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Abstract

Background: Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells
with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand
tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are
highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following
orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression
alterations underlying the disease phenotype.

Methods: Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript
tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation
by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6
NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic
characterization of GNS cells and comparison with public data for 867 glioma biopsies.

Results: Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified
misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated
with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs
with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed
excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing
GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor
changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS
expression signature strongly associated with patient survival (P = 1e-6, Cox model).

Conclusions: These results support the utility of GNS cell cultures as a model system for studying the molecular
processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS
expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor
growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-
scale profiling of primary tumors.

Background
Glioblastoma (grade IV astrocytoma) is the most common
and severe type of primary brain tumor in adults. The
prognosis is poor, with a median survival time of
15 months despite aggressive treatment [1]. Glioblastomas
display extensive cellular heterogeneity and contain a

population of cells with properties characteristic of neural
stem (NS) cells [2]. It has been proposed that such cor-
rupted stem cell populations are responsible for maintain-
ing cancers, and give rise to differentiated progeny that
contribute to the cellular diversity apparent in many neo-
plasias. Data supporting this hypothesis have been
obtained for several types of malignancies, including a
variety of brain cancers [2]. Importantly, a recent study
using a mouse model of glioblastoma demonstrated that
tumor recurrence after chemotherapy originates from a
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malignant cell population with NS cell features [3]. Char-
acterizing human glioblastoma cancer stem cells to under-
stand how they differ from normal tissue stem cell
counterparts may therefore provide key insights toward
the identification of new therapeutic opportunities.
Fetal and adult NS cells can be isolated and maintained

as untransformed adherent cell lines in serum-free med-
ium supplemented with growth factors [4,5]. Using simi-
lar protocols, it is possible to expand NS cells from
gliomas [6]. These glioma-derived NS (GNS) cells are
very similar in morphology to normal NS cells, propagate
continuously in culture and share expression of many
stem and progenitor cell markers, such as SOX2 and
Nestin. Like normal progenitor cells of the central ner-
vous system, they can also differentiate into neurons,
astrocytes and oligodendrocytes to varying degrees [5,6].
In contrast to NS cells, however, GNS cells harbor exten-
sive genetic abnormalities characteristic of the disease
and form tumors that recapitulate human gliomas when
injected into mouse brain regions corresponding to sites
of occurrence in patients.
In this study, we compare gene expression patterns of

GNS and NS cells to discover transcriptional anomalies
that may underlie tumorigenesis. To obtain sensitive and
genome-wide measurements of RNA levels, we conducted
high-throughput sequencing of transcript tags (Tag-seq)
on GNS cell lines from three glioblastoma cases and on
two normal NS cell lines, followed by quantitative reverse
transcription PCR (qRT-PCR) validation in a large panel
of GNS and NS cell lines. Tag-seq is an adaptation of
serial analysis of gene expression (SAGE) to high-through-
put sequencing and has considerable sensitivity and repro-
ducibility advantages over microarrays [7,8]. Compared to
transcriptome shotgun sequencing (RNA-seq), Tag-seq
does not reveal full transcript sequences, but has the
advantages of being strand-specific and unbiased with
respect to transcript length.
A large body of microarray expression data for glioblas-

toma biopsies has been generated through multiple studies
[9-13]. These data have been extensively analyzed to detect
gene expression differences among samples, with the aim
to identify outliers indicative of aberrant expression
[11,14,15], discover associations between gene expression
and prognosis [12,16] or classify samples into clinically
relevant molecular subtypes [9,10,13,17]. However, expres-
sion profiling of tumor specimens is limited by the inher-
ent cellular heterogeneity of malignant tissue and a lack of
reference samples with similar compositions of corre-
sponding normal cell types. GNS cells represent a tract-
able alternative for such analyses, as they constitute a
homogeneous and self-renewing cell population that can
be studied in a wide range of experimental contexts and
contrasted with genetically normal NS cells. By combining
the sensitive Tag-seq method with the GNS/NS model

system we obtain a highly robust partitioning of malignant
and normal cell populations, and identify candidate onco-
genes and tumor suppressors not previously associated
with glioma.

Materials and methods
Cell culture and sample preparation
GNS and NS cells were cultured in N2B27 serum-free
medium [18], a 1:1 mixture of DMEM/F-12 and Neuroba-
sal media (Invitrogen, Paisley, UK) augmented with N2
(Stem Cell Sciences, Cambridge, UK) and B27 (Gibco,
Paisley, UK) supplements. Self-renewal was supported by
the addition of 10 ng/ml epidermal growth factor and
20 ng/ml fibroblast growth factor 2 to the complete med-
ium. Cells were plated at 20,000/cm2 in laminin-coated
vessels (10 μg/ml laminin-1 (Sigma, Dorset, UK) in phos-
phate-buffered saline for 6 to 12 h), passaged near conflu-
ence using Accutase dissociation reagent (Sigma) and
were typically split at 1:3 for NS cells and 1:3 to 1:6 for
GNS cells. For expression analysis, cells were dissociated
with Accutase and RNA was extracted using RNeasy
(Qiagen, West Sussex, UK), including a DNase digestion
step. RNA quality was assessed on the 2100 Bioanalyzer
(Agilent, Berkshire, UK).

Transcriptome tag sequencing
Tag-seq entails the capture of polyadenylated RNA fol-
lowed by extraction of a 17-nucleotide (nt) sequence
immediately downstream of the 3’-most NlaIII site in
each transcript. These 17 nt ‘tags’ are sequenced in a
high-throughput manner and the number of occurrences
of each unique tag is counted, resulting in digital gene
expression profiles where tag counts reflect expression
levels of corresponding transcripts [8].
Tag-seq libraries were prepared using the Illumina

NlaIII DGE protocol. Briefly, polyadenylated RNA was
isolated from 2 µg total RNA using Sera-Mag oligo(dT)
beads (Thermo Scientific, Leicestershire, UK). First-
strand cDNA was synthesized with SuperScript II reverse
transcriptase (Invitrogen) for 1 h at 42°C, followed by
second-strand synthesis by DNA polymerase I for 2.5 h
at 16°C in the presence of RNase H. cDNA products
were digested with NlaIII for 1 h at 37°C and purified to
retain only the 3’-most fragments bound to the oligo(dT)
beads. Double-stranded GEX adapter 1 oligonucleotides,
containing an MmeI restriction site, were ligated to
NlaIII digestion products with T4 DNA ligase for 2 h at
20°C. Ligation products were then digested with MmeI at
the adapter-cDNA junction site, thereby creating 17 bp
tags free in solution. GEX adapter 2 oligos were ligated
to the MmeI cleavage site by T4 DNA ligase for 2 h at
20°C, and the resulting library constructs were PCR-
amplified for 15 cycles with Phusion DNA polymerase
(Finnzymes, Essex, UK).
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Libraries were sequenced at Canada’s Michael Smith
Genome Sciences Centre, Vancouver BC on the Illu-
mina platform. Transcript tags were extracted as the
first 17 nt of each sequencing read and raw counts
obtained by summing the number of reads for each
observed tag. To correct for potential sequencing errors,
we used the Recount program [19], setting the Hamming
distance parameter to 1. Recount uses an expectation
maximization algorithm to estimate true tag counts
(that is, counts in the absence of error) based on
observed tag counts and base-calling quality scores.
Tags matching adapters or primers used in library con-
struction and sequencing were identified and excluded
using TagDust [20] with a target false discovery rate
(FDR) of 1%. Tags derived from mitochondrial or ribo-
somal RNA were identified and excluded by running the
bowtie short-read aligner [21] against a database consist-
ing of all ribosomal RNA genes from Ensembl [22], all
ribosomal repeats in the UCSC Genome Browser
RepeatMasker track for genome assembly GRCh37 [23],
and the mitochondrial DNA sequence; only perfect
matches to the extended 21 nt tag sequence (consisting
of the NlaIII site CATG followed by the observed 17 nt
tag) were accepted. Remaining tags were assigned to
genes using a hierarchical strategy based on the expecta-
tion that tags are most likely to originate from the 3’-
most NlaIII site in known transcripts (Additional files 1
and 2). To this end, expected tag sequences (virtual
tags) were extracted from the SAGE Genie database [24]
and Ensembl transcript sequences. In addition, bowtie
was applied to determine unique, perfect matches for
sequenced tags to the reference genome.
The Bioconductor package DESeq [25] was used to

normalize tag counts, call differentially expressed genes
and obtain variance-stabilized expression values for cor-
relation calculations. Tests for enrichment of Gene
Ontology and InterPro terms were performed in R,
using Gene Ontology annotation from the core Biocon-
ductor package org.Hs.eg and InterPro annotation from
Ensembl. Each term associated with a gene detected by
Tag-seq was tested. Signaling pathway impact analysis
was carried out using the Bioconductor package SPIA
[26]. To identify major differences common to the GNS
cell lines investigated, we filtered the set of genes called
differentially expressed at 1% FDR, further requiring (i)
two-fold or greater change in each GNS cell line com-
pared to each NS cell line, with the direction of change
being consistent among them; and (ii) expression above
30 tags per million in each GNS cell line (if upregulated
in GNS cells) or each NS cell line (if downregulated in
GNS cells). Sequencing data and derived gene expres-
sion profiles are available from ArrayExpress [27] under
accession E-MTAB-971.

Quantitative RT-PCR validation
Custom-designed TaqMan low-density array microflui-
dic cards (Applied Biosystems, Paisley, UK) were used
to measure the expression of 93 genes in 22 cell lines by
qRT-PCR. This gene set comprises 82 validation targets
from Tag-seq analysis, eight glioma and developmental
markers, and three endogenous control genes (18S ribo-
somal RNA, TUBB and NDUFB10). The 93 genes were
interrogated using 96 different TaqMan assays (three of
the validation targets required two different primer and
probe sets to cover all known transcript isoforms
matching differentially expressed tags). A full assay list
with raw and normalized threshold cycle (Ct) values is
provided in Additional file 3. To capture biological
variability within cell lines, we measured up to four
independent RNA samples per line. cDNA was gener-
ated using SuperScript III (Invitrogen) and real-time
PCR carried out using TaqMan fast universal PCR mas-
ter mix. Ct values were normalized to the average of the
three control genes using the Bioconductor package
HTqPCR [28]. Differentially expressed genes were iden-
tified by the Wilcoxon rank sum test after averaging
replicates.

Tumor gene expression analysis
Public microarray data, survival information and other
associated metadata were obtained from The Cancer
Genome Atlas (TCGA) and four independent studies
(Table 1). All tumor microarray data were from samples
obtained upon initial histologic diagnosis. We used pro-
cessed (level 3) data from TCGA, consisting of one
expression value per gene and sample (Additional file
4). For the other data sets, we processed the raw micro-
array data with the RMA method in the Bioconductor
package affy [29] and retrieved probe-gene mappings
from Ensembl 68 [22]. For genes represented by multi-
ple probesets, expression values were averaged across
probesets for randomization tests, heatmap visualization
and GNS signature score calculation. Differential expres-
sion was computed using limma [30]. Randomization
tests were conducted with the limma function geneSet-
Test, comparing log2 fold-change for core up- or down-
regulated genes against the distribution of log2 fold-
change for randomly sampled gene sets of the same size.
Survival analysis was carried out with the R library

survival. To combine expression values of multiple
genes for survival prediction, we took an approach
inspired by Colman et al. [16]. The normalized expres-
sion values xij, where i represents the gene and j the
sample, were first standardized to be comparable
between genes by subtracting the mean across samples
and dividing by the standard deviation, thus creating a
matrix of z-scores:
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zij =
xij − x̄i.

SD(xi.)

Using a set U of nU genes upregulated in GNS cell
lines and a set D of nD genes downregulated in these
cells, we then computed a GNS signature score sj for
each sample j by subtracting the mean expression of the
downregulated genes from the mean expression of the
upregulated genes:

sj =
∑

i∈U

zij

nU
−

∑

i∈D

zij

nD

IDH1 mutation calls for TCGA samples were obtained
from Firehose data run version 2012-07-07 [31] and data
files from the study by Verhaak et al. updated 2011-11-28
[32].

Array comparative genomic hybridization
We re-analyzed the array comparative genomic hybridiza-
tion (CGH) data described by Pollard et al. [6]. CGH was
performed with Human Genome CGH Microarray 4x44K
arrays (Agilent), using genomic DNA from each cell line
hybridized in duplicate (dye swap) and normal human
female DNA as reference (Promega, Southampton, UK).
Log2 ratios were computed from processed Cy3 and Cy5
intensities reported by the software CGH Analytics (Agi-
lent). We corrected for effects related to GC content and
restriction fragment size using a modified version of the
waves array CGH correction algorithm [33]. Briefly, log2
ratios were adjusted by sequential loess normalization on
three factors: fragment GC content, fragment size, and
probe GC content. These were selected after investigating
dependence of log ratio on multiple factors, including GC
content in windows of up to 500 kb centered around each
probe. The Bioconductor package CGHnormaliter [34]
was then used to correct for intensity dependence and
log2 ratios scaled to be comparable between arrays using
the ‘scale’ method in the package limma [35]. Replicate
arrays were averaged and the genome (GRCh37) segmen-
ted into regions with different copy number using the

circular binary segmentation algorithm in the Bioconduc-
tor package DNAcopy [36], with the option undo.SD set to
1. Aberrations were called using the package CGHcall [37]
with the option nclass set to 4. CGH data are available
from ArrayExpress [27] under accession E-MTAB-972.

Results
Transcriptome analysis highlights pathways affected in
glioma
We applied Tag-seq to four GNS cell lines (G144,
G144ED, G166 and G179) and two human fetal NS cell
lines (CB541 and CB660), all previously described [5,6].
G144 and G144ED were independently established from
the same parental tumor in different laboratories. Tag-seq
gene expression values were strongly correlated between
these two lines (Pearson r = 0.94), demonstrating that the
experimental procedure, including cell line establishment,
library construction and sequencing, is highly reproduci-
ble. The two NS cell transcriptome profiles were also well
correlated (r = 0.87), but there were greater differences
among G144, G166 and G179 (r ranging from 0.78 to
0.82). This is expected, as G144, G166 and G179 originate
from different and histologically distinct glioblastoma
cases.
We used the Tag-seq data to identify differences in gene

expression between the three GNS cell lines G144, G166
and G179 and the two normal NS cell lines CB541 and
CB660. At a FDR of 10%, this analysis revealed 485 genes
to be expressed at a higher average level in GNS cells
(upregulated) and 254 genes to be downregulated (Addi-
tional file 5). GNS cells display transcriptional alterations
common in glioblastoma, including upregulation of the
epidermal growth factor receptor (EGFR) gene and down-
regulation of the tumor suppressor PTEN [11]. Enrich-
ment analysis using Gene Ontology and the KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway database
confirmed the set of 739 differentially expressed genes to
be enriched for pathways related to brain development,
glioma and cancer (Tables 2 and 3). We also observed
enrichment of regulatory and inflammatory genes, such as
signal transduction components, cytokines, growth factors

Table 1 Public gene expression data sets used in this study

Number of cases

Citation Citation Microarray platform
(Affymetrix)

Glioblastoma Grade III
astrocytoma

Other grade III
glioma

Grade I-II
glioma

Non-
neoplastic

brain

The Cancer Genome Atlas
(TCGA) [11,46]

NA Exon 1.0 ST 397 0 0 0 10

Gravendeel et al. [13] GSE16011 U133 Plus 2.0 141 16 66 27 0

Murat et al. [12] GSE7696 U133 Plus 2.0 70 0 0 0 0

Phillips et al. [9] GSE4271 U133A and U133B 55 21 0 0 0

Freije et al. [10] GSE4412 U133A and U133B 50 8 16 0 0

TCGA sample IDs are listed in Additional file 4. Gravendeel et al. [13] described 269 samples obtained at histologic diagnosis, from which we excluded 15
containing mostly non-neoplastic tissue and four lacking survival data. NA, not applicable.
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and DNA-binding factors. Several genes related to antigen
presentation on MHC class I and II molecules were upre-
gulated in GNS cells, consistent with the documented
expression of their corresponding proteins in glioma
tumors and cell lines [38,39]. In addition, we detected 25
differentially expressed long non-coding RNAs (Additional
file 6). Several of these display an expression pattern simi-
lar to a neighboring protein-coding gene, including can-
cer-associated genes DKK1 and CTSC [40,41] (Figure 1)
and developmental regulators IRX2, SIX3 and ZNF536
[42], suggesting that they may be functional RNAs regulat-
ing nearby genes [43] or represent transcription from
active enhancers [44].

To visualize gene expression differences in a pathway
context, we compiled an integrated pathway map that
includes the pathways most commonly affected in glio-
blastoma, as well as pathways related to antigen proces-
sing and presentation, apoptosis, angiogenesis and
invasion (Additional file 1). The map contains 182 genes,
of which 66 were differentially expressed between GNS
and NS cells at 10% FDR (Additional file 7). Figure 2
depicts a condensed version focused on the pathways
most frequently affected in glioblastoma. This approach
allowed us to identify differentially expressed genes that
participate in glioma-related pathways, but have not been
directly implicated in glioma. These include several genes

Table 2 Selected Gene Ontology terms and InterPro domains enriched among differentially expressed genes

Differentially expressed (729 genes) Upregulated (485 genes) Downregulated (254 genes)

Genes P Genes P Genes P

Biological process Gene Ontology terms

Immune response 70 2.4 × 10-12 61 3.0 × 10-16 9 NS

Nervous system development 106 1.9 × 10-10 62 0.0055 44 2.3 × 10-5

Cell adhesion 74 9.8 × 10-8 56 1.9 × 10-7 18 NS

Antigen processing and presentation 17 4.3 × 10-7 17 5.4 × 10-10 0 NS

Cell differentiation 128 7.4 × 10-7 74 NS 54 1.8 × 10-4

Cell migration 44 3.0 × 10-4 30 0.0262 14 NS

Cell proliferation 86 3.4 × 10-4 59 0.0136 27 NS

Cellular ion homeostasis 36 0.0138 33 1.7 × 10-5 3 NS

Molecular function Gene Ontology terms

Cytokine activity 27 2.3 × 10-8 25 7.1 × 10-11 2 NS

Signal transducer activity 111 2.8 × 10-7 66 0.0584 45 0.0017

Receptor activity 83 8.0 × 10-7 48 NS 35 0.0016

Sequence-specific DNA binding 52 2.7 × 10-4 34 0.0526 18 NS

MHC class II receptor activity 5 0.0077 5 9.2 × 10-4 0 NS

Growth factor activity 20 0.0109 17 0.0019 3 NS

InterPro domains

Immunoglobulin-like 45 3.1 × 10-8 32 6.0 × 10-6 13 NS

MHC classes I/II-like antigen recognition protein 14 1.1 × 10-7 14 3.2 × 10-10 0 NS

Homeobox 28 8.5 × 10-6 18 0.0124 10 NS

Number of genes differentially expressed at 10% FDR and annotated with the indicated Gene Ontology and InterPro terms. P-values indicating the statistical
significance of enrichment of these terms were computed with Fisher’s exact test and corrected for multiple testing using the Bonferroni method. NS, not
significant (P > 0.1).

Table 3 Representative KEGG pathways from signaling pathway impact analysis of gene expression differences
between GNS and NS cell lines

Pathway Genes P Predicted status in GNS cells

Cytokine-cytokine receptor interaction 29 4.4 × 10-12 Activated

Chemokine signaling pathway 15 5.3 × 10-6 Activated

Neuroactive ligand-receptor interaction 21 2.2 × 10-4 Inhibited

Antigen processing and presentation 11 6.8 × 10-4 Activated

MAPK signaling pathway 24 0.0106 Activated

Glioma 10 0.0131 Activated

ECM-receptor interaction 10 0.0405 Inhibited

Calcium signaling pathway 15 0.0405 Activated

The number of genes found to be differentially expressed at 10% FDR and belonging to the selected pathways are indicated. P-values and status predictions
were obtained by signaling pathway impact analysis [26], taking fold-change estimates and pathway topology into account. P-values were FDR-corrected for
multiple testing. ECM, extracellular matrix; MAPK, mitogen-activated protein kinase.
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associated with other neoplasms (Table 4). Our compari-
son between GNS and NS cells thus highlights genes and
pathways that are known to be affected in glioma as well
as novel candidates, and suggests the GNS/NS compari-
son is a compelling model for investigating the molecular
attributes of glioma.

Core expression changes in GNS lines are mirrored in
glioma tumors and correlate with histological grade
To capture major gene expression changes common to
G144, G166 and G179, we set strict criteria on fold
changes and tag counts (see Materials and methods).
This approach yielded 32 upregulated and 60 downregu-
lated genes, in the following referred to as ‘core’ differen-
tially expressed genes (Additional file 8). This set
includes genes with established roles in glioblastoma (for
example, PTEN [11] and CEBPB [45]), as well as others
not previously implicated in the disease (see Discussion).
To investigate whether these core differentially expressed
genes have similar expression patterns in GNS cells and
primary tumors, we made use of public microarray data
(Table 1). Perfect agreement between tissue- and cell-
based results would not be expected, as tissues comprise
a heterogeneous mixture of cell types. Nevertheless, ana-
lysis of microarray expression data from TCGA [11,46]
for 397 glioblastoma cases (Additional file 4) revealed a
clear trend for core upregulated GNS genes to be more
highly expressed in glioblastoma tumors than in non-
neoplastic brain tissue (P = 0.02, randomization test;

Figure 3a) and an opposite trend for core downregulated
genes (P = 3 × 10-5; Figure 3c).
We hypothesized that the expression of these genes might
also differ between glioblastoma and less severe astrocyto-
mas. We therefore examined their expression patterns in
microarray data from the studies of Phillips et al. [9] and
Freije et al. [10], which both profiled grade III astrocytoma
cases in addition to glioblastomas (Table 1). The result
was similar to the comparison with non-neoplastic brain
tissue above; there was a propensity for core upregulated
genes to be more highly expressed in glioblastoma than in
the lower-grade tumor class (P = 10-6; Figure 3b), while
core downregulated genes showed the opposite pattern
(P = 10-4; Figure 3d). The set of core differentially
expressed genes identified by Tag-seq thus defines an
expression signature characteristic of glioblastoma and
related to astrocytoma histological grade.

Large-scale qRT-PCR validates Tag-seq results and identifies
a robust gene set distinguishing GNS from NS cells
To assess the accuracy of Tag-seq expression level esti-
mates and investigate gene activity in a larger panel of cell
lines, we assayed 82 core differentially expressed genes in
16 GNS cell lines (derived from independent patient
tumors) and six normal NS cell lines by qRT-PCR using
custom-designed TaqMan microfluidic arrays. The 82 vali-
dation targets (Additional file 3) were selected from the 92
core differentially expressed genes based on the availability
of TaqMan probes and considering prior knowledge of
gene functions. For the cell lines assayed by both Tag-seq
and qRT-PCR, measurements agreed remarkably well
between the two technologies: the median Pearson corre-
lation for expression profiles of individual genes was 0.91
and the differential expression calls were corroborated for
all 82 genes (Figure 4a). Across the entire panel of cell
lines, 29 of the 82 genes showed statistically significant dif-
ferences between GNS and NS cells at an FDR of 5% (Fig-
ure 4b,c). This set of 29 genes generally distinguishes GNS
cells from normal NS cell counterparts, and may therefore
have broad relevance for elucidating properties specific to
tumor-initiating cells.

A GNS cell expression signature is associated with
patient survival
To further explore the relevance in glioma for these recur-
rent differences between GNS and NS cell transcriptomes,
we integrated clinical information with tumor expression
data. We first tested for associations between gene expres-
sion and survival time using the TCGA data set consisting
of 397 glioblastoma cases (Table 1). For each gene, we
fitted a Cox proportional hazards model with gene expres-
sion as a continuous explanatory variable and computed a
P-value by the score test (Table 5). The set of 29 genes
found to distinguish GNS from NS cells across the 22 cell
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Figure 1 Correlated expression of CTSC and a nearby non-
coding RNA. (a)CTSC (cathepsin C) is located in a gene desert
harboring an uncharacterized non-coding gene transcribed in the
opposite orientation [GenBank:BC038205]. (b)Both CTSC and the
non-coding RNA have strongly elevated expression in GNS relative
to NS cell lines, with highest levels in G179.
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lines assayed by qRT-PCR was enriched for low P-values
compared to the complete set of 18,632 genes quantified
in the TCGA data set (P = 0.02, one-sided Kolmogorov-
Smirnov test), demonstrating that expression analysis of
GNS and NS cell lines had enriched for genes associated
with patient survival. Seven of the 29 genes had a P-value
below 0.05 and, for six of these, the direction of the survi-
val trend was concordant with the expression in GNS
cells, such that greater similarity to the GNS cell expres-
sion pattern indicated poor survival. Specifically, DDIT3,
HOXD10, PDE1C and PLS3 were upregulated in GNS
cells and expressed at higher levels in glioblastomas with
poor prognosis, while PTEN and TUSC3 were downregu-
lated in GNS cells and expressed at lower levels in gliomas
with poor prognosis.

We reasoned that, if a cancer stem cell subpopulation in
glioblastoma tumors underlies these survival trends, it
may be possible to obtain a stronger and more robust
association with survival by integrating expression infor-
mation for multiple genes up- or downregulated in GNS
cells. We therefore combined the expression values for the
genes identified above (DDIT3, HOXD10, PDE1C, PLS3,
PTEN and TUSC3) into a single value per tumor sample,
termed ‘GNS signature score’ (see Materials and methods).
This score was more strongly associated with survival (P =
10-6) than were the expression levels of any of the six indi-
vidual genes (P ranging from 0.005 to 0.04; Table 5).
To test whether these findings generalize to indepen-

dent clinical sample groups, we examined the glioblas-
toma data sets described by Gravendeel et al. [13] and
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Murat et al. [12], consisting of 141 and 70 cases, respec-
tively (Table 1). The GNS signature score was correlated
with patient survival in both of these data sets (P = 3 ×
10-5 and 0.006, respectively; Figure 5a; Additional file 9).
At the level of individual GNS signature genes, five were
significantly associated with survival (P < 0.05) in both
of the two largest glioblastoma data sets we investigated
(TCGA and Gravendeel): HOXD10, PDE1C, PLS3,
PTEN and TUSC3 (Table 5). In addition to glioblastoma
(grade IV) tumors, Gravendeel et al. also characterized
109 grade I to III glioma cases (Table 1). Inclusion of
these data in survival analyses made the association with
the GNS signature even more apparent (Figure 5b). This
is consistent with the above observation that core tran-
scriptional alterations in GNS cells correlate with histo-
logical grade of primary tumors. Analysis of data from
the studies of Phillips et al. [9] and Freije et al. [10],
which profiled both grade III and IV gliomas (Table 1),
further confirmed the correlation between GNS signa-
ture and survival (Figure 5b). In summary, the associa-
tion between GNS signature and patient survival was
reproducible in five independent data sets comprising
867 glioma cases in total (Table 1).

We controlled for a range of potential confounding fac-
tors; these did not explain the survival trends observed
(Additional file 10). Investigating a relationship to known
predictors of survival in glioma, we noted that the GNS
signature score correlates with patient age at diagnosis,
suggesting that the GNS cell-related expression changes
are associated with the more severe form of the disease
observed in older patients (Figure 6a). Of the genes contri-
buting to the GNS signature, HOXD10, PLS3, PTEN and
TUSC3 correlated with age both in the TCGA and Grave-
ndeel data sets (Additional file 11).
Most grade III astrocytomas and a minority of glioblasto-
mas carry a mutation affecting codon 132 of the IDH1
gene resulting in an amino acid change (R132H, R132S,
R132C, R132G, or R132L). The presence of this mutation
is associated with lower age at disease onset and better
prognosis [47,48]. All 16 GNS cell lines profiled in this
study were derived from glioblastoma tumors, and the
IDH1 locus was sequenced in each cell line (data not
shown); none of them harbor the mutation. We therefore
investigated whether the GNS signature is characteristic
of IDH1 wild-type glioblastomas. IDH1 status has been
determined for most cases in the TCGA and Gravendeel

Table 4 Novel candidate glioma genes identified by differential expression and pathway analysis

Genea Log2 fold-
changeb

Prior association with
glioma

Implication in other neoplasms Reference

CACNA1A 7.1 None Prostate cancer (mouse model) [80]

CACNA1C -8.2 None Liver cancer [81]

CACNG7 -2.6 None None –

CACNG8 -4.8 None None –

CAMK1D -2.4 None Breast cancer [82]

CPLX2 6.4 None None –

DDIT3 (CHOP,
GADD153)

4.4 Limited General (cellular stress response) [83-86]

DUSP16 4.2 None Burkitt’s lymphoma [87]

FGF19 - None Liver, lung and colon cancer [88]

ITGA4 (CD49D) 3.0 Limited Chronic lymphocytic leukemia, breast cancer and others [89-91]

ITGBL1 + None None –

MAP3K5 (ASK1) 5.1 Limited Gastric cancer and histiocytoma [92-94]

NFATC2 (NFAT1) + Limited Breast cancer [95-98]

NFKBIZ 5.1 None Liposarcoma [99]

NR0B1 (DAX1) + None Lung adenocarcinoma and Ewing’s sarcoma [100,101]

NR1D1 2.9 None Breast cancer [102]

PARP3, PARP12 4.1, 2.9 By homologyc The PARP gene family is involved in DNA repair and several other
processes related to tumorigenesis

[103,104]

PERP 3.8 None Lung and skin cancer [105,106]

PPEF1 4.4 Limited None [107]

SNAP25 3.3 None Lung cancer [108]

SYT1 -2.5 None None –

TNFRSF14 4.0 None Follicular lymphoma [109]

TNFSF4 (OX40L) 4.0 None Generally implicated in immune response to tumors [110]
aAliases are listed in parentheses. bGene expression log2 fold-change between GNS and NS cell lines compared by Tag-seq. Some genes were detected exclusively in
GNS or NS cells (indicated in column 2 by + or -, respectively). cThe homolog PARP1 has been implicated in glioma. PARP, poly(ADP-ribose) polymerase.
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data sets (Table 6) [11,13,17]. As expected, we found that
gliomas with the IDH1 mutation tend to have lower GNS
signature scores than IDH1 wild-type gliomas of the
same histological grade (Figure 6b). However, we also
found the GNS signature to have a stronger survival asso-
ciation than IDH1 status (Table 6). The signature
remained a significant predictor of patient survival when
controlling for IDH1 status (Table 6), demonstrating that
it contributes independent information to the survival
model and does not simply represent a transcriptional
state of IDH1 wild-type tumors. This was evident in glio-
blastomas as well as grade I to III gliomas; the effect is
thus not limited to grade IV tumors.
To investigate whether the correlation between GNS sig-

nature and age could be explained by the higher proportion

of cases with IDH1 mutation among younger patients, we
repeated the correlation analysis described above (Figure
6a), limiting the data to glioblastoma cases without IDH1
mutation. For the TCGA data set, the correlation was
decreased somewhat (Pearson r = 0.25 compared to 0.36
for the full data set) but still highly significant (P = 6 × 10-
5), demonstrating that the correlation with age is only par-
tially explained by IDH1 status. This result was confirmed
in the Gravendeel data set, where the effect of controlling
for IDH1 status and grade was negligible (r = 0.38 com-
pared to 0.39 for the full data set including grade I to III
samples). Among the individual signature genes, both
HOXD10 and TUSC3 remained correlated with age in both
data sets when limiting the analysis to IDH1 wild-type glio-
blastoma cases (Additional file 11).

−8 0 4 8
Relative

log2 expression

GNS linesNS lines
−4

Tag−seq log2 fold−change

qR
T−

P
C

R
 lo

g 2
 fo

ld
−c

ha
ng

e

E
xp

re
ss

io
n

(a)

(b)

(c)

−10 −5 0 5 10

−1
0

−5
0

5
10

FOXG1

0

50000

100000

150000

200000

LMO4

0

500

1000

1500

2000

SULF2

0

2000

4000

6000

TES

0

100

200

300

CD9

0

2000

4000

22000

C
B

13
0

C
B

15
2

C
B

17
1

C
B

19
2

C
B

54
1

C
B

66
0

G
2

G
7

G
9

G
14

G
19

G
21

G
23

G
24

G
25

G
26

G
30

G
31

G
32

G
14

4
G

16
6

G
17

9

NELL2

0

50

100

150

C
B

19
2

C
B

13
0

C
B

17
1

C
B

15
2

C
B

54
1

C
B

66
0

G
9

G
24

G
25

G
26

G
23

G
17

9
G

30
G

16
6

G
2

G
21

G
14

G
19

G
7

G
14

4
G

31
G

32

TES
TAGLN
MYL9
SDC2
IRX2
HMGA2
TUSC3
SYNM
MAP6
NELL2
NDN
ST6GALNAC5
PLCH1
PTEN
MAF
PRSS12
PLS3
SULF2
PDE1C
ADD2
PLA2G4A
CEBPB
MT2A
LYST
HOXD10
DDIT3
LMO4
CD9
FOXG1

Figure 4 qRT-PCR validates Tag-seq results and identifies a robust gene set distinguishing GNS from NS cells. (a)Fold-change estimates
(indicating expression level in GNS relative to NS cell lines) from Tag-seq and qRT-PCR for each of the 82 genes measured by qRT-PCR. Greater
than two-fold difference in expression (dashed lines at y = ±1) was confirmed for all genes. (b)Heatmap of 29 genes differentially expressed
between 16 GNS and six NS cell lines. Colors indicate qRT-PCR ΔΔCt values, that is, normalized expression on a log2 scale, where zero
corresponds to the average expression between the two groups (GNS and NS cells). (c)Expression levels of the top six genes (by Wilcoxon test
P-value) distinguishing GNS from NS cell lines, measured by qRT-PCR and presented as percentage of NS geometric mean.

Engström et al. Genome Medicine 2012, 4:76
http://genomemedicine.com/content/4/10/76

Page 10 of 19



Influence of copy number alterations on the GNS
transcriptome
Previous analysis of chromosomal aberrations in G144,
G166 and G179 by spectral karyotyping and array CGH
detected genetic variants characteristic of glioblastoma
[6]. To assess the influence of copy-number changes on
the GNS transcriptome, we compared CGH profiles
(Figure 7) with Tag-seq data. On a global level, there
was an apparent correlation between chromosomal aber-
rations and gene expression levels (Figure 8a,b), demon-
strating that copy-number changes are a significant
cause of the observed expression differences. Among the
29 genes differentially expressed between GNS and NS
cells in the larger panel assayed by qRT-PCR, there was
a tendency for downregulated genes to be lost: 10 out of
15 downregulated genes were in regions of lower than
average copy number in one or more GNS cell lines,
compared to 4 out of 14 upregulated genes (P = 0.046,
one-sided Fisher’s exact test).

Despite the global correlation between gene expression
and copy number, many individual expression changes
could not be explained by structural alterations. For exam-
ple, only a minority of upregulated genes (21%) were
located in regions of increased copy number, including
whole-chromosome gains (Figure 8b), the survival-asso-
ciated genes HOXD10, PLS3, and TUSC3 lacked copy-
number aberrations consistent with their expression
changes, and the survival-associated gene DDIT3 was only
genetically gained in G144, although highly expressed in all
three GNS cell lines (Figure 8c). In general, the 29 genes
that robustly distinguish GNS from NS cells did not show a
consistent pattern of aberrations: only three genes (PDE1C,
NDN and SYNM) were located in regions similarly affected
by genetic lesions in all lines. Thus, in addition to copy-
number alterations, other factors are important in shaping
the GNS transcriptome, and regulatory mechanisms may
differ among GNS cell lines yet produce similar changes in
gene expression.

Table 5 Survival tests for 29 genes distinguishing GNS from NS lines

TCGA data set Gravendeel data set (glioblastoma cases)

Gene Category Coefficienta P Probesetb Coefficienta P

ADD2 Upregulated -0.13 0.2858 237336_at -0.17 0.1420

CD9 Upregulated 0.18 0.0731 201005_at 0.17 0.0689

CEBPB Upregulated 0.19 0.1028 212501_at 0.17 0.0651

DDIT3 Upregulated 0.17 0.0128 209383_at 0.09 0.2777

FOXG1 Upregulated 0.13 0.0861 206018_at 0.11 0.0380

HMGA2 Downregulated 0.13 0.1456 1561633_at -0.84 0.2459

HOXD10 Upregulated 0.12 0.0108 229400_at 0.15 0.0021

IRX2 Downregulated -0.19 0.2346 228462_at -0.20 4.4 × 10-4

LMO4 Upregulated 0.24 0.1046 209205_s_at 0.20 0.1435

LYST Upregulated 0.05 0.5590 203518_at 0.10 0.4151

MAF Downregulated 0.10 0.5873 209348_s_at 0.38 0.0074

MAP6 Downregulated 0.16 0.3063 235672_at -0.30 0.0087

MT2A Upregulated 0.16 0.1554 212185_x_at 0.27 0.0127

MYL9 Downregulated 0.08 0.3764 201058_s_at 0.15 0.0252

NDN Downregulated -0.04 0.4874 209550_at -0.22 6.0 × 10-5

NELL2 Downregulated 0.08 0.1021 203413_at 0.14 0.0215

PDE1C Upregulated 0.20 0.0105 236344_at 0.21 0.0134

PLA2G4A Upregulated -0.06 0.3198 210145_at 0.30 2.9 × 10-4

PLCH1 Downregulated 0.10 0.3165 214745_at 0.45 0.0094

PLS3 Upregulated 0.13 0.0381 201215_at 0.30 0.0069

PRSS12 Upregulated -0.11 0.1865 213802_at 0.20 0.0296

PTEN Downregulated -0.53 0.0047 228006_at -0.40 0.0062

SDC2 Downregulated 0.22 0.0044 212158_at 0.28 5.8 × 10-4

ST6GALNAC5 Downregulated 0.01 0.9116 220979_s_at 0.08 0.2416

SULF2 Upregulated -0.11 0.1525 233555_s_at -0.15 0.0930

SYNM Downregulated -0.06 0.5620 212730_at 0.08 0.2613

TAGLN Downregulated 0.03 0.5947 205547_s_at 0.17 0.0030

TES Downregulated -0.05 0.5759 202720_at 0.07 0.5499

TUSC3 Downregulated -0.14 0.0079 209227_at -0.18 0.0060
aFitted coefficient from Cox model; a positive coefficient indicates that higher expression is associated with poor survival and a negative coefficient indicates the
opposite. bFor the Gravendeel data set, the result for the most significant probeset interrogating the gene is shown.

Engström et al. Genome Medicine 2012, 4:76
http://genomemedicine.com/content/4/10/76

Page 11 of 19



0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TCGA data set (glioblastoma)

Weeks after surgery

S
ur

vi
va

l p
ro

ba
bi

lit
y

Score < 20th percentile (n=80)
Score > 20th percentile (n=317)

Hazard ratio = 1.75
P = 0.000068

0 100 200 300 400 500 600
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Gravendeel data set (glioblastoma)

Weeks after surgery

Score < 20th percentile (n=29)
Score > 20th percentile (n=112)

Hazard ratio = 2.24
P = 0.00028

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Murat data set (glioblastoma)

Weeks after surgery

Score < 20th percentile (n=14)
Score > 20th percentile (n=56)

Hazard ratio = 2.25
P = 0.023

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gravendeel data set (grade I−IV glioma)

Weeks after surgery

S
ur

vi
va

l p
ro

ba
bi

lit
y

Score < 50th percentile (n=125)
Score > 50th percentile (n=125)

Hazard ratio = 3.31
P < 10−16

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Phillips data set (grade III−IV glioma)

Weeks after surgery

Score < 50th percentile (n=38)
Score > 50th percentile (n=38)

Hazard ratio = 1.72
P = 0.035

0 50 100 150 200 250 300 350
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Freije data set (grade III−IV glioma)

Weeks after surgery

Score < 50th percentile (n=37)
Score > 50th percentile (n=37)

Hazard ratio = 2.41
P = 0.0025

(a)

(b)

Figure 5 Association between GNS signature score and patient survival. (a,b) Kaplan-Meier plots illustrate the association between
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Figure 6 Association between GNS signature and other survival predictors. (a) Scatter plots demonstrate the correlation between GNS
signature score and age at diagnosis for the TCGA (left) and Gravendeel (right) data sets. The regression line, Pearson correlation coefficient (r)
and P-value indicating statistical significance of the correlation are shown. (b) GNS signature score for samples in the Gravendeel data set,
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summarize their distribution. Only cases with known IDH1 status are shown (127 mutated, 77 wild type).
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Discussion
To reveal transcriptional changes that underlie glioblas-
toma, we performed an in-depth analysis of gene expres-
sion in malignant stem cells derived from patient tumors
in relation to untransformed, karyotypically normal NS
cells. These cell types are closely related and it has been
hypothesized that gliomas arise by mutations in NS cells
or in glial cells that have reacquired stem cell features
[2]. We measured gene expression by high-throughput
RNA tag sequencing (Tag-seq), a method that features
high sensitivity and reproducibility compared to microar-
rays [7]. qRT-PCR validation further demonstrates that
Tag-seq expression values are highly accurate. Other can-
cer samples and cell lines have recently been profiled
with the same method [8,47] and it should be feasible to
directly compare those results to the data presented here.
Through Tag-seq expression profiling of normal and

cancer stem cells followed by qRT-PCR validation in a

wider panel of 22 cell lines, we identified 29 genes
strongly discriminating GNS from NS cells. Some of
these genes have previously been implicated in glioma,
including four with a role in adhesion and/or migration,
CD9, ST6GALNAC5, SYNM and TES [49-52], and two
transcriptional regulators, FOXG1 and CEBPB. FOXG1,
which has been proposed to act as an oncogene in glio-
blastoma by suppressing growth-inhibitory effects of
transforming growth factor b [53], showed remarkably
strong expression in all 16 GNS cell lines assayed by
qRT-PCR. CEBPB was recently identified as a master reg-
ulator of a mesenchymal gene expression signature asso-
ciated with poor prognosis in glioblastoma [45]. Studies
in hepatoma and pheochromocytoma cell lines have
shown that the transcription factor encoded by CEBPB
(C/EBPb) promotes expression of DDIT3 [54], another
transcriptional regulator that we found to be upregulated
in GNS cells. DDIT3 encodes the protein CHOP, which

Table 6 Significance of survival association for GNS signature and IDH1 status

Single covariate Two covariates

Data set Number of cases GNS signature IDH1 status GNS signature IDH1 status

TCGA 270 5.3 × 10-5 0.0015 0.0091 0.1489

Gravendeel, glioblastoma cases 118 2.7 × 10-5 0.0031 9.2 × 10-4 0.0840

Gravendeel, grade I to III glioma cases 86 6.5 × 10-4 0.5776 6.3 × 10-4 0.5408

Wald test P-values, indicating association with survival, for each covariate in a Cox proportional hazards model with one or two covariates (GNS signature, IDH1
status or both). Cases with unknown IDH1 mutation status were excluded.
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in turn can inhibit C/EBPb by dimerizing with it and act-
ing as a dominant negative [54]. This interplay between
CEBPB and DDIT3 may be relevant for glioma therapy
development, as DDIT3 induction in response to a range
of compounds sensitizes glioma cells to apoptosis (see,
for example, [55]).
Our results also corroborate a role in glioma for several

other genes with limited prior links to the disease. This list
includes PLA2G4A, HMGA2, TAGLN and TUSC3, all of
which have been implicated in other neoplasias (Addi-
tional file 12). PLA2G4A encodes a phospholipase that
functions in the production of lipid signaling molecules
with mitogenic and pro-inflammatory effects. In a subcu-
taneous xenograft model of glioblastoma, expression of
PLA2G4A by the host mice was required for tumor growth
[56]. For HMGA2, a transcriptional regulator downregu-
lated in most GNS cell lines, low or absent protein expres-
sion has been observed in glioblastoma compared to low-
grade gliomas [57], and HMGA2 polymorphisms have
been associated with survival time in glioblastoma [58].
The set of 29 genes found to generally distinguish GNS
from NS cells also includes multiple genes implicated in

other neoplasias, but without direct links to glioma (Addi-
tional file 12). Of these, the transcriptional regulator
LMO4, may be of particular interest, as it is well studied as
an oncogene in breast cancer and regulated through the
phosphoinositide 3-kinase pathway [59], which is com-
monly affected in glioblastoma [11].
Five of these 29 genes have not been directly implicated

in cancer. This list comprises one gene downregulated in
GNS cells (PLCH1) and four upregulated (ADD2, LYST,
PDE1C and PRSS12). PLCH1 is involved in phosphoinosi-
tol signaling [60], like the frequently mutated phosphoino-
sitide 3-kinase complex [11]. ADD2 encodes a cytoskeletal
protein that interacts with FYN, a tyrosine kinase promot-
ing cancer cell migration [61,62]. For PDE1C, a cyclic
nucleotide phosphodiesterase gene, we found higher
expression to correlate with shorter survival after surgery.
Upregulation of PDE1C has been associated with prolifera-
tion in other cell types through hydrolysis of cAMP and
cGMP [63,64]. PRSS12 encodes a protease that can activate
tissue plasminogen activator (tPA) [65], an enzyme that is
highly expressed by glioma cells and has been suggested to
promote invasion [66].
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By considering expression changes in a pathway con-
text, we identified additional candidate glioblastoma
genes, such as the putative cell adhesion gene ITGBL1
[67], the orphan nuclear receptor NR0B1, which is
strongly upregulated in G179 and is known to be upre-
gulated and mediate tumor growth in Ewing’s sarcoma
[68], and the genes PARP3 and PARP12, which belong
to the poly(ADP-ribose) polymerase (PARP) family of
ADP-ribosyl transferase genes involved in DNA repair
(Table 4). The upregulation of these PARP genes in
GNS cells may have therapeutic relevance, as inhibitors
of their homolog PARP1 are in clinical trials for brain
tumors [69].
Transcriptome analysis thus identified multiple genes

of known significance in glioma pathology as well as sev-
eral novel candidate genes and pathways. These results
are further corroborated by survival analysis, which
revealed a GNS expression signature associated with
patient survival time in five independent data sets. This
finding is compatible with the notion that gliomas con-
tain a GNS component of relevance for prognosis. Five
individual GNS signature genes were significantly asso-
ciated with survival of glioblastoma patients in both of
the two largest data sets: PLS3, HOXD10, TUSC3, PDE1C
and the well-studied tumor suppressor PTEN. PLS3
(T-plastin) regulates actin organization and its overex-
pression in the CV-1 cell line resulted in partial loss of
adherence [70]. Elevated PLS3 expression in GNS cells
may thus be relevant for the invasive phenotype. The
association between transcriptional upregulation of
HOXD10 and poor survival is surprising, because
HOXD10 protein levels are suppressed by a microRNA
(miR-10b) highly expressed in gliomas, and it has been
suggested that HOXD10 suppression by miR-10b pro-
motes invasion [71]. Notably, the HOXD10 mRNA upre-
gulation we observe in GNS cells also occurs in
glioblastoma tumors, as shown by comparison with grade
III astrocytoma (Figure 3b). Similarly, miR-10b is present
at higher levels in glioblastoma compared to gliomas of
lower grade [71]. It is conceivable that HOXD10 tran-
scriptional upregulation and post-transcriptional sup-
pression is indicative of a regulatory program associated
with poor prognosis in glioma.
Tumors from older patients featured an expression pat-

tern more similar to the GNS signature. One of the genes
contributing to this trend, TUSC3, is known to be silenced
by promoter methylation in glioblastoma, particularly in
patients aged over 40 years [72]. Loss or downregulation
of TUSC3 has been found in other cancers, such as of the
colon, where its promoter becomes increasingly methy-
lated with age in the healthy mucosa [73]. Taken together,
these data suggest that transcriptional changes in healthy
aging tissue, such as TUSC3 silencing, may contribute to

the more severe form of glioma in older patients. Thus,
the molecular mechanisms underlying the expression
changes described here are likely to be complex and var-
ied. To capture these effects and elucidate their causes,
transcriptome analysis of cancer samples will benefit from
integration of diverse genomic data, including structural
and nucleotide-level genetic alterations, as well as DNA
methylation and other chromatin modifications.
To identify expression alterations common to most

glioblastoma cases, other studies have profiled tumor
resections in relation to non-neoplastic brain tissue
[47,74,75]. While such comparisons have been revealing,
their power is constrained by discrepancies between
reference and tumor samples - for instance, the higher
neuronal content of normal brain tissue compared to
tumors. Gene expression profiling of tumor tissue
further suffers from mixed signal due to a stromal cell
component and heterogeneous populations of cancer
cells, only some of which contribute to tumor progres-
sion and maintenance [2]. Part of a recent study bearing
a closer relationship to our analysis examined gene
expression in another panel of glioma-derived and nor-
mal NS cells [76], but included neurosphere cultures,
which often contain a heterogeneous mixture of self-
renewing and differentiating cells.
Here, we have circumvented these issues by profiling

uniform cultures of primary malignant stem cell lines
that can reconstitute the tumor in vivo [6], in direct com-
parison to normal counterparts of the same fundamental
cell type [4,5]. While the resulting expression patterns
largely agree with those obtained from glioblastoma tis-
sues, there are notable differences. For example, we
found the breast cancer oncogene LMO4 (discussed
above) to be upregulated in most GNS cell lines,
although its average expression in glioblastoma tumors is
low relative to normal brain tissue (Figure 3a). Similarly,
TAGLN and TES were absent or low in most GNS cell
lines, but displayed the opposite trend in glioblastoma
tissue compared to normal brain (Figure 3c) or grade III
astrocytoma (Figure 3d). Importantly, both TAGLN and
TES have been characterized as tumor suppressors in
malignancies outside the brain and the latter is often
silenced by promoter hypermethylation in glioblastoma
[77,78].

Conclusions
Our results support the use of GNS cells as a relevant
model for investigating the molecular basis of glioblas-
toma, and the use of NS cell lines as controls in this
setting. Transcriptome sequencing revealed aberrant
gene expression patterns in GNS cells and defined a
molecular signature of the proliferating cell population
that drives malignant brain cancers. These transcriptional
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alterations correlate with several prognostic indicators
and are strongly associated with patient survival in both
glioblastoma and lower-grade gliomas, suggesting that a
greater GNS cell component contributes to poorer prog-
nosis. Several genes observed to be consistently altered in
GNS cells have not previously been implicated in glioma,
but are known to play a role in other neoplasias or in cel-
lular processes related to malignancy. Such alterations
include changes in oncogene and tumor suppressor
expression not detectable by microarray profiling of post-
surgical glioma biopsies. These findings demonstrate the
utility of cancer stem cell models for advancing the mole-
cular understanding of tumorigenesis.
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