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Abstract

Background: BRAF and K-ras proto-oncogenes encode components of the ERK signalling pathway and are
frequently mutated in colorectal cancer. This study investigates the associations between BRAF and K-ras mutations
and clinicopathological, lifestyle and dietary factors in colorectal cancers.

Methods: 186 adenocarcinomas and 16 adenomas from the EPIC Norfolk study were tested for BRAF and K-ras
mutations. Diet and lifestyle data were collected prospectively using seven day food diaries.

Results: BRAF V600E mutation was found in 15.6% of colorectal cancers but at higher frequencies in cancers with
proximal location, poor differentiation and microsatellite instability (MSI) (all p < 0.001). K-ras mutation (mostly in
codons 12 and 13) was found in 22.0% of colorectal cancers but at higher frequencies in cancers of more
advanced Dukes’ stage (p = 0.001), microsatellite stable (MSS) status (p = 0.002) and in individuals with lower
blood high-density lipoprotein concentrations (p = 0.04). Analysis of dietary factors demonstrated no link between
BRAF mutation and any specific dietary constituent, however, K-ras mutation was found at higher frequencies in
individuals with higher white meat consumption (p < 0.001). Further analysis of specific mutation type
demonstrated that G to A transitions in K-ras were observed at higher frequencies in individuals consuming lower
amounts of fruit (p = 0.02).

Conclusion: These data support the model of BRAF and K-ras mutations arising in distinct colorectal cancer
subsets associated with different clinicopathological and dietary factors, acting as mutually exclusive mechanisms
of activation of the same signalling pathway.

Background
BRAF and K-ras genes both encode proteins that act in
the ERK signalling pathway, which mediates cellular
responses to growth factors and regulates elements of
the cell cycle, apoptosis and differentiation [1]. Activat-
ing mutations in both genes have been found in colorec-
tal cancer with mutation frequencies of 4-13% for BRAF
[2-9] and of 20-50% for K-ras [10-17] having been
reported. BRAF and K-ras mutations are frequently
found to be mutually exclusive in colorectal cancer

[5,18] and both genes harbour the majority of mutations
in distinct hotspots: BRAF at codons 463-468 [19] and
600 [18,19] and K-ras at codons 12 and 13 [20] and
also, but more infrequently, at codon 61 [21].
Colorectal cancer is the third most common cancer in

the world with incidence rates varying up to 25-fold
between countries [22]; it has been postulated that
approximately 80% of the observed differences in
incidence rates between countries can be attributed to
dietary factors [23]. Although analysis of dietary compo-
nents has been performed in relation to incidence of this
cancer in general, the exact relationship of dietary factors
to specific gene mutations and signalling pathway
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alterations remains to be fully elucidated. To date, analy-
sis of dietary factors in relation to oncogenically activated
ERK pathway members in colorectal cancer has only
been performed in a limited number of studies and
almost exclusively with regard to K-ras mutation. One
study reported that low calcium intake and high
monounsaturated fat intake were associated with K-ras
mutated colorectal tumours [24] but this was not
confirmed subsequently [14]. Another report linked poly-
unsaturated fatty acid consumption to K-ras mutated
colorectal tumours [25]. At present, very few data exist
describing BRAF mutations in relation to dietary factors,
with only one study analysing folate, fibre and alcohol
consumption and showing no association between BRAF
mutation and these dietary constituents [26].
The present study aimed to investigate the relation-

ship between BRAF and K-ras mutations in 186 adeno-
carcinomas from the EPIC Norfolk cohort and
clinicopathological features, lifestyle and dietary factors.
This study is the most comprehensive to date examining
dietary factors and BRAF mutations in colorectal cancer.
Dietary factors which have not been previously tested
for association with K-ras mutations in colorectal cancer
were also explored.

Methods
Study population
The EPIC Norfolk cohort included 25 639 healthy men
and women aged between 45 and 79 years residing in
Norfolk, United Kingdom. Study participants were
recruited between 1993 to 1997, from whom informa-
tion on lifestyle and diet was collected prospectively and
who were followed up for incident cancers and other
health endpoints. Exact cohort details, blood DNA
extraction methods and data collection methods are
described in detail elsewhere [27-29]. Ethical approval
was obtained from the Norwich Local Research Ethics
Committee.

Case ascertainment and tissue samples
Incident cases of colorectal cancer (International Statistical
Classification of Diseases and Related Health Problems
(ICD) 9th revision, 153.0-153.9, 154.0, and 154.1) were
ascertained by matching study participants to the East
Anglian Cancer Registry and Information Centre (ECRiC)
in conjunction with data from the United Kingdom Office
for National Statistics. Cases of colorectal cancer which
developed after the first year following recruitment were
used for analysis. As of June 2004, 291 participants in the
Norfolk cohort were reported as having been diagnosed
with colorectal cancer. For individuals from whom archival
tissue was available, formalin-fixed, paraffin-embedded
(FFPE) tissue blocks and histopathological reports were
obtained from the Norfolk and Norwich University

Hospital. Clinicopathological data describing tumour loca-
tion, Dukes’ stage and differentiation were obtained from
pathology reports and the ECRiC. Available for this study
were 186 adenocarcinoma and 16 adenoma samples from
189 individuals (adenocarcinoma and separate adenoma
tissue was obtained from the same individual in 13 cases,
adenoma tissue in isolation was resected from 3 indivi-
duals and adenocarcinoma tissue in isolation was resected
from 173 individuals). The 16 adenomas were either tubu-
lar or tubulo-villous adenomas with low grade dysplasia,
none displayed significant serrated architecture, and all
adenomas were considered together as a single group of
pre-malignant neoplasms.

DNA extraction
FFPE sample blocks were cut into 4 μm sections. One
section was stained with haematoxylin and eosin and
was used for histological identification of adenoma, ade-
nocarcinoma and normal cell types within the sample.
This section was used as a template for isolation of the
different cell types from a further five 4 μm sections.
Following histological examination, 186 adenocarcino-
mas and 16 adenomas were identified. Different tissue
types were macrodissected and scraped into 240 μl of
Buffer PKD with 10 μl of Proteinase K (both obtained
from RNEasy FFPE kits, QIAGEN, Valencia, USA). Sam-
ples were agitated at 150 rpm at 55.0°C for 4-6 days.
Tissue digestion was checked after 3 days and samples
which still had visible amounts of tissue had a further
10 μl of Proteinase K added for the remainder of the
incubation. Samples were then incubated at 80.0°C for
15 minutes in order to partially reverse formaldehyde
modification of the nucleic acids and to denature any
residual protein. DNA concentration was then checked
using Nanodrop ND-1000 Spectrophotometer (Labtech
International Ltd, Ringmer, UK).

Mutation detection
PCR amplification of the known mutation hotspots of
BRAF and K-ras was performed. BRAF exon 11 was
amplified using primers 11F (5’-CCT GTA TCC CTC
TCA GGC ATA AGG-3’) and 11R (5’-GAA CAG TGA
ATA TTT CCT TTG ATG-3’). BRAF exon 15 was
amplified using primers 15F (5’-CTT CAT AAT GCT
TGC TCT GAT AGG-3’) and 15R (5’-GCA TCT CAG
GGC CAA AAA T-3’). PCR products were generated
using 5 ng-2 μg of template DNA. KOD Hot Start DNA
Polymerase kits (Novagen, Madison, USA) were used to
make the following reaction mixture: 2.5 μl × 10 PCR
Buffer for KOD Hot Start DNA Polymerase, 1 μl pri-
mers, forward and reverse (10 μM each), 1 μl MgSO4

(25 mM), 2 μl dNTPs (2 mM each), 0.25 μl KOD DNA
Polymerase and made up to a total reaction volume of
25 μl with water. The reactions involved a denaturation
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step at 94.0°C for 5 minutes followed by 45 cycles of
94.0°C for 15 seconds, 30 seconds at annealing tempera-
tures of 58.1°C and 58.4°C for BRAF exons 11 and 15
respectively and 72.0°C for 30 seconds. Final extension
was 72°C for 5 minutes. To detect successful amplifica-
tions, 5 μl of each reaction mixture was separated on a
3% agarose gel containing 1 μg/ml ethidium bromide,
and visualised under UV light.
K-ras exon 1 was amplified using previously described

primers [30]. K-ras exon 2 was amplified using primers
2F (5’-GCA CTG TAA TAA TCC AGA CTG TGT
TTC-3’) and 2R (5’-GAC AGC TTA TTA TAT TCA
ATT TAA AC-3’). The PCR reaction mixture and reac-
tion conditions were as described for BRAF except that
annealing temperatures of 60.0°C and 55.0°C were used
for amplification of K-ras exons 1 and 2 respectively.
For dideoxysequencing, the remaining PCR amplification
product mixture (20 μl), following visualisation on agar-
ose gels, was purified using Multiscreen filter plates
(Millipore, Billerica, USA) according to the manufac-
turer’s instructions and subjected to direct sequencing
by ABI3730xl Platform sequencer (Applied Biosystems,
Warrington, UK). Forward and reverse strands were
both sequenced. Every sample was PCR amplified and
sequenced a minimum of twice on each strand.
K-ras exon 1 was also analysed at codons 12 and 13

with pyrosequencing using a previously described assay
which has been shown to be of greater sensitivity than
dideoxysequencing when detecting base changes at these
positions [31]. Both methods were used to maximise the
sensitivity of mutation detection at the highly mutated
codons 12 and 13 in exon 1. Following PCR generation
of an 82 bp amplicon (reaction mixture as described for
BRAF, primers and primer annealing temperatures are
described elsewhere [31]) reaction mixture was sub-
jected directly to pyrosequencing. Pyrosequencing was
performed on two independent PCR products at each of
the bases analysed, such that 6 independent reactions
were undertaken for each sample (twice at bases 1 and
2 of codon 12 and twice at base 2 of codon 13).

Microsatellite stability status determination
Determination of microsatellite stability status is
described elsewhere (Gay L et al., submitted). In brief,
six microsatellites were used for microsatellite stability
status determination: BAT25, BAT26, BAT40, D2S123,
D5S346 and D17S250. PCR primers for amplification of
cancer DNA were labelled with 5’6-FAM and primers
for amplification of corresponding non-cancerous DNA
from the same individual (obtained from blood samples)
were labelled with 5’HEX. PCR amplicons covering each
marker were analysed for changes in size using an
ABI3730xl Platform sequencer with a Genescan 500
ROX size standard (Applied Biosystems, Warrington,

UK), and ABI Peak Scanner software (version 1.0). If
two or more of the six markers in cancer DNA demon-
strated a deviation in size from the same markers ana-
lysed in corresponding non-cancerous DNA, the cancer
sample was classified as showing microsatellite instabil-
ity (MSI). If one or none of the markers demonstrated
size deviation, the sample was classified as microsatellite
stable (MSS).

Lifestyle and other exposure assessment
Height and weight information were obtained using a
baseline health examination upon recruitment between
1993 and 1997 and body mass index (BMI) calculated.
Health and lifestyle questionnaires administered at the
same time recorded information pertaining to hormone
replacement therapy (HRT), smoking habits including
smoking status (current, former or never) and pack
years of cigarette use (defined as 20 cigarettes a day for
a year) and habitual physical activity, assessed using
questions referring to present activity at the time of
questionnaire administration. Those with low physical
activity were defined as those with a sedentary job with
no recreational activity, a sedentary job with less than
0.5 hours of recreational activity per day, or a standing
job with no recreational activity. High physical activity
included those with activity levels above these defini-
tions. Details of the measurements and questionnaires
used for attainment and assessment of these data are
described elsewhere [28,32,33].
Dietary assessment was performed using seven day

food diaries (7dd) which were completed at recruitment.
This method of dietary assessment has been previously
validated and is described in detail elsewhere [27]. Dia-
ries were completed at recruitment. Food descriptions
and portion size estimates were converted into weights
of foods and food group data derived. Intakes of meat,
fish, fruit and vegetables were assessed as the weights of
foods contributing to these food groups. Meat classifica-
tions included red, processed and white meats and
white and fatty fish types. Red meat was defined as beef,
lamb, mutton, pork, veal, rabbit and venison, including
composite dishes and excluding offal. White meat was
defined as chicken, turkey, duck, guinea fowl, goose,
pheasant, grouse and other birds, and as all meat/joints
simply cooked or in composite dishes. Processed meat
was defined as meat that had undergone smoking, cur-
ing, salting or the addition of chemical preservatives.
White fish was defined as fish where fat is concentrated
in the liver rather than the flesh, such as cod, haddock
etc. and fatty fish was defined as fish where fat is dis-
tributed throughout the flesh, such as herring and
mackerel. Shellfish were not included in either fish cate-
gory. Fruit consumption was defined as intake of fruits
in all forms, including fruit included in composite
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dishes, but excluding fruit from juices, cereals and jams.
Vegetable consumption was defined as intake of vegeta-
bles in all forms excluding potatoes, legumes, herbs,
pickles and chutneys, and tomato sauces in canned pro-
ducts. Alcohol, fat, vitamin, calcium and macronutrient
intakes were calculated using the Data into Nutrients
for Epidemiological Research (DINER) program, which
is described in detail elsewhere [34].

Statistical analysis
Analysis of lifestyle and patient characteristics was per-
formed using chi-squared (c2) tests for categorical data
and analysis of variance (ANOVA) tests for all continu-
ous numerical data. For this analysis, all 186 adenocarci-
nomas were classified as BRAF or K-ras mutated or
wildtype. For additional testing, K-ras mutated adeno-
carcinomas were classified by mutation type as either
those cancers exhibiting G to A transitions or cancers
exhibiting any other mutation type. Clinicopathological
cancer features were examined in relation to these
mutation categories. Dukes’ stage was classified as early
Dukes’ stage (A and B) and late Dukes’ stage (C and D).
Tumour location was classified as proximal colonic and
distal colonic/rectal. Cancers of other origins (i.e. appen-
dix or secondary metastases) were omitted from location
testing. Differentiation was determined by a histopathol-
ogist and classified as moderately/well differentiated or
poorly differentiated and microsatellite instability status
as MSS or MSI. Lifestyle factors, including smoking sta-
tus (current/former/never), physical activity (high/low),
alcohol consumption (g/day, continuous), low-density
(mmol/l, continuous) and high-density lipoprotein blood
concentrations (mmol/l, continuous), triglyceride blood
concentrations (mmol/l, continuous) and plasma vitamin
C concentrations (μmol/l, continuous) were also tested
for association with the defined mutation categories.
Continuous dietary variables were tested for association
with mutation including meat, fruit and vegetable, fat,
vitamin, and fibre and macronutrient, including calcium,
variables, in their relevant unit of consumption. A prob-
ability value of less than or equal to 0.05 was considered
to be statistically significant. No adjustment was made
for multiple testing. All testing was performed using
SPSS version 16.0 (SPSS Inc, Chicago, USA).

Results
BRAF and K-ras mutation frequencies in colorectal
adenocarcinomas and adenomas
The type and distribution of the mutations observed in
BRAF and K-ras in colorectal neoplasms are described
in Table 1 with examples in Figure 1. Of the 186 color-
ectal adenocarcinoma samples analysed, 29 (15.6%) har-
boured a mutation in BRAF. All BRAF mutations were
the V600E type due to T to A transversion in exon 15,

although a previously reported synonymous SNP
(rs56101602) was detected in one adenocarcinoma
sample in exon 11. None of the 16 adenomas analysed
harboured BRAF mutations in either exon 11 or 15.
Dideoxysequencing analysis of exons 1 and 2 of K-ras

identified 30 mutations in the 16 adenoma and 186 ade-
nocarcinoma samples. In addition to those mutations
identified with dideoxysequencing, pyrosequencing of
K-ras codons 12 and 13 demonstrated the presence a
further 14 mutations in the colorectal tumour samples
analysed, confirming the increased sensitivity of this
method. In total, K-ras mutations in 41/186 different
adenocarcinomas (22.0%) were identified. A previously
unreported double mutation observed using dideoxyse-
quencing, at codons 19 and 20 (Figure 1) was not in the
region analysed with pyrosequencing. Only 1/30 (3.3%)
mutations in codons 12 and 13 identified with dideoxy-
sequencing was not identified with pyrosequencing
when subsequently analysed. Thirty-three (78.6%) of the
base changes observed in K-ras in adenocarcinomas
were in codon 12. Seven (16.7%) were in codon 13. Two
other base changes (4.8% of total) were observed in
codons 19 and 20 of the same cancer.
Of the 16 colorectal adenomas analysed, 7 harboured

non-wildtype K-ras DNA sequences. Six mutations were
identified in exon 1, one, at codon 89, in exon 2. The C
to A transversion at the second position of codon 89
produced a stop codon. The remaining 6 mutations in
exon 1 were observed to be oncogenically activating
base changes in codons 12 and 13. Known oncogenically
activating mutations were therefore observed in 37.5%
of the adenomas tested. Of the 7 adenoma samples
which exhibited non-wildtype K-ras sequence, 2 adeno-
mas were identified without accompanying adenocarci-
noma. Of the 5 adenomas which were resected from
individuals from whom independently presenting adeno-
carcinoma was also resected, two exhibited an identical
mutation in both the adenoma and adenocarcinoma.
Three exhibited mutations in the adenoma tissue alone
with no evidence of a corresponding mutation in the
accompanying adenocarcinoma samples.
Testing of the co-incidence of mutation in BRAF and

K-ras demonstrated that the prevalence of mutation in
these two genes were inversely associated (p = 0.009,
c2). Fifty-nine adenocarcinomas presented with either
BRAF or K-ras mutation, only one of which harboured
both.

Lifestyle and clinicopathological factors in relation to
BRAF and K-ras mutations
Analysis of the distribution of cancers with BRAF or
K-ras mutations according to clinicopathological and
lifestyle variables is presented in Table 2. Proximal colo-
nic location, poor differentiation and MSI were all
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Table 1 The type and distribution of mutations in BRAF and K-ras in the 186 adenocarcinoma and 16 adenoma tissues
available from EPIC Norfolk

BRAF mutation

Mutations in adenocarcinomas Mutations in adenomas Total

Codon 600: wildtype GTG

GAG (Val to Glu) 29 0 29

Total 29 0 29

K-ras mutation

Mutations in adenocarcinomas Mutations in adenoma Total

Codon 12: wildtype GGT

GCT (Gly to Ala) 7 1 8

GTT (Gly to Val) 6 1 7

GAT (Gly to Asp) 14 2 16

TGT (Gly to Cys) 4 1 5

AGT (Gly to Ser) 1 0 1

Undetermined* 1 0 1

Codon 13: wildtype GGC

GAC (Gly to Asp) 6 1 7

TGC (Gly to Cys) 1 0 1

Codon 19: wildtype TTG

GTT (Leu to Phe)** 1 0 1

Codon 20: wildtype ACG

GCG (Thr to Ala)** 1 0 1

Codon 89: wildtype TCA

TTA (Ser to Stop) 0 1 1

Total 42 7 49

*: One adenocarcinoma sample was classified as mutated by both sequencing methods but the base change identified was not consistent. Dideoxysequencing
identified the base change as G to A, pyrosequencing as G to C. Repeated sequencing using both methods did not resolve this and as such the base change
was unclassified. **: The two mutations observed in codons 19 and 20 were in the same adenocarcinoma.

Figure 1 Colorectal tumour oncogene sequence traces generated using dideoxysequencing. a: codon 600 valine to glutamic acid change
in BRAF. b: codon 12 glycine to alanine change in K-ras. c: the previously unreported double mutation observed in codons 19 and 20 of K-ras
resulting in leucine to phenylalanine and threonine to alanine changes at codons 19 and 20 respectively. Additional analyses demonstrated
these two base changes to be on the same allele (data not shown). d: codon 13 glycine to aspartic acid change in K-ras.

Naguib et al. BMC Cancer 2010, 10:99
http://www.biomedcentral.com/1471-2407/10/99

Page 5 of 11



associated with BRAF mutation (all p < 0.001). The pre-
valence of cancers with BRAF mutation was higher in
females and in individuals with a later age at diagnosis,
although these differences failed to reach statistical sig-
nificance (both p = 0.07).
A higher proportion of cancers harbouring K-ras muta-

tion was found to have later Dukes’ stage (C or D rather
than A or B)(p = 0.001) and to be microsatellite stable
(MSS)(p = 0.002). Of the 36 cancers with available micro-
satellite stability data and K-ras mutation, all were MSS.
Cases of cancers harbouring mutated K-ras also

demonstrated earlier age at diagnosis, although this asso-
ciation failed to reach statistical significance (p = 0.06).
Cases with K-ras mutation had significantly lower mean
blood HDL cholesterol concentrations than those
with wildtype K-ras (1.19 mmol/l versus 1.33 mmol/l;
p = 0.04).

Dietary factors and BRAF and K-ras mutations
None of the dietary factors tested displayed a statistically
significant association with BRAF mutations in colorectal
cancers. Individuals harbouring K-ras mutated cancers

Table 2 Clinicopathological and lifestyle characteristics of colorectal cancer cases by BRAF or K-ras mutation status
and K-ras mutated cancers by specific K-ras mutation types

BRAF mutation K-ras mutation K-ras mutation type

Characteristic Wildtype
n = 157†

Mutant
n = 29†

P‡ Wildtype
n = 145†

Mutant
n = 41†

P‡ G to A
n = 22†

Other
n = 17†

P‡

Sex

Male 52.9 (83) 34.5 (10) 46.9 (68) 61.0 (25) 63.6 (14) 58.8 (10)

Female 47.1 (74) 65.5 (19) 0.07 53.1 (77) 39.0 (16) 0.11 36.4 (8) 41.2(7) 0.76

Age at diagnosis (years) 70.1 (7.9) 72.9 (5.5) 0.07* 71.1 (7.1) 68.5 (8.9) 0.06* 67.2 (9.4) 69.4 (8.7) 0.46*

Tumour location

Proximal colonic 28.3 (41) 75.0 (21) 33.1 (44) 45.0 (18) 42.9 (9) 52.9 (9)

Distal colonic/Rectal 71.7 (104) 25.0 (7) <0.001 66.9 (89) 55.0 (22) 0.17 57.1 (12) 47.1 (8) 0.54

Differentiation

Well/Moderate 90.6 (125) 59.3 (16) (FET) 85.8 (109) 84.2 (32) 80.0 (16) 87.5 (14) (FET)

Poor 9.4 (13) 40.7 (11) <0.001 14.2 (18) 15.8 (6) 0.80 20.0 (4) 12.5 (2) 0.67

Dukes’ Stage

A/B 54.5 (73) 57.7 (15) 61.9 (78) 29.4 (10) 27.8 (5) 33.3 (5) (FET)

C/D 45.5 (61) 42.3 (11) 0.76 38.1 (48) 70.6 (24) 0.001 72.2 (13) 66.7 (101) 1.00

MSI status

MSS 90.8 (129) 42.9 (12) (FET) 78.4 (105) 100.0 (36) a a

MSI 9.2 (13) 57.1 (16) <0.001 21.6 (29) 0.0 (0) 0.002 a a a

BMI (kg/m2) 27.3 (4.3) 26.6 (4.3) 0.41* 27.0 (4.3) 27.9 (4.3) 0.26* 28.1 (4.3) 27.7 (4.7) 0.74*

Alcohol intake (g/d) 9.9 (15.3) 5.1 (10.4) 0.11* 8.6 (14.1) 11.1 (16.6) 0.36* 11.1 (18.0) 8.6 (11.1) 0.62*

Smoking status

Current 9.9 (15) 13.8 (4) 11.4 (16) 7.3 (3) 13.6 (3) 0.0 (0)

Former 46.1 (70) 48.3 (14) 45.7 (64) 48.8 (20) 45.5 (10) 52.9 (9)

Never 44.1 (67) 37.9 (11) 0.74 42.9 (60) 43.9 (18) 0.75 40.9 (9) 47.1 (8) 0.29

Physical activity

Low 66.7 (104) 69.0 (20) 66.0 (95) 70.7 (29) 63.6 (14) 76.5 (13)

High 33.3 (52) 31.0 (9) 0.81 34.0 (49) 29.3 (12) 0.57 36.4 (8) 23.5 (4) 0.49

HRT satatus

Current 9.6 (7) 5.3 (1) 9.2 (7) 6.2 (1) b b

Former 16.4 (12) 21.1 (4) 17.1 (13) 18.8 (3) b b

Never 74.0 (54) 73.7 (14) 0.78 73.7 (56) 75.0 (12) 0.93 b b b

LDL (mmol/l) 4.14 (1.1) 4.06 (1.1) 0.75* 4.19 (1.2) 3.91 (0.8) 0.19* 3.85 (0.7) 3.93 (1.0) 0.79*

HDL (mmol/l) 1.30 (0.4) 1.33 (0.3) 0.63* 1.33 (0.4) 1.19 (0.4) 0.04* 1.16 (0.4) 1.16 (0.4) 0.96*

Triglyceride (mmol/l) 2.11 (1.2) 1.94 (1.1) 0.48* 2.02 (1.1) 2.34 (1.3) 0.12* 2.23 (1.2) 2.59 (1.5) 0.43*

Plasma vitamin C (μmol/l) 52.0 (24.3) 48.0 (20.9) 0.44* 52.5 (24.8) 47.5 (20.0) 0.28* 45.4 (19.7) 50.0 (20.9) 0.52*
‡P values determined by c2 test or Fisher’s exact test when one or more expected values were less than 5 (denoted by FET). *: ANOVA tests used to calculate
p-values. Results presented as [n (%)] or [mean (± SD)]. HRT: hormone replacement therapy. MSI: Microsatellite instability. MSS: Microsatellite stable. † Not all
individuals had data for each variable, in these cases these individuals were omitted from the test. For HRT testing only females were analysed, for which 92 had
data available. a Microsatellite instability was not tested relative to different K-ras mutation types as none of the cancers harbouring K-ras mutation exhibited
microsatellite instability. b HRT status was not tested relative to different K-ras mutation types due to the low numbers of cases available for testing.
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had a statistically significantly increased mean white meat
consumption: 29.5 g/d versus 17.4 g/d, p < 0.001 (Table 3).

Lifestyle, dietary and clinicopathological factors of
colorectal cancers in relation to K-ras mutation type
Of the 42 K-ras mutations observed in colorectal can-
cers, 22 were G to A transitions. In order to assess the
relevance of this observation, individuals with K-ras
mutated cancers exhibiting this specific G to A base
change were compared with individuals harbouring K-
ras mutated cancers with all other mutation types such
that K-ras mutations were classified as ‘G to A’ or
‘other’. One sample, harbouring a double mutation at
codons 19 and 20 was omitted from the testing due to
the base changes being of both classifications. A second
sample was classified as mutated by both dideoxyse-
quencing and pyrosequencing methods. However, the
two methods described a G to A and a G to C base

change respectively, confirmed following repeated test-
ing. This case was also omitted from this analysis. Ana-
lysis of the distribution of cancers with different K-ras
mutation types according to clinicopathological and life-
style variables is summarised in Table 2: none of the
clinicopathological features or lifestyle exposures tested
were associated with either classification of K-ras
mutation.
All dietary variables were tested for association with

either K-ras mutation classification. Cancers harbouring
G to A transitions in K-ras were found in individuals
with a significantly lower consumption of fruit com-
pared with those individuals harbouring other K-ras
mutation types (p = 0.02): 155 g/d versus 247 g/d. A
reduced consumption of vegetables was also observed in
those individuals with K-ras G to A base changes in
their cancers, although this did not reach statistical sig-
nificance (p = 0.07).

Table 3 Dietary intakes stratified by BRAF and K-ras mutation status

BRAF mutation K-ras mutation

Dietary factor Wildtype n = 156 Mutant n = 29 P‡ Wildtype n = 144 Mutant n = 41 P‡

Meat

Red Meat (g/d) 37 (28.9) 40 (24.5) 0.60 38 (28.4) 33 (27.2) 0.31

Processed Meat (g/d) 24 (19.7) 25 (14.3) 0.81 25 (18.7) 23 (19.8) 0.62

Red + Processed Meat (g/d) 61 (37.1) 65 (28.5) 0.59 63 (35.9) 56 (35.4) 0.29

White Meat (g/d) 21 (20.2) 17 (15.5) 0.29 17 (18.0) 30 (22.1) <0.001

White Fish (g/d) 17 (15.7) 17 (26.5) 0.98 18 (19.3) 14 (10.7) 0.28

Fatty Fish (g/d) 12 (20.0) 10 (12.1) 0.64 11 (17.5) 14 (23.4) 0.33

Fruit and vegetables

Fruit (g/d) 170 (133.1) 193 (170.9) 0.42 168 (143.0) 191 (125.8) 0.36

Vegetables (g/d) 136 (68.3) 150 (70.9) 0.29 136 (66.6) 145 (76.1) 0.43

Fat

Total Fat (g/d) 71 (22.9) 71 (23.7) 1.00 71 (22.4) 75 (25.0) 0.32

PUFA (g/d) 13 (5.3) 13 (5.7) 0.96 13 (5.1) 14 (6.2) 0.20

MUFA (g/d) 25 (8.1) 24 (7.5) 0.77 24 (7.9) 26 (8.5) 0.29

SFA (g/d) 27 (10.2) 28 (11.7) 0.84 27 (10.3) 28 (10.7) 0.59

Vitamins

B2[riboflavin] (mg/d) 2 (0.6) 2 (0.6) 0.95 2 (0.6) 2 (0.6) 0.67

B3[niacin] (mg/d) 18 (5.5) 18 (6.7) 0.69 18 (5.9) 19 (4.7) 0.40

B6[pyroxidine] (μg/d) 2 (0.6) 2 (0.6) 0.96 2 (0.6) 2 (0.6) 0.35

B9[folate] (μg/d) 259 (71.9) 257 (73.8) 0.89 258 (73.4) 260 (67.7) 0.89

B12 (μg/d) 6 (5.5) 5 (4.0) 0.40 6 (5.2) 6 (5.4) 0.96

C (mg/d) 85 (48.7) 87 (38.8) 0.82 85 (45.5) 87 (53.4) 0.78

D (μg/d) 3 (2.2) 4 (2.3) 0.69 3 (2.1) 4 (2.6) 0.53

Fibre and Macronutrients

Total Energy (MJ/d) 8 (2.1) 8 (1.8) 0.85 8 (2.1) 8 (2.0) 0.51

Carbohydrate (g/d) 235 (68.2) 250 (58.5) 0.25 238 (68.6) 236 (60.9) 0.87

Protein (g/d) 70 (15.1) 68 (14.8) 0.48 70 (15.4) 72 (13.6) 0.29

NSP (g/d) 14 (5.0) 16 (7.4) 0.15 14 (5.8) 15 (4.1) 0.53

Calcium (mg/d) 779 (235.9) 821 (220.5) 0.37 787 (239.8) 783 (212.7) 0.92
‡P values determined by ANOVA. Results presented as [mean (± SD)]. PUFA: polyunsaturated fatty acid. MUFA: monounsaturated fatty acid. SFA: saturated fatty
acid. NSP: non-starch polysaccharide. For one case for which mutational status had been determined no dietary data was available. Therefore, for all testing with
dietary factors the number of combined cases in the wildtype and mutated groups available for analysis was 185.
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Discussion
The data presented herein suggest that BRAF and K-ras
mutations arise in an almost mutually exclusive manner
in distinct subsets of colorectal cancer, that differ in
terms of clinicopathological features, dietary factors and
lifestyle exposures. BRAF mutation in colorectal cancers
was observed at a frequency of 15.6% and K-ras muta-
tion at 22.0%. These frequencies are at the high and low
ends of the ranges previously reported for mutations in
these genes in colorectal cancer: 4-13% for BRAF [2-9]
and 20-50% for K-ras [10,12-17,35]. The mutually exclu-
sive nature of these two mutation types, as shown in
this and other studies [3,5,7,18,36] may explain this:
increased prevalence of BRAF mutation in this sample
set may be consistent with a reduction in K-ras muta-
tion frequency.
BRAF mutation was strongly associated with cancer of

proximal colonic location, poor differentiation and
microsatellite instability (all p < 0.001). BRAF mutation
and proximal colonic location have been linked in pre-
vious reports [5]. Microsatellite instability has been
linked to proximal location [37] and has been consis-
tently linked to BRAF mutation in colorectal cancer
[3,4,6]: one review described BRAF mutation as a ‘hall-
mark’ of MSI tumours [38]. Poor differentiation has also
been linked to BRAF mutation in previous studies
[39,40] as well as microsatellite instability [41]. Taken
together, these data confirm that the clinicopathological
signature of BRAF mutated colorectal cancer includes
proximal location, microsatellite instability and poor dif-
ferentiation. This is consistent with this distinct subset
of tumours arising by a mechanism of microsatellite
instability, which is strongly associated with BRAF muta-
tion. In contrast to this, analysis of K-ras mutations
demonstrated an association with microsatellite stability
(p = 0.002); an observation reported previously [4,6,42].
In this report K-ras mutation was more prevalent in
cancers of later Dukes’ stage (C and D). This observa-
tion has been made in some previous reports [13,15]
but not in others [2,11,12,17,20,35,43]. Additionally, the
largest study to date on K-ras mutations in colorectal
cancer, analysing 4268 cases, reported an association
between K-ras mutation in colorectal cancer and poor
prognosis [44], suggesting an association between K-ras
mutation and more advanced colorectal cancer. The
testing presented herein demonstrates the independent
clinicopathological nature of colorectal cancers with
either BRAF or K-ras mutations.
Analysis of dietary factors stratified by colorectal can-

cer gene mutation type showed that none of the dietary
factors tested were positively or negatively associated
with BRAF mutation. This study is the first to undertake
a comprehensive analysis of BRAF mutations in

colorectal cancer and their relationship to dietary fac-
tors. One previous report analysed folate, alcohol and
fibre consumption and found no association with BRAF
mutation [26], observations which were confirmed in
this study. The detailed analysis presented here has
demonstrated further the independence of BRAF muta-
tion relative to dietary intakes using a comprehensive
analysis of twenty four individual dietary constituents.
Analysis of K-ras mutations in colorectal cancers in

relation to dietary factors demonstrated that mutation
in K-ras was associated with increased white meat con-
sumption (p < 0.001). Furthermore, analysis of K-ras
mutation type identified those individuals harbouring K-
ras mutated cancers with G to A transitions as consum-
ing less fruit (p = 0.02) and vegetables, although the
reduction in vegetable consumption was of marginal sta-
tistical significance (p = 0.07). Individuals harbouring K-
ras mutated cancers also had lower blood HDL choles-
terol concentrations than those harbouring cancers with
wildtype K-ras genes (p = 0.04), an association requiring
validation in future studies. The association between
increased white meat consumption and K-ras mutations
in colorectal cancer requires confirmation in larger stu-
dies and in vitro mechanistic investigations. However,
plausible mechanisms have been postulated which may
explain reduced fruit and vegetable consumption and
increased prevalence of G to A transitions. Fruits and
vegetables contain bioactive compounds, such as flava-
nols, capable of inhibiting nitroso compound formation
[45]. Nitroso compounds are capable of inducing gua-
nine base alkylation which, if not repaired, can lead to
G to A base transitions [46]. Therefore, low fruit and
vegetable consumption is consistent with G to A transi-
tions in tumours, as demonstrated in this study. This
study did not confirm observations made in a previous
study of K-ras mutated colorectal tumours being asso-
ciated with low calcium and high monounsaturated fat
intake [24]. These observations were also tested in
another large population based study, which also failed
to detect this association [14]. Another finding linking
polyunsaturated fatty acid types to K-ras mutated
tumours [25] was also not confirmed in the data pre-
sented here.
In addition to the 186 cancer samples analysed, 16

unselected adenomas were also tested for mutation in
BRAF and K-ras. No BRAF mutations were observed in
any of the adenomas. A previous analysis of 113 unse-
lected sporadic colorectal adenomas detected BRAF
mutations at a frequency of only 2.8% [8]. However, in
serrated adenomas mutation frequencies for BRAF of 30
to 50% of cases have been described [36,47]. Because of
the low number of adenomas available for analysis and
the lack serrated adenomas in this sample set (none
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were included), the observation that none of the 16 ade-
nomas tested harboured BRAF mutation was expected.
In contrast to BRAF, 6 (37.5%) adenomas harboured

oncogenically activating mutations in K-ras, a prevalence
consistent with previous reports [8,48]. In addition to
this, a novel K-ras mutation was observed in a single
adenoma. This mutation was not observed in the corre-
sponding cancer tissue. This point mutation in codon
89 produced a stop codon towards the end of exon 2.
This mutation is uncharacteristic of proto-oncogene
transformation in that it would not lead to increased
ERK signalling. However, the tumour suppressor func-
tion of wildtype KRAS protein has been previously
described [49] and as such a putative cancer promoting
effect of such a truncating mutation in K-ras cannot be
discounted.
Although the number of adenomas tested was too low

to elucidate meaningful relationships between clinico-
pathological features, lifestyle exposures and dietary
intakes, it is interesting to note the lack of BRAF muta-
tions observed compared to the relatively high preva-
lence of oncogenically activating mutations observed in
K-ras (37.5%). These observations are consistent with
the later timing of BRAF mutation in colorectal cancer
development, which has been postulated previously [50],
and is consistent with distinct subsets of colorectal
tumours with BRAF and K-ras mutations.
A strength of the current study is the use of pro-

spective dietary and lifestyle data collected before the
onset of disease as well as the use of 7dd records for
dietary assessment, a method that has been shown to
estimate diet more accurately than food frequency
questionnaires when validated with urinary biomarkers
[51]. Furthermore, such detailed dietary analysis
regarding so many variables has not been previously
attempted in relation to mutation of these genes, and
as such this report contributes new information to the
current knowledge of mutations in BRAF and K-ras in
colorectal cancer and dietary intakes. The limitations
inherent in our study of multiple statistical testing
mean that the significant associations observed in this
study would benefit from further validation. Adjust-
ment for confounding variables in the statistical testing
was not performed in this study. It has previously been
described how logistic regression analyses performed
on low sample sets leads to systematic bias (i.e. away
from null), and overestimation of odds ratios [52].
Consequently, in order to prevent overestimation of
dietary risk factors, this testing was not performed on
the small sample sizes available. Further validation of
the exploratory associations presented in this report
would benefit from testing in studies with larger sam-
ple sets upon which confounding factors could be
extensively explored.

Conclusions
BRAF mutations are found in cancers with a clinico-
pathological signature of proximal colonic location, poor
differentiation and microsatellite instability. Further-
more, the presence of BRAF mutations in colorectal
cancer is not associated with any of the dietary factors
tested. Conversely, K-ras mutations are not characteris-
tic of colorectal cancers with these clinicopathological
features and are found in microsatellite stable colorectal
cancers and are associated with a more advanced Dukes’
stage. Unlike BRAF mutations, K-ras mutations, in
general and specific types, appear to be associated with
specific dietary factors. These data demonstrate the
independent distribution of BRAF and K-ras mutations
in different subsets of colorectal cancer.
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