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Abstract

Background: Numerous genome-wide scans conducted by genotyping previously ascertained single-nucleotide
polymorphisms (SNPs) have provided candidate signatures for positive selection in various regions of the human
genome, including in genes involved in pigmentation traits. However, it is unclear how well the signatures
discovered by such haplotype-based test statistics can be reproduced in tests based on full resequencing data.
Four genes (oculocutaneous albinism II (OCA2), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT),
and KIT ligand (KITLG)) implicated in human skin-color variation, have shown evidence for positive selection in
Europeans and East Asians in previous SNP-scan data. In the current study, we resequenced 4.7 to 6.7 kb of DNA
from each of these genes in Africans, Europeans, East Asians, and South Asians.

Results: Applying all commonly used neutrality-test statistics for allele frequency distribution to the newly
generated sequence data provided conflicting results regarding evidence for positive selection. Previous haplotype-
based findings could not be clearly confirmed. Although some tests were marginally significant for some
populations and genes, none of them were significant after multiple-testing correction. Combined P values for
each gene-population pair did not improve these results. Application of Approximate Bayesian Computation
Markov chain Monte Carlo based to these sequence data using a simple forward simulator revealed broad
posterior distributions of the selective parameters for all four genes, providing no support for positive selection.
However, when we applied this approach to published sequence data on SLC45A2, another human pigmentation
candidate gene, we could readily confirm evidence for positive selection, as previously detected with sequence-
based and some haplotype-based tests.

Conclusions: Overall, our data indicate that even genes that are strong biological candidates for positive selection
and show reproducible signatures of positive selection in SNP scans do not always show the same replicability of
selection signals in other tests, which should be considered in future studies on detecting positive selection in
genetic data.

Background
Large-scale genotyping projects using genome-wide sin-
gle-nucleotide polymorphisms (SNPs) have provided
large amounts of data describing the genetic diversity of
human populations [1-6]. Several statistical methods
have been developed and used for detection of signatures

of selective processes from genome-wide SNP data,
which we refer to as ‘SNP scans’ [7]. All these approaches
try to recover fingerprints of selective sweeps by detect-
ing signals in the haplotypic variation of a genomic
region and/or the spectrum of the variation of the genetic
diversity [8-15]. However, the results obtained with the
different test statistics usually show limited overlap (see
results from Voight et al. [12] Wang et al. [14] and Akey
[16]), therefore, it would be desirable to compare the
results from SNP haplotype-based tests using the ‘gold
standard’ of full resequencing data and suitable statistical
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tests. The most widely used approach involves computing
a set of neutrality-test values for sequence data from a
particular genomic region, and then estimating the likeli-
hood of such values are under neutrality. This is achieved
either by comparing the computed one in the region of
interest with the value of the statistic in other regions of
the genome (that is, by using empirical distributions [17])
or with the values obtained under demographic (neutral)
simulations [18]). However, it is also desirable to have an
estimate of the selective parameters (s and h) rather than
just rejecting the hypothesis of neutrality. The latter
could be in principle obtained by applying Approximate
Bayesian Computation (ABC) [19], a statistical technique
used to recover the posterior distribution of parameters
shaping the statistical model, which is applied when com-
puting the likelihood of the data given the parameters is
not possible, but it is possible to simulate data under the
model of interest [19]. ABC has proven to be a valuable
statistical tool for making inferences about demographic
parameters in population genetics. Moreover, it has also
been used in estimating selective parameters [20,21].
Skin pigmentation is an excellent candidate system for

investigating positive selection. It is very likely that this
trait is under selective pressure, given the biological role
of pigmentation and the large differences seen in pigmen-
tation intensity between continental populations [22]. For
a large number of genes involved in the pigmentation
pathway, signatures of recent selective sweeps have been
suggested from SNP-scan data [12,14,23-26], and DNA
sequence-based evidence has been tested for a limited
number of the genes associated with human skin pig-
mentation (melanocortin 1 receptor (MC1R), solute car-
rier family 45 member 2 (SLC45A2), tyrosinase-related
protein 1 (TYRP1, dopachrome tautomerase (DCT) and
tyrosinase (TYR) [27-30]. In a previous SNP-based study,
we identified signatures of selective sweeps in the genes
oculocutaneous albinism II (OCA2),TYRP1, DCT, and
KIT ligand (KITLG) in Europeans, in OCA2, DCT,
KITLG, epidermal growth factor receptor (EGFR) and
dopamine receptor D2 (DRD2) in East Asians. In contrast,
Africans did not show any evidence of positive selection
in any of the genes that we tested [24]. Evidence for
selection in OCA2, DCT, KITLG, and TYRP1 was also
shown by other SNP-based studies applying similar hap-
lotype-based tests to data from other samples [23-26].
In the present study, we generated DNA sequence

data from approximately 4.7 to 6.7 kb of each of the
four genes OCA2, TYRP1, DCT and KITLG in Africans,
Europeans, East Asians and South Asians, and applied
both neutrality tests and an ABC-Markov chain Monte
Carlo (MCMC) approach for detecting evidence of posi-
tive selection. Furthermore, we compared the outcomes
from such sequence-based test with our previous results
from haplotype-based tests using SNP-scan data.

Results
We sequenced DNA regions of approximately 4.7 to 6.7
kb from each four genes, OCA2, DCT, TYRP1 and KITLG,
involved mainly in human skin pigmentation, in 24 to 26
DNA samples from African, European, East Asian and
South Asian populations (Table 1). In total, we detected
146 polymorphic positions: 47 in the OCA2 fragment, 35
in the TYRP1 fragment, 31 in the DCT fragment and 33 in
the KITLG fragment (Table 1).

Neutrality tests and their statistical significance
The application of the four-gamete rule between all pairs
of SNPs within each population suggested that, for all
genes except TYRP1, the sequenced region could be con-
sidered as a single block (see Additional file 1). We com-
piled results from commonly used neutrality tests under
different demographic models and using an empirical dis-
tribution (Table 2), and computed the two-tailed P value
for each statistic given the population and gene (see Addi-
tional file 2). We found discrepancies in rejecting the null
hypothesis of neutrality depending on which expected
neutral distribution was used. After Bonferroni correction
for multiple testing (P<0.05/96 computed tests for each
expected distribution considered under neutrality in the
case of the cosi model (CM) and the Gutenkunst model
(GM, a best-fit demographic model); and P<0.05/60 com-
puted tests in the case of Encyclopedia of DNA Elements
(ENCODE) data (ED)), Fu’s Fs statistic was significant for
the TYRP1 gene and the Han Chinese from Beijing (CHB)
group when using the empirical distribution from the ED,
and marginally significant (P = 0.045) for the OCA2 gene
and the Council for Education on Public Health (CEPH)
Utah (CEU) group when using the empirical distribution
from CM. None of the neutrality tests reached statistical
significance after Bonferroni correction using the CM, and
only the Fu and Li D and D* statistics were significant for
KITLG in Europeans using the GM. Combining the P
values of the different statistics produced a different pic-
ture. We detected significant (combined P< 0.05) depar-
tures from neutrality in the African and European
populations for OCA2, the African population for DCT,
and the European population for KITLG using the CM,
and for KITLG in the European population using the GM.
By contrast, ED-based P values were significant for TYRP1
in the Asian populations.

Phylogenetic networks
To visualize the phylogenetic relationships between the
haplotypes and to provide additional insights into their evo-
lutionary history, we constructed median-joining networks.
Overall, the networks had few reticulations (Figure 1). On
average, the African population tended to show a large
number of haplotypes at low frequency, whereas the
European, East Asian and Pakistanis populations all had
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two main haplotypes separated by a large number of muta-
tions. This was particularly dramatic in the case of KITLG
and DCT, and less striking for OCA2 and TYRP1.

Approximate Bayesian computation/Markov chain Monte
Carlo analyses
We first estimated demographic parameters for our sim-
plified OOA (out-of-Africa) model (Figure 2) consider-
ing 50 loci from the Environmental Genome Project; the
statistics of centrality and dispersion of the different
parameters are described (Table 3). In all cases, the pos-
terior distributions strongly diverged from the priors
(which were all uniform) (Table 3), and thus were influ-
enced by the data. Posterior estimates of the parameters
related to a putative selective event for each of the four
genes under study are shown (Table 4). As controls, we
also performed ABC-MCMC with data from SLC45A2
and from a simulated neutral region of 5 kb. Histograms

of the posterior distributions for each gene are provided
(see Additional file 3). Posterior distributions of the
parameters were similar to the prior distributions in all
the cases except for SLC45A2; in this case, selection was
restricted to Europeans, beginning after the split from
East Asians and fitting a dominant model of inheritance
(h = 1). The estimated posterior distribution of s was
skewed towards large values.

Discussion
In the present study, we focused on reinvestigating pre-
vious conclusions about positive selection based on
long-range haplotype (LRH) tests, using four genes puta-
tively associated with human pigmentation. The phylo-
genetic networks for each gene based on sequence data
were in agreement with our previous findings [24]; the
different populations tended to show a high frequency
of one of the major haplotypes, which tended to diverge

Table 1 Diversity statistics estimated for four major pigmentation genes and four worldwide populations

Gene (number of base pairs
sequenced)

Population Sample
size, n

Haplotypes,
n

Polymorphic
sites, n

Nucleotide diversity
(×10-4)

Watterson’s estimator
(∧
θ w )

Absolute
number

×10-4 per
site

OCA2 (6729) Worldwide 98 27 47

African (YRI) 24 14 34 12.7 7.66 11.4

European
(CEU)

24 6 23 10.9 5.18 7.7

East Asian
(CHB)

24 6 22 8.4 4.96 7.4

South Asian
(BRU)

26 10 23 10.6 5.09 7.6

TYRP1 (4780) Worldwide 98 34 35

African (YRI) 24 15 22 7.2 4.96 10.4

European
(CUE)

24 9 15 8.1 3.38 7.1

East Asian
(CHB)

24 14 18 4.7 4.06 8.5

South Asian
(BRU)

26 7 14 8.5 3.1 6.5

DCT (4905) Worldwide 97 23 31

African (YRI) 24 12 26 8.9 5.9 11.9

European
(CEU)

24 7 16 6.9 3.6 7.4

East Asian
(CHB)

24 7 15 9 3.4 6.9

South Asian
(BRU)

25 11 18 11.5 4 8.2

KITLG (5869) Worldwide 97 26 33

African (YRI) 24 15 27 10.8 6.1 10.4

European
(CEU)

24 6 18 9 4.1 6.9

East Asian
(CHB)

24 8 21 10.8 4.7 8.1

South Asian
(BRU)

25 10 18 9.3 4 6.8

BRU, Brahui from Pakistan; CHB, Han Chinese from Beijing; CEU, Council for Education on Public Health Utah; YRI, Yoruba from Ibadan, Nigeria.
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Table 2 Neutrality-test statistics of each gene in each population.a

Gene Population Tajima’s D Fu and Li’s Fay and Wu’s H Fu’s Fs EWHTb GMc CMd EDe

D* F* D F

OCA2 African (YRI) 0.368 0.67 0.67 0.71 0.71 3.16 1.73 0.18 0.08 0.01 0.95

European (CEU) 1.36 0.75 1.14 0.79 1.21 -1.94 9.23 0.30 0.16 0.05 0.86

East Asian (CHB) 0.46 0.70 0.73 0.74 0.77 -5.74 6.78 0.47 0.29 0.38 0.48

TYRP1 African (YRI) -0.99 0.02 -0.39 -0.02 -0.45 -7.76 -3.4 0.10 0.66 0.65 0.08

European (CEU) 0.45 -0.70 -0.37 0.19 0.34 -5.24 1.30 0.31 0.96 0.89 0.49

East Asian (CHB) -1.41 -0.74 -1.15 -0.85 -1.26 -4.91 -5.20 0.23 0.33 0.19 <0.00005

DCT African (YRI) -0.83 1.18 0.57 1.28 0.60 -3.54 -0.14 0.18 0.15 <0.005 0.84

European (CEU) -0.20 1.16 0.83 1.23 0.87 -3.89 2.30 0.24 0.39 0.16 0.78

East Asian (CHB) 0.95 1.12 1.25 1.18 1.32 -4.61 3.72 0.54 0.24 0.44 0.74

KITLG African (YRI) 0.14 0.35 0.33 0.35 0.33 -4.35 -0.28 0.11 0.13 0.17 0.79

European (CEU) 0.97 1.25 1.36 1.33 1.44 -4.39 6.24 0.39 4.17E-05 <0.01 0.95

East Asian (CHB) 1.10 0.29 0.68 0.28 0.70 -2.81 5.01 0.32 0.38 0.69 0.69
aNeutrality-test statistics and combined P values for each population and gene for which a neutrality test distribution could be computed. Combined P values
using the approach proposed by [64] were computed using three different neutrality distributions.
bEwens-Watterson homozygosity test
cMaximum likelihood model of Gutenkunst et al [44],
dCosi best fit to the best-fit parameters of Schaffner et al. [45].
eEncyclopedia of DNA Elements (ENCODE) data from resampled sequences from three different ENCODE regions.

Figure 1 Maximum parsimony networks (using the median-joining algorithm) inferred from sequence data of the genes (A) OCA2, (B)
DCT (C), KITLG and (D) TYRP1. Each circle represents a haplotype, and has an area proportional to the haplotype frequency in European
(yellow), East Asian (dark green), African (purple) and South Asian (light green) populations. Branch lengths represent the number of mutations
separating the haplotypes, with the shortest branches indicating one mutation. An asterisk denotes where the ancestral haplotype joins the
network as derived from sequence data of chimpanzee, gorilla, and orangutan.
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from the others by a large number of mutations, and the
single SNP differentiation between populations was also
in agreement with previous results. This was particularly
evident for OCA2, KITLG and DCT in European and
Asian populations, and less evident in the African popu-
lation. The Pakistani population, geographically situated
between the Europeans and Asians, shares the main
haplotypes with these two populations. The presence of
long network branches within each population can be
indicative of balancing selection [31]; however, we failed
to replicate previous LRH findings with the sequence-
based tests, and we observed dependence of the statisti-
cal significance of the sequence-based tests on which
neutrality distribution was used. Only the KITLG in the
European population had statistical departures from
neutrality in the CM and GM, which is in agreement
with the outcome from the LRH test, but neutrality
could not be rejected using ENCODE data. Further-
more, we were not able to replicate a previously sug-
gested signal for the DCT gene in Asian populations

NeAf NeEu NeEA

NeA

NeEuA

Present

TsplitEurasia

TsplitOOA

Figure 2 Out-of-Africa (OOA) model implemented in the forward simulator and further used for approximate Bayesian computation
(ABC) estimation. An ancestral population with size NeA splits at TsplitOOA into two new populations: Africa (with NeAf) and Eurasia (with NeEuA),
and this population at TsplitEurasia splits in two populations, Europe (with NeEu) and Asia (with NeEA).

Table 3 Median and dispersion statistics of the posterior
distributions of the demographic parameters

Parameter Prior Median 95% CI

NeYRI U(500,10000) 5070 (2400 - 8930)

NeCEU U(500,5000) 1630 (130 - 6900)

NeCHB U(500,5000) 4720 (1920 - 7650)

NeCEU_CHB U(500,5000) 4390 (1420 - 8890)

NeA U(500,5000) 4800 (2160 - 8900)

tSplitCEU_CHB U(0.17, 0.83)
b 45,250 (11,500 - 63,250)

tSplitOAA U(100,000, 325,000) 52,250 (50,250 - 76,000)

CI, confidence interval.
aEstimated by approximate bayesian computation/Markov chain Monte Carlo
(ABC-MCMC) from regions of 10 kb each from 50 genes from the
Environmental Genome Project database with a burn-in of 1,000 simulations,
9,000 retained simulations and a thinning of 9. The total number of iterations
retained for estimating the posterior distributions was 1,000. Times are
computed in years as the number of generations multiplied by an estimated
generation time of 25 years, and a scaling factor of 10 that was used (μ was
set constant to 2.35 × 10-7 after scaling by 10). Effective population sizes are
in number of diploid individuals after correcting by the scaling factor of 10.
bTime of split of CEU and CHB as a function of the remaining time after the
out-of-Africa split. A value of 1 would indicate that CEU and CHB split just
after the out-of-Africa split.
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[29]. As the whole DCT gene is a single linkage disequi-
librium (LD) block, as seen in the HapMap East Asian
data, it seems unlikely that the discrepancy is explicable
by the different DCT regions sequenced. Indeed, the
agreement between different SNP-scan studies has been
described as ‘underwhelming’ [16].
The discrepancies we detected here between haplo-

type-based and sequence-based test outcomes can be
explained by a number of factors.
First, we cannot exclude the possibility that the positive-

selection signals from our previous SNP-based study were
false positives; the complex demographic history of
humans [12,32,33] and the power dependency of the
tested site [34] can affect the outcome of such tests.
Second, it has been emphasized that the SNP ascertain-

ment bias introduced during marker discovery [35,36] and
genotyping array can lead to spurious false-positive find-
ings in haplotype-based tests [37,38].
Third, there might be a lack of power in the sequence-

based tests because of the small sample sizes and/or small
sequenced regions [39]. Although we cannot exclude this
possibility, the length (approximately 5 kb) sequenced
from the four genes proved to be sufficient to detect
departures from neutrality in SLC45A2 in the European
population (data not shown).
A fourth possibility is that the distributions that we

computed for each statistic under neutrality do not repre-
sent the true underlying distribution for the human spe-
cies. Parameters of the demographic events need to be
defined a priori, which in humans is challenging because
of the complex history of migrations, admixture, expan-
sions and bottlenecks [40]. The differences seen in the
values of the parameters could be indeed a major source
of variation. The ENCODE data we used as an alternative
is hampered by the fact that the considered regions were
ascertained based on their genomic peculiarities [41], and
they may not be representative of the genetic variability of

the genome. There has been progress in resequencing
entire genomes (for example, the 1000 Genomes Project;
http://www.1000genomes.org/page.php); however, current
projects rely on combining low-coverage data from multi-
ple samples, and are not able to produce the accurate
sequence for each genome that is needed for such com-
parisons [42].
The fifth, and perhaps most likely, reason for discre-

pancies between LRH and sequence-based tests we
observed here may be the different underlying assump-
tions of the evolutionary models used (that is, instanta-
neous selective sweep versus incomplete selective
sweeps) in the definition of each statistic, and the evolu-
tionary timescale over which each type of test can
recover departures from neutrality [7]. In that case, our
results might indicate an extremely recent selection in
the pigmentation genes, which would be recovered by
haplotype-based but not sequence-based tests.
We also used a Bayesian approach to estimate selective

parameters of the populations putatively under positive
selection in each gene. The demographic parameters were
on average in concordance with those described in pre-
vious studies [43-46]; however, it should be noted that
they were not entirely comparable as there were a large
number of differences in the assumptions of the models
and data. Despite this technical limitation of the approach,
the estimates of the time when selection started and the
mode of inheritance correlated well with expectations in
the case of SLC45A2 [30], independently of whether the
complete 10 kb sequence or a subsample of 5 kb was used
(data not shown). To our knowledge, this is the first time
this known selective sweep has been quantified in such a
way. However, for OCA2, TYRP1, DCT and KITLG and
the neutral simulated region, the strong resemblance
between the prior and the posterior distributions suggests
that the latter are mainly dominated by the priors rather
than by the information contained in the genetic data.

Table 4 Median and 95% Credible Interval (CI) of the estimates of the time when selection started

Gene Population under positive selectiona Time of selection (95% CI) s (95% CI) h (95% CI)

TYRP1 Europeb 50,250 (13,500 to 97,250) 361.94 (55.6 to 984.79) 1.70 (0.71 to 4.28)

OCA2 Europe,b East Asia 45,875 (12,750 to 95,006) 383.42 (36.07 to 992.04) 2.04 (0.78 to 4.56)

KITLG Europe,b East Asiab 46,000 (11,750 to 93,269) 385.49 (37.68 to 1036.32) 2.01 (0.74 to 4.41)

DCT East Asiab 48,500 (11,250 to 97,006) 789.24 (55.21 to 1584.98) 1.90 (0.67 to 4.11)

SLC45A2 Europeb 27,500 (10,500 to 73,294) 676.53 (127.73 to 1026.06) 1.10 (0.53 to 2.60)

Neutral simulation Europeb 44,875 (12500 to 95,756.25) 593.18 (47.99 to 1086.22) 1.69 (0.56 to 3.97)
aThe table shows the selection parameter s (defined as 4 × Ne × s, where Ne is the harmonic mean of the effective population size through time) and
overdominance parameter h computed for each population that has been suggested as being under selective pressures in the genes that have been sequenced,
data from Soejima et al. [30] for SLC45A2, known to be under selective pressure in Europeans (see Methods), and 5 kb produced under a neutral out-of-Africa
model (s = 0, h = 0).
aFrom Lao et al. 2007. Prior distributions (without scaling) were truncated normal (mean ± sd 1810 ± 800 generations, range 400 to 4000) for the time of
selection, truncated normal (mean ± sd -4 ± 3, range -4 to 2) for s in logit form, and truncated normal (mean ± sd 1 ± 1, range 0.5 to 6) for h. In total, 2,000
simulations were performed for each gene using as a prior distribution of the demographic parameters the median value of the posterior distributions obtained
from the 50 loci (see Methods). A burn-in of 1,000 simulations was used.
bPopulation where the selective pressure was simulated.
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Conclusions
In this study, we have shown that using sequence-based
neutrality tests to confirm signatures of positive selection
derived from LRH tests on SNP-scan data can be difficult,
even though there is a strong likelihood that the skin-pig-
mentation genes we studied have been targets of selection
[47]. Deciphering whether this is a consequence of the
power of the different statistics to detect the fingerprint of
selection on different timescales; different assumptions on
the strength of the selective event; or lack of power due to
experimental limitations seems challenging.
Our findings should be considered in future studies that

set out to further investigate signatures of selection in
other genes or regions of the human genome suggested by
SNP-scan data. It may be argued that the final proof of
positive selection should not be provided by additional
genetic data but rather by functional evidence, but this
may have its own caveats. A recent study [48] has demon-
strated that the TRPV6 gene shows strong evidence of
positive selection in all non-African populations tested
using a novel modification of the extended haplotype
homozygosity (EHH) test, but no functional differences
between the ancestral and derived sequence could be
detected using experiments relevant to the known gene
function. Clearly, further advancements in the methods
used to detect and validate putative signatures of positive
selection are needed, and provide one of the most exciting
areas for future developments. Complete understanding of
positive selection in the human genome will require the
combination of multiple lines of evidence.

Methods
Population samples
Genomic DNAs (Coriell Institute for Medical Research;
Camden, NJ, USA from randomly ascertained partici-
pants from three continents chosen from the HapMap
panel [1] were used: 24 Yoruba from Ibadan, Nigeria
(YRI); 24 Han Chinese from Beijing (CHB); and 24
CEPH Utah residents with ancestry from northern and
western Europe (CEU). In addition, 26 (OCA2 and
TYRP1) or 25 (DCT and KITLG) Brahui (BRU) from
Pakistan [49] were included because of their distinct and
intermediate geographic location and history. In some
analyses, we used published data on SLC42A2 (Table 3
of Soejima et al.[30]) in European-Africans from Cape
Town, Ghanaians from Accra, and Chinese from
Guangzhou; these data had excluded SNPs at a fre-
quency of <5%. Genomic DNA samples from one chim-
panzee (Pan troglodytes), one orangutan (Pongo
pygmaeus) and one gorilla (Gorilla gorilla) (all from the
European Collection of Cell Cultures, Salisbury, Wilt-
shire, UK) were also included to allow inference of the
ancestral state of each SNP.

Ascertainment of the sequenced regions
For each of the four genes included in this study (OCA2,
DCT, TYRP1 and KITLG) a DNA region of approximately
4.7 to 6.7 kb surrounding the most informative SNP was
selected for resequencing (Table 1). The region of interest
was chosen based on its high rate of differentiation (quan-
tified by means of the mean informativeness of ancestry
[50] in the region) between East Asians, Europeans and
Africans (Figure 3). As established previously [24], any
candidate for explaining the differences between the
amounts of pigmentation should genetically co-vary with
such differences. Further EHH analyses suggested that
these regions showed evidence of selective sweeps [24].
Additional evidence linking skin-pigmentation phenotype
with the ascertained region is available for TYRP1[51]; an
LD r2 value of 0.704 was seen between rs2733832, which
is associated with pigmentation, and rs683, which lies
within the region ascertained for TYRP1 in HapMapII
CEU. The SNPs included in the ascertained regions were
rs2311806, rs7166228, rs7170869, rs2311805, rs1375164
and rs12442147 for OCA2; rs2209277, rs10960756,
rs10809828, rs17280629, rs2733834, rs683, rs2762464,
rs910 and rs1063380 for TYRP1; rs3782974, rs1325611,
rs16949829, rs7992630, rs9516414, rs9524491, rs2892680
and rs7987802 for DCT;and rs1873681, rs3782179,
rs3782180, rs3782181, rs4590952, rs1907702, rs1907703
and rs7953414 for KITLG. Although most of the ascer-
tained regions consisted of intronic sequence, the TYRP1
and DCT fragments also contained exonic sequence:
OCA2 (introns 2 to 3), TYRP1 (introns 6 to 7 and 7 to 8
plus exons 7 and 8), DCT (introns 6 to 7 + exon 7 +
introns 7 to 8) and KITLG (introns 2 to 3).

Enzymatic amplification by PCR
Primers were designed from the human reference sequence
obtained from GenBank (OCA2 accession number
NC_000015.8; TYRP1 accession number NC_000009.10;
DCT accession number NC_000013.9 and KITLG acces-
sion number NC_000012.9), and used to amplify fragments
of approximately 6 to 7 kb (positions on chromosome:
OCA2 25959080-25966266; TYRP1 12694505-12700830;
DCT 93890084-93895889; KITLG 87482044-87476046)
covering the chosen regions. PCR assays were performed
using a volume of 25 μl containing approximately 40 ng of
genomic DNA, 2 μmol/l of each primer, 200 μmol/l of
each dNTP, 2 mmol/l MgSO4, 0.5 U high-fidelity Taq poly-
merase (Platinum Taq; Invitrogen Corp., Carlsbad, CA,
USA). Amplification was performed in a themal cycler
(Peltier; MJ Research Inc., Waltham, MA, USA) using the
following cycling profile: 94°C for 2 minutes, followed by
35 cycles at 94°C for 30 seconds, 59°C (OCA2, DCT and
KITLG) or 56°C (TYRP1) for 1 minute, and 72°C for 1 min-
ute, and a final step at 72°C for 5 minutes. Subsequently,
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Figure 3 Regions of the OCA2, DCT, KITLG and TYRP1 genes analyzed. (A) Mean amount of informativeness of a window centered on each
SNP [24] for the three PERLEGEN populations. Black dots indicate SNPs present in PERLEGEN from the sequenced region. (B) Integrated
haplotype score (iHS) statistic obtained from Happlotter [12] in the three HapMap populations for the region of interest. (C) Representation of
the sequenced region.
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3 μl samples of a 1:200 dilution of these PCR products
were used as templates to reamplify overlapping fragments
with sizes of approximately 350 to 700 bp. PCR assays for
reamplification were performed in a volume of 15 μl con-
taining 2 μmol/l of each primer, 1.6 mmol/l MgCl2, 200
μmol/l of each dNTP, and 0.5 U Taq (Platinum Taq; Invi-
trogen). The cycling conditions for the reamplification
were 94°C for 2 minutes, followed by 31 cycles at 94°C for
45 seconds, 60°C for 45 seconds, and 72°C for 1.5 minutes;
then 72°C for 3 minutes. Details of all primers used in this
study are given in Additional File 4.

DNA sequencing
PCR products were purified (ExoSAP-IT; GE Healthcare,
Princeton, NJ, USA) before sequencing. The primers
used for reamplification (see Additional File 4) were
used (individually) to sequence in both orientations,
using a large-scale sequencing facility (Wellcome Trust
Sanger Institute) with standard capillary methods. For
each individual, each nucleotide position was deter-
mined from both strands by at least two reads each.
The genomic DNA sequence for OCA2 (accession num-
ber NC_000015.8), TYRP1 (accession number
NC_000009.10), DCT (accession number NC_000013.9)
and KITLG (accession number NC_000012.9) were
obtained from GenBank and used as the reference
sequence for the relevant gene. Sequence traces were
processed using the software program ExoTrace (Well-
come Trust Sanger Institute; http://www.sanger.ac.uk/
humgen/exoseq/analysis.shtml). Potentially polymorphic
positions were flagged by the program, and were then
checked manually. Variable positions were compared in
overlapping and complementary reads for all samples. A
quality-control test was performed to verify the SNPs
called in each gene by comparing the genotype assign-
ment performed by one investigator with the same gen-
otype assignment performed by a second investigator.
This test was performed on 2 kb of sequence per gene.
The largest discrepancies were seen in the gene TYRP1,
(3.4% discrepancies over all the polymorphic sites exam-
ined) and DCT (1.3%); KITLG and OCA2 rates of 0.28%
and 0.6%, respectively. All of these discrepancies
reflected differences in investigator interpretation, and
all could be resolved by re-examining the traces. There-
fore, for the rest of the sequenced regions, a maximum
number of plausible variants was first identified by the
two investigators, and the genotypes were then con-
firmed by a third investigator. In addition, genotypes of
previously identified SNPs were compared with the gen-
otype of the same individual in the HapMap database;
97% of the genotypes corresponded with each other,
which is similar to the accuracy of the HapMap data
themselves [1].

Data analysis and coalescent simulations
Haplotypes were reconstructed using PHASE software
(version 2.02 (http://depts.washington.edu/uwc4c/
express-licenses/assets/phase/) [52,53]. The four-gamete
rule was computed for each pair of loci in each gene. A
value of 1 was assigned when the four-gamete rule
could not be rejected and 0 when it could. LDheatmap
http://stat-db.stat.sfu.ca:8080/statgen/research/LDheat-
map/[54] was used to plot the matrix of loci for each
gene. Measures of genetic diversity, including nucleotide

diversity (π) [55] and Watterson’s estimator, ∧
θ w [56],

were calculated with DnaSP (version 4.10; http://www.
ub.edu/dnasp) [57]. Maximum parsimony networks
(using the median-joining algorithm) were constructed
using the Network 4.1 software package http://www.
fluxus-technology.com. Tajima’s D [58]; Fu and Li’s D*
and F* (no outgroup), and D and F (with outgroup [59];
Fay and Wu’s H [60]; Fu’s Fs [61]; and Ewens and Wat-
terson homozygosity-test [62] statistics were estimated
using a custom script to automate the computations. To
test the reliability of these computations, we first com-
pared the results obtained using our script with those
obtained with DnaSP (version 4.10) [57] for some
dummy data files, and saw no discrepancies. The
observed values of these neutrality-test statistics in the
European, Asian and African populations were com-
pared with the values of the same neutrality-test statis-
tics based on 10,000 coalescent simulations under the
best-fit complex demographic history assuming an OOA
model (the CM) implemented in the cosi software pack-
age (http://www.broadinstitute.org/~sfs/cosi/) [45]. We
also estimated the departure of neutrality using the
demographic model proposed by Gutenkunst et al.
(GM) using the ms software with the syntax described
in that paper ([44], supplementary material). For each
statistic, a two-tailed P value was calculated [63] and for
each population and gene, a combined P value was
obtained [64].

Data analysis by comparison with ENCODE data
DNA sequence information from three different regions
of 500 kb each, free or almost free of genes, were
obtained from the ENCODE project (EP; http://www.
genome.gov/10005107) [41], comprising regions Enr112,
Enr113 and Enr213. These regions have been rese-
quenced by the ENCODE project in several samples
from the populations (YRI, CEU, CHB, and JPT) present
in the HapMap project [1]. We then performed 10,000
re-samples for each population (YRI, CEU, and CHB)
and gene by dividing each of the 500 kb regions into
bins of size corresponding to the sequenced region of
interest, and taking at random the same number of
chromosomes per population as sequenced in each of
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the four genes. For each bin, we computed Tajima’s D,
Fu and Li’s D*, Fu and Li’s F*, Fu’s Fs and the Ewens-
Watterson homozygosity-test statistics, and compared
them with those computed in the gene and population
of interest. These statistics were preferred over the
others because they do not require the ancestral state of
each SNP, which is difficult to estimate for some of the
SNPs found through the ENCODE project.

Approximate Bayesian computation/Markov chain Monte
Carlo
We also implemented an MCMC without likelihoods in
a similar way to the algorithm proposed by Marjoram et
al. [65]. For details of the implementation of the ABC-
MCMC, choice of summary statistics and the forward
simulator we have used, see Additional File 1.
To estimate the strength of s and h and the time

when selection started in each of the four genes puta-
tively under selection, the SLC45A2 gene (both the full
sequenced region and a randomly ascertained region of
5 kb), and the outcome from a neutral simulation of 5
kb with the OOA model (s = 0, h = 0), we used a two-
step approach. In the first step, we performed ABC-
MCMC using observed data for 50 regions of 10 kb
each from the genes sequenced (see Additional file 5) in
the same three populations by the Environmental Gen-
ome Project [66], which has previously been used to
quantify demographic parameters [44]. Absence of
recombination in each 10 kb segment was tested by
applying the four-gamete rule in each population. The
demographic model we used here is a simplification of
the OOA model (Figure 2) [67]. The choice of a simple
model in our study was motivated by the computational
time of the forward simulations when increasing the
complexity of the demographic parameters (such as bot-
tlenecks and population expansions). As the topology of
the coalescence tree is defined with a small number of
sequences [68], but estimating the number of differences
between pairs of sequences is performed in quadratic
time, we only used 10 samples per population in order
to minimize the number of computations. All the demo-
graphic parameters were scaled by a factor of 10 to
reduce computational time [69] and the mutation rate
per nucleotide was thus 2.35 × 10-7. In total, 10,000
simulations were performed, with a burn-in of 1,000
and a thinning of 9. Prior distributions for all the demo-
graphic parameters were uniform (Table 3). In the sec-
ond step, we set as the constant the demographic
parameters with the median value from the estimated
posterior distributions, and estimated the selective para-
meters of each of the genomic regions under study,
using all the chromosomes per population. For each
genomic region, the population under selection was set
as the population previously described as being under

selective pressure. In all the analyses, prior distributions
(without scaling) were: truncated normal (mean ± sd
1810 ± 800 generations, range 400 to 4000) for tsel,
truncated normal (mean ± sd -4 ± 3, range -4 to 2) for
s in logit form, and truncated normal (mean ± sd 1 ± 1,
range 0.5 to 6) for the h parameter. In total, 20,000
simulations were performed with a burn-in of 5,000 and
a thinning of 15. Prior distributions of s, h and tsel
under selection were obtained by taking a sample from
the prior distributions, performing a simulation, and
retaining the sampled values if the simulated data con-
tained the mutation under selection. Using this proce-
dure, 1,000 simulations were retained. We repeated the
procedure twice, considering CEU and CHB as being
under positive or balancing selective pressures depend-
ing on the overdominance parameter.

Additional material

Additional file 1: Description of the approximate bayesian
computation/Markov chain Monte Carlo (ABC-MCMC) implemented
in this study. Linkage disequilibrium (LD) plots of the considered
regions.

Additional file 2: P values for each test.

Additional file 3: Histograms of the posterior distributions (in black)
of the selective parameters (s (4 × Ne × s), h and tsel) of (A)
SLC45A2, (B) OCA2, (C) DCT, (D) TYRP1 , (E) KITLG and (F) a neutral
simulated sequence. These should be compared with the histograms of
the prior distributions (in red) for the same parameters, using as
population under selective pressures (A,B,D,E) the Council for Education
on Public Health Utah (CEU) and (D) East Asian populations.

Additional file 4: Details of all primers used in this study.

Additional file 5: Environmental project genes used to fit the
demographic model of the approximate bayesian computation.
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(ENCODE) data; EHH: extended haplotype homozygosity; JPT: Japanese from
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