of  the rat io of  number of  heteroatoms by 
number of  heavy atoms for drug- l ike smal l  molecules,  natura l  molecules,  
natura l  molecules without phosphor and smal l  pept ides.  B: D istr ibut ion of  
the rat io number of  heteroatoms versus number of  heavy atoms for drug-
l ike smal l  molecules,  approved and ora l  drugs.  C: D istr ibut ion of  the rat io of  
number of  rotatable bonds by number of  heavy atoms for drug- l ike smal l  
molecules,  natura l  molecules,  natura l  molecules without phosphor and smal l  
pept ides.  D: Distr ibut ion of  the rat io of  number of  rotatable bonds by 
number of  heavy atoms for drug- l ike smal l  molecules,  approved and ora l  
drugs.  

 

4.3.5 Matched and unmatched atoms at the binding interfaces 

In the previous section we have seen that higher content in 

heteroatoms for natural molecules leads to a more polar profile. This not the 

case for small peptides but may be compensated by their greater flexibility 

that facilitates more specific polar interactions, in particular hydrogen bonds. 

However, the key point is whether all these heteroatoms are making polar 

contacts or are unmatched. Figure 4.20 shows the mean of the percentage of 

buried atoms engaged in successful interactions and the same measure for 

the unmatched buried atoms. Small ligands, including drug-like up to small 
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peptides that are found in the left part of the figure, are more contact 

efficient than the protein to which they are bound, i.e. on average around 

90% of the ligand atoms are matched in all sets, with natural molecules 

without phosphorus being the most efficient. In contrast with the 70-80% of 

the protein atoms matched, the small molecule atoms are more exposed and 

able to contact the protein, whereas the atoms in the protein can be less 

accessible. Furthermore, studies of hundred complexes of nine different 

ligands (Kahraman et al. 2007) found that binding pockets are on average 

three times bigger than the ligands they encapsulate; therefore in proportion 

more atoms in the protein will be at the periphery of the ligand (our cut-off 

here was 4.5Å) without making useful interactions. Another interesting result 

from this analysis is that synthetic molecules have a larger proportion of 

unmatched polar atoms (in both ligand and protein side) than the natural 

ones. In other words, if one wants to increase the polar contacts synthetic 

molecules make there is still room for improvement. Arguably, oral drugs 

need to restrain the polar signature to get distributed in the body, but Figure 

4.19 shows that approved and oral drugs are not making the most of their 

polar composition. However, improving enthalpic contacts is not a trivial task, 

not only for the difficulty of designing geometries that match polar constrains, 

but also for the enthalpic and entropic penalties upon desolvation and the 

loss of conformational entropy (Ferenczy et al. 2010). 
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F igure 4.20. Mean of the percentage of  bur ied atoms engaged in successfu l  
interact ions (Matched contacts,  le f t  chart)  and mean of the percentage of  
bur ied atoms without an appropr iate partner in the other s ide of  the 
interface (Unmatched contacts,  r ight chart) .  The percentage is  d iv ided into 
polar  (red) and apolar  (b lue) contr ibut ion. Each subset has two bars,  one on 
the le f t  for  the atoms in the prote in and one on the r ight for  the atoms in 
the l igand or smal ler  prote in in the case of  prote in complexes.  Error bars 
denote the standard error of  the mean. Subsets are ordered from lef t  to 
r ight:  Drug- l ike smal l  molecules,  approved Drugs, ora l  drugs,  PPI smal l  
molecule inh ib i tors ,  natura l  molecules,  natura l  molecules without phosphor,  
smal l  pept ides,  ob l igate prote in-prote in d imers,  t rans ient prote in-prote in 
d imers,  homo quaternary prote in-prote in interfaces and hetero quaternary 
prote in-prote in interfaces.  

 

But, does nature make the most of its polar composition? Plotting the 

ratio of heteroatoms by number of atoms versus the ratio of polar interactions 

(as polar by sum of contacts), linear correlation (Figure 4.21) has been found 

for the natural-product-like subset in natural molecules. For these small 

molecules, the increase in polar features translates into more polar 

interactions with the protein. I note here that I have not analysed whether 

the proteins bound with these molecules are their putative partners, as that 

would be a one-to-one manual check. Nevertheless, this is a remarkable 

result, as it proves that it is possible in principle for a small molecule drug to 

engage many polar interactions with its partner. 
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F igure 4.21. L inear corre lat ion of  the rat io of  heteroatoms by number of  
heavy atoms versus the rat io of  po lar  contacts by sum of contacts for  the 
natura l-product- l ike subset of  the natura l  molecules set .  

 

4.3.6 Drug‐like complexes. Property versus interaction profile 

Analysis of the distribution of the polar ratio across molecular weight, 

alogP, buried area upon binding and sum of contacts has been carried out for 

the synthetic drug-like molecules. Figure 4.22 shows these distributions 

colour-coded by SCOP family.  
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F igure 4.22. Rat io of  po lar/(polar+apolar)  versus molecular  weight (A),  
A logP (B),  bur ied area upon b inding (C) and sum of contacts (D) for  prote in 
complexes with drug- l ike smal l  molecules.  D i f ferent co lours denote SCOP 
fami l ies:  Prote in k inase cata lyt ic  subunit  (green),  nuc lear receptor l igand-
b inding domain (b lue),  eukaryot ic  proteases (red),  retrov ira l  proteases -  
retropeps in (cyan),  reverse transcr iptase (magenta),  H igher-molecular  
weight phosphotyros ine prote in phosphatases (ye l low),  HSP90 N-terminal  
domain (b lack).  For c lar i ty ,  on ly SCOP fami l ies b ind ing to more than 20 
d i f ferent l igands are shown. 

 

Drug-like molecules bound to protein kinases (green dots in Figure 

4.22) tend to have high alogP and hardly pass the threshold of 30% of polar 

contacts, not even the few that have alogP in the negative region. However it 

is also possible to have almost 50% of polar contacts (hetID 3C3 in 2CGW, 

(Foloppe et al. 2006)). In the case of nuclear receptor ligand-binding domain 

(NR-LBD, blue triangles in Figure 4.22), all the molecules have alogP > 1 and 

most of them do not have more than 15% of polar contacts, but as in kinases 

it is possible to have a more polar binding profile (34% of polar contacts for 

hetID 444 in 1UHL, (Svensson et al. 2003)). Eukaryotic proteases (red dots in 

Figure 4.22) bind to a wide range of molecules from 200MW up to 700MW 

with alogP between -2 to 6 with a varying percentage of polar contacts. 
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Bigger and more lipophilic molecules bind to retroviral proteases (cyan dots in 

Figure 4.22) with similar polar binding patterns as they do in eukaryotic 

enzymes, although polar fragments are also found. The proteins belonging to 

the reverse transcriptase SCOP family present similar characteristics to NR-

LBD, and bind to molecules with alogP > 1, with none having more than 15% 

polar contacts. Most of the molecules bound to phosphotyrosine protein 

phosphatases (PTPP, yellow triangles in Figure 4.22) have around 30% of 

polar contacts with low alogP range (-2 to 2), although there are also three 

apolar binders (hetID 892 in 1T49, hetID BB3 in 1T48 and hetID FRJ in 1T4J, 

(Wiesmann et al. 2004)). However, these apolar molecules are inhibitors 

binding to an allosteric site. Finally, HSP90 domains (black squares in Figure 

4.22) bind to molecules with a wide range of alogP (0-6) engaging between 

15-25% of polar contacts. 

 

Overall trends for drug-like molecules depend on their targets, but 

there is no correlation between lipophilicity (alogP) or molecule size 

(molecular weight) with the proportion of polar contacts in the bound 

complex. Although the highest polar profiles occur with lower alogP and small 

size molecules, one can see for instance that, for those with an alogP value of 

4 drug-like molecules are in the range of 4% to 37% polar contacts. 

 

4.3.7 Drug‐like complexes. Affinity versus interaction profile 

From the 1,206 distinct small molecules in the drug-like set, almost 

700 have affinity data (Kd, Ki or IC50) from the implementation of PDBBind 

(Wang et al. 2004) in CREDO. Unfortunately, not many natural molecules 

have affinity data, and comparison with how these molecules achieve high 

potency cannot be done with the current data available. However, there are 

112 distinct small peptides with Kd, Ki or IC50 in CREDO. Transformation into 

free energy of ligand binding (Kcal/mol) for qualitative comparison was done 

with the thermodynamic law: ΔG = -RT ln Kd, where R is the gas constant 

(1.9872E-03 Kcal mol-1 K-1), T is the temperature in Kelvin (taken as 300K, 



 

179 

 
4.3 Results 

 
   

ambient temperature) and Kd is the equilibrium dissociation constant of the 

binding event. When Kd was not available, IC50 or Ki were taken instead. 

Figure 4.23 shows there is no relation between the binding energy and the 

proportion of polar contacts the small molecules or small peptides made with 

their protein partners. Higher polar ratios occur only for drug-like weak 

binders with molecular weight bellow 300Da. As seen before, for the drug-like 

molecules, only weak small fragments can achieve many polar interactions. 

This is not the case for small peptides, where high polar contact ratio can be 

achieved across a wide range of affinities. 

 

 

F igure 4.23. Free energy of  l igand b inding versus the polar  rat io of  contacts 
[po lar/(polar+apolar)]  for  the drug- l ike set  (ye l low) and the smal l  pept ide 
set  (b lue).  

 

Indeed, Figure 4.24 (A) shows that the most potent drug-like 

molecules have on average more atoms and higher alogP, whereas the 

average count of hydrogen bond acceptors and donors remains constant 

across the whole range of potency. This result is in agreement with the much 

discussed general trend in drug discovery of gaining potency by adding 

lipophilicity to the small molecules; see for example (Leeson et al. 2007). In 
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the set studied here, this translates (Figure 4.24, B) into a lower ratio of 

heteroatom content and a lower ratio of polar interactions. 

 

 

F igure 4.24. B inned b inding af f in i ty  (BA) data for  drug- l ike smal l  molecules 
(A and B) and for smal l  pept ides (C and D).  Bars in A and C denote the 
average of  molecular  propert ies for  each af f in i ty  b in: a logP (ye l low),  
rotatable bonds (red),  sum of hydrogen bond donors and acceptors (b lue) 
and number of  atoms (b lack).  Bars in B and D denote the average of  the 
rat io of  po lar  contacts [po lar/(polar+apolar)]  (orange) and the average of  
the rat io of  heteroatom content [num heteroatoms/num atoms] (cyan).  Error 
bars are the standard error of  each sample.  

 

Figure 4.24 (C and D) shows that small peptides have on average the 

same property profile regardless of their potency. From this result, it is clear 

that small peptides do not achieve tight binding through increase of 

lipophilicity, furthermore the proportion of polar contacts and heteroatom 

content is maintained across the whole range of affinities with the exception 

of weak binders where the polar ratio is lower. However, there are only seven 

complexes in this category. The important point to highlight here is that 

peptides manage to increase their affinity for their receptors maintaining 
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specific interactions, arguably through their flexibility. Note that the average 

of rotatable bonds in small peptides is four-fold higher than drug-like 

molecules. In fact, small peptides studied here are bigger than drug-like 

molecules, as no size limit was applied to select the small peptide set, 

whereas drug-like molecules larger than 900Da were omitted. Plotting the 

free energy of binding versus the number of atoms for both subsets (Figure 

4.25) confirms that there is no correlation between the number of atoms and 

the free energy of binding for small peptides. However, they are less efficient 

than small drug-like molecules as they use more atoms to achieve the same 

affinity. Furthermore, the values for binding affinities are confined in the 

range of what can be measured (tens of milimolar that translates into 

~2Kcal/mol to picomolar than translates into ~16Kcal/mol). In this way, 

peptides are able to sample binding energies between 4Kcal/mol to 

14Kcal/mol regardless their size, which translates into the flat bar 

representation in Figure 4.24 (D). 

 

 

F igure 4.25. Free energy of  l igand b inding versus the number of  atoms of 
the l igand. Drug- l ike set  is  p lotted in ye l low, and smal l  pept ide set  in b lue.  
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In Figure 4.25 there are three drug-like molecules with circa 60 atoms. 

The most potent is a symmetric cyclic urea HIV-1 protease inhibitor with 4nM 

affinity (1BWB, (Ala et al. 1998)). The weakest, with 300uM affinity is the 

detergent deoxy-bigchaps bound to IGF-1 through the steroid-like head, the 

two polar tails of the molecule are floating in the solvent (1IMX, (Vajdos et al. 

2001)). The third molecule binds to calmodium with an affinity of 3uM; this is 

a big complex non-planar molecule, which binds to residues from the N- and 

C-terminal domains of calmodulin and induces a major conformational change 

(1XA5, (Horváth et al. 2005)). 

 

4.3.8 Menagerie of small molecules for the same target 

In this section, four examples of specific protein targets have been 

selected because they bind to small molecules from the different sets studied 

so far: drug-like molecules, approved and oral drugs, small peptides and 

natural molecules. For each protein, all small molecules bind to the same site. 

In this way we can visualise the property and interaction profile for the 

different sets of molecules binding to the same target. AlogP and % of polar 

contacts have been chosen to map these profiles, see Figure 4.26. 
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F igure 4.26. Rat io of  po lar/(polar+apolar)  versus A logP for four d i f ferent 
prote ins.  A: Estrogen receptor f rom NR-LBD SCOP fami ly .  B: HIV-1 Reverse 
transcr iptase from Ribonuc lease H SCOP fami ly .  C: HIV-1 Protease from 
retrov ira l  proteases SCOP fami ly .  D: Thrombin heavy chain f rom the 
eukaryot ic  proteases SCOP fami ly .  Colour coding refers to the subsets,  
which the smal l  molecules be long to: Ora l  drugs (magenta),  Approved drugs 
(cyan),  Natura l  molecules (green),  Smal l  pept ides (b lue) and Drug- l ike 
(ye l low). 

 

4.3.8.1 Estrogen receptor 

Human estrogen receptor (ER) belongs to the NR-LBD SCOP domain 

family. As discussed before, this domain binds mainly to lipophilic molecules 

with low a ratio of polar contacts. Here we can see similar characteristics 

(Figure 4.26 A), for instance the natural product Estradiol is an approved oral 

drug with drug-like properties at alogP 3.8 with 10% polar contacts 

(DrugBank ID DB00286). Another natural molecule for this target that is also 

an approved oral drug is Diethylstilbestrol (DrugBank ID DB00255) with 11% 

of polar contacts and alogP 5.1. The drug-like molecule Raloxifene (DrugBank 
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ID DB00481) is another oral drug with similar profile, 9% polar contacts and 

alogP 4.9. 

 

4.3.8.2 HIV‐1 Reverse transcriptase 

The reverse transcriptase domain of the HIV-1 Gag-Pol polyprotein 

belongs to the Ribonuclease H SCOP domain. Drug-like molecules binding to 

this protein (Figure 4.26 B) have a range of alogP between 1 and 7 with a 

modest proportion of polar contacts (1% to 16%). Interestingly, the three 

approved oral drug molecules have, within this range, the highest ratio of 

polar contacts: Efavirenz (16% of polar contacts, alogP 4.4, ChEMBL ID 

CHEMBL308954), Etravine (14% of polar contacts, alogP 4.8, DrugBank ID 

DB00625) and Delavirdine (10% of polar contacts, alogP 1.7, DrugBank ID 

DB00705). 

 

4.3.8.3 HIV‐1 Protease – retropepsin 

The protease domain of the HIV-1 Gag-Pol polyprotein belongs to the 

retroviral proteases SCOP family. For this protein, drug-like molecules, 

approved and oral drugs, natural molecules and small peptides bind to the 

same site. As seen in Figure 4.26 (C), there is one cluster of small peptides in 

the polar corner, low alogP and more than 30% polar contacts. Remarkably, 

all the approved drugs analysed here have an oral administration route. 

Furthermore, all these six molecules are long and flexible with a range of 

lipophilicity (alogP from 1.5 to 7), and have 17%-29% of the contacts being 

polar. See Table 4.7 for their chemical structures. 
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 hetID PDB Ratio alogP DrugBankID 

N
O

NH

NH
S
O

OH

OH

 

1UN 3EL0 0.17 3.7 
DB00220 

Nelfinavir 

N
S

OH
NH

O

O

O

OO

NH2  

478 1HPV 0.22 2.4 
DB00701 

Amprenavir 

OH

N
H

O
OH N

N

N
HO

N  

MK1 1SDV 0.17 1.5 
DB00224 

Indinavir 

N
H

O
N
H

N

O

S

N

OH

N
H

O

O

N

S

 

RIT 1HXW 0.22 5.0 
DB00503 

Ritonavir 

N
O

NH

NH
OH
O

N
H

NH2 O

O
N

 

ROC 3EKQ 0.20 2.0 
DB01232 

Saquinavir 

O

OOH
N
H

S
O

O
N

F3C  

TPV 1D4Y 0.29 7.0 
DB00932 

Tripanavir 

Table 4.7.  Chemica l  s tructures of  the s ix  ora l  drugs structura l  character ised 
in the PDB for the HIV-1 Protease. HetID is  the res idue ident i f ier  for  the 
l igand in the PDB. Rat io refers to the rat io of  po lar  contacts as 
[polar/(polar+apolar)] .  

 



 

186 

 
4.3 Results 

 
   

4.3.8.4 Thrombin 

Thrombin heavy chain protein is a member of the eukaryotic protease 

SCOP family. It has drug-like binding properties with apolar interactions (high 

alogP and low polar ratio) as well as small peptides and peptidomimetics 

drug-like molecules in the more polar part of the graph (Figure 4.26 D). The 

only approved drug characterised in the PDB is Argatroban (DrugBank ID 

DB00278), with more polar contacts than the average drug-like molecules for 

this target. However, this drug is intravenous. 

 

4.3.8.5 Approved and oral drugs 

As seen in Figure 4.16 (B), approved and oral drugs have on average 

the same interaction profile as drug-like molecules. In this section, the four 

targets binding to different types of molecules show that oral drugs present a 

wide range of lipophilicity and ratio of polar interactions. In other words, it is 

possible to achieve more specific interactions without compromising the 

molecular profile of the drug leads. The case of HIV-1 protease, probably the 

most reported success of structure-based drug design (Wlodawer et al. 1998), 

proves that oral drugs can be long, complex and flexible molecules. 

 

Here I report a summary (Table 4.8) of approved and oral small 

molecule drugs that have more than 40% of polar contacts. The low 

lipophilicity of these molecules is noteworthy. 

 

 HetID 

(PDB) 
Ratio alogP Drug type DrugBank ID 

S N
N

N
H

S

O

O
O

NH2  

AZM 

(3HS4) 
0.63 -1.3 

Approved 

oral 

DB00819 

Acetazolamide 
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 HetID 

(PDB) 
Ratio alogP Drug type DrugBank ID 

NH
N N

F
O

OH

O

 

CPF 

(1T9U) 
0.61 -1.3 

Approved 

oral 

DB00537 

Ciprofloxacin 

O

NH OOH

OH
OH

O OH

N NH2

NH2

 

ZMR 

(2HTQ) 
0.60 -5.0 

Approved 

inhalation 

DB00558 

Zanamivir 

O O

OHOH

OH

OH

 

ASC 

(1F9G) 
0.58 -1.9 

Approved 

nutraceutical 

oral 

DB00126 

Ascorbic acid 

(vitamin C) 

S
NH

N
H

S

F3C

O

O

NH2 OO  

HFZ 

(3ILU) 
0.53 0.0 

Approved 

oral 

DB00774 

Hydro-

flumethiazide 

N

N

NH

N

OH

O

O

OH

OH
OH

 

RBF 

(3DDY) 
0.52 0.1 

Approved 

nutraceutical 

oral 

DB00140 

Riboflavin 

(vitamin B2) 

N

N

N

N

O

OH

NH2

OH

OH

 

AND 

(1UAY) 
0.48 -1.9 

Approved 

intravenous 

DB00640 

Adenosine 

N

N

N

N

OH

O

OHO

OHOH O
 

DO3 

(2QMI) 
0.48 -8.9 

Approved 

intravenous 

DB00597 

Gadoteridol 

NH

N

N

NH

NH

NH2 O
O

N
H

O
OHO

OH

O

 

FON 

(3GEH) 
0.46 -5.0 

Experimental 

Vitamin B 

complex 

DB03256 

Folinic acid 
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 HetID 

(PDB) 
Ratio alogP Drug type DrugBank ID 

S

N
O

N
H

O
O

S

OOH

ONH2

O

 

CFX 

(1I2W) 
0.46 -1.6 

Approved 

antibiotic 

intravenous 

DB01331 

Cefoxitin 

N

S

OH
O

O

N
H

O

NH2

 

AIC 

(2RDD) 
0.46 -2.3 

Approved 

oral antibiotic 

DB00415 

Ampicillin 

O
N

F
N

O

OH

O

N

 

LFX 

(3K9F) 
0.44 -1.4 

Approved 

oral 

antibacterial 

DB01137 

Levofloxacin 

N
H

N
H

N

N
H

NH2

O
OH

OH  

H4B 

(2DTT) 
0.43 -1.1 

Approved 

nutraceutical 

oral 

DB00360 

Tetrahydro-

biopterin 

N

OH

O

O
OH

S

NH

NO

 

MER 

(1H8Y) 
0.42 -4.9 

Approved 

intravenous 

antibiotic 

DB00760 

Meropenem 

N

N

N
+

O

O

OH  

2MN 

(1W3R) 
0.41 -0.2 

Approved 

oral 

DB00916 

Metronidazole 

O
I

I
I

OH
OH

O

NH2

 

T3 

(2PIV) 
0.41 1.5 

Approved 

oral 

DB00279 

Liothyronine 

OO

O
O

NH OH

N
H

OHOH NH
NH2

NH2
NH

O

OH

NHOH

OH

OH

 

SRY 

(3HAV) 
0.40 -7.7 

Approved 

intramuscular 

antibiotic 

DB01082 

Streptomycin 

N

NN
S O

O

OH

OH

F

OH O

 

FBI 

(1HWL) 
0.40 0.9 

Approved 

oral 

DB01098 

Rosuvastatin 

Table 4.8.  Approved and ora l  smal l  molecule drugs that engage more than 
40% polar contacts with the ir  bound prote in.  HetID is  the res idue ident i f ier  
for  the l igand in the PDB. Rat io refers to the rat io of  po lar  contacts as 
[polar/(polar+apolar)] .  
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4.3.9 Small molecule inhibitors of PPI 

In the introduction of this chapter, a question was left open: is the size 

and lipophilicity of small molecules inhibiting protein-protein interactions a 

requirement that small molecules need to fill in order to bind to protein 

interfaces? Although these molecules are on average lipophilic with few polar 

features, Figure 4.20 (B) shows that they have polar atoms unmatched in the 

binding site. Using TIMBAL database, I have extracted the seven cases where 

there is structural information for both the small molecule-protein and the 

protein-protein complexes. In all cases studied (see Table 4.9), the protein 

interface has more available polar contacts than the small molecule uses to 

bind to it. Figure 4.27 shows Bcl-XL binding to both BAD (magenta) and the 

Abbott compound ABT-737 (cyan), dotted lines represent the polar contacts 

each molecule does with Bcl-XL. This picture highlights the common pattern 

for synthetic molecules: fewer anchor points (understood as more constrained 

polar contacts) and more hydrophobic interactions that usually boost potency. 

Small molecule inhibitors of protein-protein interactions do not take 

advantage of the available polar contacts in the interfaces and only few of 

them are engaged. For these seven cases, comparison of the interacting 

residues in the target protein highlights that small molecules tend to use 

more aromatic and less charged residues than the protein partner. 
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Target PDB 
p-p 

ratio 
p-p Affinity PDB 

p-sm 
ratio 
p-sm Affinity refs 

IL-2 
1Z92 
(A:B) 0.35 

10nM 
(Kd) 

1PY2 
(A) 0.21 

60nM 
(IC50) 

(Rickert 
et al. 
2005) 

(Thanos 
et al. 
2003) 

Bcl-XL 2BZW 
(A:B) 0.19 6nM 

(Kd) 
2YXJ 
(B) 0.08 0.6nM (Lee et 

al. 2007) 

MDM2 1YCR 
(A:B) 

0.14 600nM 
(Kd) 

1T4E 
(A) 

0.03 67nM 
(Kd) 

(Kussie 
et al. 
1996) 

(Grasber
ger et al. 

2005) 

XIAP 1G3F 
(A:B) 0.22 - 1TFT 

(A) 0.12 - 

(Liu et 
al. 2000) 
(Oost et 
al. 2004) 

ZipA 1F47 
(B:A) 0.10 21.6uM 

(Kd) 
1Y2F 
(A) 0.00 12uM 

(Kd) 

(Mosyak 
et al. 
2000) 

(Rush et 
al. 2005) 

TNF 1TNF 
(AB:C) 

0.30 - 2AZ5 
(C&D) 

0.12 13uM 

(Eck et 
al. 1989) 
(He et 

al. 2005) 

S100B 1DT7 
(A:X) 0.34 - 3GK1 

(A) 0.12 - 

(Rustand
i et al. 
2000) 

(Charpe
ntier et 

al. 2009) 
Table 4.9.  Examples of  po lar/sumContacts rat io for  prote ins that b ind to 
both prote in partners (rat io p-p,  le f t)  and drug- l ike molecules (rat io p-sm, 
r ight) .  The PDB code inc ludes the interact ing chains,  for  example 
1TNF(AB:C) denotes chain A and B interact ing with chain C of  the TNF 
tr imer,  whereas 2AZ5 (C&D) denotes chains C and D interact ing with the 
smal l  molecule.  When avai lab le,  af f in i ty  measure and units  is  spec i f ied in 
tab le.  See F igure 5.24 to F igure 5.30 for  a graphica l  representat ion of  these 
examples.  
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F igure 4.27. Bc l-XL bound with one of  i ts  putat ive partners (BAD, in 
magenta,  PDB 2BZW) and with smal l  molecule inh ib i tor  (ABT-737, in cyan 
PDB 2YXJ).  Only po lar  contacts are shown for c lar i ty .  Colour of  the contacts 
( in dotted l ines) is  the same as the molecules making them. Synthet ic  
molecule only uses a f ract ion of  the polar  contacts ava i lab le for  the natura l  
counterpart .  

 

4.3.10 Natural molecules and small peptides 

Table 4.10 contains selected examples for proteins where there are 

structural data for both complexes, i.e. the protein target to the natural 

molecule or bound to a small peptide, as well as bound to a drug-like 

molecule. Figure 4.28 shows an example for each of these two classes. 

 

Classical kinase inhibitors compete with endogenous nucleotides. There 

is a dramatic decrease in the polar/apolar ratio for kinase inhibitors compared 

with the ratio for the ADP, for example Abl kinase and MK2 in Table 4.10. 

However, these endogenous ligands do not need to cross the cell membrane. 

Indeed, the more polar drug-like kinase inhibitor of MK2 is reported to be 

inactive in cellular assays (Wu et al. 2007). It seems that drug-like molecules 

mimic natural ligands by engaging just a few of the available polar contacts 
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and raise affinity by increasing the lipophilicity, as too much polarity is not 

good for permeability (high probability of good rat bioavailability when PSA<= 

140 and rotBonds <= 10, (Veber et al. 2002)). This might hold true for 

classical drug targets where much has been done to optimise molecular 

recognition and absorption. However, many authors ((Hann 2011), and 

references therein) associate high lipophilicity of the compounds entering 

drug development (amongst other factors) for the high failure rate of clinical 

candidates. 

 

A comparison of small peptides and drug-like molecule binding to the 

same site demonstrates a smaller number of polar interactions but the 

difference is not as dramatic as for endogenous ligands. Table 4.6 shows that 

small peptides are not as polar (by the count of heteroatoms) as the 

endogenous ligands but they are much more flexible. When compared with 

drug-like molecules, we can understand the ability of small peptides to 

engage polar contacts by their flexibility, where drug-like molecules tend to 

be rigid scaffolds to minimise entropy lost upon binding. 
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Target  PDB 
p-nat 

Ratio 
p-nat 

Affinity PDB 
p-DL 

Ratio 
p-DL 

Affinity refs 

Visfatin  2G96 
(A&B) 

0.29 53uM 
(Ki) 

2G97 
(A&B) 

0.07 0.15uM 
(Ki) 

(Kim et 
al. 

2006) 
Abl 
Kinase  

2G2I 
(A) 

0.39 - 2HZI 
(B) 

0.06 70nM 
(IC50) 

(Levins
on et 
al. 

2006; 
Cowan-
Jacob 
et al. 
2007) 

MK2  1NY3 
(A) 

0.61 - 2PZY 
(A) 

0.28 34nM 
(IC50) 

(Under
wood et 

al. 
2003; 
Wu et 

al. 
2007) 

        
        

HIV 
Protease  

1A94 
(D&E) 

0.37 14nM 
(Ki) 

1D4Y 
(A&B) 

0.29 8pM 
(Ki) 

(Thaisri
vongs 
et al. 
1996; 
Wu et 

al. 
1998) 

Phospho 
lipase A2  

2O1N 
(A) 

0.20 - 2B17 
(A) 

0.13 620nM 
(Ki) 

(Singh 
et al. 
2006) 

Alpha-
Thrombin  

1NY2 
(2) 

0.33 1.75mM 
(Ki) 

1BCU 
(H) 

0.20 0.53mM 
(Kd) 

(Conti 
et al. 
1998; 

Pillai et 
al. 

2007) 
Table 4.10. Examples of  po lar/sumContacts rat io for  prote ins that b ind to 
both natura l  molecules,  inc lud ing smal l  pept ides (rat io p-nat,  le f t)  and drug-
l ike molecules (rat io p-DL, r ight) .  The PDB code inc ludes the interact ing 
chains,  for  example 2G96(A&B) denotes chains C and D interact ing with the 
smal l  molecule.  When avai lab le,  af f in i ty  measure and units  is  spec i f ied in 
tab le.  The three f i rs t  target prote ins b ind to natura l  molecules and drug- l ike 
ones.  The last  three target prote ins b ind to smal l  pept ides and drug- l ike 
ones.  
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F igure 4.28. Examples of  natura l  molecules (magenta) and drug- l ike 
molecules (cyan) b ind ing to the same prote in target.  Only po lar  contacts are 
shown for c lar i ty .  Colour of  the contacts ( in dotted l ines) are the same as 
the molecules making them. LEFT: V is fat in with Nicot inamide 
Mononucleot ide (2G96) and FK-866 (2G97).  RIGHT: Phospol ipase A2 with a 
tetrapept ide (2O1N) and Dic lofenac (2B17).  In both cases synthet ic  
molecules only use a f ract ion of  the polar  contacts ava i lab le for  the natura l  
counterparts . 
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4.4 Discussion 
Comparisons between the different sets of molecules consistently show 

more polar interactions between natural molecules (protein with protein, 

small peptides and natural molecules) than protein with synthetic drug-like 

molecules. Drug-like molecules are dominated by apolar contacts, specially 

the subset of molecules inhibiting protein-protein complexes. This is in 

accordance with the ITC data studied by Olsson et al. (Olsson et al. 2008), 

which demonstrated that synthetic molecules binding to proteins have greater 

entropic contributions than natural molecules. 

 

On the other hand, it has been shown that small fragments present a 

more balanced signature with higher polar / apolar ratio than the average 

drug-like molecules. In fact, fragment hits are usually very polar and water-

soluble (Congreve et al. 2008) (as they need to be in the high concentration 

format assay) and initial data show that they tend to present favourable 

enthalpy of binding (Ladbury et al. 2010). Being small and polar, fragments 

have a minor contribution from water displacement and therefore favourable 

enthalpic interactions have to overcome the entropic rigid body penalty 

(Ladbury et al. 2010). Indeed drug-like fragments have a higher proportion of 

polar contacts than bigger drug-like molecules. Similar results have been 

found by Ferenczy and Keseru (Ferenczy et al. 2010), analysing 

thermodynamic and structural data from public available databases. These 

authors found that, for maximal affinity compounds, binding is enthalpically 

driven for small ligands and entropically for larger ones. 

 

Regarding protein-protein interfaces, quaternary interfaces (homo and 

heterogenic) have the same proportion of polar contacts as obligate dimers, 

whereas the transient dimers are slightly more polar than previously found 

(Nooren et al. 2003) and more similar to the small peptides subset. Overall, 

protein complexes present more polar interactions than synthetic drug-like 

molecules.  Analysis of the protein complexes successfully inhibited by small 
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molecules, shows that these interfaces do not differ from other protein-

protein interfaces, however the small molecules inhibiting them are at the 

apolar end of the already lipophilic drug-like spectrum. Furthermore, it was 

shown in chapter 2 that this type of molecules did not increase on average 

the numbers of hydrogen bond features with increase of molecular size, i.e. 

small efficient binders have on average the same number of hydrogen bond 

donors and acceptors than bigger less efficient molecules. 

 

Having arrived at this conclusion I can argue that there are two 

plausible scenarios: (i) the proportion of polar contacts can not be improved 

for drug molecules due to the characteristics of druggable binding sites and 

the molecular property profile required of a drug, or (ii) improving the polar 

nature of drugs is hard but doable, although medicinal chemistry settings are 

not optimised for it.  

 

Analysis of four individual protein targets with a menagerie of small 

molecules exemplifies the fact that, although there is a range of polarity and 

other properties specific for each target, it is possible to develop oral drugs 

with higher content in matched polar atoms. Moreover, it has been shown 

that there is no correlation between alogP and the proportion of polar 

contacts in the binding mode. This result is encouraging, as it shows that the 

second scenario is likely, and it is possible to increase specific interactions 

without lowering too much the lipophilicity of the molecules.  

 

Indeed, current drug discovery practises are being scrutinised by 

thermodynamic studies (Freire 2008; Olsson et al. 2008; Ferenczy et al. 2010; 

Ladbury et al. 2010). Retrospective analyses of two different targets, HIV-1 

protease inhibitors and statins by Freire (Freire 2008) indicated that binding 

enthalpy gets better whilst improving already marketed drugs. This process, 

however has taken more than ten years with the current drug development 

settings. There is an emerging and also controversial (Erlanson 2011) 

viewpoint, suggesting that ligand interactions that enhance the enthalpic 
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contribution to binding are critical to optimise drugs and promotes the early 

use of thermodynamic assays in drug discovery (Freire 2009; Ferenczy et al. 

2010; Ladbury 2010). Following the ligand efficiency metric (Hopkins et al. 

2004), enthalpic efficiencies have been defined (Ferenczy et al. 2010; 

Ladbury et al. 2010) to guide prioritisation and modification of compounds 

towards a more balanced thermodynamic signature. Also, definition of ligand 

lipophilicity efficiency (LLE) (Leeson et al. 2007) and ligand efficiency indices, 

including polarity of molecules (Abad-Zapatero et al. 2010), for monitoring 

increase affinity without increasing much lipophilicity. Engineering polar 

contacts is an arduous task, as structural information is not always available, 

but thermodynamic assays may help medicinal chemists deliver less 

hydrophobic leads. It has also been suggested that increasing enthalpic 

contributions should be done from the starting small hits, as maximal 

enthalpy negatively correlates with ligand size (Ferenczy et al. 2010). 

 

Furthermore, the more polar profile of natural molecules and small 

peptides is due to interplay between flexibility (measured by number of 

rotatable bonds) and number of heteroatoms to give the general interaction 

profile. Drug-like and natural molecules have similar numbers of rotatable 

bonds whereas small peptides are much more flexible. In contrast, drug-like 

molecules and small peptides have less heteroatoms than natural molecules. 

Therefore the more polar interaction profiles for natural products and 

endogenous molecules are due to more heteroatoms in the right constrained 

conformation. In comparison, small peptides engage more polar contacts due 

to their flexibility that allows them to reach specific interactions. Finally, 

looking at the proportion of these heteroatoms being matched I found that 

drug-like molecules have a larger proportion of unmatched polar atoms than 

the natural molecules, especially oral drugs and inhibitors of protein 

complexes. It seems that synthetic molecules are not making the most of 

their polar composition. However, that is easier said than done. Even when 

the protein target is known and structurally characterised, the design of polar 
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interactions is far from trivial and involves more than achieving the required 

atomic geometry (Freire 2009). 
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4.5 Conclusions 
Molecular recognition is a complex event. It depends on the location 

and concentration of the molecules involved, their plasma or tissue 

distribution as well as physiological conditions. Structural dynamic fluctuations, 

protonation states and tautomerisms are important. In fact, atomic 

interactions are just one the many factors involved in molecular recognition. 

However, in the case of drugs, they are key to the association of binding 

affinity with molecular properties, which in turn will impact in the ADMET 

(Absorption, Distribution, Metabolism, Excretion and Toxicity) profile of the 

synthetic candidates. Currently, there is a consensus in the drug research 

community to try to keep these molecular properties within a “safe” range of 

drug-like space, particularly in keeping lipophilicity low. In this chapter I have 

analysed the atomic contacts between different sets of molecules, divided into 

natural and synthetic ones. The results presented here show that natural 

complexes typically engage more polar interactions than synthetic molecules 

bound to proteins. These drug-like molecules also have a higher proportion of 

unmatched heteroatoms than the natural sets and probably for this reason, 

show no correlation between alogP and proportion of polar contacts, 

suggesting there is room to improve specific interactions without changing 

drastically the molecular properties of drug-like compounds. Nevertheless, the 

ratio of polar versus apolar contacts is greater when the size of the synthetic 

molecules is smaller. In other words, synthetic small fragments seem to 

anchor in sites with more specific interactions than the average size drug 

molecule. It has been discussed in recent conferences and meetings in the 

field, that one should aim to improve affinity of fragments before adding 

molecular weight in order to maximise the interactions with the original site 

hot spot. In this way, the starting point will have a path to grow to with more 

chances to succeed as a drug. For drug-like molecules in general, but in 

particular for the inhibitors of protein-protein interactions, I conclude that 

efforts should be invested to maximise polar contacts to better resemble the 

interaction patterns that natural molecules present as well as to minimise 
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promiscuity and poor ADMET profile. For all the reasons discussed here, it 

seems important to undertake this challenging task as early as possible in the 

discovery process, not only because it is the more feasible but also because it 

should ultimately reduce the costs of delivering safe drugs to the market.  
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5.1 Introduction 
We have seen in chapter 4 the interaction profiles of protein-small 

molecule and protein-protein complexes with emphasis on the properties of 

the small molecules. In brief, they demonstrate that protein complexes and 

natural molecules tend to interact with higher ratios of polar to non-polar 

contacts than drug-like molecules. This chapter is concerned with the 

structural characteristics of the binding sites for these complexes, with the 

aim of highlighting differences, if any, between binding sites for each type of 

molecule studied in chapter 4.  

 

5.1.1 Other studies classifying interfaces and cavities 

Characterization of binding interfaces is crucial for the understanding 

and prediction of molecular recognition and it is not surprising that it has 

been the focus of many studies from different disciplines, for example binding 

dynamics, distinction of crystal contacts from biological relevant interactions 

in the X-ray structures, protein-protein docking scoring functions, homology 

modelling of protein complexes, protein engineering, quaternary structure 

generation, druggability target assessment, insight into toxicology issues due 

to promiscuous binding sites and prediction of function for orphan proteins. I 

summarise here other attempts to predict druggability and characteristics of 

protein-protein interfaces, including the subset that is known to be inhibited 

by small molecules. 

 

5.1.1.1 Pocket detection and druggable interfaces 

Two factors define a druggable protein target. First its modulation has 

therapeutic effect and second it is able to bind to a small drug-like molecule 

(Hopkins et al. 2002). Druggability predictors usually refer to the latter, 

recently redefined as “ligandability” (Edfeldt et al. 2011), mostly when the 3D 

structure of the target or a close analogue is known. These methods identify 
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and score pockets (or cavities) at the protein surface in terms of their 

likelihood of accommodating a small drug molecule. We can classify available 

tools by the algorithms that detect cavities and the scoring schemes that rank 

them (Perot et al. 2010). Comparative studies of the most commonly used 

tools are also available (Oda et al. 2009; Schmidtke et al. 2010) as well as 

servers that generate consensus solutions from several predictors, see for 

example (Zhang et al. 2011). Overall, the classification of protein-binding 

sites in terms of its druggability is centred on the identification and 

description of the available pockets. However, the definition of what is a 

pocket is not trivial and consequently has not been yet standardised (Fuller et 

al. 2009). Indeed, different pocket detection programs will give different 

results, and matching the ligand putative binding site is not always 

guaranteed (Capra et al. 2009). In addition, druggability scores are also 

biased by the training set, which usually includes only a few negative cases, 

and have low prediction power for new targets like protein-protein 

interactions. Nevertheless, an open source repository of druggable and un-

druggable proteins is maintained to help to improve druggability scores 

(http://fpocket.sourceforge.net/dcd). For instance, analysis of these 

structures reveals that in addition to shape and hydrophobicity of the cavities, 

polar groups have an important role in molecular recognition and should be 

considered in the druggability predictions (Schmidtke et al. 2010). 

 

Regarding residue propensity at the drug-like binding interfaces, Soga 

et al. (Soga et al. 2007) found that drug binding sites are richer in aromatic 

residues and Met, and are depleted in Pro, Lys, Gln and Ala. This study 

considered a 41-member, non-redundant set of proteins complexed with 

drug-like molecules and compared the residue composition at the binding 

interface (defined as residues within 4.5Å of the drug-like ligand) with the 

residue composition at the surface of a non-redundant set of 756 protein 

complexes. 
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5.1.1.2 Protein‐protein interfaces 

Numerous studies have analysed protein-protein interfaces deriving 

typical ranges for several interface properties, see for example (Nooren et al. 

2003; Ofran et al. 2003; Janin et al. 2007; Keskin et al. 2008; Yan et al. 

2008). Naturally, these ranges depend on the data analysed and the 

definition of what constitutes an interface, as well as the classification used to 

divide protein complexes into different types. Here, I briefly summarise the 

findings of Richard Bickerton from his analysis of the PICCOLO database 

(Bickerton 2009; Bickerton et al. 2011).  

 

The non-redundant set of protein interfaces studied in this chapter is 

the same as Bickerton generated for his research. The findings highlight the 

similarity between the interface core and the protein core, and the interface 

periphery and the exposed protein surface. The core of the interface is more 

hydrophobic than the interface periphery; it is enriched with hydrophobic 

residues (Ile, Val, Leu, Phe, Met and Ala) and depleted of polar and charged 

residues (Asp, Gln, Asn, Glu, Lys and Arg). Between obligate and transient 

dimers, the obligate interfaces are more hydrophobic than the transient ones. 

In terms of pairing preferences, hydrophobic interactions, hydrogen bonds, 

salt bridges and disulphide bonds are important in macromolecular 

recognition. Hydrophobic residues favour other hydrophobic and avoid polar 

and charged residues. Aromatic residues prefer other aromatic or hydrophobic 

residues, although they also often interact with ions through the CH and the 

π  system. Prolines interact significantly more with aromatic than other 

residue types. Positive charged residues (Arg, Lys and His) favour negative 

charged ones (Glu and Asp) but Arg-Arg, His-His and Arg-His are also 

common due to aromatic interactions, pi-cation and hydrogen bonds (with the 

main chain atoms) due to the versatile capability of these side chains. 

Regarding the number of contacts normalized by interface area, protein-

protein complexes have on average 4% of the total contacts as hydrogen 

bond, 11% as ionic (including some of the hydrogen bonds), 10% as pi-cation, 
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10% as aromatic and 39% as hydrophobic. These average ratios are slightly 

different for transient and obligate dimers: 4% hydrogen bond, 8% ionic, 

11% pi-cation, 11% aromatic and 40% hydrophobic for obligate dimers and 

4% hydrogen bond, 12% ionic, 10% pi-cation, 8% aromatic and 36% 

hydrophobic for transient complexes. 

 

5.1.1.3 Protein‐protein interfaces inhibited by small molecules 

Fuller and co-workers analysed the interfaces of several non-redundant 

sets of protein complexes (Fuller et al. 2009), including 134 protein-small 

molecule, 97 pairwise non-obligate hetero protein-protein complexes, 50 

protein-marketed drugs and 24 small molecule inhibitors of protein-protein 

interactions. Their analysis was based on pocket identification using the 

program Q-SiteFinder (Laurie et al. 2005). The authors found that classical 

small molecules bound to proteins tend to occupy a single large pocket, 

whereas protein-small molecule inhibitors of protein-protein interactions 

target several smaller pockets in the same fashion as protein-protein 

complexes. Furthermore, they found that the pockets in protein-protein 

interfaces are often preformed in the free monomer and bound state, 

although there is an increase in the pocket volume upon binding, suggesting 

some degree of site adaptability, at least from the side chain atoms. 

Interestingly, this study showed that all ligands targeting the IL-2/IL-2Ra 

interaction bound not only to residues in the interface but also to residues 

that are not in direct contact between the two proteins. With respect to 

protein complexes with small molecules, Fuller et al. found that marketed 

drugs are the group that fill most efficiently the available volume in the active 

site pocket. 

 

The 2P2I resource (Bourgeas et al. 2010) is a hand-curated database 

of the structures of protein-protein complexes with known inhibitors. Only 

targets with structural information for both the protein-protein complex and 

the protein-inhibitor complex are included in the database. In the first release, 
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there were 17 protein-protein and 56 protein-small molecule inhibitors and 

with these data the authors analysed the characteristics of the protein 

interfaces that I report here. Although a recent update (Morelli et al. 2011) 

has removed some of the entries (2P2I has now 12 protein-protein complexes 

with 39 non-redundant protein-small molecules), the original analysis gave a 

general overview of the protein-protein interfaces. Contrary to the views often 

expressed that some degree of site adaptability has to occur at the interface 

of protein complexes in order to bind to a small molecule (Wells et al. 2007) 

and in agreement with Fuller et al (Fuller et al. 2009), Bourgeas and co-

workers found that the root mean square deviation (rmsd) of the alpha-

carbons of the bound protein complexes, the monomer and the monomer 

bound to a small molecule were in the same range as the resolution of the 

crystal structures, 1.12 ± 0.4Å on average. The authors analysed the 

structural data from these interfaces and compared them with representative 

heterodimeric protein-protein complexes. A classification of these protein-

protein complexes was proposed, based on the number of continuous 

segments at the interface. Class I includes complexes with a few segments, 

three on average, and usually one of the partners is a small peptide or can be 

replaced by one. These complexes are also richer in elements of secondary 

structure at the interface, are more ordered and present lower affinity (in the 

micromolar range); they are also the complexes with the higher number of 

small molecule inhibitors. Class II complexes are usually formed by two 

globular proteins. They have more continuous segments, eight on average, 

and a higher proportion of unstructured elements at the interface and have 

affinities in the nano or sub-nanomolar range. In comparison with transient 

heterodimers, protein complexes with known inhibitors have on average, 

smaller interface size, similar geometric shape but fewer pockets, more 

hydrogen-bonds, fewer salt bridges (with the exception of IL2/IL2Ra) and 

fewer charged residues. 

 

A recent report by Kozakov et al (Kozakov et al. 2011) analysed 

druggability of ligand-hot spots at the interfaces of 15 protein-protein 
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complexes. The authors defined hot spots computationally, by solvent 

mapping the protein surface with 16 different chemical probes. For each 

probe, they clustered minimised docked poses and retained the lowest energy 

ones, authors called these ‘probe clusters’. Then, these low energy poses 

were clustered again. Hot spots were defined as the consensus sites where 

multiple probes converged. These consensus sites were further expanded by 

side-chain flexibility for selected residues close to the original hot spot. In this 

way, druggable ligand-hot spots at protein-protein interfaces appear to be 

concave pockets with a “mosaic-like” pattern of hydrophobic and polar 

functionality, which are able to bind at least 16 probe clusters and one or two 

neighbouring hot spots. The authors concluded that these sites therefore 

have the ability to bind to hydrophobic drug-like molecules with some polar 

functionality. However, at least to my view, this ability is in part due to the 

methodology used to identify these hot spots. First, consensus sites were 

ranked by the number of probe clusters bound to them, where these probe 

clusters can be from different chemical probes. Secondly, the selection of 

close residues to explore flexibility was restricted to residues that have a least 

75% of the total hydrophobicity calculated for all surface residues. 

Nevertheless, the authors successfully classify protein-protein targets as well 

as classical targets (in the supplementary information of the publication) with 

this approach. 

 

The focus of this chapter is on the structural characteristics of the 

binding sites for the different types of complexes studied in chapter 4: 

protein-protein, protein-natural molecules, protein-small peptides and protein-

synthetic small molecules (drugs and drug-like). Starting with a discussion of 

binding site definitions and the assessment of pocket detection algorithms, I 

analyse the residue propensity at the interfaces, the proportion of main chain 

as well as polar atoms at the interfaces, the depth of the protein contacting 

atoms and the density of contacts for each type of complexes. 
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5.2 Methods 

5.2.1 Subsets definitions 

Protein complexes studied here are the same as those described in 

chapter 4. See 4.2.3 for details. They are: small molecules protein-protein 

interactions inhibitors, small natural molecules, small peptides, drug-like small 

molecules, approved and oral drugs, obligate and transient dimers and 

protein-protein interfaces from quaternary assemblies. However, as this 

chapter focuses on the binding sites, I have used datasets filtered for UniProt 

and for SCOP family redundancy for the protein-small-molecule sets. See 

table 4.1 and section 4.2.1.5 for details.  

 

5.2.2 Definition of binding interfaces and binding pockets 

Conceptually, the binding interface is the region between binding 

partners. In this sense, a simple distance cut-off between atoms in the 

different binding entities is sufficient to define the interface. However, this 

definition is biased by what constitutes the binding entities and potentially can 

leave out areas capable of binding (see Figure 5.1 for an example). In 

addition, it is not suitable for un-bound structures. 

 



 

209 

 
5.2 Methods 

 
   

 

F igure 5.1.  Structures of  human IRAK-4 bound to d i f ferent smal l  molecules.  
LEFT: Staurospor ine, 2NRY. RIGHT: benz imidazole inh ib i tor ,  2NRU. Cyan 
cartoon represents the k inase domain; res idues with in 4.5A of each l igand 
are d isp layed in magenta with st ick representat ion of  the s ide chains.  The 
fronta l  loop of  the f ive non-contact ing res idues is  not shown for c lar i ty .  

 

An alternative approach, used extensively for small molecule binding is 

to use a cavity or pocket detection algorithm that will identify regions where a 

small molecule can bind. Thus, binding interfaces in this context are 

synonymous with the identified binding pockets, but this definition is not 

unbiased as pocket detection methods depend on the technique and 

parameters used (Fuller et al. 2009). For structures that are different from of 

the training set used to calibrate these parameters, the pockets that actually 

recognise ligands can be very different from what one would intuitively define 

as a pocket (Capra et al. 2009). Furthermore, in order to use these algorithms 

in an automated manner for broad datasets, they need to be accessible and 

able to run stand-alone from a workstation. In the course of the analysis 

presented here, I have used three pocket detection programs: ConCavity 

(Capra et al. 2009), Fpocket (Le Guilloux et al. 2009) and ghecom (Kawabata 
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2010) and compared them with the binding interfaces generated by a 4.5Å 

cut-off distance between binding partners. ConCavity output is limited to a 

residue-based score of the likelihood of a particular residue to belong to a 

binding site. The program does not give geometric properties of the sites and 

it will be not considered further. 

 

5.2.3 Residue propensity plots 

For each subset protein redundancy has been removed using the 

UniProt identifier (see Table 4.1). For these interfaces, the total number of 

residues within 4.5Å of the ligand or the other protein is recorded. Then, the 

percentage of each amino acid (or amino acid type) per interface (%resi) is 

the total number of amino acids i-res divided by the total number of all amino 

acids at the interface: 

%𝑟𝑒𝑠!  =  
𝑟𝑒𝑠!
𝑟𝑒𝑠  

 

In this way, we can compare compositions of the different sets by 

plotting the mean and standard error of these %resi values for all 20 standard 

amino acids. The natural occurrence of each amino acid does not need to be 

taken into account when comparing interfaces, as natural abundances for 

each interface are the same for all. Comparison for all sets of molecules for all 

20 standard amino acids is very content-rich, difficult to represent and to 

interpret. For this reason, comparisons of amino acid types rather than 

individual amino acids are also discussed here. There are several ways to 

divide the natural amino acids into different types. This division depends on 

the objective of the study. For further classification of these propensities 

several side chain properties or amino acid types have been grouped 

together: 
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• Polarity 

o Charged: Arg, Lys, Asp, Glu and His 

o Polar: Asn, Gln, Ser, Thr, Tyr and Trp 

o Hydrophobic: Ala, Gly, Cys, Val, Pro, Ile, Leu, Met and Phe 

• Size 

o Small (4-7 heavy atoms): Ala, Cys, Gly, Pro, Thr, Val and Ser 

o Medium (8-10 heavy atoms): Asn, Asp, Gln, Glu, Ile, Leu, 

Lys, Met and His 

o Bulky (11-14 heavy atoms): Arg, Phe, Trp and Tyr 

• Flexibility 

o Constrained: Pro 

o Free: Gly 

o Rigid (0-1 rot bonds): Ala, Cys, Ser, Thr and Val 

o Medium (2-3 rot bonds): Asn, Asp, Gln, Glu, Ile and Leu 

o Flexible (4-5 rot bonds): Arg, Lys and Met 

o Aromatic (2 rot bonds + aromatic ring): His, Phe, Trp and 

Tyr 

 

5.2.4 Depth of the protein atoms at the interface 

The ghecom program (Kawabata 2010) that detects pockets in protein 

structures was used to calculate the depth of the protein atoms at the binding 

interface. The idea behind this program is that a pocket is a region where a 

small spherical probe can enter but a big one cannot. The radius of the 

smallest big (inaccessible) sphere - Rinaccess - gives a measure of the 

shallowness of the pocket. Kawabata has improved the performance of his 

original program phecom (Kawabata et al. 2007), by using mathematical 

morphology from set theory. For each atom of the protein, the Rinaccess 

values of the surrounding spheres is averaged by harmonic mean (a special 

case of the power mean): 

𝐻  =
𝑛

!
!"

!
!!!
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These values give a measure of the location of the atoms within the 

pocket. The program uses several probes with radii from 1.87Å to 10Å. 

Therefore a small value for Rinaccess means the atom is located deep within 

the pocket, whereas a Rinacceess of 10Å, means the atom is in a convex area 

or at the limits of the cavity. See Figure 5.2 for a schematic representation of 

the Rinaccess calculation. 

 

 

F igure 5.2.  The concept of  R inaccess ca lcu lat ion. Repr inted from (Kawabata 
2010).  Three spher ica l  probes are used: 3Å, 4Å and 5Å. Gr id representat ion 
captures the smal lest  of  the larger spheres that cannot access the gr id 
po int;  the number represented is  the rad ius of  the sphere p lus the gr id 
reso lut ion. Red and b lue shapes represent d i f ferent l igands bound in 
d i f ferent reg ions of  the pocket.  The average of  gr id va lues per l igand g ives 
a measure of  the depth where the l igand is  bound. 

 

5.2.5 Size of the protein in protein‐protein complexes 

The size of the protein is taken from the PICCOLO database (Bickerton 

et al. 2011), as the number of standard residues composing the chain. Most 

non-standard amino acids are not accounted for, as the database does not 

consider them for the interaction pairs between chains. 
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5.2.6 Statistical treatment 

The significance of the comparisons between distinct sets has been 

assessed by comparing medians of the calculated parameters. Because the 

distributions of the parameters analysed are not always normal, the non-

parametric method of Kruskal-Wallis, implemented in the stats module in 

scipy (Jones et al. 2001 - ), has been used for all comparisons. A difference is 

labelled as significant if the P value is lower than 0.05. 
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5.3 Results and discussion 

5.3.1 Pocket detection algorithms 

Fpocket output is information rich; not only does it provide geometric 

properties of the cavities identified, but also chemical characteristics, 

including a druggability predictor trained on small-pocket drug-like molecule 

binders (Le Guilloux et al. 2009). However, manual inspection of several 

examples indicated that the pockets found do not always match binding sites, 

as the region occupied by the binding partner. Therefore, it would be difficult 

to compare pocket properties across the subsets of molecules studied here. 

For example, in the case of human IRAK-4, Fpocket predicts correctly the 

binding site for Staurosporine. But to cover the binding site of the 

benzimidazole inhibitor, merging of two predicted pockets is needed (see 

Figure 5.3) Although this may be a meaningful result, as this inhibitor 

stretches itself to occupy several pockets, this manual fine-tuning is not 

possible for widespread comparisons and Fpocket was not used further.  
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F igure 5.3.  LEFT: IRAK-4 k inase domain (2NRU) bound to benz imidazole 
inh ib i tor  (not shown). The magenta reg ion represents the res idues in 
contact  with the inh ib i tor;  co loured spheres represent the pockets predicted 
by Fpocket,  where each co lour represents a d i f ferent pocket.  RIGHT: 
Prote in-based over lay of  the pocket predict ion from Fpocket shown on the 
le f t  with Staurospor ine from 2NRY. The benz imidazole inh ib i tor  is  
represented by b lue st icks,  Staurospor ine with magenta st icks.  Note the 
b inding mode for benz imidazole inh ib i tor  is  covered by pocket 1 (red) and 
pocket 4 (orange).  

 

The program ghecom (Kawabata 2010), an evolved version of the 

original phecom (Kawabata et al. 2007), gives atomic detail of the pockets 

found on the protein surface. For all examples analysed, this program gives 

the more consistent prediction of pockets. The cavities described by ghecom 

are usually larger than the ones generated by other programs (see Figure 5.4 

and Figure 5.5) but this characteristic is also what makes the output robust, 

in the sense that all surface atoms are explored and described. However, it is 

also the reason why this program is not considered further to define binding 

interfaces, as it is too sensitive and not specific. Nonetheless, calculations of 
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atom accessibility performed by this program are used to study the depth of 

the atoms at the interface. 

 

F igure 5.4.  Compar ison of  pocket detect ion by Fpocket (LEFT) and ghecom 
(RIGHT) for  the human IRAK-4 (2NRU). Ghecom gives one s ing le large 
pocket in the ATP b inding s i te (magenta c loud),  whereas Fpocket g ives 
severa l  d i f ferent ones. The smal l  co loured c louds on the r ight p icture are 
the addit ional  pockets found by ghecom. 
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F igure 5.5.  Compar ison of  the vo lumes for the pockets ident i f ied by Fpocket 
(Y ax is)  and ghecom (X ax is)  programs for the smal l  molecule data sets 
(Drug- l ike,  drugs,  natura l  molecules and smal l  pept ides).  These points 
represent the vo lume of the pocket that matched the l igand bound. Red 
stra ight l ine represents the l ine of  s lope one to a id compar ison. One quarter 
(23%) of the pockets have greater vo lume for Fpocket than ghecom. 

 

 

F igure 5.6.  Compar ison of  the number of  res idues forming a pocket f rom 
Fpocket ( le f t)  and ghecom (r ight)  predict ions versus the number of  
contact ing res idues from the b inding partner (bur ied res idues).  Red stra ight 
l ine represents the l ine of  s lope one to a id compar ison. For Fpocket,  23% of 
the predicted pockets enc lose fewer res idues than the res idues bur ied upon 
b inding, on average 77% of the b ind ing s i te is  covered for these cases.  For 
ghecom th is  proport ion is  less than 0.1%, and for these few cases more 
than the 90% of the b ind ing s i te is  covered by the predict ion.  

 

In conclusion, taking into account that all molecules studied in this 

analysis are complexed molecules, i.e. they are all bound to proteins, I define 

the binding interface as the region containing the atoms that are within 4.5Å 
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distance of any atom of the binding partner. In this way, comparisons 

between subset-binding interfaces will refer from now on to the contacting 

atom (buried) between partners. In the case of, for example, different 

molecules binding to the same protein, differences at the interfaces will 

reflect the way that each molecule interacts. 

 

5.3.2 Residue propensity 

This section investigates the residue propensity of the binding sites. 

Assessment of the protein redundancy in the sets has been carried out by 

comparing the residue propensities of each set of molecules with distinct 

UniProt identifiers versus distinct SCOP families. Figure 5.7 to Figure 5.13 

show the propensities for both levels of redundancy for all protein-small 

molecule complex sets. The residue propensities do not vary much between 

the two levels of redundancy, thus the analyses presented here use the 

subsets with distinct UniProt identifiers, unless otherwise stated. 

 

 
F igure 5.7.  Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (ye l low) and SCOP fami ly  (orange) 
for  the drug- l ike set .  Bar he ights represent the mean percentage of  each 
res idue at  the interface. Error bars denote the standard error of  the mean. 
The background co lour represents whether the res idue is  charged (red),  
po lar  (orange) or hydrophobic (b lue).  
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F igure 5.8.  Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (cyan) and SCOP fami ly  (magenta) 
for  the approved drug set .  Bar he ights represent the mean percentage of  
each res idue at  the interface. Error bars denote the standard error of  the 
mean. The background co lour represents whether the res idue is  charged 
(red),  po lar  (orange) or hydrophobic (b lue).  

 

 
F igure 5.9.  Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (green) and SCOP fami ly  ( l ight 
b lue) for  the ora l  drugs set .  Bar he ights represent the mean percentage of  
each res idue at  the interface. Error bars denote the standard error of  the 
mean. The background co lour represents whether the res idue is  charged 
(red),  po lar  (orange) or hydrophobic (b lue).  
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F igure 5.10. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (magenta) and SCOP fami ly  ( l ight 
p ink) for  the smal l  molecule PPI inh ib i tors set .  Bar he ights represent the 
mean percentage of  each res idue at  the interface. Error bars denote the 
standard error of  the mean. The background co lour represents whether the 
res idue is  charged (red),  po lar  (orange) or hydrophobic (b lue).  

 

 
F igure 5.11. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (purp le) and SCOP fami ly  (br ight 
p ink) for  the natura l  molecules set.  Bar he ights represent the mean 
percentage of  each res idue at  the interface. Error bars denote the standard 
error of  the mean. The background co lour represents whether the res idue is  
charged (red),  po lar  (orange) or hydrophobic (b lue).  
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F igure 5.12. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (pa le p ink) and SCOP fami ly  (pa le 
green) for  the natura l  molecules not conta in ing phosphorus set.  Bar he ights 
represent the mean percentage of  each res idue at  the interface. Error bars 
denote the standard error of  the mean. The background co lour represents 
whether the res idue is  charged (red),  po lar  (orange) or hydrophobic (b lue).  

 

 
F igure 5.13. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  the 
two leve ls  of  prote in redundancy, UniProt  (b lue) and SCOP fami ly  (grey) for  
the smal l  pept ides set .  Bar he ights represent the mean percentage of  each 
res idue at  the interface. Error bars denote the standard error of  the mean. 
The background co lour represents whether the res idue is  charged (red),  
po lar  (orange) or hydrophobic (b lue).  
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Regarding the protein-protein complexes, residue propensity can be 

studied for all chains of the assembly. In this work, I use PICCOLO interaction 

data that it is structured into interacting pairs of chains. For analogy with the 

protein-small molecules complexes I choose to represent only the propensity 

of the long chain of the protein-protein interaction. In fact, this is an arbitrary 

choice, as the multiple chains interacting in an assembly do not have 

analogies with small molecule binding sites, but it eases the representation 

and interpretation of the graphs. Figure 5.14 to Figure 5.17 show that there is 

virtually no difference in the residue propensities of long and short chains of 

the protein-protein complexes, with the exception of the transient hetero- and 

homo-dimers. This difference might be due to the high proportion of 

structures in this subset where one globular domain interacts with a shorter 

peptide. 

 

 
F igure 5.14. Compar ison of  res idue propens i t ies for  long chain (LC, pa le 
p ink) and short  cha in (SC, magenta) of  the homo quaternary interfaces of  
the prote in complexes.  Bar he ights represent the mean of the percentage of  
each res idue at  the interface. Error bars denote the standard error of  the 
mean. The background co lour represents whether the res idue is  charged 
(red),  po lar  (orange) or hydrophobic (b lue).  
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F igure 5.15. Compar ison of  res idue propens i t ies for  long chain (LC, pa le 
orange) and short  cha in (SC, green) of  the hetero quaternary interfaces of  
the prote in complexes.  Bar he ights represent the mean of the percentage of  
each res idue at  the interface. Error bars denote the standard error of  the 
mean. The background co lour represents whether the res idue is  charged 
(red),  po lar  (orange) or hydrophobic (b lue).  

 

 
F igure 5.16. Compar ison of  res idue propens i t ies for  long chain (LC, br ight 
green) and short  cha in (SC, b lue) of  the obl igate prote in d imers.  Bar he ights 
represent the mean of the percentage of  each res idue at  the interface. Error 
bars denote the standard error of  the mean. The background co lour 
represents whether the res idue is  charged (red),  po lar  (orange) or 
hydrophobic (b lue).  
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F igure 5.17. Compar ison of  res idue propens i t ies for  long chain (LC, br ight 
green) and short  cha in (SC, b lue) of  the trans ient prote in d imers.  Bar 
he ights represent the mean of the percentage of  each res idue at  the 
interface. Error bars denote the standard error of  the mean. The background 
co lour represents whether the res idue is  charged (red),  po lar  (orange) or 
hydrophobic (b lue).  

 

5.3.2.1 Charged, polar and hydrophobic 

This classification allows comparison of binding sites with respect to 

the binding profile they present, in terms of polar and apolar interactions 

discussed in chapter 4. The classification considers the side chains only; 

therefore the charged residues are Arg, Lys, Asp, Glu and His, the polar 

residues are Asn, Gln, Ser, Thr, Tyr and Trp, and the hydrophobic residues 

are Ala, Gly, Cys, Val, Pro, Ile, Leu, Met and Phe. 
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F igure 5.18. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  
drug- l ike (ye l low) versus natura l  molecules (purp le) .  Bar he ights represent 
the mean percentage of  each res idue at  the interface. Error bars denote the 
standard error of  the mean. The background co lour represents whether the 
res idue is  charged (red),  po lar  (orange) or hydrophobic (b lue).  

 

 
F igure 5.19. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  
natura l  molecules (purp le) versus natura l  molecules without phosphorus 
(pa le p ink).  Bar he ights represent the mean percentage of  each res idue at  
the interface. Error bars denote the standard error of  the mean. The 
background co lour represents whether the res idue is  charged (red),  po lar  
(orange) or hydrophobic (b lue).  

 

Comparison of the residue compositions between drug-like and natural 

molecules highlights the more hydrophobic and aromatic character of the 
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drug-like binding sites (Figure 5.18), as found previously by Soga et al. (Soga 

et al. 2007). Natural binding sites have on average more non-aromatic and 

polar residues. Interestingly, natural molecules also interact more with 

glycines than the synthetic molecules. This may reflect the preference of 

these molecules for binding through main chain NH and CO. But also the 

presence of glycine-rich loops that often recognise phosphate groups via 

hydrogen bonds with the main chain nitrogen atoms (Gherardini et al. 2010). 

Indeed, comparison of the residue composition of the natural-binding sites 

versus the binding sites of natural molecules that do not contain phosphorus 

(Figure 5.19) shows an increase of glycine content for binding sites containing 

phosphate molecules. However, the proportion of glycines in natural binding 

sites is higher than in synthetic-molecule binding sites regardless of the 

phosphorus content, as mentioned before probably reflecting a tendency of 

these types of molecules to interact with main chain atoms. For classical drug 

targets, drug-like molecules typically bind to endogenous small molecule 

binding sites. The difference between natural and drug-like binding sites 

reflects either that the sites compared are very diverse between sets or that 

drug-like of molecules avoid the regions where the natural molecules bind, for 

example the phosphate-binding region of ATP in protein kinases.  

 

In comparison with protein-protein interfaces, drug-like molecules also 

bind to more hydrophobic sites, whereas the content of charged residues is 

greater in protein-complexes (Figure 5.20). Obligate protein complexes have 

on average more hydrophobic residues at the binding interface and less polar 

and charged residues compared to transient complexes (Figure 5.21). 
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F igure 5.20. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  
drug- l ike (ye l low) versus prote in-prote in quaternary hetero interfaces (pa le 
p ink).  Bar he ights represent the mean percentage of  each res idue at  the 
interface. Error bars denote the standard error of  the mean. The background 
co lour represents whether the res idue is  charged (red),  po lar  (orange) or 
hydrophobic (b lue).  

 

 
F igure 5.21. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  
ob l igate d imers (br ight green) versus trans ient d imers (dark b lue).  Bar 
he ights represent the mean percentage of  each res idue at  the interface. 
Error bars denote the standard error of  the mean. The background co lour 
represents whether the res idue is  charged (red),  po lar  (orange) or 
hydrophobic (b lue).  
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Figure 5.22 shows the proportions of charged, polar and hydrophobic 

residues for all subsets. The proportion of charged residues in protein-protein 

complexes is significantly greater (P < 0.05) than that of the small molecule 

subsets. In contrast, the proportion of hydrophobic residues for small 

molecule inhibitor complexes with proteins is significantly greater than that 

for complexes with small peptides and proteins. Small peptide complexes are 

similar to transient dimers, having a greater proportion of polar residues than 

other subsets. In particular, transient dimers have more polar and fewer 

hydrophobic residues than obligate dimers. 

 

 

F igure 5.22. Average proport ion of  charged (red),  po lar  (orange) and 
hydrophobic (b lue) res idues at  the interfaces for  each molecular  subset at  
the UniProt  leve l:  Drug- l ike,  Approved drugs,  Ora l  drugs,  smal l  molecule 
prote in-prote in (PP) interact ion inh ib i tors ,  natura l  molecules,  natura l  
molecules without phosphorous, smal l  pept ides,  PP obl igate d imers,  PP 
trans ient d imers,  PP hetero- quaternary interfaces and PP complexes 
successfu l ly  inh ib i ted by smal l  molecules.  For the PP complexes,  on ly the 
long chain is  cons idered. 
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5.3.2.1.1 Protein‐protein complexes inhibited by small molecules 

 
F igure 5.23. Compar ison of  res idue propens i t ies at  the b ind ing s i tes for  
smal l  molecule prote in-prote in inh ib i tors (magenta) versus prote in-prote in 
complexes inh ib i ted by them (cyan).  Note these subsets are smal l  (9 and 7 
complexes respect ive ly) .  Bar he ights represent the mean percentage of  each 
res idue at  the interface. Error bars denote the standard error of  the mean. 
The background co lour represents whether the res idue is  charged (red),  
po lar  (orange) or hydrophobic (b lue).  

 

Regarding protein-protein complexes inhibited by small molecules, 

Figure 5.23 shows the comparison of the residue propensities for the protein 

interfaces that have been independently structurally determined bound to 

both partners: the protein partner and the small molecule inhibitor. These 

cases are S100B, IL-2, MDM2, ZipA, XIAP, Bcl-XL, Bcl-2, and TNF alpha. 

There are nine distinct UniProt protein-small molecule complexes and seven 

protein-protein complexes. The high standard error bars denote the variability 

and the small size of the sets. However, it is clear from this comparison that 

the small molecules avoid contact with the available charged and polar 

residues in favour of interacting with the hydrophobic ones. Indeed, small 

molecules occupy only a portion of the protein-protein binding interface, and 

they tend to maximise the hydrophobic contacts rather than the polar ones. 

This may be a result of the small molecules binding at the hot spots of the 

interfaces, especially in the standard medicinal chemistry settings where the 



 

230 

 
5.3 Results and discussion 

 
   

pursuit of affinity is prioritised. However, these molecules seem to be missing 

the specific contacts that would confer them selectivity towards these 

interfaces. However, hydrogen bond matching at an open interface might 

require a degree of flexibility that it is harder to design and successfully 

achieve, and it could explain the low content of hydrogen bonds in the first 

successful small molecule inhibitors of protein-protein interactions. Figure 

5.24 to Figure 5.30 show a graphical representation of these binding modes. 

 

 

F igure 5.24. S100B .  Upper le f t :  1DT7, S100B (cyan) with the C-terminal  
negat ive regulatory domain of  p53 (green).  Lower r ight:  3GK1, S100B (dark 
grey) with smal l  molecule inh ib i tor  (green).  The surface covers the S100B 
res idues that are with in 4.5Å of p53. For both complexes polar  contacts are 
red dotted l ines and apolar  are b lue dotted l ines.  
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F igure 5.25. IL-2 .  Upper le f t :  1Z92, IL-2 (cyan) bound to IL-2R a lpha 
subunit  (green).  Lower r ight:  1PY2, IL-2 (dark grey) with a Sunes is  smal l  
molecule inh ib i tor  (green).  The surface covers the IL-2 res idues that are 
with in 4.5Å of the IL-2Ra. For both complexes polar  contacts are red dotted 
l ines and apolar  are b lue dotted l ines.  
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F igure 5.26. MDM2 .  Upper le f t :  1YCR, MDM2 (cyan) bound to the 
transact ivat ion domain of  p53 (green).  Lower r ight:  1T4E, MDM2 (dark grey) 
with a benzodiazepine inh ib i tor  (green).  The surface covers the MDM2 
res idues that are with in 4.5Å of the p53. For both complexes polar  contacts 
are red dotted l ines and apolar  are b lue dotted l ines.   
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F igure 5.27.  ZipA .  Upper le f t :  1F47: Z ipA (cyan) bound to a f ragment of  
FtsZ (green).  Lower r ight:  1Y2F: Z ipA (dark grey) with an aminopyr imid ine 
inh ib i tor  (green).  The surface covers the Z ipA res idues that with in 4.5Å of 
the FtsZ. For both complexes polar  contacts are red dotted l ines and apolar  
are b lue dotted l ines.  Note the smal l  molecule does not engage a s ing le 
polar  contact .  
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F igure 5.28. XIAP .  Upper le f t :  1G3F, BIR3 domain of  XIAP (cyan) bound to 
an act ive n ine-res idue pept ide der ived from Smac (green).  Lower r ight:  
1TFT, XIAP (dark grey) with a smal l  molecule inh ib i tor  (green).  The surface 
covers the XIAP res idues that with in 4.5Å of the Smac fragment.  For both 
complexes polar  contacts are red dotted l ines and apolar  are b lue dotted 
l ines.  
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F igure 5.29. Bcl-XL .  Upper le f t :  2BZW, Bc l-XL (cyan) bound to BAD (green).  
Lower r ight:  2YXJ,  Bc l-XL (dark grey) with the Abbott  compound ABT-737 
(green).  The surface covers the Bc l-XL res idues that with in 4.5Å of BAD. For 
both complexes polar  contacts are red dotted l ines and apolar  are b lue 
dotted l ines.  Note that the smal l  molecule only engages polar  contacts at  
the bottom of the p icture and i t  is  bound to Bc l -XL main ly though apolar  
contacts .  
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F igure 5.30. TNF. Upper le f t :  1TNF, TNF a lpha tr imer,  two chains are 
co loured in cyan and the th ird in green. Lower r ight:  2AZ5, two chains of  
the TNF tr imer (dark grey) bound to a smal l  molecule (green) that 
acce lerates subunit  d issoc iat ion. The surface covers the res idues in these 
chains that are with in 4.5Å of the th ird chain.  For both complexes polar  
contacts are red dotted l ines and apolar  are b lue dotted l ines.  Note smal l  
molecule b inds to an area where there are no interact ions in the tr imer.  

 

5.3.2.2 Small, medium and bulky 

Here, residues are grouped by the number of their heavy atoms. In 

this way, small residues (4-7 heavy atoms) are Ala, Cys, Gly, Pro, Thr, Val 

and Ser. Medium (8-10 heavy atoms) are Asn, Asp, Gln, Glu, Ile, Leu, Lys, 

Met and His. Bulky residues (11-14 heavy atoms) are Arg, Phe, Trp and Tyr. 

This classification gives a rough measure of the exposure of the main chain 

atoms. If a site is composed of many bulky side chains, in principle the main 

chain atoms will be more occluded from interacting with the binding partner. 

In this respect, natural molecules have a significantly higher proportion of 

small side chains and a lower percentage of bulky residues. Figure 5.31 

shows the proportion of these residue types for all subsets. Small molecule 
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protein-protein inhibitors have a significantly greater proportion of bulky 

residues in comparison with natural molecules and protein complexes, but the 

difference with the other sets of synthetic molecules (drugs and drug-like) is 

not significant. 

 

 

F igure 5.31. Average proport ions of  smal l  (cyan),  medium (green) and bulky 
(magenta) res idues at  the interfaces for  each molecular  subset at  the 
UniProt  leve l:  Drug- l ike,  Approved drugs,  Ora l  drugs,  smal l  molecule 
prote in-prote in (PP) interact ion inh ib i tors ,  natura l  molecules,  natura l  
molecules without phosphorous, smal l  pept ides,  PP obl igate d imers,  PP 
trans ient d imers,  PP hetero quaternary interfaces and PP complexes 
successfu l ly  inh ib i ted by smal l  molecules.  For the PP complexes,  on ly the 
long chain is  cons idered. 

 

5.3.2.3 Constrained, free, rigid, medium, flexible and aromatic 

In order to have an estimate of the “softness” or adaptability of the 

binding interfaces, residues are classified by the number of rotatable bonds in 

the side chain. Proline and Glycine are separated into constrained and free 

groups respectively. Rigid residues are those with none or one rotatable bond 
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in the side chain, they are Ala, Cys, Ser, Thr and Val. Medium flexible residues 

have 2-3 rotatable bonds and small functional groups and are Asn, Asp, Gln, 

Glu, Ile and Leu. Flexible residues have 4-5 rotatable bonds; they are Arg, Lys 

and Met. Finally all aromatic residues have two rotatable bonds and an 

aromatic ring; they are His, Phe, Trp and Tyr. Figure 5.32 shows the 

proportion of these residue types across all subsets. Proline content is 

significantly greater at protein-protein interfaces, especially for obligate 

dimers, and natural molecules. Natural molecules have a greater proportion of 

glycines at their binding interfaces than other molecular subsets. Aromatic 

content is greater for synthetic molecules, small peptides and natural 

molecules without phosphorus, compared to protein complexes and natural 

molecules. Protein-protein complexes have a significantly greater proportion 

of flexible residues than small molecule interfaces, suggesting these 

complexes might have a greater ability to adapt to the binding partner than 

the preformed pockets where small molecules usually bind. 
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F igure 5.32. Average of  the proport ion of  constra ined (ye l low),  f ree 
(orange),  r ig id (red),  medium (green),  f lex ib le (cyan) and aromat ic  (b lue) at  
the interfaces for  each molecular  subset at  the UniProt  leve l:  Drug- l ike,  
Approved drugs,  Ora l  drugs,  smal l  molecule prote in-prote in (PP) interact ion 
inh ib i tors ,  natura l  molecules,  natura l  molecules without phosphorous, smal l  
pept ides,  PP obl igate d imers,  PP trans ient d imers,  PP hetero quaternary 
interfaces and PP complexes successfu l ly  inh ib i ted by smal l  molecules.  For 
the PP complexes,  on ly long chain is  cons idered. 

 

5.3.3 Proportion of main chain atoms at the binding interfaces 

In order to have an indication of the flexibility and robustness to 

mutation of the protein side, the main chain atoms have been counted in the 

binding sites of each subset. Figure 5.33 shows the average proportion of 

main chain atoms over the total number of atoms at the binding interface 

(left panels) and the average of the proportion of main chain atoms over total 

number of atoms that are matched at the interface (right panels).  For 

protein-small molecule complexes, both levels (UniProt and SCOP) of protein 

redundancy are assessed (upper versus lower panels in Figure 5.33), 

although there are changes in the absolute average numbers, the trends for 
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each subset are maintained when the numbers are filtered by SCOP families. 

In the case of protein-protein subsets, main chain atoms have been counted 

for both chains, labelled as long and short chain depending on the number of 

residues in the chain. No statistical difference has been found between long 

and short chain for any of the subsets and the ratios studied. 

 

 

F igure 5.33. Average of  the percentage of  main chain atoms for each 
molecular  subset at  the UniProt  leve l:  Drug- l ike,  Approved drugs,  Ora l  drugs,  
smal l  molecule prote in-prote in (PP) interact ion inh ib i tors ,  natura l  molecules,  
natura l  molecules without phosphorous, smal l  pept ides,  PP obl igate d imers,  
PP trans ient d imers,  PP hetero quaternary interfaces and PP complexes 
successfu l ly  inh ib i ted by smal l  molecules.  For the PP complexes,  both long 
chain (LC) and short  cha in (SC) are p lotted. Error bars denote the standard 
error of  the mean. A and C: percentage of  main chain atoms at  the interface 
(def ined as atoms with in 4.5Å of the b ind ing partner)  co lour coded by the 
proport ion that are matched (magenta) or unmatched (cyan).  B and D: 
percentage of  main chain atoms from the matched atoms co lour coded by 
polar  (red) and apolar  (b lue).  Both leve ls  of  redundancy are p lotted, A and 
B: prote in-smal l  molecule complexes with d ist inct  UniProt  ident i f iers .  C and 
D: prote ins-smal l  molecule complexes be longing with d ist inct  SCOP fami l ies.   

 

Figure 5.33 shows that on average (and for distinct UniProt proteins) 

drugs and drug-like molecules have a significantly (P < 0.05) smaller 
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proportion of main chain atoms in the active sites (28-32%) than natural 

molecules that have 44% of main chain atoms at the binding interface and 

small peptides and proteins that have 35-38%. Amongst the protein-protein 

complexes, there is no significant difference between sets for any of the 

ratios considered, with the remarkable exception of the long chain of the 

protein-protein complexes inhibited by small molecules. For these chains, all 

the proportions of main chain atoms considered (Figure 5.33 and Figure 5.34) 

are significantly (P< 0.05) lower than the rest of protein interfaces. Although 

there are only 15 complexes in this set, this is an interesting result implying 

that a higher content of side chain atoms at an interface makes it more 

amenable to bind small molecules, arguably to facilitate site adaptability. This 

result is in consonance with previous findings for these interfaces (Fuller et al. 

2009; Bourgeas et al. 2010) that highlighted the accommodation of the small 

molecules at the interface by side chain rearrangement. The absolute 

proportion of main chain atoms of the 20 standard amino acids is 48% and 

rises to 52% if one takes into account the natural abundance (Voet et al. 

1992) of each residue. In fact, main chain atoms are more common in the 

protein core and are involved in secondary structure interactions (Chothia 

1976). From this main chain atom composition, Figure 5.33 also shows main 

chain atoms as a proportion of the total number of atoms matched at the 

binding site. The same trends are maintained; drugs and drug-like molecules 

have significantly (P < 0.05) fewer main chain atoms (24-27%) engaged in 

successful interactions (as defined in chapter 4, section 4.2.2) than natural 

molecules (40%) and small peptides and protein complexes (31-33%). 
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F igure 5.34. Average percentage of  contacts invo lv ing main chain atoms for 
each molecular  subset for  both leve ls  of  prote in redundancy: Drug- l ike,  
Approved drugs,  Ora l  drugs,  smal l  molecule prote in-prote in (PP) interact ion 
inh ib i tors ,  natura l  molecules,  natura l  molecules without phosphorous, smal l  
pept ides,  PP obl igate d imers,  PP trans ient d imers,  PP hetero quaternary 
interfaces and PP complexes successfu l ly  inh ib i ted by smal l  molecules.  For 
the PP complexes,  both long chain (LC) and short  cha in (SC) are p lotted. 
Error bars denote the standard error of  the mean. Colour coded by polar  
(red) and apolar  (b lue).  

 

Figure 5.34 shows that natural molecules also have a higher proportion 

of contacts involving main chain atoms. Indeed, 34% and 32% at UniProt and 

SCOP family redundancy level respectively, of the contacts made by these 

molecules interact with protein main chain atoms. Furthermore, more than 

half of these main chain atoms are polar atoms. This trend may be a 

consequence of selective pressure in evolution through non-synonymous 

single nucleotide polymorphisms; a main chain interaction would be more 

robust to mutation of the amino acid. This may be more crucial in the small 

binding sites of endogenous ligands than in the large protein complex 

interfaces. In the latter, compensating mutations can be accepted over time 

and the proportion of main chain to side chain interactions is much lower. 

Furthermore, natural molecules tend to be more flexible and able to optimise 

interactions. However, natural molecules without phosphorus present a lower 

proportion of contacts involving main chain atoms and are similar to proteins 

and small peptides in this respect. To investigate this further, Figure 5.35 

shows the level of small molecule redundancy of the natural molecule set. 
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F igure 5.35. D istr ibut ion of  the natura l  smal l  molecule subset ( f i l tered for  
prote in redundancy by d ist inct  UniProt)  in terms of entr ies per chemica l  
s tructure of  the smal l  molecule bound to prote in.  Only h igher f requency 
entr ies are labe l led for  c lar i ty .  Note that more than hal f  of  the subset is  
composed of the complexes with seven d i f ferent molecules: ADP, NAD, FAD, 
NAP, ATP, AMP and SAH. 

 

The natural molecule set analysed here is composed of 1159 different 

proteins interacting with 216 small natural molecules. As shown in Figure 5.35, 

more than half of these complexes are formed by nucleotides with 

saccharides and phosphates, which in turn are the complexes using more 

main chain atoms.  
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HetID 
Num 

atoms SM 

Num 

SCOP fa 

% mc 

contacts 

% mc 

atoms 
Ratio 

ADP 27 41 40% 46% 0.52 

SAH 26 23 40% 47% 0.36 

ATP 31 18 31% 38% 0.36 

SAM 27 18 39% 46% 0.37 

AMP 23 17 40% 45% 0.48 

NAD 27 15 39% 46% 0.43 

FAD 53 11 37% 45% 0.38 

COA 48 9 32% 40% 0.40 

NAP 48 7 47% 54% 0.49 

Table 5.1.  The n ine most promiscuous smal l  molecules.  They a l l  be long to 
the natura l  molecule set .  Columns in the tab le are from lef t  to r ight:  HetID 
is  the PDB res idue ident i f ier ,  Num atoms SM is  the number of  atoms of the 
smal l  molecule l igand, Num SCOP fa is  the number of  d i f ferent SCOP 
fami l ies the smal l  molecule b inds to,  %mc contacts is  the average of  the 
percentage of  contacts by prote in main chain atoms across a l l  SCOP fami l ies 
bound for a part icu lar  smal l  molecule,  %mc atoms is  the average of  the 
percentage of  prote in main chain atoms at  the b ind ing interface across a l l  
SCOP fami l ies bound, Rat io is  the average of  rat io of  po lar  contacts by sum 
of contacts .  

 

Table 5.1 shows the average proportion of contacts involving main 

chain atoms, as well as binding site main chain atom content for the more 

frequent natural molecules binding to different SCOP families. Only distinct 

SCOP families are considered here in order to avoid bias by protein families, 

like protein kinases for instance. These molecules bind to a wide range of 

proteins and SCOP families and they have the highest main chain contact 

ratio. Although they also present the highest polar contact ratio, these 

molecules are multipurpose and not selective for a single protein. However, 

this result can also be interpreted from the protein side. These protein 

molecules have evolved to bind to the same nucleotide even though they 

have different folds. In this respect, the proportion of main chain atoms in the 

active site is one of the factors that can assist in identifying promiscuous 
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drug-binding sites in therapeutic targets. Figure 5.36 shows that promiscuous 

binders in the PDB present a high content of main chain atom contacts. 

 

 

F igure 5.36. Scatter  p lot  of  the number of d i f ferent SCOP fami l ies bound to 
the same smal l  molecule versus the average of  contacts invo lv ing main 
chain atoms that these molecules are engaging. 

 

5.3.4 Proportion of polar atoms at the binding interface 

This section analyses the polar topology of the binding interfaces for 

each molecular subset. As before, for protein-small molecule complexes, both 

levels (UniProt and SCOP) of protein redundancy are assessed (upper versus 

lower panels Figure 5.37). Although there are changes in the absolute 

average numbers, the trends for each subset are maintained when bias due 

to over-representation of certain SCOP families is removed. For the protein-

protein complexes, analysis of the polar atom content has been carried out 

for both long and short chains. 
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F igure 5.37. Average percentage of  prote in polar  atoms for each molecular  
subset:  Drug- l ike,  Approved drugs,  Ora l  drugs,  smal l  molecule prote in-
prote in (PP) interact ion inh ib i tors ,  natura l  molecules,  natura l  molecules 
without phosphorous, smal l  pept ides,  PP obl igate d imers,  PP trans ient 
d imers,  PP hetero quaternary interfaces and PP complexes successfu l ly  
inh ib i ted by smal l  molecules.  For the PP complexes,  both long chain (LC) 
and short  cha in (SC) are p lotted. Error bars denote the standard error of  the 
mean. A and C: percentage of  prote in polar  atoms at  the interface (def ined 
as atoms with in 4.5Å of the b ind ing partner)  co lour coded by the proport ion 
that are matched (magenta) or unmatched (cyan).  B and D: percentage of 
prote in polar  atoms from the tota l  atoms that are matched. Both leve ls  of  
redundancy are p lotted, A and B: prote in-smal l  molecule complexes with 
d ist inct  UniProt  ident i f iers .  C and D: prote ins-smal l  molecule complexes 
be longing with d ist inct  SCOP fami l ies.  

 

Figure 5.37 shows that the proportion of polar atoms at the interface 

of small molecule protein-protein inhibitors is significantly (P < 0.05) lower 

(22% for both UniProt and SCOP families) than all the other sets of molecules. 

These binding sites represent the highest proportion of unmatched polar 

atoms, and the lowest proportion of polar atoms from the matched protein 

atoms at the interface. This result has been discussed in chapter 4 (section 

4.3.5) from the ligand viewpoint. Although only protein atoms are considered 

here, the interfaces are defined by the binding partner, i.e. only protein 
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atoms proximal to the ligand are taken into account. On the other hand, 

interfaces of protein-protein complexes inhibited by small molecules are 

significantly (P < 0.05) less polar (30%, Figure 5.37 A the two bars on far 

right) than the other protein-protein interfaces (33-35%) and similar to the 

drug interfaces (29%). Thus, this may be the reason for the lower proportion 

of polar atoms at the binding sites of protein-protein inhibitors. However, this 

result shows that small molecules binding at the protein-protein interfaces 

target the most hydrophobic patches on the surface and do not take 

advantage of the possibility of engaging available specific contacts. 

 

The absolute proportion of polar atoms in the 20 standard amino acids 

is 35% and rises to 37% if one takes into account the natural abundance 

(Voet et al. 1992) of each residue. Binding sites for natural molecules and 

transient protein complexes are in this range of polar atoms (34 and 35% 

respectively). Indeed, binding interfaces for transient complexes are slightly 

more polar than obligate interfaces, (2% more, P < 0.05) as reported by 

other studies comparing obligate with non-obligate complexes (Nooren et al. 

2003). With respect to drug-like and drug-binding sites, the proportion of 

polar atoms is significantly lower (28-29%) than natural molecules. This result 

corroborates the use of hydrophobicity scores to predict druggability of 

binding sites, however polar interactions in hydrophobic environments are 

stronger and cannot be dismissed in the assessment of druggability 

(Schmidtke et al. 2010). Furthermore, the proportion of unmatched polar 

atoms at the binding sites of drugs suggests that drug-like molecules could, in 

principle, engage more specific interactions as discussed in chapter 4.  
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F igure 5.38. D istr ibut ion of  the average of  prote in polar  atoms at  the 
b ind ing interface for  drug- l ike molecules at  the UniProt  leve l  by molecular  
weight of  the smal l  molecule.  The proport ion of  po lar  atoms is  co lour coded 
i f  they are engaged in successfu l  interact ions with the l igand (magenta) or 
are unmatched (cyan).  Error bars denote the standard error of  the mean. 

 

Figure 5.38 shows the distribution of polar atoms at the binding 

interfaces of drug-like molecules. As described in 5.2.2, the protein atoms 

considered in the binding interfaces are defined by a distance cut-off from the 

ligand. In this respect, small fragments of molecular weight between 200-

300Da bind to regions that are significantly more polar than the binding 

regions of bigger molecules. This result is consistent with the results 

described in chapter 4, where small fragments engaged more polar contacts 

than bigger molecules. 

 

5.3.5 Depth of protein atoms at the binding interface 

Using the ghecom program (Kawabata 2010), Rinaccess is calculated 

for all protein atoms at the interfaces, i.e. within 4.5Å of the binding partner. 

Rinaccess is a measure of the depth of the considered atom with respect to 

the protein surface. See Methods for details. For protein complexes, only the 



 

249 

 
5.3 Results and discussion 

 
   

longest chain is considered here as discussed before. The special cases where 

a large protein interacts with a shorter adaptable chain will be discussed 

separately. 

 

 

F igure 5.39. Proport ion of  R inaccess va lues for  the atoms at  the interface 
for  each molecule set  at  the SCOP fami ly  redundancy leve l .  The co lour in 
the bars denotes the Rinaccess va lues: red (<2Å),  orange (2-3Å),  ye l low (3-
4Å),  green (4-5Å),  cyan (5-6Å),  b lue (6-7Å),  grey (7-10Å) and b lack (> 10Å).  
A: for  a l l  atoms at  the interface, B: for  main chain atoms at  the interface, 
C: for  po lar  atoms at  the interface and D: for  po lar  main chain atoms at  the 
interface. For prote in-prote in complexes,  on ly the longest chain is  
cons idered. 

 

As expected, Figure 5.39 (A) shows that the small molecule sets have 

defined pockets, as shown by the higher proportion of small values of 

Rinaccess in comparison with protein-protein complexes. Within the small 

molecule subsets, there is significant difference in the average of Rinaccess 

for the small peptides and small molecule protein-protein inhibitors, which 

present less deep pockets than drugs, drug-like and natural molecules. 

Regarding protein-protein complexes, transient dimers have on average 
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deeper cavities than the obligate dimers, as shown by the significant 

difference in median for Rinaccess values. Interestingly, protein complexes 

that are inhibited by small molecules also have deeper cavities than the 

obligate and quaternary interfaces but cannot be distinguished from the 

transient subset. Figure 5.39 (B) shows that main chain atoms are on average 

deeper than the side chain atoms as the proportion of smaller Rinaccess 

values is bigger for these atoms. Polar atoms seem not to have a preferred 

position within the pockets, as Figure 5.39 (C) shows. The proportion of 

Rinaccess values for polar atoms in comparison with all atoms at the interface 

(Figure 5.39 (A)) does not change significantly. 

 

5.3.5.1 Depth of the protein atoms at the interface versus chain length 

Results in chapter 2 highlighted the success in finding small molecules 

binding to the protein-protein interfaces where one of the partners in the 

complex is a small peptide motif that probably undergoes a disorder-order 

transition upon binding to a globular domain. Indeed, the majority of protein 

complexes that have been successfully inhibited by small molecules are in this 

category. In order to quickly discriminate between the content of protein 

complexes studied here, in terms of relative protein sizes, the ratio of the 

length of the short chain to the long chain was calculated. Figure 5.40 and 

Table 5.2 show the distribution of this ratio. 
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 N complexes Ratio (SC/LC) % of R < 0.5 

Obligate 161 (67 homo) 0.76 25% 

Transient 154 (all hetero) 0.49 58% 

Hetero interfaces 2,271 0.57 45% 

Homo interfaces 12,034 0.98 1% 

PP inh by SM 15 (1 homo) 0.39 67% 

Table 5.2.  S ize d i f ferences between long chain (LC) and short  cha in (SC) for  
each subset of  prote in-prote in complexes: Obl igate d imers,  Trans ient d imers,  
Hetero and Homo quaternary interfaces and prote in-prote in (PP) complexes 
inh ib i ted by smal l  molecules (SM). ‘Rat io (SC/LC) ’  is  the average of  the rat io 
between the lengths of  long and short  cha in.  ‘% of R < 0.5 ’  is  the 
percentage of  complexes where the short  cha in is  smal ler  than hal f  the long 
chain.  See F igure 5.40 for  the d istr ibut ion of  these rat ios.  

 

 

F igure 5.40. Normal ised d istr ibut ion of  the rat io between the lengths of  
short  and long chain for  the prote in-prote in complexes subsets:  Obl igate 
d imers,  Trans ient d imers,  Hetero quaternary interfaces and prote in-prote in 
(PP) complexes inh ib i ted by smal l  molecules (SM). Homo quaternary 
interfaces are not p lotted, as they have v ir tua l ly  no d i f ference in chain 
length, see Table 5.2.  
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The biggest set of protein-protein interfaces, the homo quaternary 

interfaces, is composed of same length protein dimers. Only 1% of these 

complexes have significant difference in chain length, as this implies one of 

the partners has been truncated. The hetero quaternary interfaces subset 

presents a spread distribution of relative sizes, with the complexes of similar 

chain length being more common. The subset of obligate dimers (42% of 

which are homo dimers) is mainly composed by similar chain length 

complexes, although there are also cases of small peptides binding to bigger 

proteins. The Transient dimers (all of them are hetero dimers) have a spread 

distribution of relative size for the binding partners, skewed towards smaller 

ratios; almost 60% of the Transient complexes are composed by one partner 

that is, at least, double the length of the other. Here, the interest is to 

explore the subset of complexes where a large usually globular domain 

recognises a short chain. In this respect, the ratio of the chain lengths can be 

misleading, as interactions with small ratio can be between globular domains. 

For example, the structure of a RNA polymerase, 1YNN (Campbell et al. 2005), 

where the alpha chain (314 residues) interacts with the beta chain (1119 

residues). However, this ratio allows focusing in the hetero quaternary protein 

interfaces and transient complexes. In the previous section, we have seen 

that these interfaces have on average a larger proportion of atoms in deeper 

cavities than the obligate subset.  
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F igure 5.41. Proport ion of  R inaccess va lues for  the atoms at  the interface of  
the long chain of  the hetero quaternary interfaces (A) and for the long chain 
(with at  least  100 res idues in length) of  the trans ient d imers and prote in-
prote in complexes inh ib i ted by smal l  molecules (B).  The co lour in the bars 
denotes the Rinaccess va lues: red (<2Å),  orange (2-3Å),  ye l low (3-4Å),  
green (4-5Å),  cyan (5-6Å),  b lue (6-7Å),  grey (7-10Å) and b lack (> 10Å).  
Each bar represents d i f ferent length range for the short  length of  the 
complex.   

 

Figure 5.41 shows a tendency for this proportion to increase with 

decreasing size of the short chain of the complex. Considering that shorter 

chains will define smaller interface areas. The fact that the proportion of 

atoms in deeper cavities for smaller chains is larger highlights the preference 

of these shorter peptides to target cavities at the interface and support the 

hypothesis that these interfaces are more amenable to be inhibited by a small 

molecule (Blundell et al. 2006). 

 

5.3.6 Density of contacts at the binding interface 

For a given cavity on the protein surface where a ligand binds, the 

density of contacts can be calculated per protein atom or per ligand atom. In 

the case of protein complexes, densities can be calculated per protein atom of 

each chain. As previously, I labelled protein chains as long and short 

depending on the length of the polypeptide. The difference in density of 

contacts between sides gives a rough measure of the wrapping ability of one 

side towards the other. In the case of small molecules, usually the ligand is 

wrapped inside a concave shape in the protein surface. In the case of protein 
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complexes, protein-protein interfaces alternate pockets in both chains of the 

interface. Thus, on average the density of contacts for each chain will not 

differ much.  

 

 

F igure 5.42. Average dens i ty of  contacts per interface atom for each subset:  
Drug- l ike,  Approved drugs,  Ora l  drugs,  smal l  molecule prote in-prote in (PP) 
interact ion inh ib i tors ,  natura l  molecules,  natura l  molecules without 
phosphorous, smal l  pept ides,  PP obl igate d imers,  PP trans ient d imers,  PP 
hetero quaternary interfaces and PP complexes successfu l ly  inh ib i ted by 
smal l  molecules.  For smal l  molecule complexes,  both prote in s ide (PS, pa le 
b lue) and l igand s ide (LS, orange) are p lotted. For the PP complexes,  both 
long chain (LC, pa le b lue) and short  cha in (SC, orange) are p lotted. Error 
bars denote the standard error of  the mean. A: dens i ty of  prox imal contacts 
(atom pairs  with in 4.5Å) at  UniProt  leve l  of  prote in redundancy. B: dens i ty 
of  successfu l  contacts at  UniProt  leve l .  C: dens i ty of  prox imal contacts at  
SCOP fami ly  leve l  of  prote in redundancy. D: dens i ty of  successfu l  contacts 
at  SCOP leve l .  

 

Figure 5.42 (A) shows the average density of proximal contacts (atom 

pairs within 4.5Å) for all sets for distinct UniProt families. Similar trends were 

found for distinct SCOP families Figure 5.42 (C). The results for the 

differences in density of contacts between long chain (or protein) and short 
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chain (or ligand) corroborate the distribution of Rinaccess discussed in the 

previous section. Drugs, drug-like and natural molecules have deeper cavities 

that translate into a greater difference in contact densities between protein 

and ligand atoms. These are followed by small molecule protein-protein 

inhibitors and small peptides, which have shallower pockets and therefore 

smaller differences in contact densities between protein and ligand atoms. 

Regarding protein complexes, there is no significant difference between 

contact density for long and short chains for the obligate dimers subset. For 

quaternary hetero, transient interfaces and protein-protein interfaces inhibited 

by small molecules there is a significant difference (P < 0.05) in the contact 

density between chains, although it is small. This difference is probably due 

to the proportion of these complexes where a larger globular domain 

recognises a shorter peptide as discussed in the previous section. 

 

Regarding differences in contact density across subsets, oral drugs are 

the most contact efficient in both proximal (Figure 5.42 A and C) and 

successful contacts (Figure 5.42 B and D). Examples of oral drugs with high 

and low density contacts are displayed in Figure 5.43. The obvious question 

that arises is whether this efficiency is because oral drugs are, on average, 

smaller molecules. Figure 5.44 shows that oral drugs have similar size to 

other drugs, drug-like and natural molecules. Furthermore, it also shows no 

correlation between contact density and molecular size. Oral drugs have a 

greater density of contacts because they are, on average, the small molecules 

that best fit the deep cavities in proteins, as reported previously (Fuller et al. 

2009). This is arguably because they have been optimised to achieve tight 

binding. In addition, oral drugs considered here have been structurally 

characterised suggesting that maybe there is a bias in the data where 

optimisation has been achieved with structural information in hand. In 

contrast, natural molecules that are the product of millennia of evolution have 

significantly lower contact density. This is because; natural molecules evolve 

to preserve function, not tight binding. Indeed, Kahraman and co-workers 

(Kahraman et al. 2007) found that pockets were on average three times 
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bigger than the ligands they bound. In that study, a hundred protein 

complexes with nine ligands were considered (ATP, AMP, FAD, FMN, Glucose, 

Heme, NAD, Phosphate and Steroid-like molecules). These ligands belong to 

the natural molecule subset analysed here. They are substrates, cofactors or 

products of enzymatic reactions that need to transfer chemical groups to pass 

a response in the signalling cascade, indeed none of these are likely to be the 

sole occupants of the binding pocket. This is probably the reason why these 

molecules bind less tightly to bigger pockets as they need room to manoeuvre 

as well as leaving the site once the signalling is achieved. 

 

 

F igure 5.43. Examples of  ora l  drugs b ind ing to prote ins,  prox imal contacts 
are represented by grey dotted l ines.  LEFT: 2HM9, d ihydrofo late reductase 
complexed with tr imethopr im, 16.3 prox imal contacts per bur ied l igand atom. 
RIGHT: 3C9J,  t ransmembrane domain of  M2 prote in complexed with 
amantadine, 4.6 prox imal contacts per bur ied l igand atom. 
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F igure 5.44. Scatter  p lot  of  the prox imal contact  dens i ty ( the number of  
contacts per interact ing l igand atom) versus the number of  l igand atoms for 
the smal l  molecule subset.  The redundancy f i l ter  appl ied here is  by d ist inct  
UniProt  and d ist inct  smal l  molecule.  Drug- l ike (ye l low),  approved drugs 
(cyan),  ora l  drugs (green),  natura l  molecules (purp le) ,  prote in-prote in 
inh ib i tors (magenta) and smal l  pept ides (b lue).  The h istogram in the centre 
of  the f igure represents the molecular  weight d istr ibut ion.  
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5.4 Conclusions 
The first conclusion from this analysis of the binding interfaces is that, 

although binding interface is a simple concept, it is difficult to encapsulate in 

a universal definition that allows unbiased comparison across different binding 

sites. Regarding pockets, one can distinguish between ligand-defined pocket 

and protein-geometry defined pocket. Comparison of cavities defined by 

interacting partners is biased by the interactions these entities prefer to make, 

whereas comparison of pockets defined by cavity detection programs is 

biased by the software used rather than by the potential of the sites. 

Furthermore, the polar ambivalent and flexible nature of the amino acids 

enables a range of binding profiles at the same interface, especially for 

protein-protein complexes. 

 

In this chapter, I have used the binding interfaces as defined by the 

bound molecule. 

 

Amongst the protein-protein interfaces studied here, the transient 

complexes appear to be, from the structural point of view, the most amenable 

to be targeted by small molecule drug based therapies. These complexes 

have on average deeper pockets at the interface than obligate and quaternary 

interfaces. In addition, these complexes are often formed by a small chain 

binding to a bigger protein. Indeed, most of the successfully inhibited protein-

protein complexes have characteristics similar to those of the transient dimers 

subset with the exception of the TNF trimer. 

 

Drug-like molecule binding sites are on average more hydrophobic and 

have higher aromatic content than those binding small natural molecules. 

However, these sites have a higher proportion of unmatched polar atoms, 

suggesting that in principle, the polar interaction profile for drug-like 

molecules could be improved. Indeed, small drug-like fragments (200-300Da) 

bind on average to more polar sites than larger molecules. Furthermore, for 
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protein-protein complexes inhibited by small molecules, comparison of the 

protein-protein with the protein-small molecule binding interfaces reveals that, 

on average, small molecules target the hydrophobic and aromatic residues 

instead of the polar residues available at the sites. Moreover, the higher 

content of flexible side chains in protein-protein interfaces confirms that a 

degree of adaptability to bind to small molecules and to match polar contacts 

is possible. 

 

Natural molecules have on average a higher proportion of contacts 

with main chain atoms and a higher content of Gly at the binding site. This 

behaviour is mainly due to the small molecules nucleotides, such as ATP, 

binding to a variety of different folds. Indeed it may be that a high proportion 

of main chain atoms in a binding site may be characteristic of a promiscuous 

binding region. 

 

Analysis of the depth of the atoms at the interfaces confirms that 

drugs, drug-like and natural molecules bind to deeper pockets than small 

peptides and small molecules inhibiting protein complexes. The density of 

contacts at the interfaces also corroborates this result. In this respect, oral 

drugs are the most contact efficient group. 

 

The conclusions reached in chapter 4 are generally supported by the 

analysis of binding sites. Drug-like molecules in general, but especially those 

that inhibit protein complexes do not make full use of the polar signature on 

binding. Although the subset of natural molecules binding to many different 

folds has more polar contacts, they do so through a higher proportion of main 

chain atoms, which may well explain the intended promiscuity that has been 

helpful in evolution.  
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I start this last chapter with a quote Brian Warrington used in one of his talks: 

 

Life can only be understood backwards; but it must be lived forwards. 

Søren Kierkegaard, Danish philosopher (1813 - 1855) 

 

The work reflected in this thesis has been an exercise in trying to understand 

what we have done so far with the aim of identifying areas where we can 

move forwards. The drug discovery community agrees that we are at an 

inflexion point; classical practices are being questioned and new areas are 

being explored. In chapter 2, we have seen, however, that when new areas 

are explored with the classical tools the outcome often brings us back where 

we started. Small molecules disrupting new drug targets, in particular protein-

protein interactions, are more lipophilic than the already-too-lipophilic drug-

like molecules. This is our starting point for exploring a new, more challenging 

drug space. In this dissertation I have looked backwards to review the 

progress made so far, but I have also sought to look forwards to new 

approaches to targeting protein-protein interactions. 

 

6.1 Protein‐protein interactions as drug targets 
I have described a new public resource, TIMBAL, a database that holds 

small molecules inhibiting protein-protein interfaces. Comparison of these 

molecules with drugs on the market and those in most screening libraries 

underlined the fact that TIMBAL molecules tend to be bigger, more rigid, 

more lipophilic and with fewer hydrogen bonded atoms. Comparing the 

binding interfaces of the protein target with its small molecule inhibitor and 

with its protein partner highlighted that the small molecules prioritise 

hydrophobic contacts instead of the available polar patches at the protein 

surface. Although one of these big lipophilic molecules, ABT-263 at the Bcl-2 

interface, has made its successful way into oncology clinical trials, it should 

not be a general model for future campaigns; rather efforts should be 

invested into maximising specific contacts that are available at these 
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interfaces. Furthermore, residue propensity comparisons between protein-

protein interfaces and small molecule binding sites have confirmed that multi-

protein complexes have a higher proportion of flexible side chains, which are 

able to match polar contacts. In terms of available cavities, studies of the 

depth below the surface of protein atoms that constitute a cavity have shown 

that transient protein complexes (especially those which are composed of a 

large domain interacting with a short chain) have, on average, deeper 

pockets. They may therefore offer greater opportunities for binding ligands 

with high efficiency, so making them more amenable as targets for candidate 

drug molecules. 

 

6.2  Molecular  recognition,  synthetic  versus 

natural molecules 
Molecular recognition is a concept that describes the outcome of a 

complexity of both attractive and opposing forces. Atomic interactions 

between two molecules are not the only factors to consider. However, in drug 

discovery, they encode the relationship between binding affinity and 

molecular properties, and in turn define the ADMET space where the small 

molecules operate. I have demonstrated by comparisons of atomic interaction 

profiles between different sets of molecules that natural molecules (small 

molecules but also other proteins) bound to proteins have a larger proportion 

of polar contacts than protein-synthetic molecule complexes. Exogenous 

compounds are restricted within a window of “drug-like” properties that 

facilitate their journey in the body in order to reach their target. Specifically, 

oral drugs should not be very polar. Furthermore, matching too many 

hydrogen bonds is not only extremely difficult but also will confer a 

lipophilicity that would be too low to cross membranes. The results presented 

in this thesis, however, have shown that drug-like molecules have a higher 

proportion of buried polar unmatched atoms than the natural sets and 

probably for this reason, there is no correlation between logP and the 
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proportion of polar contacts. I conclude that, in principle, it should be possible 

to increase the specific contacts achieved by synthetic molecules without 

changing drastically the molecular properties of drug-like compounds. In 

practical terms, this seems to be feasible through fragment-based approaches. 

Analysis of the proportion of polar contacts versus size of molecules 

confirmed that a higher content in specific interactions occurs when the 

compounds are small. Indeed, small drug-like fragments bind on average to 

more polar binding patches than larger molecules. It is accepted now that the 

evolution of these initial hits should be along a path that optimises the affinity 

and molecular properties in a concerted fashion. 

 

6.3 Concluding remarks 
Structurally characterised protein complexes offer a wealth of 

information about molecular recognition and much insight can be gained by 

studying atomic interaction profiles of different types of molecules. However, 

data curation and redundancy assessment are paramount to extract robust 

conclusions. The results of such studies should reveal trends for each 

molecular type, arbitrarily defined in the study, but not the particular solution 

nature has found for that particular molecule with that particular function. 

Nevertheless, trends can guide us on a journey to understand what we have 

done so far with the aim of further improving what we should do moving 

forwards. I hope the work reflected in this thesis can contribute towards that 

end. 
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