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The failure of the pharmaceutical industry to increase the delivery of
new drugs into the market is driving a re-assessment of practices and
methods in drug discovery and development. In particular alternative
strategies are being pursued to find therapeutics that are more selective,
including small molecules that target protein-protein interactions. However,
success depends on improving our understanding of the recognition of small
molecules by interfaces in order to develop better methods for maximising
their affinity and selectivity, whilst trying to confer an appropriate therapeutic

profile.

This thesis starts with the description of the creation of TIMBAL, a
database that holds small molecules disrupting protein-protein interactions.
The thesis then focuses on the analysis of these molecules and their
interactions in a medicinal chemistry and structural biology context. TIMBAL
molecules are profiled against other sets of molecules (drugs, drug-like and
screening compounds) in terms of molecular properties. Using the structural
databases in the Blundell group, the atomic detail of the interaction patterns
of TIMBAL molecules with their protein targets are compared with other
molecules interacting with proteins, comprising natural molecules, small
peptides, synthetic small molecules (including drug-like and drugs) and other
proteins. The structural features and composition of the binding sites of these
complexes are also analysed. Keeping in mind that current drug candidates
are somewhat too lipophilic to succeed, these interaction profiles are defined
in terms of polar and apolar contacts, with the aim of migrating natural

patterns into the design of new therapeutics.
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Figure 1.1. Stages of the drug discovery process. Reprinted from (Lombardino et al. 2004). 39
Figure 1.2. Concept of undruggable surfaces. a: Protein (green) with a cavity evolved to
recognise an endogenous ligand (grey) with multiple interactions converging in a small
volume. b: Classical drug target where the drug molecule (magenta) occupies the
volume maximising interactions, as most of its surface is in contact with the protein
target. c: Protein-protein complex (green and grey) with a large surface with spread
interactions. d: Small drug molecule (magenta) cannot engage many interactions as the
absence of grooves translates into small contact areas. Blue arrows represent hydrogen

bonds and yellow patches represent hydrophobic contacts. Reprinted from (Whitty et al.

Figure 1.3. Lennard-Jones potential (V) for Argon dimer as function of the interatomic
distance (r). The minimum of potential corresponds to €and potential is equal to zero
When the diSTaNCE IS O...coeviiiiii e 49

Figure 1.4. Relative geometries of side chain charged groups in proteins. Colour coded per
ion-pair type: Salt bridges (blue, side chain centroids and O-N pairs from Glu/Asp-
Arg/Lys/His are within 4A), N-O bridges (green, only O-N pairs are within 4A, but not the
side chain centroids) and longer range ion pairs (red, centroids and N-O pairs more than
4A apart). Geometry of the ion-pairs is represented by the distance between centroids of
the charged groups (radii of the polar plot) and by the relative angular orientation
between side chains (angle of the polar plot measured as the angle between the vectors
formed by the C-alpha and the side chain centroid of each residue). Most ion pairs with
distances < 5A are stabilizing of the structure and destabilizing for longer distances. See
original paper for details. Reprinted from (Kumar et al. 2002).........ccccccveveeeiiiicviineineen. 52

Figure 1.5. Definition of types of protein-protein interactions by function of their binding affinity
(Y axis) and the localisation of the protomers (X axis). In red the factors that affect
transient interactions. * denotes large conformational changes that usually occur with
the association. Reprinted from (Nooren ef al. 2003). .........cocoiiiiiieiiiiiiiee e 59

Figure 1.6. Chemical structures of the set of molecules studied by Kahraman et al.
(Kahraman et al. 2007; Kahraman et al. 2010). The labels show the three-letter code of
the molecule in the HET entry and the number in parenthesis denotes the number of
instances used in the Kahraman study. ...........ccccciiiiiiiiiii s 67

Figure 2.1. Number of publications per year (normalised by the total number of publications
per year) containing in the title “protein-protein interaction”. The colour code is as
follows: blue, only PPl in the title; red, ppi and small molecule (SM) in the title; orange,
ppi and inhibitor (inh) in the title; yellow, all the above in the title. Searches have been
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Figure 2.2. Complete schema of TIMBAL database. Chemical structures are held as SMILES
(Simplified Molecular Input Line Entry System), generated with the Accord functionality
within Excel. These sets of tables have been defined to normalise TIMBAL and avoid
=10 (U1 To F=1 o To3 YOO P PP PPPPPPPRPOt 85

Figure 2.3. Distribution of molecular properties for the different sets of molecules described in
the main text. See section 2.2.1. Colour coded: dark blue (PDB ligands), grid dark blue
(PDB ligands drug-like subset), yellow (Drugs from MDDR), cyan (Screening
compounds), pink (TIMBAL, small molecule inhibitors of protein-protein interactions).
MW: Molecular weight; alogP: Calculated logarithm of the partition coefficient; NRings:
Number of rings; RotBonds: Rotatable bonds. ...........ccccvviiiiiiiiii s 93

Figure 2.4. Distribution of molecular properties for the different sets of molecules described in
the main text. See section 2.2.1. Colour coded: dark blue (PDB ligands), grid dark blue
(PDB ligands drug-like subset), yellow (Drugs from MDDR), cyan (Screening
compounds), pink (TIMBAL, small molecule inhibitors of protein-protein interactions).
PSA: Polar surface area; HBA: Number of hydrogen bond acceptors; HBD: Number of
hydrogen DONA AONOIS. ........uuiiiiiiiie e e e 94

Figure 2.5. Distribution of the Molecular Weight (MW) of the TIMBAL molecules colour coded
by target. Only targets with more than one molecule are plotted. .........ccccccvvveeiiiiiinnnns 97

Figure 2.6. Distribution of the calculated logarithm of the partition coefficient (alogP) of the
TIMBAL molecules colour coded by target. Only targets with more than one molecules
Are PIOMEA. ..o e 98

Figure 2.7. Three-dimensional projection of the principal components of the molecular
properties for the different sets of molecules. ............ccccooiiiiiiiiii 100

Figure 2.8. Distribution of the distances to the arithmetic centre of the PCA space for each set
of molecules. TIMBAL molecules represented by dots for clarity. The mean of this
distance is 2.18 with a standard deviation of 1.49. Table 2.4 shows the percentage of
molecules iN €aCh DIN. ..... .. e e 101

Figure 2.9. Range of Ligand Efficiency, LE (X axis) of the TIMBAL molecules separated by

Figure 2.10. Average of the molecular properties for TIMBAL molecules binned by LE. Blue:
Average of the sum of hydrogen bond donors and acceptors. Red: Average or rotatable
bonds. Yellow: Average of alogP. Black: Average of number of atoms............c........... 110

Figure 3.1. Scatter plots of the comparison of PICCOLO and CREDO contacts. In all nine
plots, X-axes are for CREDO contacts and Y-axes for PICCOLO contacts. Each scatter
plot is for one of the common contact types in both databases, from top left to bottom
right: covalent, van der Waals, van der Waals clash, hydrogen bond, ionic, pi-cation,
hydrophobic and proximal. Proximal is defined as when the two atoms are less than or
equal to 6.05A apart, the maximal distance of a water-mediated hydrogen bond. The red
line in each plot denotes the slope that is given when the two databases give identical
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Figure 3.2. Geometric criteria for hydrogen bonds used in HBPLUS, adapted from figure 1 in
(McDonald et al. 1994). D is the donor heavy atom. H is hydrogen, A is the acceptor
heavy atom. DD is donor antecedent (an atom two covalent bonds away from the
hydrogen). AA is acceptor antecedent. All three angles highlighted in the figure are

required to be greater than or equal to 90 degrees to meet the hydrogen bond criterion.

Figure 3.3. Scatter plots of specific contacts versus simple contacts for each database and
type for the subset common to both databases. Simple polar and apolar contacts are
distance cut-offs between polar-polar and apolar-apolar atom type as described in the
text. Specific contacts refer to the contacts defined in CREDO and PICCOLO. Hydrogen
bond, pi-cation and ionic are considered as polar contacts and hydrophobic is
considered as apolar. The green line has a slope = 1 to aid visualisation. See Table 3.3
for details of the linear correlation..............ccccovie i 125

Figure 3.4. Scatter plots of buried surface area upon binding and the number of atomic
contacts (polar, apolar and sum of contacts) for the subset of complexes common to
both databases. The sum of contacts has been calculated over all interacting chains for
comparison with buried area..............oiiiiiiii 126

Figure 4.1. Structure 1THNX (30S ribosomal subunit in complex with Pactamycin). Small
molecule ligand (PCY) represented by red spheres. Ribosomal RNA in cyan cartoon,
fragment of messenger RNA in orange cartoon. Protein S7 in blue cartoon with surface
and Protein S11 in magenta cartoon with surface. ..........cccccciiiiiiiiii e, 133

Figure 4.2. Binding interface between human immunoglobulin epsilon chain C (Igg-FC in
cyan) and its high affinity immunoglobulin epsilon receptor alpha subunit (magenta) from
PDB entry 1F6A. At this interface, electron density is also observed for five molecules of
the CHAPS detergent (only steroid heads resolved, in stick representation with different
colour for each CHAPS MOIECUIE). .......eiiiiiiiiiieiie e 134

Figure 4.3. Structure 1A42, human carbonic anhydrase Il complexed with brinzolamide. Zinc
atom is represented by a black sphere, protein atoms by pale pink lines and
brinzolamide ligand by magenta Sticks. ............ciiiiiiiii 135

Figure 4.4. Left: Structure 1T6J, phenylalanine ammonia-lyase with carboxycinnamic acid
(magenta spheres). Right: Acriflavine resistance protein B with Ciprofloxacin. This
molecule (stick representation) binds into two independent sites, the interaction with
more atomic contacts is kept for the analysis. ........coccocieiiiiiii 136

Figure 4.5. Example of a scissor plot. X axis represents sum of contacts (as polar + apolar). Y
axis represents the contacts, apolar in blue and polar in red. See text for discussion
aboUt theSe graphsS. .......ce i 142

Figure 4.6. Heteroscedasticity. Fan shape of the residuals for the apolar regression line of the
ArUG-lIKE (DL) SEL. ...ttt st e s e e e e e 144

Figure 4.7. PDB 1PW8, crystal structure of IL-2 bound to inhibitor SP2456. This entry was not

considered for the non-redundant subset of inhibitors of protein-protein interactions
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because the small molecule (in stick representation, green and yellow) interacts with
itself in the crystal packing. Note these are identical molecules packed in the
ASYMMETIIC UNIT. .. e e e e e 152
Figure 4.8. Examples of chemical structures of the small molecules inhibiting protein-protein
complexes. Each structure is labelled with the protein complex it inhibits.................... 153
Figure 4.9. Distribution of the natural small molecule subset in terms of entries per chemical
structure of the small molecule bound to protein. Only higher frequency entries are
labelled for clarity. Note more than half of the subset is composed of the complexes with
eight different molecules: ADP, NAD, NAP, ATP, AMP, FAD, SAH and COA. ............ 154
Figure 4.10. Examples of chemical structures in the natural molecules set. Labels correspond
to the manual classification based in their structures and functions, so these molecules
are categorised into natural product like, peptide like, steroid like, sugar like, lipid like,
antibiotic like and nucleotide liKe. ...........uuuiiiiiiiii e 155
Figure 4.11. Examples of chemical structures in the drug-like subset. Molecules are labelled
with their hetID (residue) identifier from the PDB. Ligand 8PP is depicted here as an
extreme example of the result of the broad filters applied to select these molecules...157
Figure 4.12. Examples of chemical structures in the approved and oral drugs set. Labels
correspond to the manual classification based on their structures, so these molecules
are categorised into natural product like, peptide like, steroid like, sugar like, lipid like,
antibiotic like, nucleotide like and none of the above (NOTA). ....ccceoviiiiiiiiiiieeeee, 159
Figure 4.13. Resolution versus ratio of polar contacts as (polar/[polar + apolar]) for the
protein-small molecule complexes (left) and for the protein-protein complexes (right).
Contour levels show the density of points in the graphs, where red denotes high density
and pale blue IoW denSItY. ......coooiiiiiiiie e 160
Figure 4.14. Scatter plot of buried surface area upon binding and the number of atomic
contacts (polar and apolar) the small molecules made. Points are from all small
molecule sets: drug-like, approved drugs, oral drugs, protein-protein interaction
inhibitors, natural molecules and small peptides. .........ccccuviiiiiiiiiiiiiie e 161
Figure 4.15. Scissors plots for the non-redundant-by-complex (table 1) sets of protein
complexes. A: drug-like small molecules bound to proteins. B: Protein-protein
interactions small molecule inhibitors bound to proteins. C: Small peptides bound to
proteins. D: Natural small molecules bound to proteins. E: Natural small molecules
without containing phosphor bound to proteins. F: Transient protein-protein dimers. G:
Obligate protein-protein dimers. H: Homo protein-protein interfaces from quaternary
structures. |: Hetero protein-protein interfaces from quaternary structures. Polar (red)
and apolar (blue) contacts are scattered against sum of contacts. Details of the
regression lines for each graph and contact type can be found in Table 4.4. .............. 164
Figure 4.16. Normalised distributions of the ratio of polar contacts (represented by
polar/[polar+apolar]), each chart compares drug-like against the others. A: drug-like

versus natural small molecules with and without phosphor. B: drug-like versus approved
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and oral drugs. C: drug-like versus small peptides, obligate and transient protein-protein
dimers, homo and hetero quaternary protein-protein interfaces. D: drug-like versus PPI
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Figure 4.17. Comparisons of polar/sumContacts ratio means, binned by sum of contacts
(polar+apolar), each chart compares drug-like against the others. A: drug-like versus
approved and oral drugs. B: drug-like versus PPI inhibitors. C: drug-like versus small
peptides. D: drug-like versus natural molecules. E: drug-like versus natural molecules
without phosphor. F: drug-like versus transient protein-protein dimers. G: drug-like
versus obligate protein-protein dimers. H: drug-like versus homo quaternary protein-
protein interfaces. I: drug-like versus hetero quaternary protein-protein interfaces. Error
bars denote the standard error of the mean. ..........ccoooecciiiiiii e 169
Figure 4.18. Ratio of polar/(polar+apolar) versus sum of contacts (polar+apolar). Contour
levels show the density of points in the graphs, where red denotes high density and pale
blue low density. The black line in all the graphs goes between 0.9 ratio to 200 sum of
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molecules bound to proteins. B: Approved and oral drugs bound to proteins. C: Small
peptides bound to proteins. D: Natural small molecules bound to proteins. E: Natural
small molecules without containing phosphor bound to proteins. F: Transient protein-
protein dimers. G: Obligate protein-protein dimers. H: Homo protein-protein interfaces
from quaternary structures. |: Hetero protein-protein interfaces from quaternary
structures. For clarity, graphs for protein-protein complexes are plotted up to 600
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Figure 4.19. A: Distribution of the ratio of number of heteroatoms by number of heavy atoms
for drug-like small molecules, natural molecules, natural molecules without phosphor
and small peptides. B: Distribution of the ratio number of heteroatoms versus number of
heavy atoms for drug-like small molecules, approved and oral drugs. C: Distribution of
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A2 with a tetrapeptide (201N) and Diclofenac (2B17). In both cases synthetic molecules
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Figure 5.22. Average proportion of charged (red), polar (orange) and hydrophobic (blue)

residues at the interfaces for each molecular subset at the UniProt level: Drug-like,
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natural molecules, natural molecules without phosphorous, small peptides, PP obligate
dimers, PP transient dimers, PP hetero- quaternary interfaces and PP complexes
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Figure 5.23. Comparison of residue propensities at the binding sites for small molecule
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Figure 5.29. Bcl-XL. Upper left: 2BZW, Bcl-XL (cyan) bound to BAD (green). Lower right:
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though apolar CONTACES. .......ooiiiiii e 235
Figure 5.30. TNF. Upper left: 1TNF, TNF alpha trimer, two chains are coloured in cyan and
the third in green. Lower right: 2AZ5, two chains of the TNF trimer (dark grey) bound to
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a small molecule (green) that accelerates subunit dissociation. The surface covers the
residues in these chains that are within 4.5A of the third chain. For both complexes polar
contacts are red dotted lines and apolar are blue dotted lines. Note small molecule binds
to an area where there are no interactions in the trimer...............cc . 236
Figure 5.31. Average proportions of small (cyan), medium (green) and bulky (magenta)
residues at the interfaces for each molecular subset at the UniProt level: Drug-like,
Approved drugs, Oral drugs, small molecule protein-protein (PP) interaction inhibitors,
natural molecules, natural molecules without phosphorous, small peptides, PP obligate
dimers, PP transient dimers, PP hetero quaternary interfaces and PP complexes
successfully inhibited by small molecules. For the PP complexes, only the long chain is
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Figure 5.32. Average of the proportion of constrained (yellow), free (orange), rigid (red),
medium (green), flexible (cyan) and aromatic (blue) at the interfaces for each molecular
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Figure 5.34. Average percentage of contacts involving main chain atoms for each molecular
subset for both levels of protein redundancy: Drug-like, Approved drugs, Oral drugs,
small molecule protein-protein (PP) interaction inhibitors, natural molecules, natural
molecules without phosphorous, small peptides, PP obligate dimers, PP transient
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Figure 5.35. Distribution of the natural small molecule subset (filtered for protein redundancy
by distinct UniProt) in terms of entries per chemical structure of the small molecule
bound to protein. Only higher frequency entries are labelled for clarity. Note that more
than half of the subset is composed of the complexes with seven different molecules:
ADP, NAD, FAD, NAP, ATP, AMP and SAH. ........cooiii et 243

Figure 5.36. Scatter plot of the number of different SCOP families bound to the same small
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Figure 5.37. Average percentage of protein polar atoms for each molecular subset: Drug-like,
Approved drugs, Oral drugs, small molecule protein-protein (PP) interaction inhibitors,
natural molecules, natural molecules without phosphorous, small peptides, PP obligate
dimers, PP transient dimers, PP hetero quaternary interfaces and PP complexes
successfully inhibited by small molecules. For the PP complexes, both long chain (LC)
and short chain (SC) are plotted. Error bars denote the standard error of the mean. A
and C: percentage of protein polar atoms at the interface (defined as atoms within 4.5A
of the binding partner) colour coded by the proportion that are matched (magenta) or
unmatched (cyan). B and D: percentage of protein polar atoms from the total atoms that
are matched. Both levels of redundancy are plotted, A and B: protein-small molecule
complexes with distinct UniProt identifiers. C and D: proteins-small molecule complexes
belonging with distinct SCOP families. ..........cooiuiiiiiiiii e 246

Figure 5.38. Distribution of the average of protein polar atoms at the binding interface for
drug-like molecules at the UniProt level by molecular weight of the small molecule. The
proportion of polar atoms is colour coded if they are engaged in successful interactions
with the ligand (magenta) or are unmatched (cyan). Error bars denote the standard error
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Figure 5.39. Proportion of Rinaccess values for the atoms at the interface for each molecule
set at the SCOP family redundancy level. The colour in the bars denotes the Rinaccess
values: red (<2A), orange (2-3A), yellow (3-4A), green (4-5A), cyan (5-6A), blue (6-7A),
grey (7-10A) and black (> 10A). A: for all atoms at the interface, B: for main chain atoms
at the interface, C: for polar atoms at the interface and D: for polar main chain atoms at
the interface. For protein-protein complexes, only the longest chain is considered. ....249

Figure 5.40. Normalised distribution of the ratio between the lengths of short and long chain
for the protein-protein complexes subsets: Obligate dimers, Transient dimers, Hetero
quaternary interfaces and protein-protein (PP) complexes inhibited by small molecules
(SM). Homo quaternary interfaces are not plotted, as they have virtually no difference in
chain length, see Table 5.2...........o e 251

Figure 5.41. Proportion of Rinaccess values for the atoms at the interface of the long chain of
the hetero quaternary interfaces (A) and for the long chain (with at least 100 residues in
length) of the transient dimers and protein-protein complexes inhibited by small

molecules (B). The colour in the bars denotes the Rinaccess values: red (<2A), orange
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(2-3A\), yellow (3-4A), green (4-5A), cyan (5-6A), blue (6-7A), grey (7-10A) and black (>
10A). Each bar represents different length range for the short length of the complex. 253
Figure 5.42. Average density of contacts per interface atom for each subset: Drug-like,
Approved drugs, Oral drugs, small molecule protein-protein (PP) interaction inhibitors,
natural molecules, natural molecules without phosphorous, small peptides, PP obligate
dimers, PP transient dimers, PP hetero quaternary interfaces and PP complexes
successfully inhibited by small molecules. For small molecule complexes, both protein
side (PS, pale blue) and ligand side (LS, orange) are plotted. For the PP complexes,
both long chain (LC, pale blue) and short chain (SC, orange) are plotted. Error bars
denote the standard error of the mean. A: density of proximal contacts (atom pairs within
4.5A) at UniProt level of protein redundancy. B: density of successful contacts at
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Figure 5.43. Examples of oral drugs binding to proteins, proximal contacts are represented by
grey dotted lines. LEFT: 2HM9, dihydrofolate reductase complexed with trimethoprim,
16.3 proximal contacts per buried ligand atom. RIGHT: 3C9J, transmembrane domain of

M2 protein complexed with amantadine, 4.6 proximal contacts per buried ligand atom.

Figure 5.44. Scatter plot of the proximal contact density (the number of contacts per
interacting ligand atom) versus the number of ligand atoms for the small molecule
subset. The redundancy filter applied here is by distinct UniProt and distinct small
molecule. Drug-like (yellow), approved drugs (cyan), oral drugs (green), natural
molecules (purple), protein-protein inhibitors (magenta) and small peptides (blue). The

histogram in the centre of the figure represents the molecular weight distribution....... 257

35



36



Chapter 1

Introduction

L Complex targets hot
affnlty p°|al‘ dl“t"g9r° up gpe" usually

example rings
cxpf::f,z'.as.l'eSldueS

" bound.......
compounds
averag e sites terms

spec m city hmls y biological
~hy d nere
conex twoa|so authorssp;acr.\:lrcn
surfacen»u o
bondinterfaces=

standara 11 Ol ecu I e propert|esstructure
a‘r‘;T;Ehvdro hobic structures

o-workers water

chemical & "‘““-"’“’ dru like types
dmggab,el sma residue

analysed

targetPOCketS 2 dlscoverynatural

atoms \m\ar
complexes::
energy defined

characteristics £°°°™

inte

. less weak @ @ €Ommon
Sv"‘hﬂlc lnteractlon
type. electronhgan b' d g
aromatic te'n rotel
surfaces -
frequent prgx pelectrostat|c based
prote‘ drugs regions
screening  Kahraman
anaIVSls9"°‘:§s!??n9«"2.,‘§“r'.§.,f:2:;f::
dlfferenthg d S usedsice

ket interacting ® definitionaddition products

proteinsreaion

oft
Bissantz studies Lransient

raeti“"d’”ﬁs

Indeed, Spots owever number relavant
set DONAS jnterface o v

37



During my time as a molecular modeller at UCB Pharma, both my
employer and I became interested in the emerging field of protein-protein
interactions as drug targets. This interest is shared by many researchers in
the field, as noted by the recent creation of PPI-Net, a UK network for
protein-protein interactions founded by several Research Councils (http://ppi-
net.org/). The project described in this thesis focuses on protein-protein and
protein-small molecule interactions in the context of drug discovery enhanced
by the structural biochemistry expertise and databases of the Department of

Biochemistry.

The decrease in productivity in drug discovery and development (as
the number of approved drugs per average R&D cost to put them in the
market) is a many fold problem (Garnier 2008). It is now well documented
and accepted that one of the main reasons for this decline is the poor quality
of drug candidates entering into clinical trials ((Leeson et al. 2007; Keserlu et
al. 2009; Gleeson et al. 2011) and the references therein). The weakness of
the current candidates can be pinned down to inadequate target selection
(Paul et al. 2010) but also to an inappropriate profile of the chemical entities.
These candidates are far too lipophilic to have good chances of success as
safe drugs, as logP (octanol-water partition coefficient) correlates positively
with compound promiscuity (Leeson et al. 2007). Lipophilicity of oral drugs is
generally considered a requirement for their absorption by passive diffusion in
the membranes, although there is increasing debate about the possibility of
active transport. (Dobson et al. 2008; Sugano et al. 2010). Another
explanation for the lipophilic trend of drug candidates is that it is a
consequence of the standard medicinal chemistry practices, and these will be
discussed in the next section. Several studies and opinion articles encourage

medicinal chemists to keep lipophilicity as low as possible (Cooper et al. 2010;
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1.1 DRUG DISCOVERY

Leeson et al. 2010; Hann 2011), as well as revising the standard medicinal
chemistry settings and screening cascades that pursue maximizing affinity for
single targets in isolated assays (Gleeson et al. 2011).

1.1.2 Medicinal chemistry practises
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Figure 1.1. Stages of the drug discovery process. Reprinted from
(Lombardino et al. 2004).

Keseru and Makara (Keseri et al. 2009) analysed the properties of hits
and their follow-up leads that were published between the years 2000-2007.
The authors found that fragment-based screening and natural products
deliver better quality hits, in terms of low lipophilicity, than hits selected by
HTS (High Throughput Screening). However, the profile of final leads was the
same (high logP), whatever the starting point, highlighting the tendency of
increasing potency by adding lipophilicity. Furthermore, a recent analysis by
Walters et al. (Walters et al. 2011) of the molecules, published in Journal of
Medicinal Chemistry between 1959 and 2009, revealed that the properties of
the synthetic molecules over time, in particular lipophilicity and carbon sp3

content, have diverged from those of marketed drugs since the 80’s.
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Why, after so many reports analysing the properties of drugs, do we
still make molecules that move away from the intended profile? Walters and
co-workers argued that many of the advances applied in drug discovery are
contributing to increase this tendency. For example, progress in synthetic and
analytical techniques has lowered the difficulty of making and purifying bigger
and more complex molecules. Development of robust scalable reactions like
sp2-sp2 couplings, have yielded corporate collections richer in flatter
molecules and scarce in natural product-like compounds (Lovering et al.
2009). Improvements in formulation enable discovery projects to progress
compounds with less optimised properties. However, doing so it seems we
are only delaying the failure to the development phase (Hann 2011). Finally,
the advances in molecular biology have led to target-based drug discovery
where optimisation of the compound properties happens sequentially. Usually,
primary screens are competitive binding assays of the isolated target, which
in turn facilitates the increase of affinity regardless of other molecular
properties; these will be optimised later in the screening cascade. Even the
structure-based drug design has been partially misused, as it has encouraged
medicinal chemists to target hydrophobic pockets where a burst of potency
can be gained (Walters et al. 2011).

In the past, before the explosion of genomics and projects with
defined molecular targets, medicinal chemists evolved compounds with
feedback from in vivo primary screens (Lombardino et al. 2004) where most
of the pharmacokinetic problems we face today were solved “on the fly” with
the efficacy on animal models. Indeed, a recent analysis by Swinney et al.
(Swinney et al. 2011) reported that although the widespread focus of target-
based small molecule drug discovery, the majority of the first-in-class small
molecule new molecular entities (NME) approved between 1999 and 2008
have been discovered by phenotypic-based approaches. Most of the self-
criticisms in the field recognised that there was a “wrong turn” (Hirschler
2009) that converted the art of drug discovery into an industrial process

(Garnier 2008). In particular, early stages of this process are driven by a
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“perceived need for potency” (Hann 2011) and a sense of urgency to deliver
leads into development. In practical terms this translates into more lipophilic
candidates, as there is not much room to elaborate more risky exploratory

molecules (Keserl et al. 2009).

To match these chemical challenges, more adventurous exploration of
the chemical space is emerging, like DOS (diversity oriented synthesis)
(Galloway et al. 2010), stapled peptides (Walensky 2004; Gavathiotis et al.
2008; Bird et al. 2010), or the rescue of NP (natural products) for drug
discovery (Li et al. 2009; Bauer et al. 2010). As well as this, new technologies
with microfluidics and microreactors have been developed to enable faster
exploration of the biology and chemistry space of a project (Wong-Hawkes et
al. 2007; Kang 2008). In addition, the consolidation and several successful
outcomes of the fragment-based lead discovery, even for challenging targets
including protein-protein interactions (Coyne et al. 2010), seem to have come

to the rescue, at least for projects where fragment approaches can be used.

Fragment-based technologies require fragment solutions in high
concentration, which in turn deliver almost exclusively polar hits (Congreve et
al. 2008; Keseru et al. 2009; Ladbury et al. 2010). The conscious effort to
optimise these hits containing hydrophobicity as much as possible is regarded
as the new paradigm in drug discovery (Hann 2011). The ligand lipophilicity
efficiency (LLE) index (Leeson et al. 2007) and other ligand efficiency indices,
including polarity of molecules (Abad-Zapatero et al. 2010), are currently

used towards this end.

In parallel, researchers pursue alternative strategies to find
therapeutics, one of which is a new area in drug discovery: targeting protein-
protein interactions with small molecules (Wells et al. 2007). Multi-protein

complexes orchestrate most functions in living organisms; therefore they are
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attractive targets for therapeutic intervention. However, traditional drugs are
taken orally and orally bioavailable drugs are usually small molecules (Lipinski
et al. 1997). Consequently, it is usually assumed that the biological intended
target must have a small pocket or cleft where our candidate drug (or lead
molecule) can maximise its interactions in order to show the required high
affinity.

In 2002 Hopkins and Groom coined the term “the druggable genome”
(Hopkins et al. 2002). They defined a druggable target as a protein that is not
only linked with a disease but also has a ‘beautiful’ pocket where a small
drug-like molecule can bind. Classical drug targets are enzymes and receptors,
usually treated as monomeric proteins with an active site for an endogenous
small ligand. Moreover, the existence of these small endogenous mediators
has influenced the way pharmaceutical companies classically seek hit
molecules. Hit identification campaigns often rely upon competition assays
and those that monitor enzymatic turnover, which can be easily scaled up for
HTS, where medium or large drug-like (or lead-like) chemical libraries are
screened against the biological target. In this context, protein-protein
interactions have long been believed to be undruggable (Whitty et al. 2006).
This belief has been supported by the assumption that a small molecule is
unable to compete with one of the partners in a multi-protein complex, where
the average surface area buried at interfaces is 2000A* with an average of 23

residues in each protomer (Janin et al. 2007), see Figure 1.2.
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1.1 DRUG DISCOVERY

a b

c d
Figure 1.2. Concept of undruggable surfaces. a: Protein (green) with a
cavity evolved to recognise an endogenous ligand (grey) with multiple
interactions converging in a small volume. b: Classical drug target where
the drug molecule (magenta) occupies the volume maximising interactions,
as most of its surface is in contact with the protein target. c: Protein-
protein complex (green and grey) with a large surface with spread
interactions. d: Small drug molecule (magenta) cannot engage many
interactions as the absence of grooves translates into small contact areas.

Blue arrows represent hydrogen bonds and yellow patches represent
hydrophobic contacts. Reprinted from (Whitty et al. 2006).

1.1.3.1 Challenging undruggability
Whitty and Kumaravel (Whitty et al. 2006) classified drug targets in

terms of two types of risk. Biological risk accounts for the potential
therapeutic effect of the modulation of the target under evaluation, and the
chemical risk relates to the likelihood of finding a small molecule modulator
for that target. As mentioned previously, protein-protein interactions are
attractive targets for drug discovery due to their omnipresence in disease
processes. In fact, particularly in the case of extra-cellular targets, antibody-
based drugs are a validation of this concept (Adair et al. 2005). Many protein-

protein interactions are considered low biological risk drug targets. The key
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question is then the chemical risk for protein complexes, or in other words the
probability of finding a small molecule capable of disrupting the interactions
between proteins. Without considering the possibility of allosteric modulation
(Christopoulos 2002), two experimental findings have lowered this chemical
risk: the existence of energetic hot spots at the interfaces and site
adaptability.

Hot spots

One of the most striking characteristics of the protein-protein
interacting surfaces is the existence of so called “hot spots”. In 1995,
Clackson and Wells (Clackson et al. 1995), using a technique called alanine
scanning mutagenesis, systematically mutated to alanine the receptor
residues at the interface between the human growth hormone and its
receptor and measured the energy of binding of the resulting complex
mutants. In this pioneering work, the authors found that certain residues
were responsible for most of the interaction energy of the complex. Many
other experimental studies have proved that this is a common characteristic
of almost all interfaces of the protein complexes (Reichmann et al. 2007).
Publically accessible databases hold both experimental data for alanine
scanning mutagenesis (Thorn et al. 2001) and computationally predicted hot
spots, see for example (Guney et al. 2008; Segura et al. 2011). The accepted
criteria used to define a residue as part of a hot spot is that upon its mutation
to alanine, the free energy of complex binding increases by at least 2
kcal/mol. Hot spots are concentrated patches of such residues, called “hot

regions” as discussed below.

Bogan and Thorn (Bogan et al. 1998) analysed datasets from alanine
scanning mutagenesis experiments and found that all the hot spots share
common characteristics. Their work led them to postulate the “O-ring”
hypothesis for hot spot residues in protein-protein binding interfaces.

Energetically, hot spot residues are usually clustered at the centre of the
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interface and are surrounded by energetically neutral residues. The role of
these neutral residues is to shield the hot spots from the solvent by creating a
microenvironment around the hot spot with a lower dielectric constant, thus
enhancing electrostatic interactions and reducing the desolvation cost of
binding. It is no surprise then, that the most frequent hot spots residues Trp,
Tyr and Arg are capable of both hydrophobic and electrostatic interactions.
Bogan and Thorn also found that hot spots are self-complementary across the

interfaces (Bogan et al. 1998).

Nussinov and co-workers (Keskin et al. 2005) found that hot spot
residues, identified by experimental alanine scanning, tended to be
evolutionarily conserved. They went on to study the organization of hot spots
identified by sequence analysis and found that they are not evenly distributed
in the interface as they cluster together in “hot regions”. These areas are
tightly packed and within a region, hot spots form networks of cooperative
interactions. In contrast, the contribution to the global energy of binding is
additive between hot regions. In addition, clustered hot spots in dense hot
regions mean that the removal of water molecules is easier, strengthening
the electrostatic interactions in a similar same way to the O-ring arrangement.
Furthermore, these regions are more rigid as they are densely packed and
therefore pay a lower entropy penalty upon binding, whereas non-optimal

packed regions are responsible for site flexibility.

In conclusion, protein-protein interactions are locally optimised in these
hot regions, whereas the rest of the interface is less specific. This fact could
explain the diversity in protein binding partners often accepted at a particular
interface (Keskin et al. 2005). Furthermore, the existence of these locally
optimised regions, responsible for most of the binding energy between
proteins, makes competitive small molecules more credible. Indeed, several
studies report the first small molecules interfering with protein-protein

interactions, and this will be the focus of the chapter 2 of this thesis.

45



Site adaptability

According to one of the principles of druggability described previously
(Hopkins et al. 2002), biological targets need to present pockets or clefts in
order to accommodate small molecule drugs. Interfaces of protein complexes
are usually relatively flat. Nevertheless, structural evidence of flexible
adaptability in these regions (for instance in IL-2 (Arkin et al. 2003; Thanos et
al. 2006)), opens the prospect of the existence of more druggable protein
complexes as targets. Indeed, druggability predictions are dependent on the
flexibility of the target, as Brown and Hajduk showed (Hajduk et al. 2005;
Brown et al. 2006).

Recent analyses of the protein-protein interfaces inhibited by small
molecules have suggested that this adaptability occurs mainly through the
flexibility of side chains (Fuller et al. 2009; Bourgeas et al. 2010). Although
flexibility is fundamental to molecular recognition and is a key factor to
consider in the quest to find small molecule drugs to modulate protein-protein
interactions, it is still difficult to predict. However, increasing computing
power is making longer molecular dynamic simulations feasible, and several
bioinformatic tools are being used to evaluate plasticity in proteins (Gonzalez-
Ruiz et al. 2006).
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In an editorial in the Journal of Molecular Recognition, van
Regenmortel defined molecular recognition as “the non-covalent specific
interaction between two or more biological molecules” (van Regenmortel
1999). The van Regenmortel perspective, however, emphasised the
limitations of static structures to explain dynamic activities between
biomolecules; and how molecular recognition is a “mutual adaptation” rather
than a frozen lock-and-key model. Furthermore, biological interactions are
cooperative (positively or negatively) and rarely additive (Williams et al. 2004)

i.e. the final outcome is rarely the sum of their parts.

In addition, it is worth remembering the inherent limitation of crystal
structures (85% of the content of the PDB (PDB Team 2011)), which are the
interpretation of the experimental diffraction patterns of a crystallised sample
(Davis et al. 2003). In turn, only a portion of molecules will be amenable to
be crystallised, and if they are, the conformations in the crystal lattice might
not be biologically relevant (Acharya et al. 2005), although it is worth noting
that crystal structures are “wet”, as most crystals have 35 to 70% of their

content as solvent.

In the case of small molecules, refinement methods developed for
proteins are used to fit the electron density of the ligand with an accuracy
that is difficult to assess (Bohm et al. 1996). It is clear then, that it is not
possible to determine the fundamental laws of molecular recognition from the
current atomic models. However, insights can be gained from the
characterised structures. Going back to van Regenmortel’s definition,
molecular recognition derives from the non-covalent interactions between the

molecules involved. In this way, trends in these non-covalent interactions can
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be elucidated between different types of molecules with the aim of identifying

possible different modes of recognition.

Although conformational adaptability, long-range interactions, solvation
and desolvation processes are key components in the binding event, they are
not discussed here. I will focus in the specific non-covalent atomic

intermolecular interactions between binding partners.

The transient polarization of the electron cloud of a nonpolar atom will
induce in turn an opposite polarization in the nearby nonpolar atom, which
will create a tiny attraction force between them, known as London dispersion
force. Although small, these attractions sum up to a significant interaction at
interfaces where two molecules are close together (Voet et al. 1992). These
forces are distance dependent and they will become repulsive if the two
entities are too close together due to steric hindrance of the electron cloud.
The physical model commonly used to describe this behaviour is the Lennard-

Jones 6-12 potential:

o=~ (]
where r is the distance between two atoms, ¢ and o are two constants
defined by the system. Figure 1.3 shows that the potential becomes
increasingly repulsive for close distances due to the first term and attractive
for an optimal range, in which atomic van der Waals radii are derived from

experimental structures.
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Figure 1.3. Lennard-Jones potential (V) for Argon dimer as function of the
interatomic distance (r). The minimum of potential corresponds to ¢ and
potential is equal to zero when the distance is o .

1.2.1.2 Hydrogen bonds

I quote here the new definition of the hydrogen bond recommended
by IUPAC (Arunan et al. 2011): “The hydrogen bond is an attractive
interaction between a hydrogen atom from a molecule or a molecular
fragment X—H in which X is more electronegative than H, and an atom or a
group of atoms in the same or a different molecule, in which there is
evidence of bond formation”. This definition also comprises the weak
hydrogen bonds described later. Classical hydrogen bonds are highly
directional polar interactions between two electronegative atoms sharing a
hydrogen. The usual geometrical ranges to identify a hydrogen bond are
(McDonald et al. 1994):

Distance(HBD,HBA) < 3.9A

Distance(H,HBA) < 2.5A
Angle(HBD,H,HBA) > 90°
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Hydrogen bond strengths depend on the electronegativity of the heavy
atoms involved and on the environment where the atoms are located, as well
as the surrounding hydrogen bond network. Due to the restricted
directionality of this type of interaction, hydrogen bonds play an important
role in molecular recognition giving specificity to the binding event. However,
they don't usually contribute much to the free energy as the desolvation of
both donor and acceptor compensate the hydrogen bond formation energy.
Estimates based on ITC data and burial of polar surface, range from 4-
11KJ/mol (Olsson et al. 2008). Regarding protein structure, the NH and CO
backbone groups are usually forming hydrogen bonds (McDonald et al. 1994)
(in fact virtually all buried NH form hydrogen bonds), and are usually
positioned correctly with respect to each other, especially in high-resolution
crystal structures. It is also found that higher losses in affinity occur on ligand
binding when removing a hydrogen bond from a backbone NH than a
backbone CO. For example, in kinase inhibitor crystal structures only one
structure is reported with an orphan NH in the hinge region, whereas it is

more common to have the CO unpaired (Bissantz et al. 2010).

As the broad IUPAC definition describes (Arunan et al. 2011), the
ability to share a hydrogen is not limited to strong electronegative atoms (N
and O). It has become apparent in recent years that weak hydrogen bonds do
occur in protein structures and protein-ligand binding. Weak hydrogen bond
donors are polarized C-H, Capna-H and NH in proteins, whereas weak
hydrogen bond acceptors are the = orbitals of aromatic rings. In addition,
interactions between CF and XH (X= N,0) and C-H engaged with O and N in
aromatic heterocycles are also observed. Analysis of the CSD (The Cambridge
Structural Database - The world repository of small molecule crystal
structures, http://www.ccdc.cam.ac.uk/products/csd) and the PDB (The
Protein Data Bank - An Information Portal to Biological Macromolecular

Structures, http://www.pdb.org) shows that although interactions between
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XH (X= N,0) and weak acceptors ( = orbitals of aromatic rings or donor-pi)

are observed, they are very rare (Bissantz et al. 2010).

Ionic interactions are electrostatic attractions between atoms with
opposite charge. In an aqueous environment, these attractive forces are
attenuated by the water molecules interacting with the charge (Voet et al.
1992), or in other words the high dielectric constant of the water diminishes
the attraction force between two opposite charges following Coulomb’s law.
These interactions are only distance dependent and do not have preferred
geometries. Indeed, analysis of relative geometries of charged side chains for
NMR ensembles of 11 non-homologous proteins show clear distance
dependency for each ion-pair type (Kumar et al. 2002), whereas the relative

orientation is spread across the whole range, see Figure 1.4.
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180

270

Figure 1.4. Relative geometries of side chain charged groups in proteins.
Colour coded per ion-pair type: Salt bridges (blue, side chain centroids and
O-N pairs from Glu/Asp-Arg/Lys/His are within 4&), N-O bridges (green, only
O-N pairs are within 4A, but not the side chain centroids) and longer range
ion pairs (red, centroids and N-O pairs more than 4A apart). Geometry of
the ion-pairs is represented by the distance between centroids of the
charged groups (radii of the polar plot) and by the relative angular
orientation between side chains (angle of the polar plot measured as the
angle between the vectors formed by the C-alpha and the side chain
centroid of each residue). Most ion pairs with distances < 5A are stabilizing
of the structure and destabilizing for longer distances. See original paper
for details. Reprinted from (Kumar et al. 2002).

1.2.1.5 Hydrophobic interactions

The generic definition for hydrophobic interaction is the preference of
nonpolar regions to pack closely together instead of interacting with water.

According to this definition, the energy is gained by displacing water

52



molecules and therefore this interaction is entropy driven and not specific.
However, Bissantz et al (Bissantz et al. 2010) discuss several examples in
their review, arguing that there is more to it than solely displacement of
water molecules. Indeed, protein surfaces or ligand chemical groups are not
in a binary scale of polar and hydrophobic; instead they present a continuum
of polarizability, where shape matching and close contacts will contribute
enthalpically to the free energy of the association. Furthermore, several
studies (reviewed at (Bissantz et al. 2010)) suggest that part of the affinity
gained by filling a protein hydrophobic pocket is due to the poorly solvated
state of the pocket in the apo form, where water molecules are rarely
detected as they are not positionally fixed or not making many hydrogen
bonds. These examples highlight the difficulty to deconvolute the binding

energy into independent non-cooperative contributions.

Aromaticity is a chemical property found extensively in natural and
synthetic molecules. All five nucleotides and four of the 20 standard amino
acids have an aromatic ring in their side chains. In medicinal chemistry,
aromatic rings are habitual components of drug-like molecules (Pitt et al.
2009). Aromatic rings are planar structures with 4n+2 (n = 0,1,2..)
delocalised = electrons (Huckel rule). The delocalised = system has
maximum electron density on each side of the ring and a minimum in the ring
itself, which translates into a small positive partial charge in the peripheral
hydrogens. Indeed, aromatic protons are significantly deshielded and present
greater NMR (Nuclear Magnetic Resonance) chemical shifts than standard sp2
hydrogens. These special shapes and electronic properties guide their
interactions to specific geometries. In protein structures, there is a wide
range of orientations that depend on the residue type and local environment,
although typically the preferred orientation is displaced parallel stacking of
the rings (off-centred) followed by edge-to-face or T-shape (Chakrabarti et al.
2007).
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For ligands bound to proteins, the relative geometry of the aromatic
rings depends on the substituents of the ring that confer specific electron
properties to the conjugated system. Thus, electron poor rings (with electro
withdrawing groups) interact with electron rich (with electro donating groups)
in a preferred stacking geometry. Electro withdrawing groups in para or ortho
position to a CH, make this hydrogen more acidic, favoring the T-shape
arrangement with another ring. Regarding heteroaromatic rings, the preferred
geometries follow the alignment of partial charges in the ring depending on

its composition and substituents (Bissantz et al. 2010).

Due to the electron density of the delocalised = system, attractive
forces occur between a cation and the face of an aromatic ring. Singh and
Thornton identified this type of interaction during a study of interactions
between all residue types in proteins (Singh et al. 1992). Gallivan and
Dougherty (Gallivan et al. 1999) further studied pi-cation interactions and
found they were common in high-resolution protein structures, with Trp and
Arg being the two residues with highest propensity to engage a pi-cation
arrangement. Several examples have also been reviewed for this type of

interaction in protein-ligand complexes (Bissantz et al. 2010).

Halogens are common components in drug-like molecules, they are
used to fine tune electrostatic properties of aromatic rings, to fix optimal
conformations adding steric impediments, to increase metabolic stability by
blocking reactive positions and to modulate lipophilicity. Traditionally, halogen
interactions have been considered mainly as van der Waals, hydrophobic by
water displacement and shape complementarity, especially for the heavier
halogens with the softer electron cloud. Recently, the importance of halogen

bonds as weak but specific interactions is gaining relevance in drug design.
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Heavy halogens (Cl, Br and I) bound to carbon present a small positive
electrostatic potential opposite to the sigma bond (Bissantz et al. 2010),
which interacts favourably, for example with the oxygen atom of the carbonyl
backbone with specific geometry (linear C-X...0=C). Conversely, as discussed
for weak hydrogen bonds, fluorine acts as hydrogen bond acceptor with polar
hydrogens HX (X = N,0).

In protein structures the sulphur of the Cys can form a covalent
disulphide bond with other Cys by oxidation of both atoms. In free form, the
sulphur of the Cys is a hydrogen bond donor and can form hydrogen bonds
especially with the backbone carbonyl oxygen (Zhou et al. 2009). Sulphur
atoms from Met residues have a dual behaviour as they can interact with
electron rich and electron poor groups. Indeed, methionine interacts with
aromatic rings through both the face (electron rich) and the edge (electron
poor) of the ring (Pal et al. 2001). Analysis of the CSD and PDB of ligands
containing sulphur, highlight the versatile interaction pattern of the sulphonyl
moieties, as they can act as weak hydrogen bond acceptors and hydrophobic

groups (Bissantz et al. 2010).

In the quest to understand and predict protein-protein interactions, in
particular interaction sites, the structural analysis of known complexes is key.
However the diversity, both in terms of function and constituents, makes the
task of finding universal rules for protein complexes an extraordinarily difficult
one (Reichmann et al. 2007). It has also been argued that the small number
of protein complexes analysed so far leads to contradictory conclusions (Ofran
et al. 2003). It may be that a systematic distinction regarding function,

constituents and lifetime of complexes is needed to reduce noise in
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experimental structural data, together with an increase in the number of

complexes structurally resolved.

The huge versatility and often overlapping functions of proteins in the
cell make their classification difficult. There is not a definitive consensus
regarding functional classification of proteins. In general terms, they can be
categorised as enzymes, hormones, receptors, antibodies, structural proteins,
motor proteins, transport proteins, signalling proteins and storage proteins
(Ruzheinikov 2007). Structural studies of protein-protein complexes typically
split them into four general groups (Jones et al. 2000; Cho et al. 2006; Janin
et al. 2007).

The first group comprises antibody-antigen complexes. Antibody
structures contain six CDR (complementary-determining regions) that identify
the protein-antigen with high specificity (Braden et al. 2000); these regions
are highly variable yet enriched with serines and tyrosines (Livesay et al.
2004; Birtalan et al. 2008). Antibody-antigen interfaces are of standard size,
ranging from 1200 to 200042 (Janin et al. 2007).

The second group of protein complexes consists of enzyme-inhibitor
assemblies. These complexes can be further divided into two subsets
depending on their interface size, standard (1200-2000A%) or bigger
(>2000R%) (Chakrabarti et al. 2002). Usually, standard interfaces show a
single recognition patch, whereas the larger interfaces present more than one
recognition site (Chakrabarti et al. 2002).

Electron-transfer complexes comprise the third group of protein-protein

interactions. These complexes have a short half-life and low affinity and it is

therefore difficult to obtain them in crystal form. Most of the few electron-
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transfer proteins characterised so far have interfaces of 900-1200A42 in size
(Mathews et al. 2000).

The last group can be described generically as comprising complexes
taking part in signal transduction and cell cycle regulation, such as G-proteins
and protein-receptor assemblies. These complexes exhibit exquisite sensitivity
to changes in the environment, usually forming transient interactions and
presenting low-to-medium affinity range (low mM to high nM) (Hyvonen et al.
2000; Janin et al. 2007).

Although this categorisation is often useful, especially as the great
majority of complexes are enzyme-inhibitor and antibody-antigen, this is
generally unsatisfactory as it is mostly a reflection of what has been feasible
to study. For example structural proteins are not well represented and not

included in the categories.

Specific vs. crystallographic complexes

X-ray crystallography provides the majority of the experimental
structures of protein complexes. However, the distinction between functional
complexes and crystallographic artefacts must be drawn in order to extract
information pertaining to specificity, evolution and function. Artificial crystal
contacts can occur simply as a result of the protein packing in the crystals.
The task of identifying these unnatural contacts is far from trivial and
automatic classification is still an open challenge. Nevertheless, the size and
composition of interfaces is a useful guide to identifying the correct interface.
These predictions can be improved if the sequence conservation of related
proteins and estimates of the stability of the predicted assembly are utilised.
The PISA resource (Protein Interactions, Surfaces and Assemblies,

http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html, (Krissinel et al. 2007)) is

an example of automated software that predicts quaternary structure from

estimation of its thermodynamic stability. Janin and co-workers compared a
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set of specific interactions (without including short-lived assemblies or
electron-transfer complexes) to a set of non-specific interactions (Bahadur et
al. 2004). In this comparison, crystal contacts were found not only to be
smaller than specific ones, with average interface area of 57042, but also
contained fewer hydrogen bonds per unit surface area. In addition, interfaces
between monomers in crystals were less closely packed than interfaces

between protomers in multimeric complexes.

With regard to the constituents and the lifetime of the protein-protein
complexes, Nooren and Thornton (Nooren et al. 2003) suggested three ways
to classify protein-protein interactions. The first divides complexes into those
that are homo-oligomeric (composed by identical chains) or hetero-oligomeric
(non-identical chains). Homo-oligomers can be further sub-divided into those
that are isologous, where interfaces are composed of the same region from
each protomer and those that are heterologous, where protomers interact
through different regions. Heterologous homo-oligomers can either form a
cyclic structure or aggregate into an endless repeated structure. The second
distinction that Nooren and Thornton considered is whether the protomers
forming the complexes can exist independently in vivo. An obligate complex
has to be denatured in order to dissociate, whereas a non-obligate complex is
formed by stable self-standing monomers. Examples of non-obligate
assemblies include antibody-antigen, enzyme-inhibitor and signal transduction
complexes. The third division is by complex lifetime; one can distinguish
between permanent and transient interactions in vivo. Usually obligate
interactions are permanent, like most homodimers, whereas transient
interactions present a whole range of affinities and kinetics. The authors
emphasised these classifications aren't discreet absolute values, but a
continuum in the scales of lifetime and stability, see Figure 1.5. Nevertheless,
these definitions could be important tools in the quest to understand protein-

protein interactions. For example, it is apparent that interfaces of permanent
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complexes are more similar to those in the protein interior than on the
surface. In addition, permanent interfaces tend to be dryer, more
hydrophobic and larger than the interfaces of transient complexes (De et al.
2005; Janin et al. 2007). However, as mentioned before, the vast diversity of
function, flexibility, affinity and specificity of protein assembilies is difficult to

capture in a set of general rules.
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Figure 1.5. Definition of types of protein-protein interactions by function of
their binding affinity (Y axis) and the localisation of the protomers (X axis).
In red the factors that affect transient interactions. * denotes large

conformational changes that usually occur with the association. Reprinted
from (Nooren et al. 2003).

1.2.2.3 Descriptors and topology of protein-protein interfaces

Classical computational characterisation of interfaces includes size,
shape, packing, electrostatic interactions, amino acid composition and amino

acid pairing preferences.
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Size

The size of an interface is commonly expressed as the change in the
ASA (solvent-accessible surface area) between the monomers/protomers and
the complex. For example, for a hetero-dimer, the interface size B, is B =
ASA1 + ASA2 — ASA12 (Janin 2000). Some authors prefer to report B/2 in
spite of the fact the ASA is not exactly the same for both surfaces unless they
are completely flat. The average size of protein complex interfaces is between
1200-2000A% with an average of 23 residues in each protomer (Janin et al.
2007). Richard Bickerton’s analysis of the PICCOLO database (Bickerton 2009)
found that the average size of the protein-protein interfaces is greater than
previously reported. The improvement of the structural characterisation
techniques allows larger complexes to be resolved. Bickerton found that the
average of interface size is 2400 + 1900A2. Looking at the type of interface,
obligate complexes interact on average through larger interfaces than the

transient ones.

Shape

Interacting protein surfaces are usually flat overall, but examples of
concave-convex interfaced have been found. In these cases, generally, the
smaller partner shows convexity, binding to the concave cavity on the bigger
component. An exception to this trend is the antibody-antigen complexes
where the antigenic site is generally convex independent of antigen size
(Janin et al. 2007). For large interfaces (> 2000A2) it has been found that the
binding site is closer to the centre of mass of the protein than the average

location of the surface (Nicola et al. 2007).

Packing

Packing density is another measured structural feature of the
interacting protein surfaces. This measure is used to estimate the degree of

steric complementarity of monomers. The most reported packing indices are

60



Shape Complementarity score (Sc) (Lawrence et al. 1993) and Gap Volume
index (GV) between proteins (Laskowski 1995). It has been found that
homodimers, enzyme-inhibitor and permanent hetero-complexes are more
closely packed than antibody-antigen and transient hetero-complexes (Jones
et al. 2000).

Electrostatic interactions

It is known that electrostatic complementarity between partners in the
complexes confers specificity (Jones et al. 2000). On average, there is one
hydrogen bond per 200A? of interface area (B) (Janin 2000). Typically,
obligate protein complexes have fewer intermolecular hydrogen bonds per
buried ASA than non-obligate complexes with 0.9 HB per 100A% in
homodimers, compared to enzyme-inhibitor complexes, which have 1.4
HB/100A? and antibody-antigen with 1.1 HB/100A? (Jones et al. 2000).
Additionally, protein-protein interfaces have water-mediated hydrogen bonds,
which present the same average distribution as the direct protein-protein
hydrogen bonds, that is 10 water molecules per 1000A% (B/2). However,
these waters are not always evenly distributed across the interface; in fact
interacting surfaces present a whole topology range of dry/wet patches
(Rodier et al. 2005). Salt bridges or hydrogen bonds involving at least one
charged residue do occur; Lo Conte et al. found that 30% of the hydrogen
bonds in their data set that occur at the interfaces were salt bridges (Lo
Conte et al. 1999). However, almost half of the homodimeric structures
analysed do not have this type of interaction (Jones et al. 2000). Disulphide
bonds can be also found between interacting proteins but they are rare
(Jones et al. 2000).

Amino acid composition

Analysis of the amino acid composition of protein-protein interfaces

and pairing preferences between chains have demonstrated different
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frequencies that are probably due to the different datasets used and how the
interface is defined (Ofran et al. 2003; Headd et al. 2007). Ofran and Rost
(Ofran et al. 2003) divided their data set into six different types of protein-
protein interfaces. While they found each interface had its own residue
propensities, there were some generalities. For example, lysine was found to
be underrepresented in all types of interfaces, whereas arginine was
overrepresented. However, arginine is common on all protein surfaces, not
only protein-protein interfaces (Janin et al. 2007). Large hydrophobic amino
acids were found to be favoured in all interfaces (His, Met, Try), whereas Ser,
Ala and Gly were underrepresented. They corroborated previous findings that
hydrophobic residues were more frequent at homo-multimers than hetero
complexes. However, when they further divided their dataset into transient
and obligate interaction, this distinction no longer held (Ofran et al. 2003).
Nevertheless, Bickerton (Bickerton 2009) found in his analysis that the
obligate interfaces are more hydrophobic than the transient ones. Bickerton’s
findings also highlight the parallelism between the interface core and the
protein core, and the interface periphery and the exposed protein surface.
The core of the interface is more hydrophobic than the interface periphery; it
is enriched with hydrophobic residues (Ile, Val, Leu, Phe, Met and Ala) and
depleted of polar and charged residues (Asp, GIn, Asn, Glu, Lys and Arg).

Pairing preferences

With respect to the residue interactions at protein-protein interfaces,
Ofran and Rost (Ofran et al. 2003) found hydrophobic-hydrophilic contacts
were prevalent at intra-domain, inter-domain and transient hetero-complex
interfaces; disulfide bridges occurred more often than expected; salt bridges
were less frequent at homo-complexes interfaces and identical amino acid
interaction was favoured by obligate homo-complexes. Additionally, Headd et
al. (Headd et al. 2007) studied 135 transient hetero complexes and found
that 32% of contacts at the interfaces are formed by interactions involving

backbone atoms. After separating backbone from side chain atoms and
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calculating relative frequencies (both per residue count and area-weighted
per residue at the interface), they found Glu, Ser, Asp, Lys and Arg were the
most frequent interacting side chains at the interface, each forming more
than 7% of contacts. Whereas Met, Cys, Trp and His were the least frequent
with less than 3.5%. In this data set, the most frequent occurring amino acid
pairs are salt bridges (Glu-Arg, Asp-Arg, Glu-Lys and Asp-Lys, when only side
chains are taken into account and they are weighted by the area they occupy).
This evidence highlights the importance of electrostatic complementarity
between interacting surfaces, at least for the dataset analysed. After the
charge-charge interactions, the next most frequent interactions are Tyr with
Arg, Asn, Lys and Glu, followed by Arg with Trp and Asn. Similar results were
found by Bickerton (Bickerton 2009), namely hydrophobic interactions, salt
bridges and disulphide bonds are important in macromolecular recognition.
Pairing preferences are normalised by residue abundance in the data set and
also by solvent accessible area per residue. These show that hydrophobic
residues favour other hydrophobic ones and avoid polar and charged residues.
Aromatic residues prefer other aromatic or hydrophobic residues, although
they also engage pi-cation and NH-aromatic interactions. Prolines interact
significantly more with aromatic than other residue types. Positive charged
residues (Arg, Lys and His) favour negative charged ones (Glu and Asp) but
Arg-Arg, His-His and Arg-His are also common due to the versatile capability
of these side chains: aromatic interactions, pi-cation and hydrogen bond (with

the main chain atoms).

In a similar way to protein-protein complexes, the immense diversity
both in terms of chemical composition and function of the ligands bound to
proteins makes it virtually impossible to find general rules for the
characteristics of protein-small molecule complexes. Indeed, disparate results

are found depending on the type of molecules studied, the accepted level of
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redundancy and the size of the sample analysed. This section starts with a
broad classification of the types of small molecules found in biology, and
follows with a brief summary of the relevant studies published to date
regarding molecular recognition for protein-small molecules from
experimental structures. For convenience, the section is further divided by the

type of molecules considered in these studies.

In the context of therapeutic applications, perhaps the broadest
classification that one can make is to distinguish between natural small
molecules that are products of evolutionary selection and synthetic small

molecules produced in a lab.

1.2.3.1.1 Natural molecules

In general terms, natural molecules are produced by living organisms
and they are the result of evolutionary selection. Therefore, they sit in the
biologically relevant section of the chemical space (Koch et al. 2005).
However, their production “in situ” often does not confer them with the
appropriate properties to cross membranes and distribute elsewhere in the
organism. Nevertheless, many natural molecules produced in one organism
can be active in another. For example, hormones, therapeutically used plant
extracts or penicillin, just to mention a few. The KEGG resource provides a
classification of “Compounds with biological roles” from the KEGG BRITE
hierarchies (Kanehisa et al. 2008). These include carbohydrates (including
lipids), nucleic acids, peptides, cofactors, steroids, hormones and transmitters,
phytochemical compounds (biological active molecules from plants), marine
natural products and antibiotics. In addition, KEGG RPAIR (reactant pairs)
labels compounds as substrate or product when they are involved in

enzymatic transformations.
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1.2.3.1.2 Synthetic small molecules

Synthetic molecules do not have the many millennia to evolve but they
are the products of a vast range of chemical transformations and starting
materials. In the context of drug discovery, the interest is centred on
synthetic molecules with drug-like properties. However, the definition of drug
likeness is far from trivial, and typically involves a range of molecular
properties derived from known drugs. The pioneer Lipinski's “rule of five”
(Lipinski et al. 1997) set simple ranges of molecular weight, partition
coefficient and hydrogen bond features count, for molecules with increasing
likelihood of being absorbed (a crucial characteristic oral drugs must have).
Recently, and especially for new targets, it has been argued that more
adventurous exploration of the chemical space may be needed, in particular
regions sampled by natural products (see for example (Dobson 2004; Bauer
et al. 2010)). Several studies compare properties of natural products with
drugs and synthetic drug-like molecules, (see for example (Feher et al. 2002;
Singh et al. 2009)) and all conclude that natural molecules occupy a different
region of the chemical space to that occupied by synthetic molecules. In
particular, drug-like molecules are more hydrophobic, have less 3D and
stereochemical complexity and have more aromatic rings than natural
molecules. These properties may reflect the characteristics a synthetic
molecule must possess to overcome all the hurdles before reaching its target
in the body. However, these properties are also influenced by the drug
discovery settings where these molecules are generated, as we have seen in

previous sections.

Peptides bound to proteins have been studied mainly in the context of
short linear motifs (SLM, LM or SLiMs). These motifs are defined as short
regulatory modules, around ten contiguous residues, which are recognised by

globular domains in transient manner with typically low affinities (Dinkel et al.
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2011). These modules are often part of a larger usually disordered structure,
but can bind to their globular targets often adopting an organised structure
upon binding, often described as concerted folding and binding. The
importance of these motifs has been recognised in recent years, not only for
the crucial role they play in cell function but also for being attractive drug
targets (Blundell et al. 2006; Neduva et al. 2006). Stein and Aloy (Stein et al.
2008) analysed SLiMs found in the PDB using computational alanine scanning.
The authors differentiate between the residues in the motifs as defined by the
ELM (eukaryotic linear motif database) and the residues (they called them
context) that interact with the globular domain but are not defined in the
motif pattern. Computing the contribution to binding for each residue, Stein
and Aloy found that the amino acids in the motifs are optimised for maximal
affinity while the residues in “the context” form suboptimal interactions,
however they are most likely to be crucial for specificity. Their argument was
that motifs are large enough to secure binding but too small to justify the

exquisite specificity in vivo.

Kahraman et al. challenged the common assumption that different
proteins binding similar ligands would have similar binding sites in terms of
physical and chemical properties (Kahraman et al. 2007; Kahraman et al.
2010). In order to address this question, a special data set was manually
collected. Biological relevant protein structures were selected from the PQS
resource (protein quaternary structure) binding to its cognate ligand. Proteins
were defined as belonging to a distinct CATH homologous superfamily and
the resolution of the crystal structure was used to select the representative
structure from each family. For each ligand found, only those bound to at
least five distinct proteins were kept. On this basis, one hundred protein-
ligand complexes were selected comprising ten different chemical ligands
(Figure 1.6). These ligands are common natural substrates, products and

cofactors. Therefore, in order to avoid generic misleading statements, the
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results derived from this analysis have to be kept within the functional

context where the molecules operate.
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Figure 1.6. Chemical structures of the set of molecules studied by Kahraman
et al. (Kahraman et al. 2007; Kahraman et al/. 2010). The labels show the
three-letter code of the molecule in the HET entry and the number in
parenthesis denotes the number of instances used in the Kahraman study.

For these natural molecules, the authors found that the binding
pockets were on average three times larger than the volume of the ligand
bound. This led to the definition of a “buffer zone” as the free space between
the protein and the ligand partially occupied by water (Kahraman et al. 2007),
and arguably by the partners of these cofactors as discussed below. The
authors concluded that the assumption of similar geometrical characteristics
for diverse pockets binding the same ligand is only partially true. Looking at
the structures and their frequencies used in this study (Figure 1.6), it is worth
highlighting that these molecules would need extra room in their binding

pockets to bind cofactors or to transfer groups to carry out their function. It
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seems unsurprising then, that authors could not find a single perfect fit in the
dataset after careful inspection of the crystal structures. In addition, residual
flexibility upon binding is entropically favourable (Béhm et al. 1996) and

arguably it is fundamental for function.

In a more recent analysis of the same data set, Kahraman and co-
workers (Kahraman et al. 2010) studied the variation of physicochemical
environments these ligands experienced in the non-homologous binding sites.
For each ligand-protein complex, electrostatic potentials (ESP), hydrophobicity
scores, hydrogen bonds and van der Waals potential energies were calculated
and used graphically to visualise the physicochemical fields that the ligand
experiences in each binding site. The analysis showed that there was no
correlation between the average physicochemical properties of the binding
site and the ligand bound to them, in other words, the same ligand can be
recognised by one protein by electrostatic interactions and by entropic effects
by another. In terms of the electrostatic potential experienced by the same
ligand in different binding sites, the authors found significant variation, often
assisted by the diversity of the neighbouring chemical compounds (NCC such
as metals, cofactors and coenzymes within 9A of any ligand atom). In
comparison, the hydrophobicity to which the ligands were exposed in the
different cavities varied much less. The authors warned about the use of
methods that predict function from structure based on similarity of known
functional sites, as their results shown no complementarity between sites

binding the same ligand.

This divergence can be explained in terms of binding-site modularity
(Gherardini et al. 2010) derived by the intrinsic modularity of the nucleotides
(base, sugar, phosphates and cofactors). Protein sites binding nucleotides are
normally composed by 3D motifs repeated in different protein folds, which
recognise the same nucleotide moiety. For example, the acceptor-donor-
acceptor motif interacting with the nucleotide base, or the glycine rich loop

that often recognises the phosphate groups. Gherardini and co-workers
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discuss the evolutionary implications of this modularity. If functional sites are
not single functional entities but can be decomposed into small modules

instead, the convergence of the whole binding site is a rare event.

After the seminal paper by Hopkins and Groom, “The druggable
genome” (Hopkins et al. 2002), many studies have tried to capture the
characteristics of “druggable pockets” by analysing the known structures of
protein-drug or drug-like molecules. Often, these analyses are driven by the
development of pocket detection algorithms and scoring schemes in order to
differentiate “druggable” cavities (i.e. will bind preferentially a small molecule
drug) from those that are “non-druggable”. Few analyse the interactions
between the drug-like molecules and the proteins, which is the focus of this

section.

In 2005 the Abagyan group developed the program PocketFinder (An
et al. 2005), an algorithm based on estimating the potential for van der Waals
interactions with the protein in order to identify binding envelopes. The
authors validated the method, predicting 96.8% of known protein-ligand
binding sites. These binding sites were extracted from the PDB, removing
entries with common cofactors and substrates (like heme, ATP and other high
frequent ligands) or with ligands with less than seven atoms. Further filters
were applied to remove entries with proteins outside the length range of 50-
2000 residues, structures with resolution poorer than 2.5A were also removed.
The final set contained 5,616 protein-ligand binding sites. The results from
this analysis confirmed previous results from smaller data sets. The number
of envelopes is roughly proportional to the overall volume of the protein,
approximately one pocket per 10,000A3. For the majority (81%) of cases, the
ligand-binding pocket coincided with the largest of the predicted envelopes
and for 12% the second largest. Regarding the volume of the pockets with

respect to the volume of the bound ligands, this study found that on average
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the pockets were 1.4 times larger than the ligands they encapsulate. In
addition, the surface area buried by the predicted envelope had an average
surface ratio with the whole protein surface of 4.7%. In further investigation
focussed on binding pockets for human proteins (943 sites from 160 human
proteins), An and co-workers (An et al. 2005) clustered the binding sites
based on shape, hydrophobicity and electrostatic descriptors and compared
the resulting tree with the clustering based on the chemical similarity of the
ligands. In most cases, similar ligands bound to similar pockets and proteins,
however there were also instances of the same ligand binding to different
pockets, as well as one pocket binding to chemically diverse ligands. These
differences, the authors concluded, highlight the complex relationship
between chemical properties of the ligands and the protein sites where they
bind. In other words, there is no an absolute prevalent matching of site and
ligand properties.

In 2009, Chen and Kurgan (Chen et al. 2009) published an analysis of
the atomic interactions between proteins and small molecules. Their data set
was extracted from the PDB removing entries with proteins bound to peptides
or nucleotides. The level of redundancy for the proteins studied was low, as
only proteins with less that 25% sequence identity were accepted. In contrast,
the level of redundancy of the small molecules is very high, as all ligands in
all pockets were kept, yielding 7,759 ligand-protein pockets from 2,320
protein chains. Indeed, 59% of the protein-ligand complexes analysed
involved ligands that were bound in more than 100 pockets. The authors
classified these ligands into four categories based on the ligands with high
occurrence, namely organic compounds, metals, inorganic anions and
inorganic cluster. The analysis focussed in the organic compounds subset
composed by 3,685 pockets of 560 distinct small molecules. However, the
high level of redundancy of small molecules biased the results presented by
this analysis. Although the explicit content of the organic subset was not
disclosed, the examples of the organic compounds present more than 100

times were disappointing: acetate, glycerol and 1,2-ethandiol. In addition,
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calculation of hydrogen bonds was performed with programs developed to
work only with proteins and therefore hydrogen bond estimation might be
approximate at best. For example, the authors found that the most commonly
observed hydrogen bond involved the backbone NH and an oxygen atom in
the ligand. Whether or not this is a genuine result, the oxygen content in the
ligands analysed and the redundancy of high oxygen content ligands was not
taken into consideration.

In a recent report, Schmidtke and Barril (Schmidtke et al. 2010)
argued that druggability predictions can also underline the keys of molecular
recognition between drugs and their targets. Previous models scored
druggable pockets by only taking into account shape and hydrophobicity, but
the authors reminded us that polar interactions give selectivity by assisting 3D
specific orientations. Moreover, druggable cavities have on average fewer
polar atoms than non-druggable ones (20-40% versus 40-60%); therefore
electrostatic interactions are stronger due to the hydrophobic environment. In
addition, analysis of the change in the ratio of polar and apolar surface areas
with the radii of the probe to calculate the surface show that in druggable
pockets polar atoms stick out from the cavity surface as anchor points for

molecular recognition.

This is not an exclusive observation for drug-binding sites. In protein
folding the importance of polar interactions compared to the hydrophobic
effect is being reassessed. For instance, in the energetics of protein folding
(Baldwin 2007), the hydrophobic effect has been long considered the driving
force and most relevant factor. However, the importance of the peptide
hydrogen bond is increasingly gaining relevance, and compelling evidence is
accumulating to justify its place as one of the two major factors for protein
folding.

In thermodynamic terms, it is worth highlighting here that polar

interactions contribute enthalpically to binding but not in a linear fashion.
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Polar groups lose the enthalpy of their hydrogen bonds with water to gain
only a little more enthalpy by forming successful contacts with the protein, as
well as eventually forcing hydrophobic groups to be exposed to the solvent
(Freire 2008). Besides, correlation of structural interactions with entropic and
enthalpic changes upon binding is still a major challenge (Klebe 2006;
Ladbury 2010). Analysis of ITC data from protein complexes with biological
and synthetic ligands (Olsson et al. 2008) found no correlation between burial
of polar and apolar surface with enthalpy and entropy respectively, however it
is accepted that that successful polar interactions will increase the enthalpic
component of the free Gibbs energy and apolar interactions will reflect in the

entropic part.

In 2007, Ji and colleagues (Ji et al. 2007) analysed the content of the
sc-PDB (annotated database of druggable binding sites from the PDB,
(Kellenberger et al. 2006)). This set was composed of 2,186 small molecules
(MW 70-800Da) bound to 5,740 different SCOP domains belonging to 591
different folds. Water molecules, metals, solvents, detergents and covalently
bound ligands were removed, as well as ligands that had more than 50%
solvent exposed surface. Ji and co-workers (Ji et al. 2007) found that the
number of ligands versus the number of domains they bound to follows a
power law. Almost one third of the ligands interact with two or more domains,
and few ligands are bound to more than 100 distinct domains. These most
promiscuous ligands are the hubs for metabolic networks, like for example

ATP, the most common ligand in this set bound to 35 different folds.

Furthermore, the authors compared these two thousand small
molecules bound to proteins (ligands) with a similar number of random
screening molecules extracted from the ACD-SC (available chemical directory

for screening compounds, from MDL). The comparison was based on factor
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analysis using principal component analysis (PCA) of 70 molecular descriptors.
The loadings of the two components explaining most of the variance revealed
that polar surface area (PSA), hydrogen bond donor count (HBD), hydrogen
bond acceptor count (HBA) and partition coefficient (logP) could discriminate
between random screening compounds and ligands. Further analysis of the
distributions of these properties for the two sets of molecules highlighted that
on average ligands had higher PSA, HBD and HBA and lower logP than
screening molecules. However, this study was centred on the chronology of
evolution of protein-ligand binding and no further insight or distinction into

the types of ligands considered was given.

Adrian Schreyer found results more relevant to drug discovery in his
analysis of the CREDO database (Schreyer 2010). Schreyer compared the
atomic interactions of proteins with drug-like molecules (several filters
yielding a group of molecules with molecular weight range of 100-600Da) and
with endogenous molecules (identified with the KEGG database (Kanehisa et
al. 2008)). Drug-like molecules engaged on average more hydrophobic and
aromatic interactions and less hydrogen bonds than the endogenous
molecules. Analysis of the polar and apolar accessible surface area (PASA and
AASA) versus molecular weight (MW) of these molecules revealed that drug-
like molecules only increase AASA with MW whereas PASA remains constant.
Conversely, endogenous molecules increased PASA with MW while AASA
remained constant in comparison with drug-like molecules. This result is in
agreement with findings by Olsson and co-workers (Olsson et al. 2008),
which revealed that on average synthetic ligands have greater entropic
contributions than native ones, in consonance with the higher lipophilic

character of drug-like molecules.
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Drug discovery is at an inflexion point: old practises are being
scrutinized to try to optimise outcomes and new areas, such as tackling
protein-protein complexes with small molecule therapeutics, are being

explored.

In chapter 2 of this thesis, a resource to aid the latter is described and
analysed. Published reports of small molecule inhibitors are collected into a
relational database called TIMBAL. Analysis of these successful small
molecules in comparison with other compounds relevant to medicinal

chemistry is discussed.

The Blundell group has established structural databases with atomic
interaction and annotated data for all protein complexes in the PDB. These
are: CREDO, holding protein-small molecules complexes (Schreyer et al.
2009); BIPA, protein-nucleic acids complexes (Lee et al. 2009) and PICCOLO,
protein-protein complexes (Bickerton 2009). These databases are powerful
tools that enable the study of molecular recognition at atomic level from the
different types of molecules. The interest in small molecules disrupting
protein-protein interfaces leads to the question of how these small molecules
mimic the interactions of the protein partner. Thus, much insight can be
gained extracting interactions profiles for protein-small molecules (CREDO)

and protein-protein complexes (PICCOLO).

Chapter 3 of this thesis examines CREDO and PICCOLO with the
objective of assessing whether comparisons across both databases are
feasible. For example, calculation of atomic interactions, specifically hydrogen
bonds, is not a trivial task, and the possibilities of making accurate
calculations varies with the knowledge of tautomeric forms, atomic
hybridisation and formal charges that have to be assigned in order to ensure

compliance with the geometrical constraints that this directional interaction
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requires. In chapter 3, differences between databases arising from such
challenges are highlighted and the development of simpler atomic contacts

that allow straightforward comparisons between them is described.

Chapter 4 defines non-redundant subsets of molecules - drugs, drug-
like, small peptides, natural molecules and proteins - interacting with proteins
and explores the atomic interaction patterns presented by these subsets in
the context of medicinal chemistry. The objective of these analyses is to learn
from natural patterns and migrate this knowledge into the design of new

therapeutics.

Finally, chapter 5 studies the structural features of the binding sites

and interaction surfaces of the same subsets of molecules.
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Chapter 2

Creation and analysis of the TIMBAL
database
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2.1 INTRODUCTION

2.1 Introduction

2.1.1 Protein-Protein interactions (PPI) as drug targets

The central role played by protein-protein interactions in living
organisms make them attractive targets for therapeutic intervention.
Successes in antibody therapies targeting extracellular protein complexes
(Adair et al. 2005) encourage drug researchers to seek small molecules that
modulate these pivotal interactions. Small molecules bring a number of
advantages over antibody therapies, not least in cost of goods and ease of
delivery. However, the quest for an ideal small molecule, which can compete
with one of the partners in a multi-protein complex, will be challenging. Just a
decade ago, this quest was thought to be insurmountable; nevertheless two
experimental findings have made protein-protein interactions more attractive
for drug discovery: the existence of hot spots and the adaptability of the
interfaces targeted (Whitty et al. 2006). In fact, in recent years there have
been an increasing number of studies reporting small molecules disrupting
protein-protein interactions. Figure 2.1 shows the increase of citations

regarding protein-protein interactions, including inhibition by small molecules.
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Figure 2.1. Number of publications per year (normalised by the total number
of publications per year) containing in the title “protein-protein interaction”.
The colour code is as follows: blue, only PPI in the title; red, ppi and small
molecule (SM) in the title; orange, ppi and inhibitor (inh) in the title; yellow

all the above in the title. Searches have been done in PubMed.

2.1.2 Survey of literature reviews of small molecules inhibitors

of PPI

One of the first reviews of protein-protein interactions, which included

non-peptidic small molecules, was published in 2000. Cochran described

!

(Cochran 2000) several approaches to disrupt protein complexes, one of

which was small molecules that modulate (agonize or antagonize) cytokine

signalling. This review collates four molecules and highlights the rigidity of the

scaffolds and their richness in aromatic rings and indoles.

In 2002, Toogood (Toogood 2002) wrote the first dedicated
perspective/review of the use of small molecules to inhibit protein-protein
interfaces with therapeutic purpose. This review describes in detail the
methods and frameworks of the early projects delivering small molecules

inhibiting protein complexes. However, not all these have validated binding to
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one of the protein partners. The author did not try to derive common features
of these molecules, but rather advocated doing this when the field had

become more consolidated.

It was not until 2004 that the first analysis of small molecules inhibiting
PPI was published. Pagliaro and co-workers (Pagliaro et al. 2004) collected 19
molecules from 12 different multi-protein complexes, half of which were not
covered by the standard screening libraries and only eight of which fulfilled
the Lipinski drug-like criteria (Lipinski et al. 1997).

Since then, several studies have focused on subsets of small molecules
that disrupt protein-protein interactions. In 2005, Fischer reviewed protein-
protein interactions in drug discovery (Fischer 2005) and collected 38 small
molecules from 11 complexes. Again, only a small proportion of these
molecules passed the Lipinski (Lipinski et al. 1997) and Veber (Veber et al.
2002) drug-like criteria. In the same year, Fry and Vassilev (Fry et al. 2005)
reviewed targeting protein-protein interactions for cancer therapy. From the
few cases where small molecules were found to inhibit protein complexes,
most of these small molecules had properties that were not drug-like, such as
too many rotatable bonds, insolubility issues, charged moieties or reactive
groups. In 2007, Neugebauer and co-workers (Neugebauer et al. 2007)
extracted known inhibitors from the literature excluding peptides and small
proteins. These authors collected 25 structurally diverse small molecules (all
of them with a molecular weight higher than 400 Da) from seven targets and
compared them with 1057 FDA (The Food and Drug Administration) approved
drugs. More than 600 molecular descriptors were calculated and decision
trees discriminated between PPI inhibitors and FDA drugs. The most relevant
descriptor to distinguish PPI inhibitors was based in molecular shape and size,
however no clear guidelines of the value range was given. Later in the same
year, Wells and McClendon (Wells et al. 2007) analysed six multi-protein
complexes where structural and binding data showed small molecules

competing directly with one of the partners. In most of the cases, site
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adaptability occurs when the small molecule binds to the interface. The
authors compared these small molecules with other sets of drug-like small
molecules and found little similarity. For 13 diverse molecules, each optimised
against one of these six complexes, they demonstrated a linear correlation
between number of atoms of the small molecule and its energy upon binding
with the protein. This ratio, known as the ligand efficiency, LE (Hopkins et al.
2004), had a value of about ~0.24 for these molecules. Assuming that this is
a general threshold for these interfaces, the authors concluded that a 10nM
binder would require a molecular weight of 645Da, which is well above the
classical 500Da Lipinski limit (Lipinski et al. 1997). Similar findings were
reported by Fry (Fry 2008); small molecules binding to protein interfaces tend

to be large rigid structures with complex 3D shape.

At that time we were developing and analysing the resource described
in this chapter, results of which were published in 2009 (Higueruelo et al.
2009) and which I report here in greater detail. Since then, other studies

have also been published.

In 2010, Sperandio et al. (Sperandio et al. 2010) studied the chemical
space occupied by small molecules inhibitors of protein-protein interfaces.
These authors suggested that as the interfaces are richer in tyrosine,
phenylalanine, tryptophan and methionine the primary chemistry to tackle
these interfaces would be aromatic and hydrophobic. Analysing 66 PPI
inhibitors versus 557 small molecule drugs from the DrugBank (Knox et al.
2011), both sets passing filters of structural diversity and loose drug-like
properties, Sperandio and co-workers found that PPI inhibitors were bigger
and more lipophilic than the drug set (mean of molecular weight 421 vs 341
and mean of alogP 3.58 vs 2.61, P values 5E10-9 and 6E10-6 respectively). In
the same study, more than 1600 molecular descriptors were used to derive
decision trees, which found that shape descriptors and accounting for
unsaturated bonds had the most discriminative power for distinguishing PPI

inhibitors from standard drugs. Being complex shapes and high number of
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unsaturated (including aromatic) bonds favoured by PPI inhibitors. This result,
matches the previous findings of Neugebauer (Neugebauer et al. 2007) and
Fry (Fry 2008), as well as ours as we will see in further sections. The same
research group published a second report (Reynes et al. 2010) about the
applicability of these findings to the design of focused libraries to target

protein-protein interactions.

In the same year, Bourgeas et al. (Bourgeas et al. 2010) released the
2P21 database, a hand curated database of the structures of protein-protein
complexes with known inhibitors. Only targets with structural information for
both the protein-protein complex and the protein-inhibitor complex were
included in the database, which described 17 protein-protein complexes and
56 protein-small molecule inhibitors. These authors focused the published
study on the characteristics of the protein interfaces and this is discussed in
chapter 5 of this thesis. Interestingly a more recent update of the 2P2I
database has less complexes and small molecules as the authors have
removed some of the previous entries (Morelli et al. 2011). The 2P2I
database has now 12 protein-protein complexes with a non-redundant set of
39 small molecules bound to their protein-protein targets. In this latest study,
the authors analysed the molecular properties of the small molecule inhibitors,
along side their binding and surface efficiency indexes (BEI and SEI) as
defined by Abad-Zapatero et al. (Abad-Zapatero et al. 2005; Abad-Zapatero
et al. 2010). The Rule of 4 is proposed as general profile for possible protein-
protein small molecules inhibitors, based in the average of MW 547+154 thus
MW>400, alogP 3.99+2.37 thus alogP>4, number of rings 4.44+1.02 thus
NoR>4 and number of hydrogen bond acceptor 6.62+2.60 thus HBA>4.
When the small molecules inhibiting protein-protein complexes were mapped
to the BEI and SEI space of the marketed oral drugs, they appeared in the
zone of “sub-optimal series that could not get optimised”, as they are too
large and lipophilic to fit in the classical oral drug space. However, one of
these large molecules, Navitoclax (ABT-263) is progressing in phase II clinical

trials for cancer. The authors concluded this report advocating shifting the
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paradigm of what it takes to be a drug for this class of targets as well as
developing alternative and parallel technologies, like the nanoparticle drug
delivery system (NPDDS) (Morelli et al. 2011).

It is clear then, that drug discovery for these challenging targets is in
an uncharted area, where we may need to reassess the concept of drug-
likeness for this type of target. Classical drug-like properties are largely
derived from competitive inhibitors of endogenous small molecules. Current
screening decks may not be well suited to identify protein-protein small
molecule modulators. We must also increase our understanding of the mutual
recognition between small molecules and interfaces in order to develop better
methods for growing initial hits and to efficiently maximise their affinity and
selectivity, whilst trying to confer on them the appropriate profile of a

therapeutic agent.

In order to find hits in this context, tools for the accurate prediction of
hot spots and protein flexibility are needed as well as knowledge of which
types of molecular interaction are best exploited by small molecules on
protein surfaces. I addressed this last point with the creation of a relational
database that holds the current small molecules disrupting protein-protein
interactions. This database, called TIMBAL, is compatible with other structural
databases of protein-protein (Bickerton et al. 2011) and protein-ligand
interactions (Schreyer et al. 2009), providing a useful framework to study
small molecule interactions at protein-protein interfaces. This compatibility
allows the exploration and comparison of the structural features and
interactions of small molecule modulators of protein-protein interactions and
the multi-protein complexes they inhibit. This resource also allows profiling
and analysing the molecular characteristics of the small molecules that

successfully inhibit protein-protein interactions.
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2.2 METHODS

2.2 Methods

2.2.1 Creation of a database of small molecule inhibitors of

PPI: TIMBAL

TIMBAL is a relational database containing small molecules that inhibit
protein-protein interactions. These molecules and the information regarding
the systems affected by them have been retrieved from relevant scientific
publications. The literature up to 2008 was searched and analysed in order to
identify all the known small molecules modulators of protein complexes. Short
peptides or peptidomimetic molecules were not included at this stage. Manual
updates until 2011 have been carried out only for molecules deposited in the
PDB (Berman et al. 2000). The growth of data (see Figure 2.1) in the past
years makes hand-curated databases a phenomenally time-consuming task.
The feasibility of maintaining high quality data alongside other research duties
is low. The maintenance of TIMBAL has been envisaged through automated
searches on the CHeMBL database (Gaulton et al. 2011).

Literature searches were carried out using Ovid (UCB access,
http://ovidsp.tx.ovid.com/) and Pubmed (public access,
http://www.ncbi.nim.nih.gov/sites/entrez). Automated queries were set up in

Ovid to keep the data source up to date until 2008.

Data extraction was achieved by critically reading the papers and
manually sketching molecules into an Excel spreadsheet with Accord

functionality, (http://accelrys.com/products/informatics/desktop-software.html) to

handle chemical structures.
Not only is it of great importance to collate all known small molecule

modulators of protein-protein interactions, but also to relate them to the

structure-based database projects within the department, in order to
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2.2 METHODS

maximise the information that can be derived for this type of molecule. For
this reason it became apparent that TIMBAL should be compatible with other
databases within the Biocomputing Group in the Department of Biochemistry
(CREDO, (Schreyer et al. 2009); PICCOLO, (Bickerton et al. 2011) and BIPA,
(Lee et al. 2009)). To achieve this compatibility the spreadsheet mentioned
above is post-processed with a Python script, which generates TIMBAL as a
MyQSL (open

http://www.mysqgl.org). The database is normalised to remove redundancy

relational database in source database engine,

and is constituted by different tables. The TIMBAL schema is shown in Figure
2.2.

CHEMISTRY ¥/ TARGET = LITERATURE ¥/
% Chemistry_ID: SMALLINT(S) ¥ Target_ID: SMALLINT(5) ¥ Literature_ID: SMALLINT(5)
@ Smiles: TEXT @ Target_Name: VARCHAR(50) @ PubMed_ID: SMALLINT(5)
@ Literature_Name: VAR CHAR (50) @ Target_Descrip: TEXT @ Literature_DOI: TINYTEXT

@ Target_Where: TINYTEXT @ Literature_URL: TINYTEXT
@ Target_Substrate: TEXT @ Literature_Year: YEAR(4)

CHEMISTRY_CLASS -
¥ ChemClass_ID: SMALLINT(S) BINARY_COMPLEX =
@ ChemClass_Name: TINYTEXT 7 BComplex_ID: SMALLINT(S)

& Target_Name: VAR CHAR(50) TIMBAL <
ASSAY v & BComplex_Descrip: TINYTEXT ¥ TimballD: SMALLINT(S)

@ Chemistry_ID: SMALLINT(5)
@ Target_ID: SMALLINT(S)

@ BComplex_ID: SMALLINT(5)
@ PDB_CODE: VARCHAR(4)

@ Literature_ID: SMALLINT(S)

¥ Assay_ID: SMALLINT(S)

@ Assay_Name: VARCHAR(10)
@ Assay_Type: VARCHAR(10)
@ Assay_Description: TEXT

TARGET_PDB 4
¥ TargetPDB_ID: SMALLINT(5)
@ Target_Name: VARCHAR(50)

INTERACTION_CLASS i
% InterClass_ID: SMALLINT(5)
@ InterClass_Name: TINYTEXT

TECHNIQUE X
% Tech_ID: SMALLINT(S)
@ Tech_Name: VARCHAR(200)

& PDB_CODE: VARCHAR(4)
@ Chemistry_ID: SMALLINT(S5)
< BComplex_ID: SMALLINT(5)

TARGET_FUNCTION 2

% Function_ID: SMALLINT(5S)

@ Target_Name: VARCHAR(50)
@ Target_Function: TEXT

@ ChemClass_ID: SMALLINT(5)

@ InterClass_ID: SMALLINT(5)

@ Assay_ID: SMALLINT(S)

@ Tech_ID: SMALLINT(S)

@ Assay_AffinityNumber: DOUBLE
@ Assay_AffinityUnits: TINYTEXT

@ Assay_AffinityContext: TINYTEXT
@ Site_adaptability: TINYTEXT

@ Disrupting_What: TEXT

Figure 2.2. Complete schema of TIMBAL database. Chemical structures are
held as SMILES (Simplified Molecular Input Line Entry System), generated
with the Accord functionality within Excel. These sets of tables have been
defined to normalise TIMBAL and avoid redundancy.

The subset of TIMBAL molecules present in the PDB are also a subset
of the CREDO database, consequently the CREDO database has a TIMBAL
table which allows profiling of the protein-protein modulators and comparison
with other ligands in the PDB.
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The TIMBAL database has been profiled in terms of the molecular
properties of the small molecules in it. Typical molecular properties like
molecular weight, alogP, polar surface area (PSA) and rotatable bonds have
been calculated with Scitegic Pipeline Pilot software
(http://accelrys.com/products/pipeline-pilot/). In order to put TIMBAL
molecules in a medicinal chemistry and structural context four other sets of
molecules have also been profiled. The aim is to analyse possible trends and
differences between sets. These are:

* Drugs: Preclinical, phase I to IV, and launched drugs from the
MDDR database (MDL® drug data report) with molecular weights
below 900Da; this cut-off has been set up to have only small
molecules. The biggest molecule in TIMBAL now has a molecular
weight of 813Da. An amino acid SMARTS (Smiles ARbitrary Target
Specification, query extension of SMILES) filter (Daylight) is applied
to these molecules in order to remove peptide-like molecules from
the set. This set contains 11,843 molecules.

* Screening compounds: A random selection of small molecule
screening compounds from the catalogues of three different
suppliers: Enamine, Asinex and Maybridge. The same cut-offs have
been applied, and molecular weights below 900Da and peptide-like
molecules filtered out. This set contains 12,022 molecules.

* Ligands from the PDB: Molecules in CREDO that are not in
TIMBAL. The same cut-offs have been applied: molecular weight
bellow 900Da and removal of peptide-like molecules. Molecules with
10 atoms or less have been also filtered out to remove most of the
small molecules solvent and salts. This set contains 7,841
molecules.

* DL-ligands from the PDB: The drug-like subset from the above
set. Ligands in the PDB (as extracted from the HETATM entries) are

very diverse. These small molecules are not appropriate for a drug-
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like comparison. For example, they can be heavy metal complexes,
detergents and nucleotide analogues. However, the distinction
between drug-like molecule and non drug-like is not trivial. The
pragmatic approach used to select this drug-like subset is as
follows: molecules from the above CREDO set with at least one
carbon atom; with composition of carbon, nitrogen, oxygen, sulphur
and halogen only; with at least one ring; and with no chains longer
than six carbons sp3-CH2. The resulting molecules have been
clustered based on chemical structure using MDL public keys as
descriptors and maximum dissimilarity method to find the centre of
the clusters as implemented in Scitegic Pipeline Pilot software.
Clusters with nucleotide analogues or detergents have been

removed. This subset contains 3,048 molecules.

TIMBAL has also been profiled and compared with the three sets of
small molecules described in 2.2.2.1 in terms of the chemical functionality of
the compounds that are present. Thirty-nine medicinal chemistry functional
groups have been used in a single substructure search against all the
molecules in the different sets. Scitegic Pipeline Pilot software has been used
to perform these searches. This analysis should highlight any particular
functional group favoured within the small molecules modulators of protein-

protein interactions.

The TIMBAL subset that it is contained in CREDO (i.e. structural data is
available for the complex small molecule protein) has been analysed and
compared with the rest of CREDO molecules in terms of types of interactions
and contacts between the ligand and the protein. This has been done using
all the pre-calculated contacts derived from the structural data developed by
Adrian Schreyer in CREDO. These contacts are defined by distance and atom
type between atoms in the ligand and the protein. I have used: covalent, van

der Waals clash, van der Waals, hydrogen bond, ionic, piCation, aromatic and
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hydrophobic. These contacts are also pre-calculated in the PICCOLO database
containing protein-protein interactions in the PDB. Therefore a cross
comparison between PICCOLO, CREDO and TIMBAL interactions has also
been analysed, in order to plot trends regarding the type of interactions and

contacts favoured by TIMBAL molecules.

CREDO also pre-calculates the protein surface buried by ligand binding.
This measurement has been compared between the TIMBAL subset and the

rest of CREDO molecules.

Affinity data for TIMBAL molecules have been also collected from
literature when available. Ligand Efficiency (LE (Hopkins et al. 2004), free
energy of ligand binding AG = - RT Ln K, divided by number of non-hydrogen

atoms) has been calculated on the assumption that K; and IC50 are good
approximations of Kyq and the temperature is set to 300K. This LE has been
compared with the threshold described in literature by Wells and McClendon
(Wells et al. 2007) for the most optimised small molecule inhibitors of protein-

protein interactions (~0.24).
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2.3 RESULTS AND DISCUSSION

2.3 Results and discussion

2.3.1 TIMBAL database

TIMBAL can be publicly accessed through the Department web site

(http://www-cryst.bioc.cam.ac.uk/timbal). It now contains 117 small

molecules of which 39 are in the PDB co-crystallised with their PPI targets
and therefore are also included in CREDO database. The analysis described
here however was performed in 2008 when the database was created; at that
time TIMBAL had 104 small molecules, 27 of which were in the PDB. TIMBAL
also holds 247 small fragments; these are tether (Erlanson et al. 2004) hits
from Cys mutations in the IL-2 cytokine (Arkin et al. 2003). This set of
fragment molecules has not been included in the analysis, as they would bias
towards the IL-2 interface. Overall, the TIMBAL database contains small
molecules disrupting 17 protein-protein complexes, a summary of the
contents of TIMBAL in terms of protein-protein systems, techniques used to
identify the small molecules and number of compounds per system at the

time of the analysis is shown in Table 2.1.
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Therapeutic . N of SM
Complex Complex Type Area Techniques (series)
_ Peptidomimetics 6 (2)
IL-2/IL-2Ra Heterodimer e + 247
suppressor Tethering?® tethers
_ Cell based screening
_| cpgoicD28 | Heterodimer ulullate 4(2)
o suppressor HTS ELISA
=)
@ TNFa trimer Homotrimer Inflammation | CTGFA with ELISA 2 (1)
© , Screening SPR and FPA
5| ZipAlFtsz AizredinEr Antibacterial 21 (7)
=S (small peptide) SBDD
B Heterodimer
ax or Bak or . Oncology HTS FPA 26 (9)
Bid (small peptide)
: SAR by NMR
SBDD. VS-Docking. NMR
B-Catenin Heterodimer and ITC
[Tcfd or Tef3 | (flexible peptide) | OMclogy e — e
Heterodimer .
c-Myc/Max binding to DNA Oncology Screening FPA 1
Heterodimer Oncolo Cell based screening + 1
(small peptide) gy binding assay
SBDD. VS-Docking. FPA
LBDD. VS-
Heterodi Pharmacophore. FPA
p53/MDM2 crerogimer Oncology Peptidomimetics. 16 (7)
(small peptide) Natural products
HTS ThermoFluor® 2%/,
ELISA, SPR, FPA
Heterodimer SBDD. VS-Docking. Trp
SR (small peptide) Lol Fluorescence assay 7(4)
Peptidomimetics.
l(:,O«SPnjlia(:sp-Q Heterodimer Oncology Natural products 5(2)
SBDD. VS-Docking. FPA
UL30(Pol) . .
JUL42 Subunits HSV Antiviral HTS FPA 3(3)
E1-E2 Heterodimer -
IDNA(HPV) binding to DNA Antiviral SAR by NMR 4 (2)
5 Homodimer Antimicrobial | HTS phenotypic screen 1
=| iNOS dimer Homodimer B M CombiChem 1
o Immunology
: . Modulation of
©
E Heterodimer GPCRs Screen FCPI assay 1
| CMR1/NES Heterodimer Antiviral Cell based screen 2 (1)

Table 2.1. Protein-protein complexes found in literature modulated by small
molecules. Green background for systems with structural information. Red
background for systems without structural
highlights the systems with more small molecules.
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Table 2.1 key: Tethering (Erlanson et al. 2004). HTS (High Throughput
Screening). ELISA (Enzyme-Linked Immunosorbent Assay). CTGFA
(Combinatorial target-guided fragment assembly, Sunesis). SPR (Surface
Plasmon Resonance). FPA (Fluorescence Polarization Assay). SBDD
(Structure-Based Drug Design). VS (Virtual Screening). SAR (Structure
Activity Relationship). NMR (Nuclear Magnetic Resonance). SAR by NMR
(Hajduk 2006). ITC (Isothermal titration calorimetry). LBDD (Ligand-Based
Drug Design). ThermoFluor® (Cummings et al. 2006). CombiChem
(Combinatorial Chemistry). FCPI (Flow Cytometry Protein Interaction assay).

The data shown in Table 2.1 highlight the importance of structural
information for these challenging targets. Virtually all PPIs that have been
successfully disrupted by small molecules have crystallographic or NMR
structural data for the protein-protein complex (IL2/IL2Ra, Bcl-XL/Bad,
MDM2/p53, S100B/p53, TNF trimer, XIAP/Smac, B-catenin/Tcf4, ZipA/FtsZ,
cMyc/Max, E1/E2, iNOS dimer, and UL42/HSV-Pol); or for one of the complex
components (CD80, CMR1). Also apparent from the table is the connection
(highlighted in blue in Table 2.1) between complexes where one of the
partners is a small peptide and the success in finding small molecules binding
to the interface. These examples lead to the hypothesis that these types of
interfaces are more druggable than the interfaces from globular constituents,
as the existence of one partner that becomes ordered on binding allows a
larger interaction surface between ligand and protein and often better formed
pockets (Blundell et al. 2006). In addition, these complexes may be more
amenable to the development of scalable competitive binding assays to
identify small molecule inhibitors. A good example of this is the Fluorescence
Polarisation Assay (FPA), a homogeneous assay that gives robust results if
the size ratio between components of the complex is high (Berg 2003). The
small peptide is fluorescent labelled and put in solution with its bigger partner.
The whole complex is excited with polarized radiation, which emits highly
polarized fluorescence as the bigger protein maintains the orientation of the
fluorescent peptide. If a competitive inhibitor is added to the system, the
peptide is released in solution free to rotate and translate which will cause

decrease of the polarization of the emitted fluorescence.
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Another point to highlight from the structural data of these complexes
is that almost all targets with a large number of reported successful small
molecules modulators have preformed small and deep pockets in the interface
(Bcl-XL, MDM2, S100B) with ZipA as a remarkable exception. Small molecules
have successfully modulated the interaction between ZipA and FtsZ, binding
to a shallow hydrophobic interface. However, these molecules did not
progress in the path to be therapeutic agents because the required cell
penetration, solubility and specificity were not married to their ability to bind
to ZipA. This example suggests that assessment of druggability for a PPI
target cannot be limited to finding small molecules bound to the interface.
However extraordinary, PPI binders need to also have the appropriate

molecular profile to achieve the approved drug status.

The molecular properties profile of the TIMBAL database is shown in
Figure 2.3 and Figure 2.4, as well as the profile of the other four sets
described in the Methods section. In order to have all profiles on the same
scale, the frequencies for the binned properties have been normalised by the
total number of molecules per set. TIMBAL profile (in pink) is more spiky as a
consequence of the smaller number of molecules in this set. Table 2.2
summarises the average value and standard deviation for each molecular

property and set.
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2.3 RESULTS AND DISCUSSION

Figure 2.3. Distribution of molecular properties for the different sets of
molecules described in the main text. See section 2.2.1. Colour coded: dark
blue (PDB ligands), grid dark blue (PDB ligands drug-like subset), yellow
(Drugs from MDDR), cyan (Screening compounds), pink (TIMBAL, small
molecule inhibitors of protein-protein interactions). MW: Molecular weight;
alogP: Calculated logarithm of the partition coefficient; NRings: Number of

rings; RotBonds: Rotatable bonds.
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2.3 RESULTS AND DISCUSSION

Figure 2.4. Distribution of molecular properties for the different sets of
molecules described in the main text. See section 2.2.1. Colour coded: dark
blue (PDB ligands), grid dark blue (PDB ligands drug-like subset), yellow
(Drugs from MDDR), cyan (Screening compounds), pink (TIMBAL, small
molecule inhibitors of protein-protein interactions). PSA: Polar surface area;
HBA: Number of hydrogen bond acceptors; HBD: Number of hydrogen bond

donors.
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2.3 RESULTS AND DISCUSSION

PDB PDB Screening PPI
Ligands Ligands-DL compounds Inhibitors
MW 352 + 172 360 = 139 417 = 140 384 = 79 420 = 156
330 | 340 350 | 380 400 | 380 380 | 370 400 | 690
alogP 09=+34 2.6 +2.3 29=+2.6 3.3+1.5 4.0+ 2.0
0.9]1.0 2.6 2.2 3.1] 3.8 3.3]3.6 3.9]3.1
NRings 2.3 +1.8 29=1.4 3.3+1.5 3.2+1.1 3714
212 313 313 3|3 414
NAromRings 1.3 +1.3 2.0=+1.3 2.0=+1.3 2.5+1.0 2.8+1.3
1]0 212 212 212 313
RotBonds 6.5 =+ 5.8 54 =+4.1 6.9 =+ 4.7 5.6 +2.2 5.7 + 3.7
514 514 6|4 6|5 5]6
PSA 122 =+ 77 95 + 46 98 + 57 90 + 32 95 + 46
105 | 65 90 | 65 85| 60 90 | 85 85| 65
HBA+HBD 9.4 + 6.2 6.9 = 3.3 7.4 = 4.1 5.6 +1.9 6.5 = 3.0
816 6|6 716 5|5 6|6
HBA 6.2 + 4.2 4.7 + 2.2 54+29 4.5+ 1.6 4.8 +2.3
514 414 514 414 414
HBD 3.2+23 2.3 =+1.5 2.0+ 1.8 1.1 £ 0.8 1.7 £ 1.3
312 2|2 2|1 1)1 2|2

Table 2.2. Mean = standard deviation, median and mode of the molecular
properties for each set. To calculate the median and the mode, Molecular
Weight was binned in 10Da and rounded to integer. Topological polar
surface area was binned in 582 and rounded to integer. AlogP was rounded
to one decimal place.

Although TIMBAL molecules present a spread of molecular properties,
for example molecular weight goes from 148Da to 813Da, their overall profile
shows a tendency for being big lipophilic molecules. In addition, they have
more rings and less rotatable bonds than the molecules from the drugs and
DL-ligands from the PDB sets. In spite of the fact of being on the average
bigger, TIMBAL molecules show in proportion less features than the
molecules from the other sets, as captured by the hydrogen bond donor and
acceptor counts. The ratio of hydrogen bond donor and acceptor count by
molecular weight for TIMBAL molecules is significantly (P < 0.05) smaller
than the same ratio for the drugs and DL-ligands from the PDB. In drug
discovery, molecules with a similar profile will be regarded as promiscuous

and little attractive. It will be interesting to profile these molecules against a
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panel of PPI targets to evaluate their selectivity, however there aren’t many
PPI targets with validated assays, and this type of data has not been found in
literature. The same applies to classical later stage properties in the drug
discovery time frame like DMPK (Distribution, Metabolism and
Pharmacokinetics). These inhibitors are in the very early stage of discovery
(with Bcl as a remarkable exception) and the publicly available data are

limited.

It is interesting to note that PPI small molecules modulators show a
closer profile to the drug set than the screening compounds group. However,
only one molecule, an analogue of ABT-737 (TIMBAL molecule of 813Da), has
reached the phase I/II of clinical trials (Morelli et al. 2011) thus far showing
acceptable oral bioavailability despite its huge molecular weight. This might
suggest broadening the type of molecules that get screened against a PPI
target, in terms of property profile as well as more diverse sources, like
natural products for example. On the other hand, products from DOS (Diverse
Oriented Synthesis) (Di Micco et al. 2009) may be attractive screening
candidates as complex shape is common amongst PPI inhibitors (Neugebauer
et al. 2007; Fry 2008; Sperandio et al. 2010).

In order to assess if this profile of TIMBAL molecules is general and not
biased by target, Figure 2.5 and Figure 2.6 show the distribution of molecular
weight and alogP for TIMBAL molecules colour coded by target. Only targets
with more than one molecule have been included in the graph. Seven out of
nine targets have molecules with molecular weight greater than 500Da, and
all of them have molecules with alogP greater of 4. These properties do not
depend on whether the researchers who synthesised the molecules are in an
industrial or academic environment (48% molecules generated in industry,
39% in academia and 13% in collaborative efforts). Therefore the general
trend for small molecule modulators of protein-protein interactions is being
bigger, more rigid, more lipophilic and less hydrogen bonding than molecules

in the drug and screening sets.
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2.3 RESULTS AND DISCUSSION
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2.3 RESULTS AND DISCUSSION
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Figure 2.6. Distribution of the calculated logarithm of the partition
coefficient (alogP) of the TIMBAL molecules colour coded by target. Only
targets with more than one molecules are plotted.

In order to evaluate the similarity or dissimilarity, in terms of molecular
properties, between the TIMBAL molecules and the other sets of molecules, a
principal component analysis has been applied. For this analysis only
molecules from the PDB ligand drug-like subset have been used to represent
ligands in PDB, as many of the ligands in the PDB are not relevant for drug-
like profiling as described in the methods section (2.2.1). The loadings of this
PCA are shown in Table 2.3.
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2.3 RESULTS AND DISCUSSION

Property PC1 PC2 PC3

StandardDeviation 2.051 1.369 0.953
VarianceExplained 0.526 0.234 0.114
TotalVarianceExplained 0.526 0.760 0.874
MW 0.367 0.438 -0.028
RotBonds 0.319 0.219 -0.666
HBA 0.442 -0.019 0.145
HBD 0.350 -0.271 -0.067
HBA+HBD 0.470 -0.135 0.072
NRings 0.119 0.510 0.664
PSA 0.445 -0.120 0.083
ALogP -0.114 0.627 -0.280
Table 2.3. Principal Component Analysis (PCA)
Loadings molecular properties used as

descriptors of the molecules in the different sets.

Figure 2.7 represents the molecules with their PCA scores, i.e. the
projections of the molecular properties onto the first three principal
components. As can be seen in the top right quadrant, the drug molecules
are spread broadly in this space and it captures most of the TIMBAL
molecules. In the bottom left and right quadrants, TIMBAL molecules are less

covered by the PDB ligands-DL set and Screening compounds respectively.
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2.3 RESULTS AND DISCUSSION

Il DL-lig PDB

Drugs
Screening Comp

PPI inhib a ¢

Figure 2.7. Three-dimensional projection of the principal components of the
molecular properties for the different sets of molecules.

In order to have a quantitative measure of the distribution of the
molecules from different sets within this PCA space (3-dimensional: PC1, PC2,
PC3), the distance from the arithmetic centre of this space (distFC) has been
calculated for all molecules. The average of this distance is 2.18 with a
standard deviation of 1.49. Figure 2.8 shows the distribution of this distance
for each set of molecules. As we have seen previously, in terms of molecular
properties TIMBAL molecules are closer to developed drug molecules rather

than starting point molecules (screening compounds).
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2.3 RESULTS AND DISCUSSION

e DL-lig PDB
Screening comp

ww Drugs

@ PPlinhib

% of molecules

distFC

Figure 2.8. Distribution of the distances to the arithmetic centre of the PCA
space for each set of molecules. TIMBAL molecules represented by dots for
clarity. The mean of this distance is 2.18 with a standard deviation of 1.49.
Table 2.4 shows the percentage of molecules in each bin.

% in % in % in % in
Screening comp DL-lig PDB Drugs PPl inhib
u=lo 92 84 80 83
uz+20 8 12 12 15
ux 30 0 3 4 2
U + more 30 0 1 4 0

Table 2.4. Percentage of each molecule set for each standard deviation bin
in the distribution of distances to the centre in the PCA space. Distributions
are shown in Figure 2.8.

In conclusion, molecules disrupting protein-protein interactions tend to
be big lipophilic molecules with fewer hydrogen bonds than the average drug-
like molecules. In order to assess whether these characteristics are due to
surface complementarity and molecular recognition, the next section analyses

the interface of these complexes.
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2.3.2.2.1 Chemical functionality

In terms of chemical functionality, TIMBAL molecules contain more
carboxylic acids and sulfonamides and less ether groups than drugs but
similar proportions to the DL-ligands from the PDB set. Carboxylic acids are
present in drugs, in DL-ligands from the PDB and TIMBAL sets but
underrepresented in the Screening compounds. As reported previously
(Whitty et al. 2006), PPI inhibitors tend to contain aromatic rings. Table 2.2
shows they have the highest content of aromatic rings and phenyls of the
different sets. Perhaps the most surprising result is the high nitro-group
content of TIMBAL molecules. This holds true across series, originator
environment and target. Six out of the 17 TIMBAL targets have molecules
with a nitro group. In general, aromatic nitro groups are avoided in drug
development due to toxicity problems when the nitro group is reduced in the
body (Boelsterli et al. 2006). This could explain the lower proportion of nitro
groups in the drug like sets. However, nitro aromatic rings are poor in
electrons due to the strong electron withdrawing effect of the nitro group.
This result could lead to further investigation of the properties of these rings
in the context of the molecular recognition at the protein interfaces. Table 2.5
shows the details of the functional group analysis for the different sets of

molecules.
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2.3 RESULTS AND DISCUSSION

PDB PDB Screening PPI
Drugs
Ligands Ligands-DL compounds Inhibitors

OH 71 52 46 13 41
NH 68 68 64 68 67
Aldehyde 3 2 0 0 1
Ketone 9 12 14 10 17
Amide 37 42 44 70 54
Alkyne 1 1 2 0
AkylHalide 1 1 1
Carbamate 1
Imide 5 6 5 2
coo 28 23 16 2 22
Epoxide 1 1 1 0
Ester 10 11 18 17
Ether 24 29 41 42 29
Pyridine 7 11 14 13
4ari_Nitrogen 1 0 1 0
1ari_aniline 2 2 2 0
2ari_aniline 8 15 13 31 33
3ari_aniline 4 7 12 14 17
Acetal 5 4 5 4 3
Butyl 6 2 6 2 3
CF3 2 4 5 5 3
Cyano 1 3 4 6 2
IsoPropyl 7 8 8 5 12
Nitro 2 3 3 7 15
tBu 2 3 4 3 5
sulfonamide 6 12 7 16 17
thioether 4 3 5 19 12
Phenol 9 15 9 2 11
urea 8 6 8 7
AminoPyr 2 5 2 1
sulfoxide 0 0 1 0
N 81 85 91 98 88
(0] 93 91 93 96 89
S 21 26 26 54 25
Halogen 18 30 35 43 42

Table 2.5. Percentage of molecules per set that have a least one
of the functional groups present in the chemical structure.
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2.3.2.2.2 Atomic contacts

With respect to the types of interactions and contacts favoured by
TIMBAL molecules, Table 2.6 shows the average and standard deviation of
the contact types (in percentage) extracted from the CREDO (PDB ligand
subsets analysed so far) and PICCOLO databases. TIMBAL molecules
considered in this analysis are the subset present in CREDO (in total 27
molecules from 26 PDB entries, see Table 2.7 for details). The last column of
Table 2.6, PICCOLO(T), shows the average numbers of contacts for the
protein interfaces of the multi-protein complexes that are disrupted by
TIMBAL molecules (in total 28 interfaces from 16 PDB entries, note only
relevant interfaces are considered, see Table 2.7 for details).

Table 2.6 shows that on the average the 27 molecules co-crystallised
with protein interfaces from multi-protein complexes (see column headed
TIMBAL) present more hydrophobic and aromatic and less hydrogen bond
contacts than the average CREDO-DL and PICCOLO interfaces. This result
correlates with the molecular property profile described in section 3.2.1 for
these molecules and with slightly more hydrophobic character than the
TIMBAL interfaces in PICCOLO. An interesting result that emerges from this
analysis is that the PICCOLO interfaces (slightly higher even in the TIMBAL
subset) are more ionic in character than the CREDO (including TIMBAL)
molecules. This result will be further investigated in chapter 3, as the contacts
in PICCOLO and CREDO are calculated with different algorithms and

estimation of the ionisation state for small molecules is not a trivial task.
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2.3 RESULTS AND DISCUSSION

CREDO-DL TIMBAL PICCOLO PICCOLO(T)
Covalent 3.1%£9.6 0.1+0.6 0+0 0.1£0.5 0.0+0.12
vdW 54.2422.4 60.4+11.7  56.1+8.0 52.3+17.7 47.0+8.8
vdWclash 3471235  15.7+9.1 11.7+6.5 11.9+9.0 11.9+5.8
Hbond 7.3+10.1 5.314.9 2.313.1 4.2+4.9 3.3+1.3
Ionic 7.1£18.2 4.1+8.5 2.5%4.2 13.1+17.4 16.1+8.8
piCation 0.1+0.6 0.1£1.0 0.4+1.0 8.9+13.6 8.1£7.7
Aromatic 2.3£7.0 7.8+12.1 9.3%9.3 6.8+£12.5 6.8+8.1
Hydrop. 9.8+20.6 37.3%22.4 53.0+13.9  33.8+19.2 41.2+9.9
Buried_PA  360+193 281+135 386+106 1788+1909  1953+1106
Surface_A 613+285 533+246 754+167

Table 2.6. Average and standard deviation of the contact types in

percentage extracted from the CREDO (lig-protein complexes, and DL ‘drug-

like’” subset) and PICCOLO (protein-protein complexes) databases. For
instance, TIMBAL having 57% of hydrophobic contacts means that the
TIMBAL molecules on average have 57% of the total contacts as
hydrophobic. TIMBAL molecules considered in this analysis are the subset
present in CREDO (in total 27 molecules from 26 PDB entries, see Table 2.7
for details). The last column, PICCOLO(T), shows the average numbers of
contacts for the protein interfaces of the multi-protein complexes that are
disrupted by TIMBAL molecules (in total 28 interfaces from 16 PDB entries,
note only relevant interfaces are considered, see Table 2.7 for details).
Buried_PA: buried protein area upon binding. Surface_A: surface area of the
small molecules in the binding conformation. Values in bold denote
significant differences between TIMBAL and CREDO-DL (P < 0.05).
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2.3 RESULTS AND DISCUSSION

Target Complex PDB PICCOLO PDB CREDO
1M48
IL-2 IL-2/IL-2Ra 1292 (A:B) 1PW6
1PY2
1YSG
1YSI
1YSN
1YSW
Bel-2 Bel-XL Bcl-2 and Bel-XL with  2BZW (A:B) 201Y
cl-2 Bcl- ) 1G5J (A:B) 2021
BAX; BAK and BID 1BXL (A:B) 2022
202F
202M
202N
2YX]
1RV1
MDM2 p53-MDM2 DVEIR (Gaelz) 2AXI
1T4F (M:P) 1T4E
CD80-CD28
CD80 (B7-1) 118L (A:C)
(or CTLA4) 118L (B:D)
1DT7 (B:Y)
TNFa TNFa trimer 1TNF (A:B) 2AZ5
XIAP/Caspase9 or
XIAP SMAC (BIR3 1G3F (A:B) 1TFQ
_ : 1TFT
domanin)
. BetaCatenin/Tcf4 and  1JPW (A:D)
Beta-catenin 1JPW (B:E)
Tcf3 .
1JPW (C:F)
1S1]
ZipA ZipA-FtsZ : e
p p 1F47 (A:B) 1Y2F
1Y2G
c-Myc/Max c-Myc/Max 1A93 (A:B)
1TUE (A:B)
1TUE (D:E)
E2 E1-E2-DNA 1TUE (F:G)
1TUE (H:J) 1RGN
1TUE (K:L)
1TUE (M:Q)
iNOS iINOS dimerization 3NOS (A:B) 1DD7
1DML (A:B)
UL42 UL30(Pol)-UL42 1DML (C:D)
subunits of HSV 1DML (E:F)
1DML (G:H)

Table 2.7. Summary of the PDB entries for the PPI systems used in this
analysis. PDB entry 1YSG has 2 SM.
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2.3.2.2.3 Buried surface area

Buried surface area by TIMBAL molecules is higher on average than
the CREDO-DL molecules, but this is due to the bigger size of TIMBAL
molecules. In fact the ratio between buried surface and molecular surface is

the same for both sets.

2.3.2.2.4 Ligand efficiency

Finally, the affinity data for the TIMBAL molecules have been analysed
in terms of the Ligand Efficiency (LE (Hopkins et al. 2004)). The threshold
described by Wells and McClendon (Wells et al. 2007) for the most optimised
small molecules inhibitors of protein-protein interactions with structural data
is 0.24.

TIMBAL holds at the moment 76 affinity data points for all the targets
present in the database. Figure 2.9 shows the spread of Ligand Efficiency per
target. Most of the data points fall in the range of 0.15 - 0.35 LE with an
average LE of 0.27 with a standard deviation of 0.10 for all 76 molecules.
Three targets are above this average, XIAP with 5 molecules averaging 0.40
(range 0.29-0.57), beta-catenin with 4 molecules averaging 0.37 (range 0.18-
0.6) and CD80 with 4 molecules averaging 0.37 (range 0.36-0.38). None of
these three targets were considered in the analysis of Wells and McClendon
(Wells et al. 2007).
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2.3 RESULTS AND DISCUSSION
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Figure 2.9. Range of Ligand Efficiency, LE (X axis) of the TIMBAL molecules
separated by target.

As mentioned previously, only one TIMBAL molecule has reached
phase-I/II clinical trials. Therefore, it is interesting to compare these LE
values with typical ranges of LE in a hit to lead medicinal chemistry campaign
for traditional targets. Table 2.8 shows these ranges. The average LE of 0.27
is reached for these TIMBAL molecules with an average of 30 atoms.
Therefore, TIMBAL molecules are slightly less efficient than typical medicinal

chemistry leads with the same number of atoms (LE range 0.32)
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2.3 RESULTS AND DISCUSSION

Kd(uM) MW N atoms(*) LE
10 200-250 15-19 0.46-0.36
1 250-300 19-23 0.44-0.36
0.1 300-400 23-30 0.43-0.32
0.001 500 38 0.33

Table 2.8. Range of affinities and sizes for a typical medicinal chemistry
campaign from hit to lead. Ligand Efficiency and number of atoms are
calculated following the original paper.

In addition, Figure 2.10 shows the average molecular property values
for TIMBAL molecules binned by LE. By definition of LE the black bars
(average of number of atoms) in Figure 2.10 should decrease for higher LE,
in fact one can see this trend, as well as alogP which correlates with
molecular weight (and therefore with number of atoms). The interesting
result of this plot is that more efficient binders as well as the lesser ones have
virtually the same average of hydrogen bond features. This recalls the
previous result that TIMBAL molecules make fewer hydrogen bond contacts,
but what this plot suggests is that the few hydrogen bonds achieved by the
efficient binders should be kept. Moreover, the hydrogen bond features
remain more or less constant with the increase of molecular size. This
observation is in agreement with those made by Olsson et al. (Olsson et al.
2008) and it will be explored in detail in chapter 4.
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Figure 2.10. Average of the molecular properties for TIMBAL molecules

binned by LE. Blue: Average of the sum of hydrogen bond donors and
acceptors. Red: Average or rotatable bonds. Yellow: Average of alogP.
Black: Average of number of atoms.

The calculated AG from the affinity data in the TIMBAL database has
been plotted against all molecular properties and contact types (16 TIMBAL
molecules with affinity data are also present in CREDO), but no correlation
has been found. Further filtering and classification might be needed to extract
meaningful relationships, like for example compare contacts per surface area

(suggestion from Richard Bickerton, personal communication) rather than
absolute numbers.
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I have described the creation of a database containing small molecule
modulators of protein-protein interactions. The database has been profiled
and compared with other sets of molecules and interactions. TIMBAL
molecules tend to be bigger, more rigid, more lipophilic and less hydrogen
bonding than molecules in the drug and screening sets. This result is
consistent with types of interactions these molecules make; as has been
discussed, TIMBAL molecules present more hydrophobic and aromatic and
less hydrogen bond contacts than the average CREDO-DL and PICCOLO
interfaces. In terms of functional groups, protein-protein modulators seem to
favour nitro groups, carboxylic acids and sulfonamides. LE for these molecules
has been found to be slightly lower than the typical hits and leads from more
traditional targets.

Several analyses have highlighted the ease with which medicinal
chemistry programs can deliver high affinity molecules by increasing the
lipophilicity, see for example (van de Waterbeemd et al. 2001; Leeson et al.
2007; Keserl et al. 2009). However, increasing the hydrophobicity of small
molecules also increases the likelihood of a compound failing in the
development phase (Leeson et al. 2007). This observation seems to be
particularly relevant for protein-protein targets. These molecules are not
classical drug-like molecules, and their profile suggests they may not be
selective binders either. Lesson and Springthorpe (Leeson et al. 2007) have
shown in their analysis of small molecule drugs a positive correlation between
clogP and promiscuity. However, these are the first small molecule
modulators of a class of targets long believed to be undruggable. Drug-like
properties are derived from drugs developed many years ago that hit a
limited set of historical targets. Perhaps druggability as well as selectivity
have to be addressed on a case-by-case basis for this diverse target class,
see for example ABT-263/Bcl2 (Morelli et al. 2011). My conclusion is that we

should continue to collate and connect the available information regarding the
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small molecules and systems they modulate in order to extract any trends
and thereby be in a better position to develop new therapeutic agents for

these emerging targets. This will be the focus of the following chapters.
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Chapter 3
Comparison of CREDO and PICCOLO
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Structural databases are powerful resources to study molecular
interactions. In chapter 2, we have seen an application of these resources,
namely CREDO (protein-ligand interactions (Schreyer et al. 2009)) and
PICCOLO (protein-protein interactions (Bickerton et al. 2011)), which I used
to compare atomic contacts of different sets of molecules. However, atomic
contacts are not defined in the same way in these two databases. Indeed,
one of the results reported in chapter 2 — that protein-protein interfaces have
a more ionic character than those of protein-small molecules - prompted me
to examine in detail the contact definitions and frameworks of the two
databases. Using the definitions in the original databases, 13% on average of
the atomic contacts made at protein-protein interfaces were ionic compared
to 7% of those at the protein-ligand interfaces. If genuine, that was a
remarkable result. Thus, efforts were made to make sure the differences in
contact patterns were really due to differences between the molecules and
not due to database definitions. My objective in this chapter is to examine the
differences of definitions between the structural databases used in this thesis

and to resolve problems where they arise.

CREDO is a comprehensive database of protein-ligand interactions,
storing structural data, sequence annotation and chemical information
(Schreyer et al. 2009). It is the centre of Adrian Schreyer’s PhD thesis
(Schreyer 2010), and it was developed as a resource to support drug

discovery and virtual screening.

CREDO identifies ligands in the Protein Data Bank (PDB) through
information stored in the mmCIF dictionaries (macromolecular
Crystallographic Information Files). Ligands are either single residues in the

non-polymer entities, or short polypeptides up to eight residues long. These
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ligands are used to extract ligand-protein complexes from the PDB. CREDO
does not consider entries with ligands only, nucleic acid ligand complexes,

protein backbone-only structures and entries violating the PDB format.

The interatomic protein-ligand contact data are then derived using

OpenEye’s OEChem toolkit (http://www.eyesopen.com). With this toolkit, all

protein atoms within a radial distance of 6.5A to any ligand atom are found.
Atom types are assigned and hydrogens atoms are added to classify each
atom pair into the following non-exclusive contact types: covalent, van der
Waals, van der Waals clash, hydrogen bond types depending on atom types
and geometries, halogen bond, ionic, metal complex, pi-cation, pi-donor, pi-
carbon, aromatic types depending on the geometries of the aromatic rings
involved, hydrophobic and carbonyl. CREDO was updated weekly in an

automated manner until April 2010.

PICCOLO is a comprehensive database of structurally characterized
protein interactions; storing structural data and sequence annotation
(Bickerton et al. 2011). It is the main focus of Richard Bickerton PhD thesis
(Bickerton 2009), and it was developed as a resource for protein modelling
including protein-protein docking, prediction of the effect of non-synonymous
Single Nucleotide Polymorphisms (nsSNPs) on protein stability and function,
derivation of environment-specific substitution tables and analysis of hot

spots at protein interfaces.

PICCOLO derives data from the mmCIF dictionaries at structure, chain
and residue levels. Structures are handled with the PDB module in BioPython
(Hamelryck et al. 2003) and are “sanitized” into clean PDB flat files to ensure
every protein residue is uniquely identified and inconsistencies are removed.
Only polymer protein standard residues are considered and the three most

common non-standard amino acids are modified into their standard analogue.
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These are selenomethionine (MSE), methyllysine (MLY) and hydroxyproline
(HYP). PICCOLO uses the PISA resource at the EBI (Krissinel et al. 2007) to
generate quaternary assemblies from these clean files. PICCOLO considers
protein-protein interactions as pairwise interactions between chains in the
generated files. Therefore, PICCOLO has two flavours: “PDB” that stores
interactions between chains of the entry in the PDB as they are in the
asymmetric unit, and “Quaternary” that stores interactions between the

chains of the quaternary assemblies generated by PISA transformations.

The interatomic protein-protein contact data are derived in a pairwise
manner between two distinct chains in the same structure. The PDB module
in BioPython is used to find all atoms in one chain that neighbour any atom in
the second chain with a cut-off distance of 6.05A. PICCOLO structures are
composed of only 20 standard amino acids, thus atom types and atomic radii
are tabulated and manually curated. HBPLUS (McDonald et al. 1994) is used
to derive hydrogen bonds and water-mediated hydrogen bonds. The other
contact types assigned in PICCOLO are: covalent, van der Waals, van der
Waals clash, ionic, pi-cation, several aromatic types depending on the
geometries of the aromatic rings involved, hydrophobic, disulphide and
aromatic-sulfur. PICCOLO did not have an update procedure in place and the
exponential growth of the PDB required the group to provide one. I undertook
this responsibility by testing and merging more than 30 scripts (written by
Richard Bickerton to create PICCOLO) into a single procedure that runs
monthly.  Information about this process can be found at:
http://tetra.bioc.cam.ac.uk/mediawiki/index.php/PICCOLO_AliciaNotes
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The fact that CREDO considers polypeptides up to eight residues long
as ligands allows straightforward comparison between both databases.
Structures with these short peptides are the intersection of PICCOLO and
CREDO. The number of contacts (for each common contact type) from each
resource can be plotted against each other. If the databases are identical

these plots will show a straight line of slope one.

Further filtering of these structures is required, as PICCOLO considers
only standard amino acids and CREDO considers only the asymmetric unit
deposited in the PDB. For these reasons, the contacts analysed here are from
the PDB flavour of PICCOLO, and from CREDO only protein-ligand complexes
with standard amino acids are considered. PICCOLO stores the interatomic
interactions from pairwise protein chains; therefore the queries used in
CREDO consider pairwise interactions only. For example, for a ligand
interacting with two different protein chains, the query retrieves the contacts
to compare them with PICCOLO and then sums them by ligand-one-chain-
protein at the time instead of summing all the interactions that the ligand
presents, which is the normal philosophy in CREDO. The subset for the
PICCOLO-CREDO comparison is composed of 962 pairs from 468 distinct PDB

entries, summing more half a million atomic contact pairs.
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3.3 RESULTS AND DISCUSSION

3.3 Results and discussion

Figure 3.1 shows the differences found between the original PICCOLO

and CREDO databases for the subset of structures that were present in both.
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Figure 3.1. Scatter plots of the comparison of PICCOLO and CREDO contacts.
In all nine plots, X-axes are for CREDO contacts and Y-axes for PICCOLO
contacts. Each scatter plot is for one of the common contact types in both
databases, from top left to bottom right: covalent, van der Waals, van der
Waals clash, hydrogen bond, ionic, pi-cation, hydrophobic and proximal.
Proximal is defined as when the two atoms are less than or equal to 6.05A
apart, the maximal distance of a water-mediated hydrogen bond. The red
line in each plot denotes the slope that is given when the two databases
give identical results.
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The scatter plot of proximal contacts for CREDO and PICCOLO in
Figure 3.1 shows that there were minor differences between databases. Two
factors were found to explain these differences. First, CREDO stores distances
with two decimal places whereas PICCOLO stores distances with three
decimal places. Secondly, from the half a million contacts studied in this
comparison, 0.06% of them had different stored distances, i.e. the absolute
difference between them was greater than 0.005. One of the reasons for this
difference is the conformers for certain residues that CREDO retains and
PICCOLO cleans up. In addition, the fact that PICCOLO pre-processes PDB
files and uses BioPython to extract neighbour atoms and distances, whereas
CREDO uses raw PDB files and uses the OEChem toolkit causes minor

differences in recorded distances too.

Although there are discrepancies between databases caused by these
stored distance issues, the proportion of these differences is small and the

differences are comparable to the standard experimental error.

The differences in covalent, van der Waals and van der Waals clash
contacts seen in Figure 3.1 are due to different atomic radii used for each
database. Both databases use the same criteria to define these contact types
(essentially sum of radii). However, CREDO used the radii from the OEChem
implementation, which in turn uses data from the Cambridge Crystallographic
Data Centre (CCDC) for covalent atomic radius and from (Bondi 1964) for van
der Waals radii. PICCOLO used, for both covalent and van der Waals radii, the

set of residue-specific atomic radii from (Tsai et al. 1999).

The resolution of these differences was for CREDO to use the same

residue-specific atomic radius as PICCOLO for the protein atoms. Therefore,
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3.3 RESULTS AND DISCUSSION

extra tables with hybridisation labels and PICCOLO radii for each atom type in
the 20 standard amino acids were generated to allow CREDO to use the same

van der Waals radii for protein atoms.

3.3.3 lonic, pi-cation, hydrophobic and aromatic contacts

For ionic, pi-cation, hydrophobic and aromatic contact types, both
databases initially used the same SMARTs queries to label atoms as positive
ionisable, negative ionisable, aromatic and hydrophobe. Continuous and
independent development of the resources led to divergence in the initial
queries and certain atoms were labelled differently. A detailed assessment of
the atom labels for the 20 standard residues in both databases was
performed, and atom types were modified to be identical in both CREDO and
PICCOLO. In addition, the distance cut-off criterion for each contact type was

different in each database. Therefore, a consensus for these distances was

also reached. Table 3.1 describes details of these contact criteria.

PICCOLO CREDO Consensus References

Tonic d(pi-ni) d(pi-ni) d(pi-ni)  (Barlow et al
<=6A4 <=4R4 <=4R 1989

(Marcou et al
2007)

Pi-cation d(pi-ar) d(pi-ce) d(pi-ce)  (Gallivan et al.
<=6A <=4A <=5k 1999

arcsin >= 30

Hydrophobic d(hyd-hyd) d(hyd-hyd) d(hyd-hyd) (Tina et al. 2007)

<=5A <= 458 <= 458 (Marcou et al.
2007)

Aromatic d(ar-ar) d(ar-ar) d(ar-ar)  (Chakrabarti et al.
<= 6A <= 4R <=5R8  2007)

(Marcou et al
2007)

Table 3.1. Details of the criteria for the different contact types. Distances
are between atom types: pi (positive ionisable), ni (negative ionisable), ar
(aromatic), ce (centroid of aromatic ring), hyd (hydrophobe).
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The differences in distances indicate that contact definitions are not
canonically established. These definitions depend of the context in which they
are applied. For instance, the original CREDO criteria were tighter than those
used in PICCOLO. This can be understood in terms of the accuracy and
disorder level of the side chains of a small molecule-binding site in
comparison with the side chains at protein-protein interfaces. In addition,
resolutions of the crystal structures deposited in the PDB differ. Therefore,
the exact numerical distance used is less important than the consistency

across comparisons.

The differences in the hydrogen bond contacts were due to different
algorithms used to calculate these contact types. CREDO uses OEChem to add
hydrogens to the structures and SMARTs (SMiles ARbitrary Target
Specification, www.daylight.com/dayhtml/doc/theory/theory.smarts.html)
queries, to label heavy atoms as donors or acceptors. A contact is then
labelled as a hydrogen bond if it meets the distance and angle criteria
described in Table 3.2. PICCOLO uses an external program HBPLUS
(McDonald et al. 1994) to assign hydrogen bonds. This program adds
hydrogen to the structures, assigns donor, acceptor, donor antecedent and
acceptor antecedent labels to heavy atoms, and calculates hydrogen bond
contacts with the geometry criteria described in Figure 3.2 and Table 3.2. In
addition, for structures with resolution greater than 1.0&, hybridisation and
atom type of the atoms in the side chains of asparagine, glutamine and

histidine are also assigned to optimise hydrogen bonds for these residues.
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3.3 RESULTS AND DISCUSSION

DD —D ik

\
DD

Figure 3.2. Geometric criteria for hydrogen bonds used in HBPLUS, adapted
from figure 1 in (McDonald et al. 1994). D is the donor heavy atom. H is
hydrogen, A is the acceptor heavy atom. DD is donor antecedent (an atom
two covalent bonds away from the hydrogen). AA is acceptor antecedent. All
three angles highlighted in the figure are required to be greater than or
equal to 90 degrees to meet the hydrogen bond criterion.

PICCOLO CREDO Consensus
Atom types D, DD, Aand AA  Donor and Not possible
from HBPLUS, acceptor from
see Fig 3.2 SMARTS queries
Distance d(D-A) <=3.94 d(D-A) <=3.68 d(D-A) <= 3.9
d(H-A) <= 2.5
Angle a(D-H-A) >=90 a(DHA) >= 120 a(DHA) >= 90

a(H-A-AA) >= 90
a(D-A-AA) >= 90

Table 3.2. Details of the original hydrogen bond calculation in PICCOLO and
CREDO databases and the consensus achieved.

The initial discrepancy in geometrical criteria used in the two databases
was resolved. Both databases currently use the same distance and angle
criteria for hydrogen bonds. However, after these modifications, the
differences remained and the CREDO hydrogen bond count was greater than
the PICCOLO hydrogen bond count for the subset studied, as described below.
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Unfortunately deriving hydrogen bond contacts from PDB files is not a
trivial task. On the one hand, most structures deposited in the PDB do not
have hydrogens, therefore algorithms to add them need to be in place taking
into account the likely uncertainties in the structural models. For example, the
tautomeric form of histidine and the true positions of the O and N atoms in
the amide groups of asparagine and glutamine will all depend on their
environments. In the case of proteins where there is a finite set of building
blocks, this challenge can be addressed with a high percentage of success
using algorithms like HBPLUS. However, this is not easily solved for small
molecules where the diversity and lack of connectivity information for them in

the PDB files means that a pragmatic approach must be taken.

In PICCOLO, computation of hydrogen bonds between proteins is
achieved using the aforementioned HBPLUS program, which gives high
specificity (low rate of false positives). In CREDO, the addition of hydrogens
and donor-acceptor labelling uses the OEChem toolkit. Due to the difficulty of
estimating pKa and tautomerism for small molecules in protein environments,
the calculation of hydrogen bonds is somewhat more generous and less
specific than that for the protein complexes. In practical terms, comparison

across databases is not possible for these types of contacts.

Although consensus has been achieved between CREDO and PICCOLO,
the issues identified with respect to computation of hydrogen bonds
prevented full compatibility between the two databases. At this point, three
options seemed feasible. First, use the OEChem toolkit in PICCOLO to derive
hydrogen bond contacts. However, this option would be somewhat
detrimental to PICCOLO and would inevitably lead to its regeneration and the
maintenance of two parallel versions. In addition, the performance of the
hydrogen-bond calculations for protein-ligand complexes compared to

protein-protein complexes is unknown and should be investigated before
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interpreting any results. The second option was to develop a hydrogen bond
calculator that was not biased by molecule type. The third was to define
simple contact definitions that were software and molecule-type independent.
The pragmatic option chosen was the last due to the time that remained for
me to complete the project. The first two options could easily be stand-alone

projects.

Therefore, new tables with simple contacts were generated from the
existing CREDO and PICCOLO tables. These contacts are simple distance cut-
offs between atom pairs, labelled as polar or apolar depending on which atom
types constitute the pair. The distance criterion used for all pairs is 4.58. The
selection of this distance is somewhat arbitrary. As mentioned earlier,
resolutions of the experimental structures analysed are not homogeneous,
therefore it is best to keep this cut-off consistent and simple across
comparisons (both for sets of molecules analysed and atomic types). 4.5A
was favoured as a compromise between the distances used to define
hydrophobic (4.5R) and ionic (4.0R) contacts in the different databases. Using

this distance, then, the polar and apolar contacts were defined as follows:

Protein-protein complexes

Apolar contacts: C...C, C...S, S...S (not in Cys-Cys bridges)

Polar contacts: N...O, O...0, N...N, O...S, N...S (S from Cys)

Protein-small molecules complexes

Apolar contacts: C...C, C...S, C..X, S. X (X =Cl, Br, I)

Polar contacts: N...O, O...0, N...N, O...S, N...S, N...F, O...F, S...F (S from Cys)

Figure 3.3 shows that, as expected, these simple contacts are less
specific and introduce false positives. In fact, the majority of the points are
above the green line of slope = 1, i.e. there is a greater number of simple
contacts (y axis) than specific contacts (x axis). Nevertheless, there is a
strong correlation (r value > 0.9, (Townend 2002)) between specific and

simple apolar contacts, and that dominates the global correlation for the sum
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3.3 RESULTS AND DISCUSSION

of contacts. However, there is a poor correlation between specific and simple
polar contacts. This can be explained by two opposing effects. Firstly, simple
polar contacts do not have the geometric and atom type constraints that
hydrogen bonds must meet, nor the charge complementarity that is required
of ionic contacts. Secondly, polar specific contacts such as pi-cation will not

be considered in the simple polar definition.
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Figure 3.3. Scatter plots of specific contacts versus simple contacts for each
database and type for the subset common to both databases. Simple polar
and apolar contacts are distance cut-offs between polar-polar and apolar-
apolar atom type as described in the text. Specific contacts refer to the
contacts defined in CREDO and PICCOLO. Hydrogen bond, pi-cation and
ionic are considered as polar contacts and hydrophobic is considered as
apolar. The green line has a slope = 1 to aid visualisation. See Table 3.3 for
details of the linear correlation.
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3.3 RESULTS AND DISCUSSION

Database Contact type r value P value
PICCOLO Sum of contacts 0.90 0.00
Polar 0.65 0.00
Apolar 0.90 0.00
CREDO Sum of contacts 0.91 0.00
Polar 0.72 0.00
apolar 0.90 0.00
Table 3.3. r and P values from linear correlation calculations between

specific and simple contacts. The P value has been rounded to zero when P
< 1E-100.

Although much less specific, these simple contact types can unravel
patterns in molecular recognition. The number of contacts at the binding
interface is analogous to the burial of surface area upon binding. Indeed,
Figure 3.4 shows strong correlation between the number of contacts and the
buried surface area. This correlation is maintained through polar, apolar and
sum of contacts with r values of 0.95, 0.90 and 0.94 respectively. All three

correlations are significant with P values < 1E-100.
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PICCOLO and CREDO were created with different research questions in
mind. They were designed to deal with different types of molecules and
therefore used different software to parse them. In addition, they are the
product of PhD projects addressing specific needs to resolve these different
questions. As a result, a database consolidation step was needed before
performing any analysis that involved cross comparison of data from the

different resources.

Detailed analyses of the database generation process and the contact
definitions led us to reach a consensus in order to unify PICCOLO and CREDO.
However, there were issues that could not be resolved. PICCOLO does not
consider non-standard amino acids, and contacts involving them are simply
not recorded. This in turn allows PICCOLO to use more accurate calculations
of hydrogen bonds because it deals only with a finite number of atom types.
In contrast, CREDO covers all residue types occurring in small molecule
ligands and therefore cannot calculate hydrogen bonds with the same level of
accuracy. On the other hand, PICCOLO stores inter-chain interactions,
including assemblies predicted to be biologically relevant, whereas CREDO
only considers interactions between proteins and ligands from the deposited
asymmetric unit in the PDB. Inter-ligand interactions are not contemplated in
CREDO. Furthermore, neither database registers interactions with nucleic

acids or carbohydrates.

The results of this analysis and the feedback generated using both
databases has helped Adrian Schreyer, now a post-doc in the group, to define
a “new CREDO” database that negotiates these issues. The new database
includes quaternary assemblies and considers interactions between all
different entities in the PDB: proteins, polypeptides, nucleic acids,
carbohydrates and other chemical entities. The database also stores

interactions between the same types of entity; in this way it encloses under
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one umbrella, protein-protein, protein-nucleic acids, ligand-ligand and so forth.
It also stores intra-chain interactions for all atoms within a 5A threshold
distance, excluding atoms in close contact where the length of the shortest
covalent bond path between them is less than three. The contact definitions
are identical regardless of the type of molecules analysed. Hydrogen bonds
are computed with the OEChem toolkit. This new database will be released in
the first quarter of 2012. In addition, PICCOLO is maintained to keep the
higher level of specificity only possible for the subset of protein-protein

interactions.

Before this new resource is available, simple contact definitions have
been generated. Although, these contacts are less specific, they allow cross
comparisons between databases and resemble the measurement of buried
surface area used in other studies, providing a coarse description of the

interfaces. These contacts are the ones used in the remainder of this thesis.
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In chapter 2 we have seen how the first small molecule inhibitors of
protein-protein interactions are large, lipophilic and with few polar features.
As I have discussed in the introduction of this thesis, lipophilic molecules are
bad news for drug discovery, as they have to overcome more hurdles to
become safe drugs. This in turn not only increases the cost of development
but also the probability of failure as drug candidates. It seems natural to ask
if this size and lipophilicity is a requirement that small molecules need to fill in
order to bind to protein interfaces. The aim of this chapter is to understand
how nature effects interactions in order to migrate this knowledge to the
design of small molecule modulators of biological targets. However, molecular
recognition laws are far from simple and unravelling their complexity is not
achievable from representative frozen structures only (van Regenmortel
1999). Reality is closer to dynamic molecular ensembles living in crowded
cellular environments, where solvent and local concentrations have a role that
is difficult to model. In addition, multi-protein complexes present a huge
diversity of protein-protein interfaces in terms of function, lifetime, size,
shape, affinity, plasticity and specificity, making it almost impossible to
establish common rules for all protein-protein complexes in order to translate
them into the design of small molecules. However, one can elucidate general
trends of molecular recognition in terms of atomic interactions from the
experimentally determined structures of natural protein complexes (not only
multi-protein complexes but also endogenous small-molecule protein
complexes) and compare them with trends from drug-like small molecule
protein complexes. In this way, we can guide the design of synthetic

molecules to resemble better their natural counterparts.

I generated modified versions of our in-house databases derived from
the PDB (Berman et al. 2000), PICCOLO (Bickerton et al. 2011) and CREDO
(Schreyer et al. 2009) in order to analyse, in atomic detail, the patterns of

interactions between the different classes of molecules. With the caveat that
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data are from static structures instead of the dynamic ensembles, I looked
into the interaction profiles that characterise different complexes namely:
protein-protein, protein-natural molecules, protein-small peptides and protein-
synthetic small molecules. Keeping in mind that current drug candidates and
hits for protein-protein interactions are somewhat too lipophilic to succeed, it
is appropriate to define these interaction profiles in terms of polar and apolar
contacts, with the aim of migrating natural patterns into the design of new
therapeutics.
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All subsets of protein coordinates were extracted from two of the in-
house structural databases derived from the PDB: CREDO (protein-ligand
interactions) and PICCOLO (protein-protein interactions). The PDB holds
almost 75,000 (August 2011) experimentally determined structures of
proteins, nucleic acids and complex assemblies. This wealth of data allows
researchers to investigate the various aspects of molecular folding and
recognition. However, it also brings the challenges of removing redundancy to
avoid bias and data curation to minimise the noise. The size of the data held
requires automated treatment for clustering and data-cleaning procedures.
The approach applied here has been to minimise the amount of noise in order
to have cleaner sets of molecules, even when this implies reducing the

number of structures analysed.

Small molecules and small peptides were identified using the CREDO
database, protein-protein interfaces were extracted from the PICCOLO
database. These resources are powerful tools, but they also have limitations
that have to be taken into account when comparing structures across and

within databases.

For instance, neither CREDO nor PICCOLO considers interactions with
nucleic acids. Therefore atomic contacts that ligands or proteins engage with
nucleic acids are not recorded. A good example of these cases is 1HNX, 30S
ribosomal subunit in complex with Pactamycin (Figure 4.1) (Brodersen et al.
2000). This structure has 22 chains, two of which are polyribonucleotide. The
ligand Pactamycin (PCY, 40 heavy atoms) is interacting mainly with the

ribosomal RNA (chain A) and a fragment of messenger RNA (chain X),
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4.2 METHODS

however it is also proximal to protein S7 (chain G) engaging in a single

hydrogen bond interaction with it. In the same fashion, protein S7 is

interacting with RNA but it is also proximal to protein S11 (chain K). In this
case, both CREDO and PICCOLO under estimate the atomic contacts for these

entities.

Figure 4.1. Structure 1HNX (30S ribosomal subunit in complex with
Pactamycin). Small molecule ligand (PCY) represented by red spheres.
Ribosomal RNA in cyan cartoon, fragment of messenger RNA in orange
cartoon. Protein S7 in blue cartoon with surface and Protein S11 in magenta
cartoon with surface.

The filter applied to avoid these cases was to remove structures that
contain nucleic acids interacting with proteins, using BIPA database
(containing 2380 structures from PDB, June 2010).

The same situation can be observed when there is a saturation of
ligands in the protein crystal or solution. Proximal ligands can interact
between themselves making atomic interactions that are not recorded in the

database. For example, 1F6A, Fc fragment of human IgE bound to its
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4.2 METHODS

receptor (Figure 4.2) (Garman et al. 2000), where five ligands sit between

two protein chains.

Figure 4.2. Binding interface between human immunoglobulin epsilon chain
C (IgE-FC in cyan) and its high affinity immunoglobulin epsilon receptor
alpha subunit (magenta) from PDB entry 1F6A. At this interface, electron
density is also observed for five molecules of the CHAPS detergent (only
steroid heads resolved, in stick representation with different colour for each
CHAPS molecule).

The filter applied was to remove ligands that share one or more
residues in the binding site. In CREDO, residues in the binding site are those
that are within 6.5A of the ligand. To avoid removal of structures with ligands
in remote sites not interacting with each other, only residues that are at 4.5

around the ligand are considered as binding site residues.
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4.2 METHODS

This filter also removed ligands that interact with metal in catalytic
sites. The CREDO database considers these metals as independent ligands,
therefore metal interactions with organic ligands are not recorded. An
example of these cases is depicted in Figure 4.3, where the ligand
brinzolamide binds to the human carbonic anhydrase II through the catalytic
Zinc coordinated with 3 histidines (Stams et al. 1998).

N S

Figure 4.3. Structure 1A42, human carbonic anhydrase II complexed with
brinzolamide. Zinc atom is represented by a black sphere, protein atoms by
pale pink lines and brinzolamide ligand by magenta sticks.

4.2.1.2 Crystallographic interactions

By definition, PDB shows interactions only within the asymmetric unit,
defined by the crystallographer, and not those between them in the crystal
lattice, and therefore these possible interactions are not stored in CREDO.
Unless one simulates the crystal lattice and recomputes the interactions, there
is no trivial filter that can be applied to flag these cases. However, it is

relatively easy to avoid structures where the ligands or proteins seem to be
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4.2 METHODS

floating in the solvent for this or other reasons. The filter applied to remove
these situations involving small molecules (example 1T6], phenylalanine
ammonia-lyase (Calabrese et al. 2004), Figure 4.4 left) is to keep only those
structures that have at least twice as many contacts as the number of ligand
atoms. For structures that have more than one ligand bound to independent
sites, the ligand with more contacts is kept (example 1T9U, Acriflavine

resistance protein B (Yu et al. 2005), Figure 4.4 right).

Figure 4.4. Left: Structure 1T6J, phenylalanine ammonia-lyase with
carboxycinnamic acid (magenta spheres). Right: Acriflavine resistance
protein B with Ciprofloxacin. This molecule (stick representation) binds into
two independent sites, the interaction with more atomic contacts is kept for
the analysis.

In the case of protein complexes, the asymmetric unit may or may not
be the same as the biological assembly (quaternary structure). The protein-
protein interfaces studied here are from the predicted quaternary assemblies
using the PISA resource from the EBI (Krissinel et al. 2007). Moreover, the
database stores interactions between pairs of chains of these assemblies. For
example, in a trimer with chains A, B and C, PICCOLO stores the contacts
between AB, AC and BC. For this reason, in the set of categorised complexes
(Obligate and Transient, see 4.2.3.6) only structures that are true dimers are
kept. An example of a transient complex not considered in the analysis is
structure 1IS8, composed by 15 protein chains that are the complex of GTP-
cyclohydrolase I (GTPCHI) with its feedback regulatory protein (GFRP) (Maita

et al. 2002). The transient interaction is between the GTPCHI decamer and
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the two GFRP pentamers; thus the transient interface is between different
chains in the PDB.

Before selecting complexes for the small molecule sets, entries with
certain type of ligands were omitted. These included complexes with ligands
that:

- Have covalent or metal bonds with proteins
- Are recognised solvents (initial set from (Hartshorn et al. 2007) and
manually extended by Adrian Schreyer in CREDQO) or have less than

10 atoms

- Belong to structures containing nucleic acids
- Are small molecule inhibitors of protein-protein interactions (from

TIMBAL)

- Have alternate locations for the ligands or residues in the interface

- Resolution of the crystal structures is lower than 3.58

For proteins I have used the UniProt identifier (The UniProt 2011), for
SCOP domains the SCOP family identifier (Murzin et al. 1995) and for small
molecules the HET identifier (hetID, from the PDB
[http://www.wwpdb.org/documentation/format23/sect4.html]). HetID is a
three letter code used in the HETATM entries to group heteroatoms in
residue-like level. These entries are also known as Het Groups or Chemical
Components. Ligands can also be composed of more than one hetID, as in
the case of small polymeric peptides. For these ligands, the list of

concatenated hetlIDs is used as an identifier.

For protein-protein interfaces, the non-redundant set in PICCOLO

(Bickerton 2009; Bickerton et al. 2011) was used. Pairwise interfaces were
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clustered based on unique UniProt pair identifiers with more than 75% of
identical residue interacting pairs. This clustering sampled complexes with the

same constituent proteins but different binding modes.

For small molecules I recorded the number of interacting chains and
kept entries with distinct ligand names (as hetID or list of hetIDs), UniProt
identifiers and numbers of interacting chains. When more than one entry had
the same three identifiers, the one with highest quality score was kept. This
Qscore was implemented in PICCOLO, for the whole PDB, by Richard

Bickerton.

Qscore = ( + (0.1 - Rfacw,,)> x(1 — PMR)

resolution
where PMR means proportion of missing residues. Note that this score
prioritises X-ray structures. Assessment of the redundancy of small molecules
has been done by unique hetID or list of hetIDs, redundancy at protein level
by unique UniProt identifier and redundancy of SCOP domains by SCOP family

identifier.

As discussed in chapter 3, software to calculate hydrogen bonds for all
types of molecules (proteins, nucleic acids and small molecules), with the
same level of specificity, is not available at the moment. For this reason,
simple polar and apolar contacts were defined. See 3.3.5 for details. In brief,
distance criterion used for all pairs is 4.58, depending on the atom type of the
pair, they are labelled as follows:

Protein-protein complexes

Apolar contacts: C...C, C...S, S...S (not in Cys-Cys bridges)

Polar contacts: N...O, O...0, N...N, O...S, N...S (S from Cys)

Protein-small molecules complexes

Apolar contacts: C...C, C...S, C..X, S. X (X =Cl, Br, I)

Polar contacts: N...O, O...0, N...N, O...S, N...S, N...F, O...F, S...F (S from Cys)
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Small molecules inhibiting protein complexes were identified using
TIMBAL. The subset analysed here is composed of the TIMBAL molecules
present in CREDO. As this subset is small, it was possible to curate manually

the entries in order to have a clean set.

Natural small molecules were identified with KEGG (Kanehisa et al.
2010), HMDB (Wishart et al. 2009), ChEMBL (Gaulton et al. 2011), MGEXx
(pure natural products from AnalytiCon Discovery, http://www.ac-
discovery.com) databases implemented in CREDO. This set contains
molecules that are flagged as substrate, product or cofactor from KEGG and
ligands that are labelled as endogenous from the HMDB. Also, natural
products from MGEx and molecules classified as such in ChEMBL. For the
ChEMBL natural products, the Openeye OEChem toolkit
(http://www.eyesopen.com/oechem-tk) was used to find ligands in CREDO
that were at least 90% similar to them. There was no overlap with the small
molecules from the previous set. Filters and redundancy removal (described
in section 4.2.1) were used to produce a non-redundant set of small natural
molecules interacting with proteins. Further manual classification was
performed with these molecules based in their chemical structure and
annotated function, so they were labelled as antibiotics, lipids, natural-

product-like, nucleotides, peptide-like, steroids and sugars.

CREDO includes small peptide ligands up to eight residues long,
containing both standard and non-standard amino acids. The criterion to

belong to this set was that at least half of the chemical components (i.e. a
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HET group or residue) are standard amino acids. Small molecules from the
previous set were removed to avoid overlap between sets. The same filters

and redundancy removal were applied here.

Small molecules in the PDB have been extracted from CREDO, applying
the same procedure as in chapter 2 (section 2.2.2.1) to select drug-like
ligands and to filter out small molecules belonging to the previous sets to
avoid overlap. The same filters and redundancy removal was applied here as

for previous sets.

Approved drugs characterised in the PDB were retrieved from the
implementation of DrugBank (Knox et al. 2011) in CREDO. ChEMBL (Gaulton
et al. 2011) resource was queried to retrieve oral drugs and Scitegic Pipeline
Pilot (http://accelrys.com/products/pipeline-pilot/) software was used to find
the subset of these that are present in CREDO. The same filters and
redundancy treatment were applied as before. This set is the only one
allowed to overlap with the other ones. In this way, it was possible to identify
approved drugs, for instance those that come from natural sources or are
peptide like. Further manual classification was performed with these
molecules based on their chemical structure and annotated function, so they
were labelled as antibiotics, lipids, natural-product-like, nucleotides, peptide-
like, steroids, sugars or nota (none of the above, which captures more

classical drug-like synthetic molecules).

These sets were extracted from PICCOLO. Data were taken from two
published sets (Zhu et al. 2006) and (Mintseris et al. 2005). Protein

redundancy was removed using UniProt identifiers for the protein pairs,
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keeping the structures with the highest Qscore. As discussed previously, only
true dimeric entries were kept for these sets. Crystal structures with

resolution higher than 3.5A have also been removed.

As discussed in 4.2.1.5 the non-redundant set of protein interfaces has
been extracted from PICCOLO as described in G.R. Bickerton PhD Thesis
(Bickerton 2009). In summary, pairwise interfaces with proteins constituted
by less than 15 amino acid residues are not considered. Also, interfaces in
which the product of the number of interacting residues in each chain is less
than 25 are also removed. The remaining pairwise interfaces are clustered
together where they have the same pair UniProt identifier and more than
75% of the interface residues are identical. From each cluster the pair with
the highest Qscore (see 4.2.1.5) is chosen as representative for that cluster.
Pairwise interacting interfaces have been divided into homo and hetero
according to whether the proteins in the pair are the same or different
respectively. Crystal structures with resolution higher than 3.5A have also

been removed.

It has been shown by Olsson et al (Olsson et al. 2008) that molecular
recognition as a binding event can be studied in terms of polar and apolar
interactions due to the aqueous environment where biological interactions
occur. The authors show correlation between binding A G and burial of apolar
surface in the complex formed, due to the more constant contribution of the
polar interactions. The authors display this observation in a scatter plot
presenting the polar and apolar buried area versus the total buried area upon
binding. We call this representation "Scissors plot" (Figure 4.5). I found these

graphs useful in detecting different interaction patterns between different
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4.2 METHODS

types of molecules. Domination of apolar contacts present a “scissors open”
pattern, whereas an increase of polar interactions “closes” the scissors. In
addition, the way they are constructed imposes interesting trigonometric

proprieties that are used to compare different graphs.

SM inhibitors of PPI

— apolar:y= 0.929 *sum + -2.571 | |
— polar: y= 0.071 * sum + 2.571, R = 0.44
150 |-
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® 100 |---- §
= :
(o} .
v 5
50 |-
p
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: —— :
0 : : : :
| |
0 50 100 150 200
sumContacts

Figure 4.5. Example of a scissor plot. X axis represents sum of contacts (as
polar + apolar). Y axis represents the contacts, apolar in blue and polar in
red. See text for discussion about these graphs.

Each ligand (or interface) represented in these plots will have two
points (x,y)? for apolar contacts (blue in Figure 4.5) and (x,y)" for polar
contacts (red in Figure 4.5). As the sum of contacts is defined as apolar plus
polar, for each ligand the pair of points will have the same X = Xa = Xp (= Ya
+ Yp). This confers certain properties to these graphs. First, all points will be
under the line y = x (green diagonal in Figure 4.5). Secondly, if we applied
linear regression to each contact type the sum of the slopes will be equal to 1
and the intercepts at the origin will have the same absolute value with
opposite signs. This is an important characteristic, as we can compare only

one of these regression lines across different sets of molecules. In other
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words, in these plots one regression line determines the other. Demonstration

of these properties is as follows:

Slopes
Ay* b
m =2 m, = Ay
A AP
{xl_xl =X and {x|=y1a+y|a
X, =X =Xy Xy =N *+)
Therefore :

Cvd A P P
Xp=X, =Y, =Y+, =)

Sum the slopes :

ma+mp=Aya+AyP U TD LN b VI C b VI el (R

a P
Ax* Ax" x,-x,  x,-Xx X, — X,
Linearregressionlines :
y,=mx+b,
b where 'y, =x-y, and m,=1-m,
y,=m,x+b,

xX-y,=mx+b,
= x-mx-b,=mx+b,

Y, =mpx+bp

So,
x(1-m,)=b,=(1-m,)x+b,
-b,=b,

Scissors plots for different sets of molecules can be compared in terms
of comparison for only one of the regression lines. I choose to compare the
apolar contacts versus the sum of contacts across sets due to the consistent
superior r value in all the sets analysed. I follow the method described by
Townend (Townend 2002) and the OLS (Ordinary Least Squares) module in
Python. However the residuals of these regression lines present
heteroscedasticity, i.e. the residuals versus the independent variable are not
homogeneously distributed (Figure 4.6). In the case of the scissors plots, the
residuals are fan shaped and so errors increase with the independent variable.
When heteroscedasticity is pronounced, the chances of Type I error (rejecting

true null hypothesis) increases (Osborne et al. 2002). For this reason I have
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backed up these comparisons with histograms distributing the ratio of polar

versus sum of contacts (polar + apolar).

Residuals for apolar(DL)
40 T T T T T

Residuals

—-30 | -

_4950 0 50 100 150 200 250

sumContacts

Figure 4.6. Heteroscedasticity. Fan shape of the residuals for the apolar
regression line of the drug-like (DL) set.

4.2.4.3 Distribution polar versus sum of contacts

Another way to compare the interaction characteristics in the different
sets of molecules is to compare the distribution (with normalised smoothed
histogram charts) of the ratio of polar contacts with the apolar contacts. This
ratio is described by the number of polar contacts divided by the total number
of contacts, as suggested by Dr Will Pitt. In this way, the ratio gives
normalised proportion of the polar and apolar contacts. For example a ratio of
0.4 means 40% of the contacts are polar and 60% apolar. As some of these
histograms are not normal distributions, non-parametric tests are used for
comparison. The Kolmogorov-Smirnov test was used for this purpose and the
Kruskal-Wallis test for comparison of medians. I used the stats Python module
(Jones et al. 2001 - ).
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4.2.4.4 Bar charts of the polar/sumContacts ratio binned by sum of
contacts

These graphs show the mean and standard errors of the polar versus
sum of contacts ratio binned by sum of contacts. For clarity, only contacts up
to 300 are shown, as that is the maximum number of contacts for small

molecules. Sum of contacts is polar + apolar contacts.

4.2.4.5 Contour plots
Dr Will Pitt has developed these charts. They show a scatter plot of

ratio of polar contacts by sum of contacts versus the sum of contacts in the X
axis; superimposed with the population of each grid square (10 x 0.1) in the
scatter plots. This population is represented by a heat map (red to blue), with
contour lines in a similar fashion to the contour lines of a topographic map

showing elevation.

4.2.4.6 Molecular properties

The number of rotatable bonds and the number of heteroatoms for the
small molecule subsets were calculated with Scitegic Pipeline Pilot

(http://accelrys.com/products/pipeline-pilot/).

4.2.4.7 Bar charts of matched and unmatched atoms

For each subset, the polar and apolar atoms within 4.58 of the
interacting parts, i.e. small molecule-protein or protein-protein, are
considered. Then, I record how many of these atoms are engaged in polar
and apolar interactions, respectively. These graphs represent first, the mean
and standard error of the percentage of matched atoms (within 4.5A radius,
polar atoms doing polar interactions in red and apolar atoms doing apolar
interactions in blue) for both binding partners. Secondly, they represent the

mean and standard error of the percentage of unmatched atoms (within 4.5

145



radius, polar atoms not making polar contacts in red and apolar atoms not

making apolar contacts in blue) for both binding partners.

For the small molecule sets, PyMOL (http://www.pymol.org/) has been
used to calculate the surface area of the unbound protein, unbound ligand
and the complex protein-ligand. In this way, the buried surface area was
calculated as follows (sa stands for surface area, psa polar surface area and
asa apolar surface area):

Buried_sa = (protein_sa + ligand_sa — complex_sa ) / 2

Buried_psa = (protein_psa + ligand_psa — complex_psa ) / 2

Buried_asa = (protein_asa + ligand_asa — complex_asa ) / 2
Polar surface area for the ligand is calculated from atoms N,O and F. In the
protein side, polar surface area is calculated considering N and O atoms and S
from cysteine not involved in disulphide bonds. Apolar surface area for the
ligand is from atoms C, S, Cl, Br and I. In the protein side, apolar surface

area is from C and S from methionine.

This refers to a theoretical model than Mike Hann and co-workers
developed at GlaxoSmithKline in 2001 (Hann et al. 2001). I summarise it here

for its relevance to the results of this chapter.

Although High Throughput Screening (HTS) was widely popular in the
90's, the in-house collections of pharmaceutical companies have often proved
insufficient and too costly for the identification of initial hits for lead-
development programs. In a seminal paper Hann and colleagues (Hann et al.
2001) showed how molecular complexity works against the chances of finding

a hit in a biological assay. This analysis is widely considered to provide the
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theoretical background that identifies the limitations of HTS and supports a

fragment-based approach.

The authors elaborated a simple model to describe the binding event
as a match of all ligand features with the features of the surface of the
receptor. Ligand and receptor features are conceptually reduced to +/-
localized recognition points where a + ligand needs to match a — in the
receptor. In this way one can calculate the probability of a binding event for a
randomly chosen ligand of a particular size (accounted as number of features)
within a given active site described by a finite number of points or features.
This probability is computed by enumeration of all possible configurations of
ligand and active site and considering the binding event as a complete match
of all the ligand recognition points with those of the receptor. For a given
active site, this probability can be plotted against the number of ligand
features (as a measure of complexity). Although this model is simple and
takes into account neither the molecular flexibility that may lead to structural
reorganisation upon binding, nor the uneven distribution of binding energy at
the receptor interface, it clearly shows how the chances of finding a matching

molecule decrease as the complexity of the molecule increases.

Having very simple molecules reduces the likelihood of actually
achieving measurable binding events. In addition, low complexity ligands can
have multiple binding modes. Although a small number of features are easier
to match in the active site, they might not give sufficient affinity for binding to
be experimentally detected in a biological assay. Therefore, there is an
“optimal” complexity that balances the chances of having a perfect fit
between ligand and receptor, and enough interactions to reach a detectable

binding.

However, complexity is a relative concept rather than a calculable
property. Although one can estimate complexity in many different ways (e.g.

molecular weight, fingerprints), the precise values that would optimise the
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chances of having a binding ligand and the ability of measuring it, would

depend on the system being studied and the assays employed.
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I extracted from CREDO database non-redundant sets of protein-ligand
complexes classified by the type of small molecule involved: drug-like,
approved non-oral and oral drugs, protein-protein interactions inhibitors,
natural small molecules and small peptides. For each group, bias was
assessed in terms of distinct proteins (by unique UniProt), distinct fold (by
unique SCOP family) and distinct small molecules (by unique hetID). These
more restricted sets (unique by UniProt, SCOP families or small molecules)
presented the same trends as the non-redundant groups. Therefore the
statistical analysis has been carried out with the bigger non-redundant-by-
complex set of interactions. Affinity data from the PDBBind (Wang et al.
2004) implementation in CREDO was included in these sets when available.
From PICCOLO database I extracted non-redundant sets of protein complexes
as obligate dimers, transient dimers, homo and hetero pairwise interfaces
from quaternary assemblies, as shown in Table 4.1, which summarises the
number of entries of each set. PDB codes for each subset are available to
download at:

http://www-cryst.bioc.cam.ac.uk/members/alicia
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4.3 RESULTS

Set s 277 Unique UniProt Umqug .SCOP

Complex families
Drug-like 1,525 (1,206) 518 (385) 165 (143)
Approved drugs 201 (95) 155 (76) 67 (46)
Oral drugs 134 (68) 93 (49) 24 (19)
Protein-protein
interaction 30 (25) 9 (9) 7 (7)
inhibitors
Natural

1505 (283) 1159 (216) 346 (134)
molecules
Small peptides 557 (467) 288 (238) 98 (83)
Obligate
) 161 161 293
dimers
Transient
154 154 183

dimers
Homo
quaternary 12,034 7,177 2,711
interfaces
Hetero
quaternary 2,271 1,709 897
interfaces
Protein-protein
complexes SM 15 15 13

inhibited

Table 4.1. Number of entries in each set of molecules. The non-redundant
sets are considering non-redundant set of interactions for the complexes
(protein-ligand or protein-protein interaction). From these sets I removed
protein redundancy by selecting unique UniProt identifiers and removed
structural domains redundancy by selecting unique SCOP families. Numbers
in parenthesis are the number of unique small molecules in each set.
Numbers for unique UniProt and SCOP families for protein complexes refer
to distinct pairs of UniProt identifiers or SCOP family respectively. See
Methods for details.
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The generation of these molecular subsets, mainly for the small
molecules, has been an iterative trial-and-error exercise. As discussed in the
general considerations and filtering (4.2.1 section of this chapter), the vast
amounts of data available compel researchers to use automated filters and
selection protocols, which are not perfect. For example, ligands covalently
bound to proteins are removed. However, covalent contact is defined in
CREDO when the distance between two atoms is less than or equal to the
sum of their covalent radius (defined by the Cambridge Crystallographic Data
Centre (CCDCQ), this is a really accurate measure that sometimes outperforms
the data in the PDB). Example: PDB entry 1FCN (Patera et al. 2000), the
ligand Loracarbef is covalently acylated to serine 61 in chain A, the distance
reported between the carbon of the ligand and the serine oxygen is 1.46A
whereas the sum of covalent radii (CCDC) for O-C is 1.36A. On the other
hand, data in some cases show a certain degree of ambiguity, for example
the definition of “natural product” is somewhat variable within the community.
By the same argument, “drug-like molecule” classification is not unequivocal;
it is more a continuous “likeness” property without rigorous thresholds.
Furthermore, the emerging new targets have forced debate about what it
takes to be a drug (Macarron et al. 2011). In other cases, the annotation
seems to be accurate and straightforward but misinterpretation occurs
nevertheless. For example, the case of the “citrate anion”, a common buffer
to maintain neutral pH in experimental conditions and therefore a common
ligand in the PDB. Due to its size (13 atoms), this ligand can be easily labelled
as an oral drug, as lithium citrate (or carbonate) is commonly used to treat
depression. However, the active ingredient is the lithium, not the counter

anion.

Small molecule inhibitors of protein-protein complexes were identified
using TIMBAL. Visual inspection of the 39 PDB entries stored in TIMBAL

yielded 28 non-redundant protein-small molecule complexes. Entries with
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non-biological contacts were removed, example 1PW6 (Thanos et al. 2003),

Figure 4.7. Figure 4.8 shows examples of chemical structures from this set.

Figure 4.7. PDB 1PW®6, crystal structure of IL-2 bound to inhibitor SP2456.
This entry was not considered for the non-redundant subset of inhibitors of
protein-protein interactions because the small molecule (in stick
representation, green and yellow) interacts with itself in the crystal packing.
Note these are identical molecules packed in the asymmetric unit.
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Figure 4.8. Examples of chemical structures of the small molecules inhibiting
protein-protein complexes. Each structure is labelled with the protein
complex it inhibits.

4.3.1.2 Natural molecules

Natural small molecules in this set are:
* Ligands flagged as substrate, product or cofactor from KEGG
* Ligands labelled as endogenous from the HMDB
* Natural products from MGEx
* Ligands that are a least 90% similar to small molecules classified in

ChEMBL as natural products

Filters and redundancy removal vyielded 1,505 non-redundant
complexes between natural small molecules and proteins, from which there
were only 283 distinct small molecules. Figure 4.9 shows that half of this non-
redundant subset of interactions was composed of eight nucleotide small
molecules: ADP, NAD, NAP, ATP, AMP, FAD, SAH and COA. This redundancy

and the chemical composition are taken into account in the discussion. For
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example, all of these eight molecules have sugar rings and all but SAH (S-
adenosyl-I-homocysteine) have phosphates, therefore these molecules have a

high content in heteroatoms.

Figure 4.9. Distribution of the natural small molecule subset in terms of
entries per chemical structure of the small molecule bound to protein. Only
higher frequency entries are labelled for clarity. Note more than half of the
subset is composed of the complexes with eight different molecules: ADP,
NAD, NAP, ATP, AMP, FAD, SAH and COA.

This diverse set of molecules was classified as antibiotics (13 chemical
structures), lipids (13 chemical structures), natural- product-like (72 chemical
structures), nucleotides (104 chemical structures), peptide-like (16 chemical
structures), steroids (37 chemical structures) and sugars (28 chemical
structures). Figure 4.10 shows an example of chemical structures from each

category for this set.
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Figure 4.10. Examples of chemical structures in the natural molecules set.
Labels correspond to the manual classification based in their structures and
functions, so these molecules are categorised into natural product like,
peptide like, steroid like, sugar like, lipid like, antibiotic like and nucleotide
like.

4.3.1.3 Small peptides

This subset includes short peptides of up to eight residues. These
residues can be standard and non-standard amino acids as well as any other
residue type, as long as at least half of them are standard amino acids.

Examples of molecules in this subset can be seen in Table 4.2.

Chainid Residue list

2IFR B ACE-PHE-LYS-PHE-TA2-ALA-LEU-ARG 6/8
1BZH I ASP-ALA-ASP-GLU-FLT-LEU-AEA 5/7 cyclic
2FNX P VAL-ILE-ALA-LYS 4/4
1CE1 P GLY-THR-SER-SER-PRO-SER-ALA-ASP 8/8

Table 4.2. Examples of ligands in the small peptide set. Last column refers
to the ratio of number of standard amino acids by the total residue length of
the ligand.
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As discussed before, drug-likeness is not a precise definition. In order
to avoid overlapping, molecules of this set have been selected from the PDB
after extracting the small molecules from the previous sets. Therefore, this
drug-like set comprises mainly synthetic man-made molecules. The molecular
property thresholds applied here are somewhat loose, for instance the
molecular weight cut-off is 900. The reason for these broad filters is to be
able to compare like to like with the small molecules inhibiting protein-protein
complexes (molecular weight range: 150-815Da). Molecules in this set have
passed the following filters:

* Not in the ligands to remove set (section 4.2.1.3)

* Not in the small molecule inhibitors of protein-protein complexes,
natural molecules or small peptides sets

* At least one carbon atom and one ring, composed only by carbon,
nitrogen, oxygen, sulphur, halogen and chains no longer than six
sp3-CH2

* Not similar to nucleotide analogues or detergents
Figure 4.11 shows the chemical diversity of this set and the fine line

between definitions, for example ligand MVB could be selected as natural

molecule and ligand 8PP as lipid-like one.
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XK2

12B

Figure 4.11. Examples of chemical structures in the drug-like subset.
Molecules are labelled with their hetID (residue) identifier from the PDB.
Ligand 8PP is depicted here as an extreme example of the result of the
broad filters applied to select these molecules.

4.3.1.5 Approved and oral drugs

Molecules from this set were selected from the classification in
DrugBank as approved drugs and from the classification in ChEMBL as oral
drugs. However, molecules in the approved set can have any administration
route, including oral. The same categorization applied to the natural molecule
set was also done here. In this way, the drug set can be subdivided into
antibiotics (25 chemical structures), lipids (two chemical structures), natural-
product-like (29 chemical structures), nucleotides (six chemical structures),
peptide-like (10 chemical structures), steroids (14 chemical structures),
sugars (six chemical structures) and nota, none of the above (65 chemical
structures). Figure 4.12 shows an example of chemical structures from each
category for this set. It is worth noticing that the complexes studied are not

necessarily the ligand drug with its intended target. For example, in PDB 2BXF
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(Ghuman et al. 2005) Diazepam (Valium, positive allosteric modulator of
GABA, receptor) is bound to human serum albumin. Furthermore, the
“approved drug” label also comprises molecules like Thiamin (vitamin B1,
example of natural-product-like in Figure 4.12) or Ascorbic acid (vitamin C,
example of sugar-like in Figure 4.12). There are also cases of molecules that
were marketed but were later withdrawn, for example Bextra (Valdecoxib,
example of nota in Figure 4.12). All these data are not easily accessible,
either stored in a standardised manner, however molecules in this set were
kept as models of small molecules that successfully made their way into the

body with a therapeutic effect.

In terms of the size, it is worth remembering that molecules with less
than 10 atoms have been removed from all sets. However, there are
approved drugs that small. For example, guanidine with four atoms is an
approved oral treatment of myasthenia (DrugBank ID DB00536), or dimethyl
sufoxide, also with four atoms, is a common solvent but also an approved
topical analgesic (DrugBank ID DB01093). Nevertheless, the filter of a
minimum of 10 atoms has been maintained even for this set, as such small
molecules are more common as additives in the experimental solutions than

as biologically relevant entities.
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Figure 4.12. Examples of chemical structures in the approved and oral drugs
set. Labels correspond to the manual classification based on their structures,
so these molecules are categorised into natural product like, peptide like,
steroid like, sugar like, lipid like, antibiotic like, nucleotide like and none of
the above (NOTA).

4.3.1.6 Protein-protein sets

No further classification has been done in the protein sets. In this
study, only protein interfaces are considered regardless of their function, or
which constituents form the complex, for example antigen-antibody, enzyme-
inhibitor or protein-receptor. The only categorization used refers to the
lifetime of the complexes: obligate and transient dimers from the publicly
available sets ((Zhu et al. 2006) and (Mintseris et al. 2005)). These were
small sets (315 entries with both dimer classes), but were kept in order to
capture any difference in binding pattern, such as transient complexes are
more likely to be targeted by a small molecule drug. On the other hand, the
general non-redundant set of protein-protein interfaces was considered from

PICCOLO, from the quaternary structures predicted by PISA (Krissinel et al.
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2007). These interfaces were further divided into hetero- (different proteins)

and homo- (same protein interacting).

4.3.1.7 Resolution dependency

Crystal structures used in this study have a resolution of at least 3.5A
or better. Figure 4.13 shows that there is no dependency of the polar ratio of
the atomic contacts with the resolution of the crystal structures. Furthermore,
it also shows that the majority of the complexes studied have a resolution
around 2A, as structures with a better quality score, Qscore (section 2.1.5)

have been prioritised.

protein-small molecule complexes protein-protein complexes

0.8
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Figure 4.13. Resolution versus ratio of polar contacts as (polar/[polar +
apolar]) for the protein-small molecule complexes (left) and for the protein-
protein complexes (right). Contour levels show the density of points in the
graphs, where red denotes high density and pale blue low density.

4.3.2 Polarity of the interactions

Following Olsson and co-workers (Olsson et al. 2008), who studied the
binding between small molecules and proteins from the Scorpio database
(ITC data) in terms of polar and apolar proportion of buried surface area
upon binding, I have based comparisons between different sets of molecules

on the extent of polar and apolar atomic contacts that they make. See 4.2.2
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for the definition of these contacts. As seen in chapter 3, this discrete count
of atomic interactions resembles the measurement of buried surface area
used in other studies, providing a coarse description of the interfaces. Figure
4.14 shows the linear correlation of the buried surface area and the number
of contacts for all the small molecules used in the analysis. Table 4.3 shows
the r and P value for each subset and contact type. In all cases there was
significant linear correlation between the surface area buried upon binding
and the atomic contacts the small molecule made with the protein. For all
cases, r value was 0.8 which shows a medium-strong correlation between the
data (Townend 2002).
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Figure 4.14. Scatter plot of buried surface area upon binding and the
number of atomic contacts (polar and apolar) the small molecules made.
Points are from all small molecule sets: drug-like, approved drugs, oral
drugs, protein-protein interaction inhibitors, natural molecules and small
peptides.
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Subset Contact type r value P value
all 0.82 0.00
Drug-like polar 0.85 0.00
apolar 0.82 0.00
all 0.79 3.86E-45
Approved drugs polar 0.83 4.36E-53
apolar 0.76 4.11E-39
all 0.89 1.04E-67
Oral drugs polar 0.85 1.37E-56
apolar 0.90 1.54E-73
Protein-protein all 0.84 2.03E-08
interaction polar 0.89 1.52E-10
inhibitors apolar 0.81 1.34E-07
- all 0.85 0.00
B polar 0.91 0.00
apolar 0.81 0.00
all 0.79 0.00
Small peptides polar 0.84 0.00
apolar 0.73 8.77E-93
all 0.82 0.00
All (Figure 4.14) polar 0.90 0.00
apolar 0.82 0.00

Table 4.3. r and P values from linear correlation calculations between buried
surface upon binding and number of atomic contacts small molecules make
with proteins. P value has been rounded to zero when P < 1E-100.

4.3.3 More polar interactions in natural subsets

For each set of molecules, plotting the sum of contacts versus either
the polar or apolar contacts generates the 'scissors plot' (see Methods for
details). In these graphs, the openness of the trend lines gives the ratio of

polar versus apolar contacts. Figure 4.15 shows the scissors plots for the
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drug-like and PPI inhibitors (scissors open), natural small molecules (scissors
closed) and small peptides and protein complexes (scissors half way). For the
drug-like molecules, these plots show that molecular interactions are
dominated by apolar contacts, whereas the polar contacts remain somewhat
constant with the increase of ligand size (which correlates with sum of
contacts). Similar conclusions were reached by Olsson and co-workers in their
analysis of the SCORPIO database (Olsson et al. 2008). It is more pronounced
in small molecules inhibiting protein-protein interactions as we have seen in
chapter 2. On the other hand, natural small molecules, small peptides and
protein complexes present a different trend where the polar interactions play
a larger role. One aspect of this may be that evolutionary processes have
produced a better fit than achieved by medicinal chemists. But more
importantly, endogenous molecules have not been constrained to be
absorbed or transported in the circulation or across membranes into cells of
other living organisms. On the other hand, it is now recognised that medicinal
chemists have tended to increase lipophilicity to gain potency (van de
Waterbeemd et al. 2001; Leeson et al. 2007; Hann 2011). Interestingly, the
lower part of the graphs, i.e. smaller molecular size (fragments), present a
more balanced ratio between polar and apolar contacts. Firstly, this result
agrees with Hann complexity model (Hann et al. 2001), where it is easier for
a smaller molecule to match target features; and secondly, it also supports
the strategy of fragment-based drug design where the initial fragments
anchor in the site with specific interactions (Congreve et al. 2008) and deliver
less lipophilic hits (Keserii et al. 2009). Natural molecules have a bimodal
distribution as shown in Figure 4.15 (D and E) and Figure 4.16 (A); this is due
to the presence of steroid-like molecules presenting an apolar profile, while
the rest follow a polar trend. To evaluate whether the high proportion of polar
contacts is because many of the natural molecules have phosphate groups,
Figure 4.15 (E) shows the scissors plot for the subset of natural molecules
without phosphorus. The graph has fewer points, but the trends are the same,

and the bimodal distribution is maintained.
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Figure 4.15. Scissors plots for the non-redundant-by-complex (table 1) sets
of protein complexes. A: drug-like small molecules bound to proteins. B:
Protein-protein interactions small molecule inhibitors bound to proteins. C:
Small peptides bound to proteins. D: Natural small molecules bound to
proteins. E: Natural small molecules without containing phosphor bound to
proteins. F: Transient protein-protein dimers. G: Obligate protein-protein
dimers. H: Homo protein-protein interfaces from quaternary structures. I:
Hetero protein-protein interfaces from quaternary structures. Polar (red)
and apolar (blue) contacts are scattered against sum of contacts. Details of
the regression lines for each graph and contact type can be found in Table
4.4,
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Subset Type Slope Intercept Rvalue Pvalue angle

Drug-like polar  0.09 5.87 0.38 4.73E-53 5
Drug-like apolar 0.91 -5.87 0.97 0.00 42
PPI inh polar  0.07 2.57 0.44 1.45E-02 4
PPI inh apolar 0.93 -2.57 0.99 2.93E-24 43
Small pep polar 0.27 2.61 0.77 0.00 15
Small pep apolar 0.73 -2.61 0.96 0.00 36
Nat mol polar  0.37 4.04 0.73 0.00 21
Nat mol apolar 0.63 -4.04 0.87 0.00 32
Nat mol -P polar  0.20 5.44 0.46 1.15E-24 11
Nat mol -P apolar 0.80 -5.44 0.91 0.00 39
Transient polar 0.31 -1.92 0.92 2.41E-65 17
Transient apolar 0.69 1.92 0.98 0.00 35
Obligate polar  0.25 5.04 0.94 1.42E-75 14
Obligate apolar 0.75 -5.04 0.99 0.00 37
Homo interf  polar 0.24 2.20 0.92 0.00 14
Homo interf apolar 0.76 -2.20 0.99 0.00 37
Hetero interf polar 0.24 3.17 0.92 0.00 13
Hetero interf apolar 0.76 -3.17 0.99 0.00 37

Table 4.4. Linear regression details for each subset and contact type in
Figure 4.15. Subsets: Drug-like, PPI inh (protein-protein interactions
inhibitors), Nat mol (natural molecules), Nat mol —P (natural molecules that
do not contain phosphor), Small pep (small peptides), Obligate (obligate
dimers), Transient (transient dimers), Homo interf (homo quaternary
interfaces), Het interf (hetero quaternary interfaces). Angle column denotes
the angle that the regression line makes with the X axis, it is a translation
of the slope into degrees. P value has been rounded to zero when P < 1E-
100.

In order to define the statistical significance of these plots Multiple
Linear Regression (MLR using OLS, Ordinary Least Squares) was used
between the apolar regression lines of each set. In addition, the distribution
of polar/apolar contact ratio (normalised as polar/[polar+apolar]) between
sets was analysed with non-parametrical tests, as not all the sets have normal
distribution of the contact ratio. This was done to minimise Type I error
(concluding there is a significant difference when there is not) due to the
heteroscedasticity of the residuals of the regression lines in the scissors plots.
See Methods section for details. Table 4.5 summarises the comparisons
across all data sets. Figure 4.16, Figure 4.17 and Figure 4.18 show

comparison of the distribution of polar/sumContacts ratio for selected subsets.
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Drug-like -0.03 0.00 0.06 -0.29 -0.14 -0.15
App drugs 0.04 0.09 -0.26 -0.11 -0.11
Oral drugs 0.05 -0.30 -0.15 -0.15
PPI inh -0.35 -0.20 -0.20
Nat mol 0.15 0.15
Nat mol -P 0.00
Drug-like -0.13 -0.16 -0.12 -0.12 -0.07
App drugs -0.09 -0.12 -0.08 -0.08 -0.03
Oral drugs -0.13 -0.16 -0.12 -0.12 -0.07
PPI inh -0.18 -0.21 -0.17 -0.17 -0.12
Nat mol 0.17 0.13 0.17 0.18 0.22
Nat mol —P 0.02 -0.01 0.03 0.03 0.08
Small pep 0.02 -0.01 0.03 0.03 0.08
Obligate -0.03 0.01 0.01 0.06
Transient 0.04 0.04 0.09
Homo interf 0.00 0.05
Hetero interf 0.05

Table 4.5. Differences in medians of the contact ratios (polar/[polar +
apolar]) between the different sets of molecules (row - column). Table is
divided in two for clarity. Subsets: Drug-like, App drugs (approved drugs
including oral), Oral drugs, PPI inh (protein-protein interactions inhibitors),
Nat mol (natural molecules), Nat mol —-P (natural molecules that do not
contain phosphor), Small pep (small peptides), Obligate (obligate dimers),
Transient (transient dimers), Homo interf (homo quaternary interfaces), Het
interf (hetero quaternary interfaces), PPI inh by SM (protein-protein
interfaces inhibited by small molecules). Values in bold denote significant
differences in medians (P<0.05). Note both subsets of PPI SM Inhibitors and
PPI SM Inhibited are small (28 and 15 respectively); they are included for
the exceptional insight these cases present rather than their statistical
significance.

Values in Table 4.5 are the difference in medians of the ratio
polar/sumContacts for each subset. Drug-like molecules bound to proteins
present on average less polar contacts than the other sets, with the exception
of the PPI inhibitors that have more apolar contacts. Approved and oral drugs
analysed here present the same interaction profile as drug-like molecules.
The group with more polar contacts on average is the natural molecules.

When molecules containing phosphorus are removed from the natural set, the
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average polar contacts decreases 15%, nevertheless this is the set that
engages the most polar interactions. Amongst protein oligomers, the
quaternary interfaces present the same profile for homo and hetero interfaces,
which is similar to the subset of obligate dimers, whereas the transient dimers
are slightly (3-4% on average) more polar (in agreement with previous
findings (Nooren et al. 2003)) and more similar to the subset of small
peptides. Interestingly, the small subset of protein-protein complexes
inhibited by small molecules shows a trend that is similar to other protein
complexes. However, the small molecules inhibiting them present a more

apolar profile than the drug-like molecules.
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Figure 4.16. Normalised distributions of the ratio of polar contacts
(represented by polar/[polar+apolar]), each chart compares drug-like
against the others. A: drug-like versus natural small molecules with and
without phosphor. B: drug-like versus approved and oral drugs. C: drug-like
versus small peptides, obligate and transient protein-protein dimers, homo
and hetero quaternary protein-protein interfaces. D: drug-like versus PPI
inhibitors.
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Figure 4.16 is a graphical representation of the data discussed in the
previous paragraph. Drug-like molecules and drugs bound to proteins have,
with the small molecules inhibiting PPI (in magenta, chart D), the most apolar
interaction profile. All the other distributions are shifted to the right (more
polar interactions) with respect to these. In chart A, Figure 4.16, the
distribution of the natural molecules (in purple) is dominated by nucleotides
with high content of phosphates, this distribution has 44% of polar contacts
on average (median). When phosphor-containing molecules are removed
from this set, the bimodal distribution seen in the scissors plots emerges
again; natural molecules can engage few polar contacts (for example
steroids) or many (for example heteroatom-rich molecules). In chart B, Figure
4.16 the distributions of the approved and oral drugs are virtually identical of
the drug-like. In chart C, Figure 4.16 the small peptide and protein oligomer
sets have similar distributions, less polar than natural molecules but more

polar than synthetic drug-like molecules.
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Figure 4.17. Comparisons of polar/sumContacts ratio means, binned by sum
of contacts (polar+apolar), each chart compares drug-like against the others.
A: drug-like versus approved and oral drugs. B: drug-like versus PPI
inhibitors. C: drug-like versus small peptides. D: drug-like versus natural
molecules. E: drug-like versus natural molecules without phosphor. F: drug-
like versus transient protein-protein dimers. G: drug-like versus obligate
protein-protein dimers. H: drug-like versus homo quaternary protein-protein
interfaces. I: drug-like versus hetero quaternary protein-protein interfaces.
Error bars denote the standard error of the mean.

Figure 4.17 looks at the same ratio of polar versus sum of contacts,
but it is binned by sum of contacts. With this representation, it becomes clear
that the molecules engaging more polar contacts, for example in the drug-like
set have fewer contacts overall and they are generally smaller molecules. This
effect is more pronounced in the small molecule inhibitors of protein
interfaces. A similar situation occurs with natural molecules without
phosphorus, the polar proportion of contacts decreases with ligand size. This
becomes more evident in Figure 4.18, where the upper right quadrant of the
nine charts is empty. In these graphs (Figure 4.18), the proportion of polar

contacts (Y axis) decreases with molecular size (X axis as sum of contacts).
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This result can be justified in terms of the Hann’s complexity model (Hann et
al. 2001), the chances of matching at the same time different polar
interactions decreases with the number of interactions to match. Furthermore,
the flexibility required to match many different specific interactions goes
against spontaneous binding due to entropic penalty.
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Figure 4.18. Ratio of polar/(polar+apolar) versus sum of contacts
(polar+apolar). Contour levels show the density of points in the graphs,
where red denotes high density and pale blue low density. The black line in
all the graphs goes between 0.9 ratio to 200 sum of contacts to have the
same reference to aid comparison between sets. A: drug-like small
molecules bound to proteins. B: Approved and oral drugs bound to proteins.
C: Small peptides bound to proteins. D: Natural small molecules bound to
proteins. E: Natural small molecules without containing phosphor bound to
proteins. F: Transient protein-protein dimers. G: Obligate protein-protein
dimers. H: Homo protein-protein interfaces from quaternary structures. I:
Hetero protein-protein interfaces from quaternary structures. For clarity,
graphs for protein-protein complexes are plotted up to 600 contacts only.

The analyses shown in Table 4.5 and Figure 4.15, Figure 4.16, Figure
4.17 and Figure 4.18 demonstrate that natural molecules have a higher

proportion of polar contacts than their synthetic counterparts. In order to pin
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down these different interaction profiles, the following sections analyse the
atomic composition of the ligands, in terms of heteroatom content and
rotatable bonds, and the proportion of matched and unmatched atoms at the

interfaces. Detailed analysis of the binding sites is discussed in chapter 5.

For small molecules and small peptides, the nhumber of heteroatoms
and rotatable bonds are straightforward to calculate and interpret. For
proteins, their interpretation is more difficult due to intramolecular hydrogen
bonds and atomic occlusion from solvent. Therefore, this section discusses
the interaction profile of small molecules in terms of their atomic composition
and flexibility.

Natural small molecules and small peptides engage on average more
polar contacts with their targets than synthetic molecules. Analysis of the
content of heteroatoms (ratio of number of heteroatoms and total number of
atoms) and rotatable bonds (ratio of number of rotatable bonds and total
number of atoms) shows that the more polar interaction profile presented by
natural molecules is due to a higher content of heteroatoms (19% more on
average than drug-like molecules), arguably placed in the right conformation
for interaction with the protein target. Whereas the lower content of
heteroatoms in peptides in comparison with natural molecules (9% less on
average) is compensated by greater flexibility (20% more on average) to
match the more directionally constrained polar interactions. Table 4.6 and
Figure 4.19 summarise these comparisons. The apolar interaction profile of
synthetic molecules corresponds to rigid ligands with low content in
heteroatoms. In contrast, natural molecules are also rigid but rich in
heteroatoms, whereas small peptides are flexible with fewer heteroatoms.
These observations are for the general trends, however it is worth noting that
natural molecules can also be rigid and lipophilic, for example steroids like

testosterone (see Figure 4.19, A and C). In fact, natural molecules cover the
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whole range of polarity (0 to 0.9 in the polar/sumContacts scale), but the
overall behaviour is predominantly polar, especially when compared with

synthetic molecules.

Drug-like -0.01 -0.02 0.01 -0.19 0.02 -0.10
App drugs -0.01 0.02 -0.18 0.03 -0.09
Oral drugs 0.04 -0.16 0.04 -0.08
PPI inh -0.20 0.00 -0.11
Nat mol 0.20 0.09
Nat mol -P -0.12
Drug-like -0.01 -0.01 -0.07 -0.04 0.00 -0.24
App drugs 0.00 -0.07 -0.03 0.01 -0.24
Oral drugs -0.07 -0.03 0.01 -0.24
PPI inh 0.03 0.08 -0.17
Nat mol 0.04 -0.20
Nat mol -P -0.25

Table 4.6. Difference in medians of the ratios (number of
heteroatoms/number of heavy atoms, upper table) and (number of rotatable
bonds/number of heavy atoms, lower table). Differences are between the
different set of small molecules (row — column). Subsets: Drug-like, App
drugs (approved drugs including oral), Oral drugs, PPI inh (protein-protein
interactions inhibitors), Nat mol (natural molecules), Nat mol —-P (natural
molecules that do not contain phosphor), Small pep (small peptides). Values
in bold denote significant differences in medians (P<0.05).
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Figure 4.19. A: Distribution of the ratio of number of heteroatoms by
number of heavy atoms for drug-like small molecules, natural molecules,
natural molecules without phosphor and small peptides. B: Distribution of
the ratio number of heteroatoms versus number of heavy atoms for drug-
like small molecules, approved and oral drugs. C: Distribution of the ratio of
number of rotatable bonds by number of heavy atoms for drug-like small
molecules, natural molecules, natural molecules without phosphor and small
peptides. D: Distribution of the ratio of number of rotatable bonds by
number of heavy atoms for drug-like small molecules, approved and oral
drugs.

4.3.5 Matched and unmatched atoms at the binding interfaces

In the previous section we have seen that higher content in
heteroatoms for natural molecules leads to a more polar profile. This not the
case for small peptides but may be compensated by their greater flexibility
that facilitates more specific polar interactions, in particular hydrogen bonds.
However, the key point is whether all these heteroatoms are making polar
contacts or are unmatched. Figure 4.20 shows the mean of the percentage of
buried atoms engaged in successful interactions and the same measure for

the unmatched buried atoms. Small ligands, including drug-like up to small
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peptides that are found in the left part of the figure, are more contact
efficient than the protein to which they are bound, i.e. on average around
90% of the ligand atoms are matched in all sets, with natural molecules
without phosphorus being the most efficient. In contrast with the 70-80% of
the protein atoms matched, the small molecule atoms are more exposed and
able to contact the protein, whereas the atoms in the protein can be less
accessible. Furthermore, studies of hundred complexes of nine different
ligands (Kahraman et al. 2007) found that binding pockets are on average
three times bigger than the ligands they encapsulate; therefore in proportion
more atoms in the protein will be at the periphery of the ligand (our cut-off
here was 4.58) without making useful interactions. Another interesting result
from this analysis is that synthetic molecules have a larger proportion of
unmatched polar atoms (in both ligand and protein side) than the natural
ones. In other words, if one wants to increase the polar contacts synthetic
molecules make there is still room for improvement. Arguably, oral drugs
need to restrain the polar signature to get distributed in the body, but Figure
4.19 shows that approved and oral drugs are not making the most of their
polar composition. However, improving enthalpic contacts is not a trivial task,
not only for the difficulty of designing geometries that match polar constrains,
but also for the enthalpic and entropic penalties upon desolvation and the

loss of conformational entropy (Ferenczy et al. 2010).
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Figure 4.20. Mean of the percentage of buried atoms engaged in successful
interactions (Matched contacts, left chart) and mean of the percentage of
buried atoms without an appropriate partner in the other side of the
interface (Unmatched contacts, right chart). The percentage is divided into
polar (red) and apolar (blue) contribution. Each subset has two bars, one on
the left for the atoms in the protein and one on the right for the atoms in
the ligand or smaller protein in the case of protein complexes. Error bars
denote the standard error of the mean. Subsets are ordered from left to
right: Drug-like small molecules, approved Drugs, oral drugs, PPI small
molecule inhibitors, natural molecules, natural molecules without phosphor,
small peptides, obligate protein-protein dimers, transient protein-protein
dimers, homo quaternary protein-protein interfaces and hetero quaternary
protein-protein interfaces.

But, does nature make the most of its polar composition? Plotting the
ratio of heteroatoms by number of atoms versus the ratio of polar interactions
(as polar by sum of contacts), linear correlation (Figure 4.21) has been found
for the natural-product-like subset in natural molecules. For these small
molecules, the increase in polar features translates into more polar
interactions with the protein. I note here that I have not analysed whether
the proteins bound with these molecules are their putative partners, as that
would be a one-to-one manual check. Nevertheless, this is a remarkable
result, as it proves that it is possible in principle for a small molecule drug to

engage many polar interactions with its partner.
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Figure 4.21. Linear correlation of the ratio of heteroatoms by number of
heavy atoms versus the ratio of polar contacts by sum of contacts for the
natural-product-like subset of the natural molecules set.

4.3.6 Drug-like complexes. Property versus interaction profile

Analysis of the distribution of the polar ratio across molecular weight,
alogP, buried area upon binding and sum of contacts has been carried out for
the synthetic drug-like molecules. Figure 4.22 shows these distributions

colour-coded by SCOP family.
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Figure 4.22. Ratio of polar/(polar+apolar) versus molecular weight (A),
AlogP (B), buried area upon binding (C) and sum of contacts (D) for protein
complexes with drug-like small molecules. Different colours denote SCOP
families: Protein kinase catalytic subunit (green), nuclear receptor ligand-
binding domain (blue), eukaryotic proteases (red), retroviral proteases -
retropepsin (cyan), reverse transcriptase (magenta), Higher-molecular
weight phosphotyrosine protein phosphatases (yellow), HSP90 N-terminal
domain (black). For clarity, only SCOP families binding to more than 20
different ligands are shown.

Drug-like molecules bound to protein kinases (green dots in Figure
4.22) tend to have high alogP and hardly pass the threshold of 30% of polar
contacts, not even the few that have alogP in the negative region. However it
is also possible to have almost 50% of polar contacts (hetID 3C3 in 2CGW,
(Foloppe et al. 2006)). In the case of nuclear receptor ligand-binding domain
(NR-LBD, blue triangles in Figure 4.22), all the molecules have alogP > 1 and
most of them do not have more than 15% of polar contacts, but as in kinases
it is possible to have a more polar binding profile (34% of polar contacts for
hetID 444 in 1UHL, (Svensson et al. 2003)). Eukaryotic proteases (red dots in
Figure 4.22) bind to a wide range of molecules from 200MW up to 700MW

with alogP between -2 to 6 with a varying percentage of polar contacts.
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Bigger and more lipophilic molecules bind to retroviral proteases (cyan dots in
Figure 4.22) with similar polar binding patterns as they do in eukaryotic
enzymes, although polar fragments are also found. The proteins belonging to
the reverse transcriptase SCOP family present similar characteristics to NR-
LBD, and bind to molecules with alogP > 1, with none having more than 15%
polar contacts. Most of the molecules bound to phosphotyrosine protein
phosphatases (PTPP, yellow triangles in Figure 4.22) have around 30% of
polar contacts with low alogP range (-2 to 2), although there are also three
apolar binders (hetID 892 in 1T49, hetID BB3 in 1T48 and hetID FRJ in 1T4],
(Wiesmann et al. 2004)). However, these apolar molecules are inhibitors
binding to an allosteric site. Finally, HSP90 domains (black squares in Figure
4.22) bind to molecules with a wide range of alogP (0-6) engaging between

15-25% of polar contacts.

Overall trends for drug-like molecules depend on their targets, but
there is no correlation between lipophilicity (alogP) or molecule size
(molecular weight) with the proportion of polar contacts in the bound
complex. Although the highest polar profiles occur with lower alogP and small
size molecules, one can see for instance that, for those with an alogP value of

4 drug-like molecules are in the range of 4% to 37% polar contacts.

From the 1,206 distinct small molecules in the drug-like set, almost
700 have affinity data (Kd, Ki or IC50) from the implementation of PDBBind
(Wang et al. 2004) in CREDO. Unfortunately, not many natural molecules
have affinity data, and comparison with how these molecules achieve high
potency cannot be done with the current data available. However, there are
112 distinct small peptides with Kd, Ki or IC50 in CREDO. Transformation into
free energy of ligand binding (Kcal/mol) for qualitative comparison was done
with the thermodynamic law: AG= -RT In Kd, where R is the gas constant

(1.9872E-03 Kcal mol-1 K-1), T is the temperature in Kelvin (taken as 300K,
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ambient temperature) and Kd is the equilibrium dissociation constant of the
binding event. When Kd was not available, IC50 or Ki were taken instead.
Figure 4.23 shows there is no relation between the binding energy and the
proportion of polar contacts the small molecules or small peptides made with
their protein partners. Higher polar ratios occur only for drug-like weak
binders with molecular weight bellow 300Da. As seen before, for the drug-like
molecules, only weak small fragments can achieve many polar interactions.
This is not the case for small peptides, where high polar contact ratio can be

achieved across a wide range of affinities.
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Figure 4.23. Free energy of ligand binding versus the polar ratio of contacts
[polar/(polar+apolar)] for the drug-like set (yellow) and the small peptide
set (blue).

Indeed, Figure 4.24 (A) shows that the most potent drug-like
molecules have on average more atoms and higher alogP, whereas the
average count of hydrogen bond acceptors and donors remains constant
across the whole range of potency. This result is in agreement with the much
discussed general trend in drug discovery of gaining potency by adding

lipophilicity to the small molecules; see for example (Leeson et al. 2007). In
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the set studied here, this translates (Figure 4.24, B) into a lower ratio of

heteroatom content and a lower ratio of polar interactions.

Drug-like small molecules
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Figure 4.24. Binned binding affinity (BA) data for drug-like small molecules
(A and B) and for small peptides (C and D). Bars in A and C denote the
average of molecular properties for each affinity bin: alogP (yellow),
rotatable bonds (red), sum of hydrogen bond donors and acceptors (blue)
and number of atoms (black). Bars in B and D denote the average of the
ratio of polar contacts [polar/(polar+apolar)] (orange) and the average of
the ratio of heteroatom content [num heteroatoms/num atoms] (cyan). Error
bars are the standard error of each sample.

Figure 4.24 (C and D) shows that small peptides have on average the
same property profile regardless of their potency. From this result, it is clear
that small peptides do not achieve tight binding through increase of
lipophilicity, furthermore the proportion of polar contacts and heteroatom
content is maintained across the whole range of affinities with the exception
of weak binders where the polar ratio is lower. However, there are only seven
complexes in this category. The important point to highlight here is that

peptides manage to increase their affinity for their receptors maintaining
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specific interactions, arguably through their flexibility. Note that the average
of rotatable bonds in small peptides is four-fold higher than drug-like
molecules. In fact, small peptides studied here are bigger than drug-like
molecules, as no size limit was applied to select the small peptide set,
whereas drug-like molecules larger than 900Da were omitted. Plotting the
free energy of binding versus the number of atoms for both subsets (Figure
4.25) confirms that there is no correlation between the number of atoms and
the free energy of binding for small peptides. However, they are less efficient
than small drug-like molecules as they use more atoms to achieve the same
affinity. Furthermore, the values for binding affinities are confined in the
range of what can be measured (tens of milimolar that translates into
~2Kcal/mol to picomolar than translates into ~16Kcal/mol). In this way,
peptides are able to sample binding energies between 4Kcal/mol to
14Kcal/mol regardless their size, which translates into the flat bar

representation in Figure 4.24 (D).
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Figure 4.25. Free energy of ligand binding versus the number of atoms of
the ligand. Drug-like set is plotted in yellow, and small peptide set in blue.
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In Figure 4.25 there are three drug-like molecules with circa 60 atoms.
The most potent is a symmetric cyclic urea HIV-1 protease inhibitor with 4nM
affinity (1BWB, (Ala et al. 1998)). The weakest, with 300uM affinity is the
detergent deoxy-bigchaps bound to IGF-1 through the steroid-like head, the
two polar tails of the molecule are floating in the solvent (1IMX, (Vajdos et al.
2001)). The third molecule binds to calmodium with an affinity of 3uM; this is
a big complex non-planar molecule, which binds to residues from the N- and
C-terminal domains of calmodulin and induces a major conformational change
(1XA5, (Horvath et al. 2005)).

In this section, four examples of specific protein targets have been
selected because they bind to small molecules from the different sets studied
so far: drug-like molecules, approved and oral drugs, small peptides and
natural molecules. For each protein, all small molecules bind to the same site.
In this way we can visualise the property and interaction profile for the
different sets of molecules binding to the same target. AlogP and % of polar

contacts have been chosen to map these profiles, see Figure 4.26.
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Figure 4.26. Ratio of polar/(polar+apolar) versus AlogP for four different
proteins. A: Estrogen receptor from NR-LBD SCOP family. B: HIV-1 Reverse
transcriptase from Ribonuclease H SCOP family. C: HIV-1 Protease from
retroviral proteases SCOP family. D: Thrombin heavy chain from the
eukaryotic proteases SCOP family. Colour coding refers to the subsets,
which the small molecules belong to: Oral drugs (magenta), Approved drugs
(cyan), Natural molecules (green), Small peptides (blue) and Drug-like
(yellow).

4.3.8.1 Estrogen receptor

Human estrogen receptor (ER) belongs to the NR-LBD SCOP domain
family. As discussed before, this domain binds mainly to lipophilic molecules
with low a ratio of polar contacts. Here we can see similar characteristics
(Figure 4.26 A), for instance the natural product Estradiol is an approved oral
drug with drug-like properties at alogP 3.8 with 10% polar contacts
(DrugBank ID DB00286). Another natural molecule for this target that is also
an approved oral drug is Diethylstilbestrol (DrugBank ID DB00255) with 11%

of polar contacts and alogP 5.1. The drug-like molecule Raloxifene (DrugBank

183



ID DB00481) is another oral drug with similar profile, 9% polar contacts and
alogP 4.9.

The reverse transcriptase domain of the HIV-1 Gag-Pol polyprotein
belongs to the Ribonuclease H SCOP domain. Drug-like molecules binding to
this protein (Figure 4.26 B) have a range of alogP between 1 and 7 with a
modest proportion of polar contacts (1% to 16%). Interestingly, the three
approved oral drug molecules have, within this range, the highest ratio of
polar contacts: Efavirenz (16% of polar contacts, alogP 4.4, ChEMBL ID
CHEMBL308954), Etravine (14% of polar contacts, alogP 4.8, DrugBank ID
DB00625) and Delavirdine (10% of polar contacts, alogP 1.7, DrugBank ID
DB00705).

The protease domain of the HIV-1 Gag-Pol polyprotein belongs to the
retroviral proteases SCOP family. For this protein, drug-like molecules,
approved and oral drugs, natural molecules and small peptides bind to the
same site. As seen in Figure 4.26 (C), there is one cluster of small peptides in
the polar corner, low alogP and more than 30% polar contacts. Remarkably,
all the approved drugs analysed here have an oral administration route.
Furthermore, all these six molecules are long and flexible with a range of
lipophilicity (alogP from 1.5 to 7), and have 17%-29% of the contacts being

polar. See Table 4.7 for their chemical structures.
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hetID PDB Ratio alogP DrugBankID

DB00220
1UN 3ELO 0.17 3.7
Nelfinavir
DB00701
478 1HPV 0.22 2.4 )
Amprenavir
..... A DB00224
“%“NQ% MK1 1Sbv  0.17 1.5 o
@Qo N Indinavir
W
Y\@A{A DB00503
Mo o © s RIT 1HXW 0.22 5.0
oS Ritonavir

DB01232
" ROC  3EKQ  0.20 2.0

Saquinavir

DB00932

Tripanavir

TPV 1D4Y 0.29 7.0

Table 4.7. Chemical structures of the six oral drugs structural characterised
in the PDB for the HIV-1 Protease. HetID is the residue identifier for the
ligand in the PDB. Ratio refers to the ratio of polar contacts as
[polar/(polar+apolar)].
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4.3.8.4 Thrombin

Thrombin heavy chain protein is a member of the eukaryotic protease
SCOP family. It has drug-like binding properties with apolar interactions (high
alogP and low polar ratio) as well as small peptides and peptidomimetics
drug-like molecules in the more polar part of the graph (Figure 4.26 D). The
only approved drug characterised in the PDB is Argatroban (DrugBank ID
DB00278), with more polar contacts than the average drug-like molecules for

this target. However, this drug is intravenous.

4.3.8.5 Approved and oral drugs

As seen in Figure 4.16 (B), approved and oral drugs have on average
the same interaction profile as drug-like molecules. In this section, the four
targets binding to different types of molecules show that oral drugs present a
wide range of lipophilicity and ratio of polar interactions. In other words, it is
possible to achieve more specific interactions without compromising the
molecular profile of the drug leads. The case of HIV-1 protease, probably the
most reported success of structure-based drug design (Wlodawer et al. 1998),

proves that oral drugs can be long, complex and flexible molecules.

Here I report a summary (Table 4.8) of approved and oral small
molecule drugs that have more than 40% of polar contacts. The low

lipophilicity of these molecules is noteworthy.

HetID
(PDB)

Ratio alogP Drug type DrugBank ID

\ AZM Approved DB00819
Sy 063  -1.3
(o]

=% (3HS4) oral Acetazolamide
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alogP Drug type

DrugBank ID

CPF
(1T9U)

ZMR
(2HTQ)

ASC
(1F9G)

HFZ
(3ILU)

RBF
(3DDY)

AND
(1UAY)

DO3
(2QMI)

FON
(3GEH)

0.61

0.60

0.58

0.53

0.52

0.48

0.48

0.46

-1.3

-5.0

-1.9

0.0

0.1

-1.9

-5.0

Approved

oral

Approved

inhalation

Approved
nutraceutical

oral

Approved

oral

Approved
nutraceutical

oral

Approved

intravenous

Approved

intravenous

Experimental
Vitamin B

complex

DB00537

Ciprofloxacin

DB00558

Zanamivir

DB00126
Ascorbic acid
(vitamin C)
DB00774
Hydro-

flumethiazide

DB00140
Riboflavin
(vitamin B2)

DB00640

Adenosine

DB00597
Gadoteridol

DB03256

Folinic acid
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Drug type DrugBank ID

Approved
CFX DB01331
0.46 -1.6 antibiotic
(112W) ) Cefoxitin
intravenous
AIC Approved DB00415
0.46 -2.3
(2RDD) oral antibiotic Ampicillin
Approved
LFX DB01137
0.44 -1.4 oral
(3K9F) ) ] Levofloxacin
antibacterial
Approved DB00360
H4B
0.43 -1.1  nutraceutical Tetrahydro-
(2DTT) o
oral biopterin
Approved
MER DB00760
0.42 -4.9 intravenous
(1H8Y) o Meropenem
antibiotic
2MN Approved DB00916
0.41 -0.2
(1W3R) oral Metronidazole
T3 Approved DB00279
0.41 1.5
(2P1IV) oral Liothyronine
Approved
SRY DB01082
0.40 -7.7  intramuscular
(3HAV) Streptomycin
antibiotic
FBI Approved DB01098
0.40 0.9
(1HWL) oral Rosuvastatin

Table 4.8. Approved and oral small molecule drugs that engage more than
40% polar contacts with their bound protein. HetID is the residue identifier
for the ligand in the PDB. Ratio refers to the ratio of polar contacts as
[polar/(polar+apolar)].

188



In the introduction of this chapter, a question was left open: is the size
and lipophilicity of small molecules inhibiting protein-protein interactions a
requirement that small molecules need to fill in order to bind to protein
interfaces? Although these molecules are on average lipophilic with few polar
features, Figure 4.20 (B) shows that they have polar atoms unmatched in the
binding site. Using TIMBAL database, I have extracted the seven cases where
there is structural information for both the small molecule-protein and the
protein-protein complexes. In all cases studied (see Table 4.9), the protein
interface has more available polar contacts than the small molecule uses to
bind to it. Figure 4.27 shows Bcl-XL binding to both BAD (magenta) and the
Abbott compound ABT-737 (cyan), dotted lines represent the polar contacts
each molecule does with Bcl-XL. This picture highlights the common pattern
for synthetic molecules: fewer anchor points (understood as more constrained
polar contacts) and more hydrophobic interactions that usually boost potency.
Small molecule inhibitors of protein-protein interactions do not take
advantage of the available polar contacts in the interfaces and only few of
them are engaged. For these seven cases, comparison of the interacting
residues in the target protein highlights that small molecules tend to use

more aromatic and less charged residues than the protein partner.
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(Rickert

et al.

1792 10nM 1PY2 60nM  2005)

IL-2 gy 935 way ) %21 (1cso)  (Thanos
et al.

2003)

2BZW 6nM 2YX] (Lee et

B-XL o 019 oo Y 008 oenm SR
(Kussie

et al.

1YCR 600nM  1T4E 670M  1996)
MDM2  ngy %1% ey () 99 kd)  (Grasber
ger et al.

2005)

(Liu et

1G3F ) 1TFT ~ al. 2000)

xiap 0 022 012 oet of
al. 2004)

(Mosyak

etal.
ZipA 1F47 0.10 21.6uM 1Y2F 0.00 12uM 2000)

(B:A) (Kd) (A) (Kd) (Rush et
al. 2005)
(Eck et
1TNF 2AZ5 al. 1989)
TNF (AB:C) 0.30 - (C&D) 0.12 13uM (He et
al. 2005)
(Rustand
i etal.
1DT7 3GK1 2000)
S100B (A:X) 0.34 - (A) 0.12 - (Charpe
ntier et
al. 2009)

Table 4.9. Examples of polar/sumContacts ratio for proteins that bind to
both protein partners (ratio p-p, left) and drug-like molecules (ratio p-sm,
right). The PDB code includes the interacting chains, for example
1TNF(AB:C) denotes chain A and B interacting with chain C of the TNF
trimer, whereas 2AZ5 (C&D) denotes chains C and D interacting with the
small molecule. When available, affinity measure and units is specified in
table. See Figure 5.24 to Figure 5.30 for a graphical representation of these
examples.
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4.3 RESULTS

Figure 4.27. Bcl-XL bound with one of its putative partners (BAD, in
magenta, PDB 2BZW) and with small molecule inhibitor (ABT-737, in cyan
PDB 2YXJ). Only polar contacts are shown for clarity. Colour of the contacts
(in dotted lines) is the same as the molecules making them. Synthetic
molecule only uses a fraction of the polar contacts available for the natural
counterpart.

4.3.10 Natural molecules and small peptides

Table 4.10 contains selected examples for proteins where there are
structural data for both complexes, i.e. the protein target to the natural
molecule or bound to a small peptide, as well as bound to a drug-like

molecule. Figure 4.28 shows an example for each of these two classes.

Classical kinase inhibitors compete with endogenous nucleotides. There
is @ dramatic decrease in the polar/apolar ratio for kinase inhibitors compared
with the ratio for the ADP, for example Abl kinase and MK2 in Table 4.10.
However, these endogenous ligands do not need to cross the cell membrane.
Indeed, the more polar drug-like kinase inhibitor of MK2 is reported to be
inactive in cellular assays (Wu et al. 2007). It seems that drug-like molecules

mimic natural ligands by engaging just a few of the available polar contacts
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and raise affinity by increasing the lipophilicity, as too much polarity is not
good for permeability (high probability of good rat bioavailability when PSA<=
140 and rotBonds <= 10, (Veber et al. 2002)). This might hold true for
classical drug targets where much has been done to optimise molecular
recognition and absorption. However, many authors ((Hann 2011), and
references therein) associate high lipophilicity of the compounds entering
drug development (amongst other factors) for the high failure rate of clinical

candidates.

A comparison of small peptides and drug-like molecule binding to the
same site demonstrates a smaller number of polar interactions but the
difference is not as dramatic as for endogenous ligands. Table 4.6 shows that
small peptides are not as polar (by the count of heteroatoms) as the
endogenous ligands but they are much more flexible. When compared with
drug-like molecules, we can understand the ability of small peptides to
engage polar contacts by their flexibility, where drug-like molecules tend to

be rigid scaffolds to minimise entropy lost upon binding.
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Target PDB  Ratio Affinity PDB  Ratio Affinity refs
p-nat  p-nat p-DL  p-DL

Visfatin 2G9%6 0.29 53uM 2G97 0.07 0.15uM (Kim et

(A&B) (Ki) (A&B) (Ki) al.

2006)

Abl 2G2I  0.39 - 2HZI 0.06 70nM  (Levins

Kinase (A) (B) (IC50) on et

al.

2006;

Cowan-

Jacob

et al.

2007)

MK2 INY3 0.61 - 2PZY  0.28 34nM (Under

(A) (A) (IC50) wood et

al.

2003;

Wu et

al.

2007)

HIV 1A94 0.37 14nM 1D4Y 0.29 8pM (Thaisri

Protease (D&E) (Ki) (A&B) (Ki) vongs

et al.

1996;

Wu et

al.

1998)

Phospho 201N 0.20 - 2B17 0.13 620nM (Singh

lipase A2 (A) (A) (Ki) et al.

2006)

Alpha- INY2 0.33 1.75mM 1BCU 0.20 0.53mM (Conti

Thrombin (2) (Ki) (H) (Kd) et al.

1998;

Pillai et

al.

2007)

Table 4.10. Examples of polar/sumContacts ratio for proteins that bind to
both natural molecules, including small peptides (ratio p-nat, left) and drug-
like molecules (ratio p-DL, right). The PDB code includes the interacting
chains, for example 2G96(A&B) denotes chains C and D interacting with the
small molecule. When available, affinity measure and units is specified in
table. The three first target proteins bind to natural molecules and drug-like
ones. The last three target proteins bind to small peptides and drug-like
ones.
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4.3 RESULTS

Figure 4.28. Examples of natural molecules (magenta) and drug-like
molecules (cyan) binding to the same protein target. Only polar contacts are
shown for clarity. Colour of the contacts (in dotted lines) are the same as
the molecules making them. LEFT: Visfatin with Nicotinamide
Mononucleotide (2G96) and FK-866 (2G97). RIGHT: Phospolipase A2 with a
tetrapeptide (201N) and Diclofenac (2B17). In both cases synthetic
molecules only use a fraction of the polar contacts available for the natural
counterparts.
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Comparisons between the different sets of molecules consistently show
more polar interactions between natural molecules (protein with protein,
small peptides and natural molecules) than protein with synthetic drug-like
molecules. Drug-like molecules are dominated by apolar contacts, specially
the subset of molecules inhibiting protein-protein complexes. This is in
accordance with the ITC data studied by Olsson et al. (Olsson et al. 2008),
which demonstrated that synthetic molecules binding to proteins have greater

entropic contributions than natural molecules.

On the other hand, it has been shown that small fragments present a
more balanced signature with higher polar / apolar ratio than the average
drug-like molecules. In fact, fragment hits are usually very polar and water-
soluble (Congreve et al. 2008) (as they need to be in the high concentration
format assay) and initial data show that they tend to present favourable
enthalpy of binding (Ladbury et al. 2010). Being small and polar, fragments
have a minor contribution from water displacement and therefore favourable
enthalpic interactions have to overcome the entropic rigid body penalty
(Ladbury et al. 2010). Indeed drug-like fragments have a higher proportion of
polar contacts than bigger drug-like molecules. Similar results have been
found by Ferenczy and Keseru (Ferenczy et al. 2010), analysing
thermodynamic and structural data from public available databases. These
authors found that, for maximal affinity compounds, binding is enthalpically

driven for small ligands and entropically for larger ones.

Regarding protein-protein interfaces, quaternary interfaces (homo and
heterogenic) have the same proportion of polar contacts as obligate dimers,
whereas the transient dimers are slightly more polar than previously found
(Nooren et al. 2003) and more similar to the small peptides subset. Overall,
protein complexes present more polar interactions than synthetic drug-like

molecules. Analysis of the protein complexes successfully inhibited by small
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molecules, shows that these interfaces do not differ from other protein-
protein interfaces, however the small molecules inhibiting them are at the
apolar end of the already lipophilic drug-like spectrum. Furthermore, it was
shown in chapter 2 that this type of molecules did not increase on average
the numbers of hydrogen bond features with increase of molecular size, i.e.
small efficient binders have on average the same number of hydrogen bond

donors and acceptors than bigger less efficient molecules.

Having arrived at this conclusion I can argue that there are two
plausible scenarios: (i) the proportion of polar contacts can not be improved
for drug molecules due to the characteristics of druggable binding sites and
the molecular property profile required of a drug, or (ii) improving the polar
nature of drugs is hard but doable, although medicinal chemistry settings are

not optimised for it.

Analysis of four individual protein targets with a menagerie of small
molecules exemplifies the fact that, although there is a range of polarity and
other properties specific for each target, it is possible to develop oral drugs
with higher content in matched polar atoms. Moreover, it has been shown
that there is no correlation between alogP and the proportion of polar
contacts in the binding mode. This result is encouraging, as it shows that the
second scenario is likely, and it is possible to increase specific interactions

without lowering too much the lipophilicity of the molecules.

Indeed, current drug discovery practises are being scrutinised by
thermodynamic studies (Freire 2008; Olsson et al. 2008; Ferenczy et al. 2010;
Ladbury et al. 2010). Retrospective analyses of two different targets, HIV-1
protease inhibitors and statins by Freire (Freire 2008) indicated that binding
enthalpy gets better whilst improving already marketed drugs. This process,
however has taken more than ten years with the current drug development
settings. There is an emerging and also controversial (Erlanson 2011)

viewpoint, suggesting that ligand interactions that enhance the enthalpic
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contribution to binding are critical to optimise drugs and promotes the early
use of thermodynamic assays in drug discovery (Freire 2009; Ferenczy et al.
2010; Ladbury 2010). Following the ligand efficiency metric (Hopkins et al.
2004), enthalpic efficiencies have been defined (Ferenczy et al. 2010;
Ladbury et al. 2010) to guide prioritisation and modification of compounds
towards a more balanced thermodynamic signature. Also, definition of ligand
lipophilicity efficiency (LLE) (Leeson et al. 2007) and ligand efficiency indices,
including polarity of molecules (Abad-Zapatero et al. 2010), for monitoring
increase affinity without increasing much lipophilicity. Engineering polar
contacts is an arduous task, as structural information is not always available,
but thermodynamic assays may help medicinal chemists deliver less
hydrophobic leads. It has also been suggested that increasing enthalpic
contributions should be done from the starting small hits, as maximal

enthalpy negatively correlates with ligand size (Ferenczy et al. 2010).

Furthermore, the more polar profile of natural molecules and small
peptides is due to interplay between flexibility (measured by number of
rotatable bonds) and number of heteroatoms to give the general interaction
profile. Drug-like and natural molecules have similar numbers of rotatable
bonds whereas small peptides are much more flexible. In contrast, drug-like
molecules and small peptides have less heteroatoms than natural molecules.
Therefore the more polar interaction profiles for natural products and
endogenous molecules are due to more heteroatoms in the right constrained
conformation. In comparison, small peptides engage more polar contacts due
to their flexibility that allows them to reach specific interactions. Finally,
looking at the proportion of these heteroatoms being matched I found that
drug-like molecules have a larger proportion of unmatched polar atoms than
the natural molecules, especially oral drugs and inhibitors of protein
complexes. It seems that synthetic molecules are not making the most of
their polar composition. However, that is easier said than done. Even when

the protein target is known and structurally characterised, the design of polar
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interactions is far from trivial and involves more than achieving the required

atomic geometry (Freire 2009).
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Molecular recognition is a complex event. It depends on the location
and concentration of the molecules involved, their plasma or tissue
distribution as well as physiological conditions. Structural dynamic fluctuations,
protonation states and tautomerisms are important. In fact, atomic
interactions are just one the many factors involved in molecular recognition.
However, in the case of drugs, they are key to the association of binding
affinity with molecular properties, which in turn will impact in the ADMET
(Absorption, Distribution, Metabolism, Excretion and Toxicity) profile of the
synthetic candidates. Currently, there is a consensus in the drug research
community to try to keep these molecular properties within a “safe” range of
drug-like space, particularly in keeping lipophilicity low. In this chapter I have
analysed the atomic contacts between different sets of molecules, divided into
natural and synthetic ones. The results presented here show that natural
complexes typically engage more polar interactions than synthetic molecules
bound to proteins. These drug-like molecules also have a higher proportion of
unmatched heteroatoms than the natural sets and probably for this reason,
show no correlation between alogP and proportion of polar contacts,
suggesting there is room to improve specific interactions without changing
drastically the molecular properties of drug-like compounds. Nevertheless, the
ratio of polar versus apolar contacts is greater when the size of the synthetic
molecules is smaller. In other words, synthetic small fragments seem to
anchor in sites with more specific interactions than the average size drug
molecule. It has been discussed in recent conferences and meetings in the
field, that one should aim to improve affinity of fragments before adding
molecular weight in order to maximise the interactions with the original site
hot spot. In this way, the starting point will have a path to grow to with more
chances to succeed as a drug. For drug-like molecules in general, but in
particular for the inhibitors of protein-protein interactions, I conclude that
efforts should be invested to maximise polar contacts to better resemble the

interaction patterns that natural molecules present as well as to minimise
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promiscuity and poor ADMET profile. For all the reasons discussed here, it
seems important to undertake this challenging task as early as possible in the
discovery process, not only because it is the more feasible but also because it

should ultimately reduce the costs of delivering safe drugs to the market.
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Chapter 5

Structural features of binding sites in
protein-protein and protein-small
molecule complexes
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We have seen in chapter 4 the interaction profiles of protein-small
molecule and protein-protein complexes with emphasis on the properties of
the small molecules. In brief, they demonstrate that protein complexes and
natural molecules tend to interact with higher ratios of polar to non-polar
contacts than drug-like molecules. This chapter is concerned with the
structural characteristics of the binding sites for these complexes, with the
aim of highlighting differences, if any, between binding sites for each type of

molecule studied in chapter 4.

Characterization of binding interfaces is crucial for the understanding
and prediction of molecular recognition and it is not surprising that it has
been the focus of many studies from different disciplines, for example binding
dynamics, distinction of crystal contacts from biological relevant interactions
in the X-ray structures, protein-protein docking scoring functions, homology
modelling of protein complexes, protein engineering, quaternary structure
generation, druggability target assessment, insight into toxicology issues due
to promiscuous binding sites and prediction of function for orphan proteins. I
summarise here other attempts to predict druggability and characteristics of
protein-protein interfaces, including the subset that is known to be inhibited

by small molecules.

Two factors define a druggable protein target. First its modulation has
therapeutic effect and second it is able to bind to a small drug-like molecule
(Hopkins et al. 2002). Druggability predictors usually refer to the latter,
recently redefined as “ligandability” (Edfeldt et al. 2011), mostly when the 3D

structure of the target or a close analogue is known. These methods identify
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and score pockets (or cavities) at the protein surface in terms of their
likelihood of accommodating a small drug molecule. We can classify available
tools by the algorithms that detect cavities and the scoring schemes that rank
them (Perot et al. 2010). Comparative studies of the most commonly used
tools are also available (Oda et al. 2009; Schmidtke et al. 2010) as well as
servers that generate consensus solutions from several predictors, see for
example (Zhang et al. 2011). Overall, the classification of protein-binding
sites in terms of its druggability is centred on the identification and
description of the available pockets. However, the definition of what is a
pocket is not trivial and consequently has not been yet standardised (Fuller et
al. 2009). Indeed, different pocket detection programs will give different
results, and matching the ligand putative binding site is not always
guaranteed (Capra et al. 2009). In addition, druggability scores are also
biased by the training set, which usually includes only a few negative cases,
and have low prediction power for new targets like protein-protein
interactions. Nevertheless, an open source repository of druggable and un-
druggable proteins is maintained to help to improve druggability scores
(http://fpocket.sourceforge.net/dcd). For instance, analysis of these
structures reveals that in addition to shape and hydrophobicity of the cavities,
polar groups have an important role in molecular recognition and should be
considered in the druggability predictions (Schmidtke et al. 2010).

Regarding residue propensity at the drug-like binding interfaces, Soga
et al. (Soga et al. 2007) found that drug binding sites are richer in aromatic
residues and Met, and are depleted in Pro, Lys, GIn and Ala. This study
considered a 41-member, non-redundant set of proteins complexed with
drug-like molecules and compared the residue composition at the binding
interface (defined as residues within 4.5 of the drug-like ligand) with the
residue composition at the surface of a non-redundant set of 756 protein

complexes.
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Numerous studies have analysed protein-protein interfaces deriving
typical ranges for several interface properties, see for example (Nooren et al.
2003; Ofran et al. 2003; Janin et al. 2007; Keskin et al. 2008; Yan et al.
2008). Naturally, these ranges depend on the data analysed and the
definition of what constitutes an interface, as well as the classification used to
divide protein complexes into different types. Here, I briefly summarise the
findings of Richard Bickerton from his analysis of the PICCOLO database
(Bickerton 2009; Bickerton et al. 2011).

The non-redundant set of protein interfaces studied in this chapter is
the same as Bickerton generated for his research. The findings highlight the
similarity between the interface core and the protein core, and the interface
periphery and the exposed protein surface. The core of the interface is more
hydrophobic than the interface periphery; it is enriched with hydrophobic
residues (Ile, Val, Leu, Phe, Met and Ala) and depleted of polar and charged
residues (Asp, GIn, Asn, Glu, Lys and Arg). Between obligate and transient
dimers, the obligate interfaces are more hydrophobic than the transient ones.
In terms of pairing preferences, hydrophobic interactions, hydrogen bonds,
salt bridges and disulphide bonds are important in macromolecular
recognition. Hydrophobic residues favour other hydrophobic and avoid polar
and charged residues. Aromatic residues prefer other aromatic or hydrophobic
residues, although they also often interact with ions through the CH and the
n system. Prolines interact significantly more with aromatic than other
residue types. Positive charged residues (Arg, Lys and His) favour negative
charged ones (Glu and Asp) but Arg-Arg, His-His and Arg-His are also
common due to aromatic interactions, pi-cation and hydrogen bonds (with the
main chain atoms) due to the versatile capability of these side chains.
Regarding the number of contacts normalized by interface area, protein-
protein complexes have on average 4% of the total contacts as hydrogen

bond, 11% as ionic (including some of the hydrogen bonds), 10% as pi-cation,
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10% as aromatic and 39% as hydrophobic. These average ratios are slightly
different for transient and obligate dimers: 4% hydrogen bond, 8% ionic,
11% pi-cation, 11% aromatic and 40% hydrophobic for obligate dimers and
4% hydrogen bond, 12% ionic, 10% pi-cation, 8% aromatic and 36%

hydrophobic for transient complexes.

Fuller and co-workers analysed the interfaces of several non-redundant
sets of protein complexes (Fuller et al. 2009), including 134 protein-small
molecule, 97 pairwise non-obligate hetero protein-protein complexes, 50
protein-marketed drugs and 24 small molecule inhibitors of protein-protein
interactions. Their analysis was based on pocket identification using the
program Q-SiteFinder (Laurie et al. 2005). The authors found that classical
small molecules bound to proteins tend to occupy a single large pocket,
whereas protein-small molecule inhibitors of protein-protein interactions
target several smaller pockets in the same fashion as protein-protein
complexes. Furthermore, they found that the pockets in protein-protein
interfaces are often preformed in the free monomer and bound state,
although there is an increase in the pocket volume upon binding, suggesting
some degree of site adaptability, at least from the side chain atoms.
Interestingly, this study showed that all ligands targeting the IL-2/IL-2Ra
interaction bound not only to residues in the interface but also to residues
that are not in direct contact between the two proteins. With respect to
protein complexes with small molecules, Fuller et al. found that marketed
drugs are the group that fill most efficiently the available volume in the active

site pocket.

The 2P2I resource (Bourgeas et al. 2010) is a hand-curated database
of the structures of protein-protein complexes with known inhibitors. Only
targets with structural information for both the protein-protein complex and

the protein-inhibitor complex are included in the database. In the first release,
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there were 17 protein-protein and 56 protein-small molecule inhibitors and
with these data the authors analysed the characteristics of the protein
interfaces that I report here. Although a recent update (Morelli et al. 2011)
has removed some of the entries (2P2I has now 12 protein-protein complexes
with 39 non-redundant protein-small molecules), the original analysis gave a
general overview of the protein-protein interfaces. Contrary to the views often
expressed that some degree of site adaptability has to occur at the interface
of protein complexes in order to bind to a small molecule (Wells et al. 2007)
and in agreement with Fuller et al (Fuller et al. 2009), Bourgeas and co-
workers found that the root mean square deviation (rmsd) of the alpha-
carbons of the bound protein complexes, the monomer and the monomer
bound to a small molecule were in the same range as the resolution of the
crystal structures, 1.12 + 0.4A on average. The authors analysed the
structural data from these interfaces and compared them with representative
heterodimeric protein-protein complexes. A classification of these protein-
protein complexes was proposed, based on the number of continuous
segments at the interface. Class I includes complexes with a few segments,
three on average, and usually one of the partners is a small peptide or can be
replaced by one. These complexes are also richer in elements of secondary
structure at the interface, are more ordered and present lower affinity (in the
micromolar range); they are also the complexes with the higher number of
small molecule inhibitors. Class II complexes are usually formed by two
globular proteins. They have more continuous segments, eight on average,
and a higher proportion of unstructured elements at the interface and have
affinities in the nano or sub-nanomolar range. In comparison with transient
heterodimers, protein complexes with known inhibitors have on average,
smaller interface size, similar geometric shape but fewer pockets, more
hydrogen-bonds, fewer salt bridges (with the exception of IL2/IL2Ra) and

fewer charged residues.

A recent report by Kozakov et al (Kozakov et al. 2011) analysed
druggability of ligand-hot spots at the interfaces of 15 protein-protein
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complexes. The authors defined hot spots computationally, by solvent
mapping the protein surface with 16 different chemical probes. For each
probe, they clustered minimised docked poses and retained the lowest energy
ones, authors called these ‘probe clusters’. Then, these low energy poses
were clustered again. Hot spots were defined as the consensus sites where
multiple probes converged. These consensus sites were further expanded by
side-chain flexibility for selected residues close to the original hot spot. In this
way, druggable ligand-hot spots at protein-protein interfaces appear to be
concave pockets with a “mosaic-like” pattern of hydrophobic and polar
functionality, which are able to bind at least 16 probe clusters and one or two
neighbouring hot spots. The authors concluded that these sites therefore
have the ability to bind to hydrophobic drug-like molecules with some polar
functionality. However, at least to my view, this ability is in part due to the
methodology used to identify these hot spots. First, consensus sites were
ranked by the number of probe clusters bound to them, where these probe
clusters can be from different chemical probes. Secondly, the selection of
close residues to explore flexibility was restricted to residues that have a least
75% of the total hydrophobicity calculated for all surface residues.
Nevertheless, the authors successfully classify protein-protein targets as well
as classical targets (in the supplementary information of the publication) with

this approach.

The focus of this chapter is on the structural characteristics of the
binding sites for the different types of complexes studied in chapter 4:
protein-protein, protein-natural molecules, protein-small peptides and protein-
synthetic small molecules (drugs and drug-like). Starting with a discussion of
binding site definitions and the assessment of pocket detection algorithms, I
analyse the residue propensity at the interfaces, the proportion of main chain
as well as polar atoms at the interfaces, the depth of the protein contacting

atoms and the density of contacts for each type of complexes.
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5.2 METHODS

5.2 Methods

5.2.1 Subsets definitions

Protein complexes studied here are the same as those described in
chapter 4. See 4.2.3 for details. They are: small molecules protein-protein
interactions inhibitors, small natural molecules, small peptides, drug-like small
molecules, approved and oral drugs, obligate and transient dimers and
protein-protein interfaces from quaternary assemblies. However, as this
chapter focuses on the binding sites, I have used datasets filtered for UniProt
and for SCOP family redundancy for the protein-small-molecule sets. See
table 4.1 and section 4.2.1.5 for details.

5.2.2 Definition of binding interfaces and binding pockets

Conceptually, the binding interface is the region between binding
partners. In this sense, a simple distance cut-off between atoms in the
different binding entities is sufficient to define the interface. However, this
definition is biased by what constitutes the binding entities and potentially can
leave out areas capable of binding (see Figure 5.1 for an example). In

addition, it is not suitable for un-bound structures.
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Figure 5.1. Structures of human IRAK-4 bound to different small molecules.
LEFT: Staurosporine, 2NRY. RIGHT: benzimidazole inhibitor, 2NRU. Cyan
cartoon represents the kinase domain; residues within 4.5A of each ligand
are displayed in magenta with stick representation of the side chains. The
frontal loop of the five non-contacting residues is not shown for clarity.

An alternative approach, used extensively for small molecule binding is
to use a cavity or pocket detection algorithm that will identify regions where a
small molecule can bind. Thus, binding interfaces in this context are
synonymous with the identified binding pockets, but this definition is not
unbiased as pocket detection methods depend on the technique and
parameters used (Fuller et al. 2009). For structures that are different from of
the training set used to calibrate these parameters, the pockets that actually
recognise ligands can be very different from what one would intuitively define
as a pocket (Capra et al. 2009). Furthermore, in order to use these algorithms
in an automated manner for broad datasets, they need to be accessible and
able to run stand-alone from a workstation. In the course of the analysis
presented here, I have used three pocket detection programs: ConCavity
(Capra et al. 2009), Fpocket (Le Guilloux et al. 2009) and ghecom (Kawabata
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2010) and compared them with the binding interfaces generated by a 4.5
cut-off distance between binding partners. ConCavity output is limited to a
residue-based score of the likelihood of a particular residue to belong to a
binding site. The program does not give geometric properties of the sites and

it will be not considered further.

For each subset protein redundancy has been removed using the
UniProt identifier (see Table 4.1). For these interfaces, the total number of
residues within 4.5A of the ligand or the other protein is recorded. Then, the
percentage of each amino acid (or amino acid type) per interface (%res;) is
the total number of amino acids i-res divided by the total number of all amino
acids at the interface:

Y.res;
Y res

%res; =

In this way, we can compare compositions of the different sets by
plotting the mean and standard error of these %res; values for all 20 standard
amino acids. The natural occurrence of each amino acid does not need to be
taken into account when comparing interfaces, as natural abundances for
each interface are the same for all. Comparison for all sets of molecules for all
20 standard amino acids is very content-rich, difficult to represent and to
interpret. For this reason, comparisons of amino acid types rather than
individual amino acids are also discussed here. There are several ways to
divide the natural amino acids into different types. This division depends on
the objective of the study. For further classification of these propensities
several side chain properties or amino acid types have been grouped

together:
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* Polarity
o Charged: Arg, Lys, Asp, Glu and His
o Polar: Asn, GIn, Ser, Thr, Tyr and Trp
o Hydrophobic: Ala, Gly, Cys, Val, Pro, Ile, Leu, Met and Phe
* Size
o Small (4-7 heavy atoms): Ala, Cys, Gly, Pro, Thr, Val and Ser
o Medium (8-10 heavy atoms): Asn, Asp, GIn, Glu, Ile, Leu,
Lys, Met and His
o Bulky (11-14 heavy atoms): Arg, Phe, Trp and Tyr
* Flexibility
o Constrained: Pro
o Free: Gly
o Rigid (0-1 rot bonds): Ala, Cys, Ser, Thr and Val
o Medium (2-3 rot bonds): Asn, Asp, GIn, Glu, Ile and Leu
o Flexible (4-5 rot bonds): Arg, Lys and Met
o Aromatic (2 rot bonds + aromatic ring): His, Phe, Trp and

Tyr

The ghecom program (Kawabata 2010) that detects pockets in protein
structures was used to calculate the depth of the protein atoms at the binding
interface. The idea behind this program is that a pocket is a region where a
small spherical probe can enter but a big one cannot. The radius of the
smallest big (inaccessible) sphere - Rinaccess - gives a measure of the
shallowness of the pocket. Kawabata has improved the performance of his
original program phecom (Kawabata et al. 2007), by using mathematical
morphology from set theory. For each atom of the protein, the Rinaccess
values of the surrounding spheres is averaged by harmonic mean (a special

case of the power mean):
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These values give a measure of the location of the atoms within the
pocket. The program uses several probes with radii from 1.87A to 10A.
Therefore a small value for Rinaccess means the atom is located deep within
the pocket, whereas a Rinacceess of 108, means the atom is in a convex area
or at the limits of the cavity. See Figure 5.2 for a schematic representation of

the Rinaccess calculation.

Figure 5.2. The concept of Rinaccess calculation. Reprinted from (Kawabata
2010). Three spherical probes are used: 3A, 4& and 5A&. Grid representation
captures the smallest of the larger spheres that cannot access the grid
point; the number represented is the radius of the sphere plus the grid
resolution. Red and blue shapes represent different ligands bound in
different regions of the pocket. The average of grid values per ligand gives
a measure of the depth where the ligand is bound.

5.2.5 Size of the protein in protein-protein complexes

The size of the protein is taken from the PICCOLO database (Bickerton
et al. 2011), as the number of standard residues composing the chain. Most
non-standard amino acids are not accounted for, as the database does not

consider them for the interaction pairs between chains.
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5.2.6 Statistical treatment

The significance of the comparisons between distinct sets has been
assessed by comparing medians of the calculated parameters. Because the
distributions of the parameters analysed are not always normal, the non-
parametric method of Kruskal-Wallis, implemented in the stats module in
scipy (Jones et al. 2001 - ), has been used for all comparisons. A difference is

labelled as significant if the P value is lower than 0.05.
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5.3 Results and discussion

5.3.1 Pocket detection algorithms

Fpocket output is information rich; not only does it provide geometric
properties of the cavities identified, but also chemical characteristics,
including a druggability predictor trained on small-pocket drug-like molecule
binders (Le Guilloux et al. 2009). However, manual inspection of several
examples indicated that the pockets found do not always match binding sites,
as the region occupied by the binding partner. Therefore, it would be difficult
to compare pocket properties across the subsets of molecules studied here.
For example, in the case of human IRAK-4, Fpocket predicts correctly the
binding site for Staurosporine. But to cover the binding site of the
benzimidazole inhibitor, merging of two predicted pockets is needed (see
Figure 5.3) Although this may be a meaningful result, as this inhibitor
stretches itself to occupy several pockets, this manual fine-tuning is not

possible for widespread comparisons and Fpocket was not used further.
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Figure 5.3. LEFT: IRAK-4 kinase domain (2NRU) bound to benzimidazole
inhibitor (not shown). The magenta region represents the residues in
contact with the inhibitor; coloured spheres represent the pockets predicted
by Fpocket, where each colour represents a different pocket. RIGHT:
Protein-based overlay of the pocket prediction from Fpocket shown on the
left with Staurosporine from 2NRY. The benzimidazole inhibitor is
represented by blue sticks, Staurosporine with magenta sticks. Note the
binding mode for benzimidazole inhibitor is covered by pocket 1 (red) and
pocket 4 (orange).

The program ghecom (Kawabata 2010), an evolved version of the
original phecom (Kawabata et al. 2007), gives atomic detail of the pockets
found on the protein surface. For all examples analysed, this program gives
the more consistent prediction of pockets. The cavities described by ghecom
are usually larger than the ones generated by other programs (see Figure 5.4
and Figure 5.5) but this characteristic is also what makes the output robust,
in the sense that all surface atoms are explored and described. However, it is
also the reason why this program is not considered further to define binding

interfaces, as it is too sensitive and not specific. Nonetheless, calculations of
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5.3 RESULTS AND DISCUSSION

atom accessibility performed by this program are used to study the depth of

the atoms at the interface.

Figure 5.4. Comparison of pocket detection by Fpocket (LEFT) and ghecom
(RIGHT) for the human IRAK-4 (2NRU). Ghecom gives one single large
pocket in the ATP binding site (magenta cloud), whereas Fpocket gives
several different ones. The small coloured clouds on the right picture are
the additional pockets found by ghecom.
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Figure 5.5. Comparison of the volumes for the pockets identified by Fpocket
(Y axis) and ghecom (X axis) programs for the small molecule data sets
(Drug-like, drugs, natural molecules and small peptides). These points
represent the volume of the pocket that matched the ligand bound. Red
straight line represents the line of slope one to aid comparison. One quarter
(23%) of the pockets have greater volume for Fpocket than ghecom.
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Figure 5.6. Comparison of the number of residues forming a pocket from
Fpocket (left) and ghecom (right) predictions versus the number of
contacting residues from the binding partner (buried residues). Red straight
line represents the line of slope one to aid comparison. For Fpocket, 23% of
the predicted pockets enclose fewer residues than the residues buried upon
binding, on average 77% of the binding site is covered for these cases. For
ghecom this proportion is less than 0.1%, and for these few cases more
than the 90% of the binding site is covered by the prediction.

In conclusion, taking into account that all molecules studied in this
analysis are complexed molecules, i.e. they are all bound to proteins, I define

the binding interface as the region containing the atoms that are within 4.5A
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5.3 RESULTS AND DISCUSSION

distance of any atom of the binding partner. In this way, comparisons
between subset-binding interfaces will refer from now on to the contacting
atom (buried) between partners. In the case of, for example, different
molecules binding to the same protein, differences at the interfaces will

reflect the way that each molecule interacts.

5.3.2 Residue propensity

This section investigates the residue propensity of the binding sites.
Assessment of the protein redundancy in the sets has been carried out by
comparing the residue propensities of each set of molecules with distinct
UniProt identifiers versus distinct SCOP families. Figure 5.7 to Figure 5.13
show the propensities for both levels of redundancy for all protein-small
molecule complex sets. The residue propensities do not vary much between
the two levels of redundancy, thus the analyses presented here use the

subsets with distinct UniProt identifiers, unless otherwise stated.

Residue Propensity at the Interface - Drug-like
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Figure 5.7. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (yellow) and SCOP family (orange)
for the drug-like set. Bar heights represent the mean percentage of each
residue at the interface. Error bars denote the standard error of the mean.
The background colour represents whether the residue is charged (red),
polar (orange) or hydrophobic (blue).
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Figure 5.8. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (cyan) and SCOP family (magenta)
for the approved drug set. Bar heights represent the mean percentage of
each residue at the interface. Error bars denote the standard error of the
mean. The background colour represents whether the residue is charged
(red), polar (orange) or hydrophobic (blue).
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Figure 5.9. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (green) and SCOP family (light
blue) for the oral drugs set. Bar heights represent the mean percentage of
each residue at the interface. Error bars denote the standard error of the
mean. The background colour represents whether the residue is charged
(red), polar (orange) or hydrophobic (blue).
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Residue Propensity at the Interface - PPI inhibitors
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Figure 5.10. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (magenta) and SCOP family (light
pink) for the small molecule PPI inhibitors set. Bar heights represent the
mean percentage of each residue at the interface. Error bars denote the
standard error of the mean. The background colour represents whether the
residue is charged (red), polar (orange) or hydrophobic (blue).
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Figure 5.11. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (purple) and SCOP family (bright
pink) for the natural molecules set. Bar heights represent the mean
percentage of each residue at the interface. Error bars denote the standard
error of the mean. The background colour represents whether the residue is
charged (red), polar (orange) or hydrophobic (blue).
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Figure 5.12. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (pale pink) and SCOP family (pale
green) for the natural molecules not containing phosphorus set. Bar heights
represent the mean percentage of each residue at the interface. Error bars
denote the standard error of the mean. The background colour represents
whether the residue is charged (red), polar (orange) or hydrophobic (blue).
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Figure 5.13. Comparison of residue propensities at the binding sites for the
two levels of protein redundancy, UniProt (blue) and SCOP family (grey) for
the small peptides set. Bar heights represent the mean percentage of each
residue at the interface. Error bars denote the standard error of the mean.
The background colour represents whether the residue is charged (red),
polar (orange) or hydrophobic (blue).
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Regarding the protein-protein complexes, residue propensity can be
studied for all chains of the assembly. In this work, I use PICCOLO interaction
data that it is structured into interacting pairs of chains. For analogy with the
protein-small molecules complexes I choose to represent only the propensity
of the long chain of the protein-protein interaction. In fact, this is an arbitrary
choice, as the multiple chains interacting in an assembly do not have
analogies with small molecule binding sites, but it eases the representation
and interpretation of the graphs. Figure 5.14 to Figure 5.17 show that there is
virtually no difference in the residue propensities of long and short chains of
the protein-protein complexes, with the exception of the transient hetero- and
homo-dimers. This difference might be due to the high proportion of
structures in this subset where one globular domain interacts with a shorter
peptide.
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Figure 5.14. Comparison of residue propensities for long chain (LC, pale
pink) and short chain (SC, magenta) of the homo quaternary interfaces of
the protein complexes. Bar heights represent the mean of the percentage of
each residue at the interface. Error bars denote the standard error of the
mean. The background colour represents whether the residue is charged
(red), polar (orange) or hydrophobic (blue).
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Figure 5.15. Comparison of residue propensities for long chain (LC, pale
orange) and short chain (SC, green) of the hetero quaternary interfaces of
the protein complexes. Bar heights represent the mean of the percentage of
each residue at the interface. Error bars denote the standard error of the
mean. The background colour represents whether the residue is charged
(red), polar (orange) or hydrophobic (blue).
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Figure 5.16. Comparison of residue propensities for long chain (LC, bright
green) and short chain (SC, blue) of the obligate protein dimers. Bar heights
represent the mean of the percentage of each residue at the interface. Error
bars denote the standard error of the mean. The background colour
represents whether the residue is charged (red), polar (orange) or
hydrophobic (blue).
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Figure 5.17. Comparison of residue propensities for long chain (LC, bright
green) and short chain (SC, blue) of the transient protein dimers. Bar
heights represent the mean of the percentage of each residue at the
interface. Error bars denote the standard error of the mean. The background
colour represents whether the residue is charged (red), polar (orange) or
hydrophobic (blue).

5.3.2.1 Charged, polar and hydrophobic

This classification allows comparison of binding sites with respect to
the binding profile they present, in terms of polar and apolar interactions
discussed in chapter 4. The classification considers the side chains only;
therefore the charged residues are Arg, Lys, Asp, Glu and His, the polar
residues are Asn, GIn, Ser, Thr, Tyr and Trp, and the hydrophobic residues
are Ala, Gly, Cys, Val, Pro, Ile, Leu, Met and Phe.
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Figure 5.18. Comparison of residue propensities at the binding sites for
drug-like (yellow) versus natural molecules (purple). Bar heights represent
the mean percentage of each residue at the interface. Error bars denote the
standard error of the mean. The background colour represents whether the
residue is charged (red), polar (orange) or hydrophobic (blue).
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Figure 5.19. Comparison of residue propensities at the binding sites for
natural molecules (purple) versus natural molecules without phosphorus
(pale pink). Bar heights represent the mean percentage of each residue at
the interface. Error bars denote the standard error of the mean. The
background colour represents whether the residue is charged (red), polar
(orange) or hydrophobic (blue).

Comparison of the residue compositions between drug-like and natural

molecules highlights the more hydrophobic and aromatic character of the
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drug-like binding sites (Figure 5.18), as found previously by Soga et al. (Soga
et al. 2007). Natural binding sites have on average more non-aromatic and
polar residues. Interestingly, natural molecules also interact more with
glycines than the synthetic molecules. This may reflect the preference of
these molecules for binding through main chain NH and CO. But also the
presence of glycine-rich loops that often recognise phosphate groups via
hydrogen bonds with the main chain nitrogen atoms (Gherardini et al. 2010).
Indeed, comparison of the residue composition of the natural-binding sites
versus the binding sites of natural molecules that do not contain phosphorus
(Figure 5.19) shows an increase of glycine content for binding sites containing
phosphate molecules. However, the proportion of glycines in natural binding
sites is higher than in synthetic-molecule binding sites regardless of the
phosphorus content, as mentioned before probably reflecting a tendency of
these types of molecules to interact with main chain atoms. For classical drug
targets, drug-like molecules typically bind to endogenous small molecule
binding sites. The difference between natural and drug-like binding sites
reflects either that the sites compared are very diverse between sets or that
drug-like of molecules avoid the regions where the natural molecules bind, for

example the phosphate-binding region of ATP in protein kinases.

In comparison with protein-protein interfaces, drug-like molecules also
bind to more hydrophobic sites, whereas the content of charged residues is
greater in protein-complexes (Figure 5.20). Obligate protein complexes have
on average more hydrophobic residues at the binding interface and less polar

and charged residues compared to transient complexes (Figure 5.21).
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Figure 5.20. Comparison of residue propensities at the binding sites for
drug-like (yellow) versus protein-protein quaternary hetero interfaces (pale
pink). Bar heights represent the mean percentage of each residue at the
interface. Error bars denote the standard error of the mean. The background
colour represents whether the residue is charged (red), polar (orange) or
hydrophobic (blue).
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Figure 5.21. Comparison of residue propensities at the binding sites for
obligate dimers (bright green) versus transient dimers (dark blue). Bar
heights represent the mean percentage of each residue at the interface.
Error bars denote the standard error of the mean. The background colour
represents whether the residue is charged (red), polar (orange) or
hydrophobic (blue).
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Figure 5.22 shows the proportions of charged, polar and hydrophobic
residues for all subsets. The proportion of charged residues in protein-protein
complexes is significantly greater (P < 0.05) than that of the small molecule
subsets. In contrast, the proportion of hydrophobic residues for small
molecule inhibitor complexes with proteins is significantly greater than that
for complexes with small peptides and proteins. Small peptide complexes are
similar to transient dimers, having a greater proportion of polar residues than

other subsets. In particular, transient dimers have more polar and fewer
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Figure 5.22. Average proportion of charged (red), polar (orange) and
hydrophobic (blue) residues at the interfaces for each molecular subset at
the UniProt level: Drug-like, Approved drugs, Oral drugs, small molecule
protein-protein (PP) interaction inhibitors, natural molecules, natural
molecules without phosphorous, small peptides, PP obligate dimers, PP
transient dimers, PP hetero- quaternary interfaces and PP complexes
successfully inhibited by small molecules. For the PP complexes, only the
long chain is considered.
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5.3.2.1.1 Protein-protein complexes inhibited by small molecules

Residue Propensity at the Interface

20—
Charged Polar Hydroph
[¢5)
()
S
S 15| i
)
=
.
O© =
w
S10f ]
=l
D
o
=
s S 1
(3]
b
(o] L
O UV o D UV Z Z2 @ £ o O < > vV 24 O W D - w
L 3T 2 3 T Q@ o B E EII oo sSg=494¢&F
| PPI inhibitors PP Inh by SM LC

Figure 5.23. Comparison of residue propensities at the binding sites for
small molecule protein-protein inhibitors (magenta) versus protein-protein
complexes inhibited by them (cyan). Note these subsets are small (9 and 7
complexes respectively). Bar heights represent the mean percentage of each
residue at the interface. Error bars denote the standard error of the mean.
The background colour represents whether the residue is charged (red),
polar (orange) or hydrophobic (blue).

Regarding protein-protein complexes inhibited by small molecules,
Figure 5.23 shows the comparison of the residue propensities for the protein
interfaces that have been independently structurally determined bound to
both partners: the protein partner and the small molecule inhibitor. These
cases are S100B, IL-2, MDM2, ZipA, XIAP, Bcl-XL, Bcl-2, and TNF alpha.
There are nine distinct UniProt protein-small molecule complexes and seven
protein-protein complexes. The high standard error bars denote the variability
and the small size of the sets. However, it is clear from this comparison that
the small molecules avoid contact with the available charged and polar
residues in favour of interacting with the hydrophobic ones. Indeed, small
molecules occupy only a portion of the protein-protein binding interface, and
they tend to maximise the hydrophobic contacts rather than the polar ones.
This may be a result of the small molecules binding at the hot spots of the

interfaces, especially in the standard medicinal chemistry settings where the
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pursuit of affinity is prioritised. However, these molecules seem to be missing
the specific contacts that would confer them selectivity towards these
interfaces. However, hydrogen bond matching at an open interface might
require a degree of flexibility that it is harder to design and successfully
achieve, and it could explain the low content of hydrogen bonds in the first
successful small molecule inhibitors of protein-protein interactions. Figure

5.24 to Figure 5.30 show a graphical representation of these binding modes.

C
$1008B / p53

Figure 5.24. S100B. Upper left: 1DT7, S100B (cyan) with the C-terminal
negative regulatory domain of p53 (green). Lower right: 3GK1, S100B (dark
grey) with small molecule inhibitor (green). The surface covers the S100B
residues that are within 4.58 of p53. For both complexes polar contacts are
red dotted lines and apolar are blue dotted lines.
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Figure 5.25. IL-2. Upper left: 1792, IL-2 (cyan) bound to IL-2R alpha
subunit (green). Lower right: 1PY2, IL-2 (dark grey) with a Sunesis small
molecule inhibitor (green). The surface covers the IL-2 residues that are
within 4.58 of the IL-2Ra. For both complexes polar contacts are red dotted
lines and apolar are blue dotted lines.
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Figure 5.26. MDM2. Upper left: 1YCR, MDM2 (cyan) bound to the
transactivation domain of p53 (green). Lower right: 1T4E, MDM2 (dark grey)
with a benzodiazepine inhibitor (green). The surface covers the MDM2
residues that are within 4.58 of the p53. For both complexes polar contacts
are red dotted lines and apolar are blue dotted lines.
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Figure 5.27. ZipA. Upper left: 1F47: ZipA (cyan) bound to a fragment of
FtsZ (green). Lower right: 1Y2F: ZipA (dark grey) with an aminopyrimidine
inhibitor (green). The surface covers the ZipA residues that within 4.5A of
the FtsZ. For both complexes polar contacts are red dotted lines and apolar
are blue dotted lines. Note the small molecule does not engage a single
polar contact.
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XIAP/ Smac

Figure 5.28. XIAP. Upper left: 1G3F, BIR3 domain of XIAP (cyan) bound to
an active nine-residue peptide derived from Smac (green). Lower right:
1TFT, XIAP (dark grey) with a small molecule inhibitor (green). The surface
covers the XIAP residues that within 4.5A of the Smac fragment. For both
complexes polar contacts are red dotted lines and apolar are blue dotted
lines.
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Bcl-XL /BAD

Figure 5.29. Bcl-XL. Upper left: 2BZW, Bcl-XL (cyan) bound to BAD (green).
Lower right: 2YXJ, Bcl-XL (dark grey) with the Abbott compound ABT-737
(green). The surface covers the Bcl-XL residues that within 4.5& of BAD. For
both complexes polar contacts are red dotted lines and apolar are blue
dotted lines. Note that the small molecule only engages polar contacts at
the bottom of the picture and it is bound to Bcl-XL mainly though apolar
contacts.
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g / \ TNF (AB) / TNF(C)

Figure 5.30. TNF. Upper left: 1TNF, TNF alpha trimer, two chains are
coloured in cyan and the third in green. Lower right: 2AZ5, two chains of
the TNF trimer (dark grey) bound to a small molecule (green) that
accelerates subunit dissociation. The surface covers the residues in these
chains that are within 4.5A of the third chain. For both complexes polar
contacts are red dotted lines and apolar are blue dotted lines. Note small
molecule binds to an area where there are no interactions in the trimer.

5.3.2.2 Small, medium and bulky

Here, residues are grouped by the number of their heavy atoms. In
this way, small residues (4-7 heavy atoms) are Ala, Cys, Gly, Pro, Thr, Val
and Ser. Medium (8-10 heavy atoms) are Asn, Asp, Gin, Glu, Ile, Leu, Lys,
Met and His. Bulky residues (11-14 heavy atoms) are Arg, Phe, Trp and Tyr.
This classification gives a rough measure of the exposure of the main chain
atoms. If a site is composed of many bulky side chains, in principle the main
chain atoms will be more occluded from interacting with the binding partner.
In this respect, natural molecules have a significantly higher proportion of
small side chains and a lower percentage of bulky residues. Figure 5.31

shows the proportion of these residue types for all subsets. Small molecule
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protein-protein inhibitors have a significantly greater proportion of bulky

residues in comparison with natural molecules and protein complexes, but the

difference with the other sets of synthetic molecules (drugs and drug-like) is
not significant.
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Figure 5.31. Average proportions of small (cyan), medium (green) and bulky
(magenta) residues at the interfaces for each molecular subset at the
UniProt level: Drug-like, Approved drugs, Oral drugs, small molecule
protein-protein (PP) interaction inhibitors, natural molecules, natural
molecules without phosphorous, small peptides, PP obligate dimers, PP
transient dimers, PP hetero quaternary interfaces and PP complexes
successfully inhibited by small molecules. For the PP complexes, only the
long chain is considered.
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5.3.2.3 Constrained, free, rigid, medium, flexible and aromatic

In order to have an estimate of the “softness” or adaptability of the
binding interfaces, residues are classified by the number of rotatable bonds in
the side chain. Proline and Glycine are separated into constrained and free

groups respectively. Rigid residues are those with none or one rotatable bond
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in the side chain, they are Ala, Cys, Ser, Thr and Val. Medium flexible residues
have 2-3 rotatable bonds and small functional groups and are Asn, Asp, GIn,
Glu, Ile and Leu. Flexible residues have 4-5 rotatable bonds; they are Arg, Lys
and Met. Finally all aromatic residues have two rotatable bonds and an
aromatic ring; they are His, Phe, Trp and Tyr. Figure 5.32 shows the
proportion of these residue types across all subsets. Proline content is
significantly greater at protein-protein interfaces, especially for obligate
dimers, and natural molecules. Natural molecules have a greater proportion of
glycines at their binding interfaces than other molecular subsets. Aromatic
content is greater for synthetic molecules, small peptides and natural
molecules without phosphorus, compared to protein complexes and natural
molecules. Protein-protein complexes have a significantly greater proportion
of flexible residues than small molecule interfaces, suggesting these
complexes might have a greater ability to adapt to the binding partner than

the preformed pockets where small molecules usually bind.
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Figure 5.32. Average of the proportion of constrained (yellow), free
(orange), rigid (red), medium (green), flexible (cyan) and aromatic (blue) at
the interfaces for each molecular subset at the UniProt level: Drug-like,
Approved drugs, Oral drugs, small molecule protein-protein (PP) interaction
inhibitors, natural molecules, natural molecules without phosphorous, small
peptides, PP obligate dimers, PP transient dimers, PP hetero quaternary
interfaces and PP complexes successfully inhibited by small molecules. For
the PP complexes, only long chain is considered.
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5.3.3 Proportion of main chain atoms at the binding interfaces

In order to have an indication of the flexibility and robustness to
mutation of the protein side, the main chain atoms have been counted in the
binding sites of each subset. Figure 5.33 shows the average proportion of
main chain atoms over the total number of atoms at the binding interface
(left panels) and the average of the proportion of main chain atoms over total
number of atoms that are matched at the interface (right panels). For
protein-small molecule complexes, both levels (UniProt and SCOP) of protein
redundancy are assessed (upper versus lower panels in Figure 5.33),

although there are changes in the absolute average numbers, the trends for
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each subset are maintained when the numbers are filtered by SCOP families.
In the case of protein-protein subsets, main chain atoms have been counted
for both chains, labelled as long and short chain depending on the number of
residues in the chain. No statistical difference has been found between long

and short chain for any of the subsets and the ratios studied.
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Figure 5.33. Average of the percentage of main chain atoms for each
molecular subset at the UniProt level: Drug-like, Approved drugs, Oral drugs,
small molecule protein-protein (PP) interaction inhibitors, natural molecules,
natural molecules without phosphorous, small peptides, PP obligate dimers,
PP transient dimers, PP hetero quaternary interfaces and PP complexes
successfully inhibited by small molecules. For the PP complexes, both long
chain (LC) and short chain (SC) are plotted. Error bars denote the standard
error of the mean. A and C: percentage of main chain atoms at the interface
(defined as atoms within 4.5& of the binding partner) colour coded by the
proportion that are matched (magenta) or unmatched (cyan). B and D:
percentage of main chain atoms from the matched atoms colour coded by
polar (red) and apolar (blue). Both levels of redundancy are plotted, A and
B: protein-small molecule complexes with distinct UniProt identifiers. C and
D: proteins-small molecule complexes belonging with distinct SCOP families.

Figure 5.33 shows that on average (and for distinct UniProt proteins)

drugs and drug-like molecules have a significantly (P < 0.05) smaller
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proportion of main chain atoms in the active sites (28-32%) than natural
molecules that have 44% of main chain atoms at the binding interface and
small peptides and proteins that have 35-38%. Amongst the protein-protein
complexes, there is no significant difference between sets for any of the
ratios considered, with the remarkable exception of the long chain of the
protein-protein complexes inhibited by small molecules. For these chains, all
the proportions of main chain atoms considered (Figure 5.33 and Figure 5.34)
are significantly (P< 0.05) lower than the rest of protein interfaces. Although
there are only 15 complexes in this set, this is an interesting result implying
that a higher content of side chain atoms at an interface makes it more
amenable to bind small molecules, arguably to facilitate site adaptability. This
result is in consonance with previous findings for these interfaces (Fuller et al.
2009; Bourgeas et al. 2010) that highlighted the accommodation of the small
molecules at the interface by side chain rearrangement. The absolute
proportion of main chain atoms of the 20 standard amino acids is 48% and
rises to 52% if one takes into account the natural abundance (Voet et al.
1992) of each residue. In fact, main chain atoms are more common in the
protein core and are involved in secondary structure interactions (Chothia
1976). From this main chain atom composition, Figure 5.33 also shows main
chain atoms as a proportion of the total humber of atoms matched at the
binding site. The same trends are maintained; drugs and drug-like molecules
have significantly (P < 0.05) fewer main chain atoms (24-27%) engaged in
successful interactions (as defined in chapter 4, section 4.2.2) than natural

molecules (40%) and small peptides and protein complexes (31-33%).
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Figure 5.34. Average percentage of contacts involving main chain atoms for
each molecular subset for both levels of protein redundancy: Drug-like,
Approved drugs, Oral drugs, small molecule protein-protein (PP) interaction
inhibitors, natural molecules, natural molecules without phosphorous, small
peptides, PP obligate dimers, PP transient dimers, PP hetero quaternary
interfaces and PP complexes successfully inhibited by small molecules. For
the PP complexes, both long chain (LC) and short chain (SC) are plotted.
Error bars denote the standard error of the mean. Colour coded by polar
(red) and apolar (blue).
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Figure 5.34 shows that natural molecules also have a higher proportion
of contacts involving main chain atoms. Indeed, 34% and 32% at UniProt and
SCOP family redundancy level respectively, of the contacts made by these
molecules interact with protein main chain atoms. Furthermore, more than
half of these main chain atoms are polar atoms. This trend may be a
consequence of selective pressure in evolution through non-synonymous
single nucleotide polymorphisms; a main chain interaction would be more
robust to mutation of the amino acid. This may be more crucial in the small
binding sites of endogenous ligands than in the large protein complex
interfaces. In the latter, compensating mutations can be accepted over time
and the proportion of main chain to side chain interactions is much lower.
Furthermore, natural molecules tend to be more flexible and able to optimise
interactions. However, natural molecules without phosphorus present a lower
proportion of contacts involving main chain atoms and are similar to proteins
and small peptides in this respect. To investigate this further, Figure 5.35

shows the level of small molecule redundancy of the natural molecule set.
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5.3 RESULTS AND DISCUSSION

Figure 5.35. Distribution of the natural small molecule subset (filtered for
protein redundancy by distinct UniProt) in terms of entries per chemical
structure of the small molecule bound to protein. Only higher frequency
entries are labelled for clarity. Note that more than half of the subset is
composed of the complexes with seven different molecules: ADP, NAD, FAD,
NAP, ATP, AMP and SAH.

The natural molecule set analysed here is composed of 1159 different
proteins interacting with 216 small natural molecules. As shown in Figure 5.35,
more than half of these complexes are formed by nucleotides with
saccharides and phosphates, which in turn are the complexes using more

main chain atoms.
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Num Num % mc % mc

atoms SM SCOP fa contacts atoms
ADP 27 41 40% 46% 0.52
SAH 26 23 40% 47% 0.36
ATP 31 18 31% 38% 0.36
SAM 27 18 39% 46% 0.37
AMP 23 17 40% 45% 0.48
NAD 27 15 39% 46% 0.43
FAD 53 11 37% 45% 0.38
COA 48 9 32% 40% 0.40
NAP 48 7 47% 54% 0.49

Table 5.1. The nine most promiscuous small molecules. They all belong to
the natural molecule set. Columns in the table are from left to right: HetID
is the PDB residue identifier, Num atoms SM is the number of atoms of the
small molecule ligand, Num SCOP fa is the number of different SCOP
families the small molecule binds to, % mc contacts is the average of the
percentage of contacts by protein main chain atoms across all SCOP families
bound for a particular small molecule, %mc atoms is the average of the
percentage of protein main chain atoms at the binding interface across all
SCOP families bound, Ratio is the average of ratio of polar contacts by sum
of contacts.

Table 5.1 shows the average proportion of contacts involving main
chain atoms, as well as binding site main chain atom content for the more
frequent natural molecules binding to different SCOP families. Only distinct
SCOP families are considered here in order to avoid bias by protein families,
like protein kinases for instance. These molecules bind to a wide range of
proteins and SCOP families and they have the highest main chain contact
ratio. Although they also present the highest polar contact ratio, these
molecules are multipurpose and not selective for a single protein. However,
this result can also be interpreted from the protein side. These protein
molecules have evolved to bind to the same nucleotide even though they
have different folds. In this respect, the proportion of main chain atoms in the

active site is one of the factors that can assist in identifying promiscuous
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drug-binding sites in therapeutic targets. Figure 5.36 shows that promiscuous

binders in the PDB present a high content of main chain atom contacts.
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Figure 5.36. Scatter plot of the number of different SCOP families bound to
the same small molecule versus the average of contacts involving main
chain atoms that these molecules are engaging.

5.3.4 Proportion of polar atoms at the binding interface

This section analyses the polar topology of the binding interfaces for
each molecular subset. As before, for protein-small molecule complexes, both
levels (UniProt and SCOP) of protein redundancy are assessed (upper versus
lower panels Figure 5.37). Although there are changes in the absolute
average numbers, the trends for each subset are maintained when bias due
to over-representation of certain SCOP families is removed. For the protein-
protein complexes, analysis of the polar atom content has been carried out

for both long and short chains.
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Figure 5.37. Average percentage of protein polar atoms for each molecular
subset: Drug-like, Approved drugs, Oral drugs, small molecule protein-
protein (PP) interaction inhibitors, natural molecules, natural molecules
without phosphorous, small peptides, PP obligate dimers, PP transient
dimers, PP hetero quaternary interfaces and PP complexes successfully
inhibited by small molecules. For the PP complexes, both long chain (LC)
and short chain (SC) are plotted. Error bars denote the standard error of the
mean. A and C: percentage of protein polar atoms at the interface (defined
as atoms within 4.5A of the binding partner) colour coded by the proportion
that are matched (magenta) or unmatched (cyan). B and D: percentage of
protein polar atoms from the total atoms that are matched. Both levels of
redundancy are plotted, A and B: protein-small molecule complexes with
distinct UniProt identifiers. C and D: proteins-small molecule complexes
belonging with distinct SCOP families.

Figure 5.37 shows that the proportion of polar atoms at the interface
of small molecule protein-protein inhibitors is significantly (P < 0.05) lower
(22% for both UniProt and SCOP families) than all the other sets of molecules.
These binding sites represent the highest proportion of unmatched polar
atoms, and the lowest proportion of polar atoms from the matched protein
atoms at the interface. This result has been discussed in chapter 4 (section
4.3.5) from the ligand viewpoint. Although only protein atoms are considered

here, the interfaces are defined by the binding partner, i.e. only protein
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atoms proximal to the ligand are taken into account. On the other hand,
interfaces of protein-protein complexes inhibited by small molecules are
significantly (P < 0.05) less polar (30%, Figure 5.37 A the two bars on far
right) than the other protein-protein interfaces (33-35%) and similar to the
drug interfaces (29%). Thus, this may be the reason for the lower proportion
of polar atoms at the binding sites of protein-protein inhibitors. However, this
result shows that small molecules binding at the protein-protein interfaces
target the most hydrophobic patches on the surface and do not take

advantage of the possibility of engaging available specific contacts.

The absolute proportion of polar atoms in the 20 standard amino acids
is 35% and rises to 37% if one takes into account the natural abundance
(Voet et al. 1992) of each residue. Binding sites for natural molecules and
transient protein complexes are in this range of polar atoms (34 and 35%
respectively). Indeed, binding interfaces for transient complexes are slightly
more polar than obligate interfaces, (2% more, P < 0.05) as reported by
other studies comparing obligate with non-obligate complexes (Nooren et al.
2003). With respect to drug-like and drug-binding sites, the proportion of
polar atoms is significantly lower (28-29%) than natural molecules. This result
corroborates the use of hydrophobicity scores to predict druggability of
binding sites, however polar interactions in hydrophobic environments are
stronger and cannot be dismissed in the assessment of druggability
(Schmidtke et al. 2010). Furthermore, the proportion of unmatched polar
atoms at the binding sites of drugs suggests that drug-like molecules could, in

principle, engage more specific interactions as discussed in chapter 4.
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Figure 5.38. Distribution of the average of protein polar atoms at the
binding interface for drug-like molecules at the UniProt level by molecular
weight of the small molecule. The proportion of polar atoms is colour coded
if they are engaged in successful interactions with the ligand (magenta) or
are unmatched (cyan). Error bars denote the standard error of the mean.

Figure 5.38 shows the distribution of polar atoms at the binding
interfaces of drug-like molecules. As described in 5.2.2, the protein atoms
considered in the binding interfaces are defined by a distance cut-off from the
ligand. In this respect, small fragments of molecular weight between 200-
300Da bind to regions that are significantly more polar than the binding
regions of bigger molecules. This result is consistent with the results
described in chapter 4, where small fragments engaged more polar contacts

than bigger molecules.

5.3.5 Depth of protein atoms at the binding interface

Using the ghecom program (Kawabata 2010), Rinaccess is calculated
for all protein atoms at the interfaces, i.e. within 4.5A of the binding partner.
Rinaccess is a measure of the depth of the considered atom with respect to

the protein surface. See Methods for details. For protein complexes, only the
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longest chain is considered here as discussed before. The special cases where
a large protein interacts with a shorter adaptable chain will be discussed

separately.
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Figure 5.39. Proportion of Rinaccess values for the atoms at the interface
for each molecule set at the SCOP family redundancy level. The colour in
the bars denotes the Rinaccess values: red (<2A), orange (2-3R), yellow (3-
4R), green (4-5R), cyan (5-6A), blue (6-7R), grey (7-10A) and black (> 10A).
A: for all atoms at the interface, B: for main chain atoms at the interface,
C: for polar atoms at the interface and D: for polar main chain atoms at the
interface. For protein-protein complexes, only the longest chain s
considered.

As expected, Figure 5.39 (A) shows that the small molecule sets have
defined pockets, as shown by the higher proportion of small values of
Rinaccess in comparison with protein-protein complexes. Within the small
molecule subsets, there is significant difference in the average of Rinaccess
for the small peptides and small molecule protein-protein inhibitors, which
present less deep pockets than drugs, drug-like and natural molecules.

Regarding protein-protein complexes, transient dimers have on average
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deeper cavities than the obligate dimers, as shown by the significant
difference in median for Rinaccess values. Interestingly, protein complexes
that are inhibited by small molecules also have deeper cavities than the
obligate and quaternary interfaces but cannot be distinguished from the
transient subset. Figure 5.39 (B) shows that main chain atoms are on average
deeper than the side chain atoms as the proportion of smaller Rinaccess
values is bigger for these atoms. Polar atoms seem not to have a preferred
position within the pockets, as Figure 5.39 (C) shows. The proportion of
Rinaccess values for polar atoms in comparison with all atoms at the interface

(Figure 5.39 (A)) does not change significantly.

Results in chapter 2 highlighted the success in finding small molecules
binding to the protein-protein interfaces where one of the partners in the
complex is a small peptide motif that probably undergoes a disorder-order
transition upon binding to a globular domain. Indeed, the majority of protein
complexes that have been successfully inhibited by small molecules are in this
category. In order to quickly discriminate between the content of protein
complexes studied here, in terms of relative protein sizes, the ratio of the
length of the short chain to the long chain was calculated. Figure 5.40 and
Table 5.2 show the distribution of this ratio.
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N complexes Ratio (SC/LC) % of R< 0.5

Obligate 161 (67 homo) 0.76 25%
Transient 154 (all hetero) 0.49 58%
Hetero interfaces 2,271 0.57 45%
Homo interfaces 12,034 0.98 1%
PP inh by SM 15 (1 homo) 0.39 67%

Table 5.2. Size differences between long chain (LC) and short chain (SC) for
each subset of protein-protein complexes: Obligate dimers, Transient dimers,
Hetero and Homo quaternary interfaces and protein-protein (PP) complexes
inhibited by small molecules (SM). ‘Ratio (SC/LC)’ is the average of the ratio
between the lengths of long and short chain. ‘% of R < 0.5 is the
percentage of complexes where the short chain is smaller than half the long
chain. See Figure 5.40 for the distribution of these ratios.

Obligate Transient

1

0.0 0.2 0.4 0.6 0.8 1.0 0. 0.2 0.4 0.6 0.8 1.0
Hetero interfaces PP inhibited by SM
0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ratio of protein chain lengths

Figure 5.40. Normalised distribution of the ratio between the lengths of
short and long chain for the protein-protein complexes subsets: Obligate
dimers, Transient dimers, Hetero quaternary interfaces and protein-protein
(PP) complexes inhibited by small molecules (SM). Homo quaternary
interfaces are not plotted, as they have virtually no difference in chain
length, see Table 5.2.
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The biggest set of protein-protein interfaces, the homo quaternary
interfaces, is composed of same length protein dimers. Only 1% of these
complexes have significant difference in chain length, as this implies one of
the partners has been truncated. The hetero quaternary interfaces subset
presents a spread distribution of relative sizes, with the complexes of similar
chain length being more common. The subset of obligate dimers (42% of
which are homo dimers) is mainly composed by similar chain length
complexes, although there are also cases of small peptides binding to bigger
proteins. The Transient dimers (all of them are hetero dimers) have a spread
distribution of relative size for the binding partners, skewed towards smaller
ratios; almost 60% of the Transient complexes are composed by one partner
that is, at least, double the length of the other. Here, the interest is to
explore the subset of complexes where a large usually globular domain
recognises a short chain. In this respect, the ratio of the chain lengths can be
misleading, as interactions with small ratio can be between globular domains.
For example, the structure of a RNA polymerase, 1YNN (Campbell et al. 2005),
where the alpha chain (314 residues) interacts with the beta chain (1119
residues). However, this ratio allows focusing in the hetero quaternary protein
interfaces and transient complexes. In the previous section, we have seen
that these interfaces have on average a larger proportion of atoms in deeper

cavities than the obligate subset.
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Figure 5.41. Proportion of Rinaccess values for the atoms at the interface of
the long chain of the hetero quaternary interfaces (A) and for the long chain
(with at least 100 residues in length) of the transient dimers and protein-
protein complexes inhibited by small molecules (B). The colour in the bars
denotes the Rinaccess values: red (<2R), orange (2-3R), yellow (3-4A),
green (4-5R), cyan (5-6R), blue (6-7R), grey (7-10A) and black (> 10A).
Each bar represents different length range for the short length of the
complex.

Figure 5.41 shows a tendency for this proportion to increase with
decreasing size of the short chain of the complex. Considering that shorter
chains will define smaller interface areas. The fact that the proportion of
atoms in deeper cavities for smaller chains is larger highlights the preference
of these shorter peptides to target cavities at the interface and support the
hypothesis that these interfaces are more amenable to be inhibited by a small
molecule (Blundell et al. 2006).

5.3.6 Density of contacts at the binding interface

For a given cavity on the protein surface where a ligand binds, the
density of contacts can be calculated per protein atom or per ligand atom. In
the case of protein complexes, densities can be calculated per protein atom of
each chain. As previously, I labelled protein chains as long and short
depending on the length of the polypeptide. The difference in density of
contacts between sides gives a rough measure of the wrapping ability of one
side towards the other. In the case of small molecules, usually the ligand is

wrapped inside a concave shape in the protein surface. In the case of protein
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complexes, protein-protein interfaces alternate pockets in both chains of the
interface. Thus, on average the density of contacts for each chain will not
differ much.
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Figure 5.42. Average density of contacts per interface atom for each subset:
Drug-like, Approved drugs, Oral drugs, small molecule protein-protein (PP)
interaction inhibitors, natural molecules, natural molecules without
phosphorous, small peptides, PP obligate dimers, PP transient dimers, PP
hetero quaternary interfaces and PP complexes successfully inhibited by
small molecules. For small molecule complexes, both protein side (PS, pale
blue) and ligand side (LS, orange) are plotted. For the PP complexes, both
long chain (LC, pale blue) and short chain (SC, orange) are plotted. Error
bars denote the standard error of the mean. A: density of proximal contacts
(atom pairs within 4.5&) at UniProt level of protein redundancy. B: density
of successful contacts at UniProt level. C: density of proximal contacts at
SCOP family level of protein redundancy. D: density of successful contacts
at SCOP level.

Figure 5.42 (A) shows the average density of proximal contacts (atom
pairs within 4.5R) for all sets for distinct UniProt families. Similar trends were
found for distinct SCOP families Figure 5.42 (C). The results for the

differences in density of contacts between long chain (or protein) and short
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chain (or ligand) corroborate the distribution of Rinaccess discussed in the
previous section. Drugs, drug-like and natural molecules have deeper cavities
that translate into a greater difference in contact densities between protein
and ligand atoms. These are followed by small molecule protein-protein
inhibitors and small peptides, which have shallower pockets and therefore
smaller differences in contact densities between protein and ligand atoms.
Regarding protein complexes, there is no significant difference between
contact density for long and short chains for the obligate dimers subset. For
quaternary hetero, transient interfaces and protein-protein interfaces inhibited
by small molecules there is a significant difference (P < 0.05) in the contact
density between chains, although it is small. This difference is probably due
to the proportion of these complexes where a larger globular domain

recognises a shorter peptide as discussed in the previous section.

Regarding differences in contact density across subsets, oral drugs are
the most contact efficient in both proximal (Figure 5.42 A and C) and
successful contacts (Figure 5.42 B and D). Examples of oral drugs with high
and low density contacts are displayed in Figure 5.43. The obvious question
that arises is whether this efficiency is because oral drugs are, on average,
smaller molecules. Figure 5.44 shows that oral drugs have similar size to
other drugs, drug-like and natural molecules. Furthermore, it also shows no
correlation between contact density and molecular size. Oral drugs have a
greater density of contacts because they are, on average, the small molecules
that best fit the deep cavities in proteins, as reported previously (Fuller et al.
2009). This is arguably because they have been optimised to achieve tight
binding. In addition, oral drugs considered here have been structurally
characterised suggesting that maybe there is a bias in the data where
optimisation has been achieved with structural information in hand. In
contrast, natural molecules that are the product of millennia of evolution have
significantly lower contact density. This is because; natural molecules evolve
to preserve function, not tight binding. Indeed, Kahraman and co-workers

(Kahraman et al. 2007) found that pockets were on average three times
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bigger than the ligands they bound. In that study, a hundred protein
complexes with nine ligands were considered (ATP, AMP, FAD, FMN, Glucose,
Heme, NAD, Phosphate and Steroid-like molecules). These ligands belong to
the natural molecule subset analysed here. They are substrates, cofactors or
products of enzymatic reactions that need to transfer chemical groups to pass
a response in the signalling cascade, indeed none of these are likely to be the
sole occupants of the binding pocket. This is probably the reason why these
molecules bind less tightly to bigger pockets as they need room to manoeuvre

as well as leaving the site once the signalling is achieved.

Figure 5.43. Examples of oral drugs binding to proteins, proximal contacts
are represented by grey dotted lines. LEFT: 2HM9, dihydrofolate reductase
complexed with trimethoprim, 16.3 proximal contacts per buried ligand atom.
RIGHT: 3C9], transmembrane domain of M2 protein complexed with
amantadine, 4.6 proximal contacts per buried ligand atom.
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Figure 5.44. Scatter plot of the proximal contact density (the number of
contacts per interacting ligand atom) versus the number of ligand atoms for
the small molecule subset. The redundancy filter applied here is by distinct
UniProt and distinct small molecule. Drug-like (yellow), approved drugs
(cyan), oral drugs (green), natural molecules (purple), protein-protein
inhibitors (magenta) and small peptides (blue). The histogram in the centre
of the figure represents the molecular weight distribution.
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The first conclusion from this analysis of the binding interfaces is that,
although binding interface is a simple concept, it is difficult to encapsulate in
a universal definition that allows unbiased comparison across different binding
sites. Regarding pockets, one can distinguish between ligand-defined pocket
and protein-geometry defined pocket. Comparison of cavities defined by
interacting partners is biased by the interactions these entities prefer to make,
whereas comparison of pockets defined by cavity detection programs is
biased by the software used rather than by the potential of the sites.
Furthermore, the polar ambivalent and flexible nature of the amino acids
enables a range of binding profiles at the same interface, especially for

protein-protein complexes.

In this chapter, I have used the binding interfaces as defined by the

bound molecule.

Amongst the protein-protein interfaces studied here, the transient
complexes appear to be, from the structural point of view, the most amenable
to be targeted by small molecule drug based therapies. These complexes
have on average deeper pockets at the interface than obligate and quaternary
interfaces. In addition, these complexes are often formed by a small chain
binding to a bigger protein. Indeed, most of the successfully inhibited protein-
protein complexes have characteristics similar to those of the transient dimers
subset with the exception of the TNF trimer.

Drug-like molecule binding sites are on average more hydrophobic and
have higher aromatic content than those binding small natural molecules.
However, these sites have a higher proportion of unmatched polar atoms,
suggesting that in principle, the polar interaction profile for drug-like
molecules could be improved. Indeed, small drug-like fragments (200-300Da)

bind on average to more polar sites than larger molecules. Furthermore, for
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protein-protein complexes inhibited by small molecules, comparison of the
protein-protein with the protein-small molecule binding interfaces reveals that,
on average, small molecules target the hydrophobic and aromatic residues
instead of the polar residues available at the sites. Moreover, the higher
content of flexible side chains in protein-protein interfaces confirms that a
degree of adaptability to bind to small molecules and to match polar contacts

is possible.

Natural molecules have on average a higher proportion of contacts
with main chain atoms and a higher content of Gly at the binding site. This
behaviour is mainly due to the small molecules nucleotides, such as ATP,
binding to a variety of different folds. Indeed it may be that a high proportion
of main chain atoms in a binding site may be characteristic of a promiscuous

binding region.

Analysis of the depth of the atoms at the interfaces confirms that
drugs, drug-like and natural molecules bind to deeper pockets than small
peptides and small molecules inhibiting protein complexes. The density of
contacts at the interfaces also corroborates this result. In this respect, oral

drugs are the most contact efficient group.

The conclusions reached in chapter 4 are generally supported by the
analysis of binding sites. Drug-like molecules in general, but especially those
that inhibit protein complexes do not make full use of the polar signature on
binding. Although the subset of natural molecules binding to many different
folds has more polar contacts, they do so through a higher proportion of main
chain atoms, which may well explain the intended promiscuity that has been

helpful in evolution.
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I start this last chapter with a quote Brian Warrington used in one of his talks:

Life can only be understood backwards; but it must be lived forwards.
Soren Kierkegaard, Danish philosopher (1813 - 1855)

The work reflected in this thesis has been an exercise in trying to understand
what we have done so far with the aim of identifying areas where we can
move forwards. The drug discovery community agrees that we are at an
inflexion point; classical practices are being questioned and new areas are
being explored. In chapter 2, we have seen, however, that when new areas
are explored with the classical tools the outcome often brings us back where
we started. Small molecules disrupting new drug targets, in particular protein-
protein interactions, are more lipophilic than the already-too-lipophilic drug-
like molecules. This is our starting point for exploring a new, more challenging
drug space. In this dissertation I have looked backwards to review the
progress made so far, but I have also sought to look forwards to new

approaches to targeting protein-protein interactions.

I have described a new public resource, TIMBAL, a database that holds
small molecules inhibiting protein-protein interfaces. Comparison of these
molecules with drugs on the market and those in most screening libraries
underlined the fact that TIMBAL molecules tend to be bigger, more rigid,
more lipophilic and with fewer hydrogen bonded atoms. Comparing the
binding interfaces of the protein target with its small molecule inhibitor and
with its protein partner highlighted that the small molecules prioritise
hydrophobic contacts instead of the available polar patches at the protein
surface. Although one of these big lipophilic molecules, ABT-263 at the Bcl-2
interface, has made its successful way into oncology clinical trials, it should
not be a general model for future campaigns; rather efforts should be

invested into maximising specific contacts that are available at these
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interfaces. Furthermore, residue propensity comparisons between protein-
protein interfaces and small molecule binding sites have confirmed that multi-
protein complexes have a higher proportion of flexible side chains, which are
able to match polar contacts. In terms of available cavities, studies of the
depth below the surface of protein atoms that constitute a cavity have shown
that transient protein complexes (especially those which are composed of a
large domain interacting with a short chain) have, on average, deeper
pockets. They may therefore offer greater opportunities for binding ligands
with high efficiency, so making them more amenable as targets for candidate

drug molecules.

Molecular recognition is a concept that describes the outcome of a
complexity of both attractive and opposing forces. Atomic interactions
between two molecules are not the only factors to consider. However, in drug
discovery, they encode the relationship between binding affinity and
molecular properties, and in turn define the ADMET space where the small
molecules operate. I have demonstrated by comparisons of atomic interaction
profiles between different sets of molecules that natural molecules (small
molecules but also other proteins) bound to proteins have a larger proportion
of polar contacts than protein-synthetic molecule complexes. Exogenous
compounds are restricted within a window of “drug-like” properties that
facilitate their journey in the body in order to reach their target. Specifically,
oral drugs should not be very polar. Furthermore, matching too many
hydrogen bonds is not only extremely difficult but also will confer a
lipophilicity that would be too low to cross membranes. The results presented
in this thesis, however, have shown that drug-like molecules have a higher
proportion of buried polar unmatched atoms than the natural sets and

probably for this reason, there is no correlation between logP and the
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proportion of polar contacts. I conclude that, in principle, it should be possible
to increase the specific contacts achieved by synthetic molecules without
changing drastically the molecular properties of drug-like compounds. In
practical terms, this seems to be feasible through fragment-based approaches.
Analysis of the proportion of polar contacts versus size of molecules
confirmed that a higher content in specific interactions occurs when the
compounds are small. Indeed, small drug-like fragments bind on average to
more polar binding patches than larger molecules. It is accepted now that the
evolution of these initial hits should be along a path that optimises the affinity

and molecular properties in a concerted fashion.

Structurally characterised protein complexes offer a wealth of
information about molecular recognition and much insight can be gained by
studying atomic interaction profiles of different types of molecules. However,
data curation and redundancy assessment are paramount to extract robust
conclusions. The results of such studies should reveal trends for each
molecular type, arbitrarily defined in the study, but not the particular solution
nature has found for that particular molecule with that particular function.
Nevertheless, trends can guide us on a journey to understand what we have
done so far with the aim of further improving what we should do moving
forwards. I hope the work reflected in this thesis can contribute towards that

end.
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