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Abstract
Background: Modelling proteins with multiple domains is one of the central challenges in
Structural Biology. Although homology modelling has successfully been applied for prediction of
protein structures, very often domain-domain interactions cannot be inferred from the structures
of homologues and their prediction requires ab initio methods. Here we present a new structural
prediction approach for modelling two-domain proteins based on rigid-body domain-domain
docking.

Results: Here we focus on interacting domain pairs that are part of the same peptide chain and
thus have an inter-domain peptide region (so called linker). We have developed a method called
pyDockTET (tethered-docking), which uses rigid-body docking to generate domain-domain poses
that are further scored by binding energy and a pseudo-energy term based on restraints derived
from linker end-to-end distances. The method has been benchmarked on a set of 77 non-redundant
pairs of domains with available X-ray structure. We have evaluated the docking method ZDOCK,
which is able to generate acceptable domain-domain orientations in 51 out of the 77 cases. Among
them, our method pyDockTET finds the correct assembly within the top 10 solutions in over 60%
of the cases. As a further test, on a subset of 20 pairs where domains were built by homology
modelling, ZDOCK generates acceptable orientations in 13 out of the 20 cases, among which the
correct assembly is ranked lower than 10 in around 70% of the cases by our pyDockTET method.

Conclusion: Our results show that rigid-body docking approach plus energy scoring and linker-
based restraints are useful for modelling domain-domain interactions. These positive results will
encourage development of new methods for structural prediction of macromolecules with multiple
(more than two) domains.

Background
It is estimated that two thirds of proteins in prokaryotes
and four fifths of those in eukaryotes are multi-domain
proteins [1,2], many of which have important functions
in cell regulation and signalling. From a structural point
of view, they range from those with significant and stable

interactions between domains, which can usually be
defined by X-ray and NMR, to those with flexible linkers
and few domain-domain interactions that endow them
with large conformational freedom. Crystallography of
multi-domain proteins that have flexible linkers is more
problematic. X-ray crystallography and NMR approaches

Published: 16 October 2008

BMC Bioinformatics 2008, 9:441 doi:10.1186/1471-2105-9-441

Received: 29 May 2008
Accepted: 16 October 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/441

© 2008 Cheng et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

https://core.ac.uk/display/20330124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18925951
http://www.biomedcentral.com/1471-2105/9/441
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:441 http://www.biomedcentral.com/1471-2105/9/441
have tended to adopt a "divide-and-conquer" approach,
by first defining structures of individual domains,
although their structures have often been determined
within multi-protein complexes where the relationships
between domains are often well defined.

For multi-domain proteins with no structural informa-
tion, their domain orientations may be predicted through
homology modelling. However, homologous multi-
domain templates are not always available. Furthermore,
even if a homologous template exists, its domains might
not interact in the same way as the protein to model (see
the review of Aloy and Russell [3]). To minimize the
chance of inferring wrong interaction data from the tem-
plates, Aloy and Russell tried to model putative interac-
tions by assessing residue contacts in the interfaces of
known three-dimensional protein structures [4]. Thus, in
addition to homology modelling, there has been increas-
ing focus on ab initio approaches. For instance, Wollacott
and co-workers [5] modelled domain-domain assemblies
by placing the domains at the N- and C-terminal of the
linker structure, whose conformation is sampled during
the procedure Their approach successfully identified near-
native assemblies in 50% of the studied cases.

Another promising tool for ab initio modelling of multi-
domain proteins is docking. Rigid-body docking
approaches have already shown success in predicting
interactions between relatively rigid globular protomers
in protein complexes, as seen in the recent CAPRI (Critical
Assessment of PRedicted Interactions; http://
capri.ebi.ac.uk) blind tests. However, although protein-
protein docking could be directly applied to model
domain-domain interactions, only a few specific cases
have been reported (perhaps because ranking of domain-
domain poses is still challenging). As an example, vit-
ronectin was reportedly modelled by docking two of its
domains [6], but it required a strong inter-domain con-
straint from a disulfide cross-link. Lise and co-workers
have developed an approach for docking two domains
that are part of the same protein chain [7], using pair-wise
residue contact function, which includes structural, phys-
icochemical and evolutionary information, to distinguish
the native-like domain assemblies from other solutions
generated by standard docking procedures. Their work
suggests that data-driven docking is useful in modelling
domain assembly as well. Furthermore, Inbar and co-
workers [8] have extended the docking approach to multi-
domain and multi-molecular assemblies, by using a heu-
ristic that applies hierarchical construction to represent
the assembly process and a greedy algorithm to select can-
didate complexes. The modelling of multi-domain pro-
teins has also further promising applications in the field
of modelling protein-protein complexes where any of the
components has multiple domains. Instead of docking

multi-domains directly, the problem can be tackled
through divide-and-conquered approaches, which solve
the structure of a multi-domain complex by first model-
ling the orientation of domains within a protein if there
are stable relationships, and secondly each domain
assembly can then be treated as a protomer for further
docking. In this line, Ben-Zeev et al. [9] applied docking
between domains with residue conservation restraints to
one of the CAPRI targets (T09), as part of a multi-docking
protocol, although with limited success (acceptable
model ranked 75).

In this paper, we describe a new approach, pyDockTET,
for pair-wise assembly of domains that are connected by
an inter-domain linker. In addition to the electrostatics
and desolvation energy in the original pyDock scoring
function [10], which gave one of the best performances
for protein-protein docking in the recent CAPRI test [11],
an additional pseudo-energy term derived from the end-
to-end distance of linkers is incorporated in pyDockTET to
select the near-native pair-wise domain poses. We also
discuss here the dependence of this scoring function on
the linker length and on the quality of the domain models
used for the docking.

Results and discussion
Structural analysis of linkers in multi-domain proteins
We begin our analysis by examining the inter-domain
peptide region (so called linker), whose information is
applied in the scoring function of pyDockTET. The goal is
to study the relationship between the linker sequence
length (in number of residues) and the distance between
the linker ends (defined as the distance between the Cα
atoms of the two ends of a linker). We began by compiling
inter-domain linkers from multi-domain structures in
PDB (Protein Data Bank), with the following requisites: i)
The linkers were identified as those polypeptide parts
placed between domains defined by Pfam [12] (although
Pfam may not always defines domains with clear struc-
tural boundaries as those defined in SCOP [13], it is more
realistic for identifying domains from protein sequences
that have unsolved structures); ii) Only structures with a
resolution ≤ 2.5Å were used, in order to obtain atomic
positions of linkers with greater certainty (we did not
either consider NMR structures for this reason); and iii)
Only linkers joining domains that are in contact (i.e. there
is at least one domain atom at ≤ 5Å distance from any
other atom of the other domain) were included. Although
prediction of two-domain proteins with no contacts
between domains is an important modelling problem, it
is not the object of our method (through docking we aim
to predict the binding mode of two interacting domains).
The sequence length of the 542 linkers in this database
varies from 2 to 29 amino acids. The linker distribution
shows a higher frequency for linkers with shorter lengths,
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while linkers of 18 residues or more show lower frequen-
cies (Figure 1a).

The average linker end-to-end distances increased almost
linearly with sequence length for linkers less than 18 resi-
dues long (Figure 1b). This dependence is similar to the
one described for a statistical ensemble of polymer con-
formations, where the average end-to-end distance obeys
a "random walk Gaussian chain" distribution that scales
with L*N0.5 (being N the number of residues in linker,
and L the length of each residue) [14]. This is consistent
with the fact that we cannot find conformational prefer-
ences in the structural data set for linkers of up to 17 resi-
dues length (Figure 2), and with previous studies showing

that most linkers lack secondary structure [15]. However,
given our broad definition of contacting domain-domain
pairs (i.e. at least one inter-domain atomic contact), con-
cern existed that those cases in our data set with very few
inter-domain contacts could introduce errors in the
derived statistical parameters. In order to disregard this
possibility, we removed the 80 cases that had equal or less
than 10 contact residues, finding that the statistical
parameters (average linker distances and corresponding
standard deviations) did not significantly change (data
not shown). We also checked that when removing the
additional 42 cases that had up to 20 contact residues, the
statistical parameters were basically the same (data not
shown).

From these average end-to-end distance values and their
standard deviations, we have derived a scoring function
pyDockTET for docking of domain pairs (see Methods).
Given the low frequency (and correspondingly higher var-
iation of average end-to-end distance value) of linkers
with length larger than 17, the docking sets we used to
benchmark pyDockTET included only domain pairs that
have inter-domain linkers with length between 2 – 17 res-
idues.

Rigid-body docking for domain-domain assembly
We have used docking to rebuild a data set of 77 non-
redundant proteins formed by two interacting domains
(see Methods). First, we extracted the coordinates of the
domains from their X-ray structures, then we separated
them and modified all side-chains of the isolated
domains with SCWRL 3.0 [16] in order to minimize bias
from the use of the assembled structures; finally we
docked them as rigid-bodies with ZDOCK [17], and
scored the docking poses with pyDock. Docking poses
were further rescored with distance restraints derived from
the linker database, according to linker sequence length
(pyDockTET method). In order to evaluate the success of
our predictions, we have defined an acceptable docking
pose as one where the RMSD of one of the domains is ≤
10Å from the equivalent one in the X-ray structure when
the other domain (typically the larger one) is superim-
posed onto that of the X-ray structure (the choice of 10Å
RMSD to define an acceptable pose is in concordance with
the ligand RMSD used by CAPRI to define an acceptable
solution in protein-protein docking). The docking results
for all cases, as scored by pyDock and by pyDockTET, are
shown in Figure 3a. However, since our goal was to eval-
uate the success of our scoring function in the identifica-
tion of the correct domain-domain assemblies within a
docking set, we then considered only those cases that had
at least one acceptable docking solution within the 2,000
docking poses generated by ZDOCK (51 out of the 77
cases; this is a similar ratio to the one we recently reported
for ZDOCK in a standard protein-protein benchmark [10]

The relation between length and frequency or end-to-end distance of linkersFigure 1
The relation between length and frequency or end-
to-end distance of linkers. (a) The relation between 
length and frequency of linkers in our database of 542 linker 
structures. (b) The relation between length and end-to-end 
distance of linkers. The length N on the x-axis refers to 
those linkers that have length with residue number N and N-
1. The error bars in the graph indicate the standard deviation 
for the average end-to-end distance of the length N linkers.
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so it does not seem related to any particular feature of
domain-domain interaction). Thus, the use of pyDock
method to rebuild inter-domain interactions gave an
acceptable pose in the top 10 and top 50 ranked solutions
in 51% and 63% of these cases, respectively (Figure 3b),
well over expected by random, and comparable to previ-
ous rigid-body tests. When we re-scored the docking poses
using linker-length distance restraints with pyDockTET,
the success rates for top 10 and top 50 solutions increased
to 61% and 78%, respectively (Figure 3b). Although the
cutoff of 10Å RMSD for defining near-native solutions is
accepted by the docking community for assessment of
predictions as in CAPRI, the resolution of the resulting

models might be too low for some functional predictions.
Therefore, we have also evaluated the success rates for
detecting a good solution (defined as one with RMSD ≤
5Å from the X-ray structure). If we consider only those
cases that have at least one good solution within the 2,000
docking poses generated by ZDOCK (37 out of the 77
cases), the pyDockTET results (Figure 3c) are comparably
good (65% and 78% success rates in the top 10 and top
50 solutions, respectively). In those cases, pyDock alone
already had a good performance (54% and 76% success
rates in the top 10 and top 50 solutions, respectively),
reflecting that when the docking method is able to gener-
ate good quality solutions, the pyDock scoring function is

The overall success rate of pyDock and pyDockTETFigure 3
The overall success rate of pyDock and pyDockTET. (a) The success rate of pyDock and pyDockTET for identifying 
acceptable solutions (RMSD = 10 Å) in the top N solutions (N = 10, 20, 30, 40, 50, 100, 200, 300, 400, 500) for the non-redun-
dant domain-domain set. (b) Success rates for identifying acceptable solutions when considering only those cases with at least 
one acceptable solution within the ZDOCK docking set. (c) Success rates for identifying good solutions (RMSD ≤ 5 Å), consid-
ering only those cases with at least one good solution within the ZDOCK docking set. (d) Success rates for identifying accept-
able solutions considering only those cases that had acceptable but not good solutions. In the four panels, the results of 
pyDockTET are shown with solid lines and the results of pyDock are shown with dashed lines with circle markers. The ran-
dom predictive rates are shown with dotted lines with diamond marker.
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already quite accurate. Actually, the restraint-based energy
helps especially in those cases where the quality of the
docking solutions is not so good (as in the 14 cases that
have acceptable but not good solutions; Figure 3d).

The use of pyDock to identify domain assemblies from
docking sets clearly gives well over random scoring, and
the introduction of linker-based restraints as in pyDock-
TET further improves the results. Of course, for a realistic
case, one has to rely on the docking procedure to generate
near-native orientations. We have used here the known
FFT-based docking method ZDOCK, but it is expected that
the increasing success of rigid-body docking methods will
also improve the predictive rates of pyDockTET.

Dependence of the predictive success of pyDockTET 
scoring function on linker length
The scoring function of pyDockTET uses the average end-
to-end distance for every linker length L (L = 2, 3, …,17)
as a restraint. It is expected that, as the linker length
increases, it will provide a less useful restraint on the selec-
tion of docking poses, and therefore the performance of
the method will likely depend on linker length. Here we
analyse the success rates of pyDockTET for different linker
lengths, considering only those cases of our domain-
domain set that have at least one acceptable solution.

We classified linker lengths into five groups: 2–4, 5–7, 8–
10, 11–13 and 14–17 amino acids. As shown in Figure 4,
pyDockTET gave consistently better predictive success
rates in top 50 solutions than pyDock, being the improve-
ment of the restraint-based scoring function particularly
significant for linker lengths 5–7 (which is also the most
populated group). In addition, the overall predictions,
both for pyDock and for pyDockTET, increase with linker

size up to linker lengths 8–10, and then, for longer link-
ers, the performance significantly decreases (although for
linker lengths 14–17, the number of cases n = 4 is too low
for a reliable statistics). According to this, the best scenario
for domain-domain assembly by docking and end-to-end
restraints would be those cases with linker length up to 10
residues.

Dependence of the predictive success of pyDockTET 
scoring function on the type of domain-domain interface: 
docking energy and number of contacts
The scoring function of pyDockTET consists of a pseudo-
energy term derived from linker end-to-end distances, in
addition to the original pyDock function that is formed by
electrostatics and desolvation energies. We have already
shown that pyDockTET function performs in general bet-
ter than that of pyDock, so now we will analyze in which
cases this improvement is more apparent.

First, we will check whether the pyDockTET improvement
over pyDock depends on the average pyDock energy
obtained for the pool of docking poses, which is different
for each case. For each one of the cases that have at least
an acceptable docking solution, we sorted the docking
solutions by pyDock energy (defined as only electrostatics
and desolvation) and computed the average of the best
100 energy values. Figure 5a shows the dependence of the
success rates of pyDockTET and pyDock on the average
energy (electrostatics plus desolvation) of the top 100
solutions. The overall success rates of both pyDock and
pyDockTET increase as the average energy value is lower.
Moreover, pyDockTET improves pyDock performance in
all cases except for those with average energy value
between -20 and -10 kcal/mol (where the low number of
cases, n = 5, may produce unreliable statistics), being the
improvement particularly good for those cases where
pyDock alone gave worse performance (average energy
between -30 and -20 kcal/mol). Thus, as would be
expected, the most useful contribution made by tethered
domain docking is when the average energy value of the
top 100 solutions is low.

As for the size of the domain-domain interface, we
showed above (the first section of Results) that the exist-
ence of cases with low number of inter-domain contact
residues did not affect the average linker distances and
corresponding standard deviations derived from our data
set. However, we observed in Figure 5b that the docking
results actually depended quite significantly on the inter-
face size. Figure 5b shows the global success rates of
pyDock and pyDockTET, with regard to the number of
contact residues in the interface (defined as residues
within 5Å distance from any atom of the other domain).
It also shows the percentage of cases with acceptable solu-
tions within the docking set (this actually limited the max-

Comparison of pyDock and pyDockTET according to the linker length between domainsFigure 4
Comparison of pyDock and pyDockTET according to 
the linker length between domains. The success rates of 
pyDock (light grey bars) and pyDockTET (dark grey bars) in 
selecting at least one acceptable solution within the top 50 
solutions according to the linker length (considering only 
cases with acceptable solutions).
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imum success rates we could expect from pyDock or
pyDockTET). Strikingly, ZDOCK found acceptable solu-
tions only in one of the 13 cases with less than 20 contact
residues (and no acceptable solution was found for the
cases with less than 10 contact residues), which indicates
a clear limitation of the FFT-based docking generation.
This is in line with previous reports relating docking diffi-
culty and interface size [18,19]. For cases with acceptable
docking poses, the pyDock scoring function also showed
worse results when the number of contact residues was
small – for the cases with less than 30 contact residues,
pyDock has success rate at 25% whereas pyDockTET pro-
vides a significantly better success rate at 58%. In sum-
mary, the linker-based restraints of pyDockTET were able
to largely improve the predictive results on those cases
particularly difficult for unrestricted docking (i.e. with

poor docking energies and/or small number of contact
residues).

Assembly of domains from modelled individual structures
So far we have shown that pyDockTET gives excellent per-
formance in assembling domain pairs where the struc-
tures of the two domains have been obtained from crystal
structures, after separating them and remodelling the side-
chains of the isolated domains. However, in real situa-
tions the individual domains will have been obtained
from independent crystal structures or from homology
models. Thus we have also tested pyDockTET over a dock-
ing sub-set of 20 cases, in which subunits were modelled
from the structure of homologues (see Methods). As can
be seen in Table 1, the pyDockTET predictions were
always better (or in any case similar, but never signifi-
cantly worse) than those of pyDock. Indeed, we found
eight cases where the top solution is reasonably close
(RMSD < 10Å) to the X-ray structure, so in about one out
of three cases we can have a reasonable trust in the best
solution that is picked up by pyDockTET.

In Figure 6 we compare the results on the sub-set of
domains modelled from homologues, with the same sub-
set of domains taken from the crystal structures. When we
consider only the cases that have at least one acceptable
solution generated by ZDOCK (13 out of 20), the success
rates of pyDockTET for predicting an acceptable confor-
mation in the top 10 and 50 solutions are 69% and 77%,
respectively (success rates of pyDock alone are 62% and
69%, respectively) (Figure 6a). The top 10 and top 50 suc-
cess rates for the same sub-set, when coordinates are taken
from the crystal structure, are 82% and 91%, respectively
(success rates of pyDock alone are 73% and 82%, respec-
tively) (Figure 6b). In some of the cases we use templates
with high sequence identity (see additional file 1: The 20
unbound (modelled) structures); however this does not
significantly affect the results. Indeed, if we consider the
cases that only have templates with maximum sequence
identity of around 60% (1b8p, 1ar4, 1ffu, 1e5m, 1j3n,
1etp, and 1hnf), the pyDockTET success rates for the top
10 and 50 solutions are both 67% (as compared to 67%
and 83%, respectively, for the same cases when using the
crystal structures). In addition, if we also include the cases
that have templates up to 80% sequence identity (1b06,
1nez, 1s9v, and 1jk8) the results do not significantly
change either. Thus the overall results of domain docking
do not seem to depend too much on the details of the
models. Table 1 shows that most of the cases with poor
pyDockTET predictions (1gk8, 1nez, 1s9v, 1etp, 1onq,
1edh, 1hnf, 1jk8, 1k2d) had similarly bad predictions
when using the X-ray structures. There is only one case
(1ffu) where results were far worse when using modelled
domains than when using the X-ray structures, but these
bad results did not seem to arise from low-quality model-

Comparison of pyDock and pyDockTET according to the energy and the number of contact residuesFigure 5
Comparison of pyDock and pyDockTET according to 
the energy and the number of contact residues. (a) 
The success rates of pyDock (light grey bars) and pyDock-
TET (dark grey bars) in selecting at least one acceptable solu-
tion within the top 50 solutions according to the average 
electrostatics plus desolvation energy. (b) The success rates 
of pyDock (light grey bars) and pyDockTET (dark grey bars) 
according to the number of domain-domain contact residues; 
the percentage of cases in which ZDOCK generated at least 
one acceptable solution is also shown (white bars).
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ling, since the modelled domains were 0.84Å and 0.65Å
Cα RMSD with respect to the corresponding X-ray struc-
tures (see additional file 1: The 20 unbound (modelled)
structures). The important issue is that, in most cases, the
pyDockTET results we obtained when docking domain
models were similarly good to those when docking X-ray
structures. Moreover, there are even cases where modelled
domains yielded better predictive rates than X-ray struc-
tures (1ar4, 1mb8). So in general, the domain models
generated in an automatic way seem to be of sufficient
quality to get similar docking results as when using the X-
ray structures (this is likely because the X-ray structures of
the unbound molecules differ anyway from those in the
complexes).

Comparison to other domain-domain assembly 
approaches
We have evaluated the performance of pyDockTET with
respect to other computational methods that have been
recently reported for domain-domain assembly. Lise et al.
[7] tested their contact prediction method by generating
10 domain-domain orientations with the docking server
GRAMM-X. They found an acceptable solution (fraction
of native contacts > 0.1) in 12 out of 20 cases. For 5 of
these 12 cases, the best model (in terms of fraction of
native contacts) was ranked first by their contact scoring
function. We can test pyDockTET in this benchmark.
However, most of the cases in their benchmark have two
linkers between the domains. Our method is focused onto

Table 1: Domain-domain assembly with pyDockTET using homology models or X-ray structures of the interacting domains

linker length domain-domain PDBa docking from cryst.b Docking from modelsc

pyDock pyDockTET pyDock pyDockTET

2 1b8p_A_158_159 1 (1.3) 1 (6.8) 6 (4.5) 6 (4.5)

4 1ar4_A_84_87 68 (2.2) 39 (2.2) 15 (5.5) 2 (5.5)
1aw7_A_93_96 1 (2.2) 1 (2.2) 1 (3.2) 1 (3.2)
1ffu_F_176_179 1 (1.9) 1 (1.9) 98 (9.6) 121 (9.6)

5 1b06_A_93_97 11 (3.9) 1 (3.9) 3 (4.2) 2 (7.5)

6 1dlu_B_263_268 1 (1.8) 1 (1.8) 1 (5.1) 1 (9.2)

7 1ca1_-_251_257 301 (4.8) 10 (4.8) 415 (7.7) 22 (7.8)
1e5m_A_251_257 1 (1.3) 1 (1.3) 1 (3.6) 1 (3.6)
1gk8_C_147_153 - - - -

8 1j3n_A_244_251 1 (1.9) 1 (5.6) 1 (2.0) 1 (5.2)

9 1ee0_A_234_242 4 (8.1) 2 (8.1) 1 (2.9) 1 (2.9)
1nez_A_180_188 - - 803 (9.1) 101 (9.1)
1s9v_B_88_96 - - - -

11 1etp_B_90_100 809 (7.4) 204 (7.4) 1303 (9.8) 437 (9.8)

12 1onq_A_182_193 - - - -

13 1edh_B_100_112 - - - -

14 1hnf_-_97_110 - - - -
1mb8_A_173_186 - - 1 (7.2) 1 (7.2)

15 1jk8_B_88_102 - - - -

16 1k2d_B_87_102 - - - -

a The name of the structure is shown with the format: (PDB ID)_(chain name)_(the first residue of the linker)_(the last residue of the linker)
b The best ranking of any acceptable solution from docking the crystal structures. RMSD (Å) of the second domain is shown in brackets. '-' means 
that there is no acceptable solutions (≤ 10Å) generated by ZDOCK.
c The best ranking of any acceptable solution from docking the modelled structures. RMSD (Å) of the second domain is shown in brackets. '-' means 
that there is no acceptable solutions (≤ 10Å) generated by ZDOCK.
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two domains joined by a single linker (which in principle
have more flexibility) and it is not directly applicable to
domain-domain interactions with two linkers. Thus, we
have applied our method to the only three cases of their
benchmark where the domains are joined by a single
linker. When we used the close configurations (with their
side-chains remodelled by SCWRL) we found acceptable
solutions (RMSD ≤ 10Å) for two cases, 13pk and 1tfb,
which were ranked 1 and 678, respectively. When we used

the open configurations (with their side-chains remod-
elled by SCWRL), we found only one case with acceptable
solutions, 1jmc. Lise et al. [7] used the open configuration
(but not remodelling of the side-chains) and found an
acceptable solution (fraction of native contacts > 0.1) for
only one case, 1tfb, which ranked 3. As a note of caution,
the overall results of Lise et al. [7] strongly depended on
the ability of GRAMM to generate acceptable docking
poses in such small number of alternative poses. Another
difference between their method and ours that makes dif-
ficult the comparison is that they used the criterion of frac-
tion of native contacts above 0.1 to define the acceptable
solutions, while we use here the RMSD (equivalent to the
ligand RMSD as defined in CAPRI) below 10Å. Both crite-
ria are used in CAPRI, in combination also with the inter-
face RMSD, but no by separate. Ligand RMSD is arguably
a more restrictive parameter than fraction of native con-
tacts. For instance, from the last round 15 of CAPRI http:/
/www.ebi.ac.uk/msd-srv/capri we can observe a signifi-
cant number of cases that, in spite of having fraction of
native contacts above 0.1, are incorrect predictions by the
global CAPRI criteria (average false positive rate of 9%).
On the contrary, virtually all cases with ligand RMSD
below 10 Å are correct predictions (average false positive
rate of 0%), and there are even some solutions with ligand
RMSD above 10 Å that are still acceptable (e.g. 2 cases in
target T32, and 1 case in target T36).

Inbar et al. [8] recently described their combinatorial
docking approach (CombDock) for multi-domain and
multi-molecular assembly. However, they reported only
three cases of domain-domain docking (the other
reported cases were either docking of secondary structure
elements within a single domain, or multi-molecular
docking): 1a47, 1b23, and 1d0n. For all of them they
found near-native assemblies within the top 10 solutions.
However, our method is not directly applicable to these
cases, since they have more than two domains (we could
dock one domain onto the other two domains taken as a
single rigid-body, but that would not be a realistic test for
our method).

Finally, Wollacott et al. [5] recently reported a domain-
domain assembly method based on conformational sam-
pling of the inter-domain linker with their Rosetta pro-
gram. Although they did not use computational docking,
they provided an interesting test set to evaluate the per-
formance of our approach. They divided their benchmark
set according to their predictive results. For 38 out of 76
cases, they had a near-native decoy with RMSD < 2 Å
within the top five models (global success rate 50%). We
applied our method to 18 of these successful cases (the
other ones were defined as single domains by SCOP, or
the linkers were too long for our method), and found
acceptable solutions for 15 of them. The overall results of

The success rate of pyDock and pyDockTET for predicting crystal and modelled domain assembliesFigure 6
The success rate of pyDock and pyDockTET for pre-
dicting crystal and modelled domain assemblies. (a) 
The success rate of pyDock and pyDockTET in selecting at 
least one acceptable solution for a sub-set where domain 
structures have been modelled based on homologue tem-
plates, considering only those cases with at least one accept-
able solution generated by ZDOCK. (b) The success rate of 
pyDock and pyDockTET in selecting at least one acceptable 
solution for the same sub-set when coordinates are taken 
from crystal structures, considering only those cases with at 
least one acceptable solution generated by ZDOCK. The 
solid lines with square markers are the results of pyDock-
TET, the dash lines with circle markers are the results of 
pyDock, the dotted lines with diamond markers are the 
results of random prediction.
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pyDockTET were consistent with the ones we obtained in
our data set of 77 cases: six cases with an acceptable solu-
tion ranked as top one (global success rate 33%; success
rate normalized for only those cases with acceptable solu-
tion 40%); nine cases with an acceptable solution within
the top 10 solutions (global success rate 50%, normalized
success rate 60%); and 11 cases with an acceptable solu-
tion within the top 50 (global success rate 61%; normal-
ized success rate 73%). For another 18 cases, they had
near-native decoys (RMSD <2 Å) within the top 250 mod-
els, but they did not give exact ranking numbers, so a
direct comparison with our method would be difficult.
For the remaining 20 cases, in 13 of them their method
did not produce any acceptable solution at all, and in 7 of
them there was no acceptable solution within the top 250
models (Tables 2 and 3 in Ref. [5]), so we wanted to check
whether our method would be able to improve their
results. We applied our method for eight of these difficult
cases (we selected only those ones with linker length ≤ 17;
we also excluded 1qla and 1qov because they were
defined as single domain by both SCOP and Pfam), and
found acceptable solutions for five of them. We found one
case with an acceptable solution ranked as top one (global
success rate 13%; normalized success rate 20%); four
cases with an acceptable solution within the top 10 (glo-
bal success rate 50%; normalized success rate 80%); and
five cases with an acceptable solution within the top 50
(global success rate 63%; normalized success rate 100%).
These results are also consistent with the ones obtained in
the set of good cases in Wollacott et al. [5] and with those
in our data set of 77 cases. Thus, our method failed for
some of the cases for which Wollacott et al. [5] had excel-
lent results, but succeeded in some of the cases where
Wollacott et al. [5] did not have good predictions. The glo-
bal success rate of pyDockTET for the top 10 solutions
(global success rate 50%; normalized success rate 60–
80%) is comparable to the global success rate for the top
5 solutions in Wollacott et al. [5] (global success rate 50%;
normalized success rate 60%), although we have to say in
their favour that they used a stricter definition of the
acceptable solution.

We also performed an additional test on the difficult cases
of Wollacott et al. [5], by independently modelling the
two domains based on different templates. Then we ran
pyDockTET on these independently modelled domains,
instead of on the X-ray structures. We excluded two addi-
tional cases (1crz and 1f5n) because they did not have any
suitable homologous template according to our criteria
(see Methods). Our final set was formed by the six cases
shown in Table 2. In four of these six cases, we obtained a
reasonable model within the top 10 docking solutions as
ranked by pyDockTET (Table 2). We have to note that in
most of the cases ZDOCK was not able to generate dock-
ing solutions with RMSD < 10Å, so we have considered as
reasonable other orientations with larger RMSD with
respect to the X-ray structure. Particularly interesting are
cases 1qcs and 1a6q, where pyDockTET found acceptable
docking solutions with rank 1 and 2, respectively. The best
solutions for all these cases are shown in Figure 7. The suc-
cess rates are quite encouraging, especially considering
that these examples were highly challenging cases for
other domain-domain assembly methods. Although we
need to improve the sampling of docking orientations in
order to better modelling these difficult cases, it is clear
that the inclusion of distance restraints from linker
lengths largely helps to model the assembly of multi-
domain proteins.

Conclusion
We have described here a procedure to build multi-
domain proteins from the structure (experimental or
modelled) of their individual domains, using a combina-
tion of rigid-body docking, binding energy scoring, and
linker-length based distance restraints. The inclusion of
linker-based distance restraints largely improves the struc-
tural predictions, especially for those cases where binding
energy alone is not sufficient to discriminate the near-
native conformations. Provided that the rigid-body gener-
ation method is able to produce acceptable domain-
domain orientations, our scoring function (based on
docking energy plus restraints) finds the correct assembly
within the top 10 solutions in about 60–70 % of the cases.

Table 2: Domain docking results on difficult cases for domain-domain assembly

PDB pyDocka pyDockTETa templates (dom 1/dom 2)d

1cx4 237 (14.6)b 129 (14.6)b 1wgp_A(1–123)/2cgp_A(8–207)
1pii 3 (14.0)b 6 (15.9)b 1jcm_P(4–253)/1nsj_-(1–201)
1qcs 1 (7.0) 1 (7.0) 1cr5_B(23–103)/1qdn_A(91–183)
1nkr 37 (10.3)c 6 (10.3)c 1m4k_A(8–102)/2dli_A(109–200)
1a6q 41 (10.8)b 2 (10.8)b 2p8e_A(4–295)/1q1v_A(309–378)
1clc 1291 (7.2) 39 (7.2) 1rq5_A(208–299)/1ks8_A(1–426)

a The best ranking of the near-native prediction by pyDock and pyDockTET. The values in brackets are the RMSD value of the predicted solution.
b No solution with RMSD < 10Å in the docking set. We show the best rank of the lowest-RMSD solutions.
c A solution is found with RMSD 9.2Å that is ranked 168 by pyDock, and ranked 20 by pyDockTET.
d The information of templates for modelling domain 1 (left) and 2 (right). The format of the template information is PDB id _chain (sequence range).
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Methods
Rigid-body docking and restraint-based scoring function
Rigid-body docking was performed on the interacting
domains by ZDOCK2.1 [17]. The resulting domain-
domain orientations were firstly evaluated with the stand-
ard pyDock protocol, which uses Coulombic electrostatics
with distance-dependent dielectric constant plus ASA-
based desolvation optimized for protein-protein docking
as previously described [10]. Finally, the domain-domain
docking poses are further scored with the module
pyDockTET, which uses the average linker end-to-end dis-
tance, Xm, as a restraint to select the correct docking poses.
The Xm value is calculated as the average of the end-to-end
distance values of linkers that have same length (i.e. same
number of residues) in the 542 linker structures collected
from multi-domain proteins in Protein Data Bank (PDB).
The Xm value and its corresponding standard deviation,
SD, are then used to develop a function, Elinker (Figure 8),

which is further incorporated into the pyDock energy
function for the final rescoring of domain-domain poses
(equation 1).

E = Eelec + Edesolv + Elinker (1)

where Eelec represents electrostatics and Edesolv represents
desolvation energy.

Predictive success rates evaluation
For a pair of domain structures we generated 2,000 rigid-
body docking orientations by ZDOCK2.1 [17]. The scor-
ing function was then tested by calculating the success rate
of predicting a near-native solution among the N top
rankings (N = 10, 20, 30, 40, 50, 100, 200, 300, 400, 500)
as scored by pyDock (before restraints) and pyDockTET
(after restraints). Following the criteria in CAPRI http://
capri.ebi.ac.uk for the assessment of results from protein-

Best models generated by pyDockTET for the difficult cases of Wollacott et al.[5]Figure 7
Best models generated by pyDockTET for the difficult cases of Wollacott et al.[5]. The modelled structure for each 
case is represented in stick mode, with the first domain in white colour. The second domain orientation predicted by pyDock-
TET is shown in red. The real X-ray structure is shown for comparison in ribbon mode: the first domain in white colour, the 
second domain in grey, and the linker in cyan. The first domains of the real and modelled structures are superimposed.
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protein docking, here a near-native solution is considered
acceptable if the RMSD of the one of the domains is ≤ 10Å
from the equivalent one in the X-ray structure, when the
other domain (typically the larger one) is superimposed
onto that of the X-ray structure (similarly, a near-native
solution is defined as a good one if the RMSD from the X-
ray structure is ≤ 5Å).

Domain-domain structural test set
A benchmark of 77 non-redundant domain pair structures
was compiled by selecting all crystal structures of multi-
domain proteins in PDB that satisfied the following crite-
ria: i) since domain pairs that are not in direct contact can-
not be predicted by our domain-domain docking, the
benchmark cases were required to have at least one pair of
residues that had side chain atoms within a distance ≤ 5Å
in their crystal structures (see additional file 2: The 77
non-redundant bound structures); ii) all crystal structures
had a resolution ≤ 2.5Å and less than 30% sequence iden-
tity to each other (this is a standard sequence identity
threshold in homologue search); and iii) we considered
only proteins formed by two domains as defined by Pfam,
with a single inter-domain linker (the linker regions were
thus defined by the domain boundaries of Pfam, and all
the 77 non-redundant domain pairs contained linkers
that covered the domain cutting sites defined by SCOP
[13], or were near them within three amino acids differ-
ence). For a more realistic domain assembly test, we used
SCWRL 3.0 [16] in order to re-model all side chains of the
individual domains before docking.

The second benchmark set contained 20 non-redundant
domain pairs in which each domain was modelled on the
basis of a homologue. This sub-set was generated from the
previously described benchmark of 77 pairs, after select-
ing those cases in which both domains had available tem-
plates and thus could be independently modelled. The
modelling process applied BLAST [20] to search for tem-
plate structures (considering only homologous sequences
with the best E-values, as long as they are below the limit
of 10-20) and used Baton (D. Burke, unpublished; based
on the COMPARER algorithm [21]) to do multiple struc-
tural alignment of templates. Fugue [22] was used to find
templates in those cases in which BLAST failed and also to
generate all the sequence-structural alignments. Finally
MODELLER [23] was used to generate models for each
domain. The modelled cases are listed in Table 1. The tem-
plate structures and the sequence identities (computed
from the structural alignments) can be found in the addi-
tional file 1: The 20 unbound (modelled) structures.
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The function of Elinker of pyDockTETFigure 8
The function of Elinker of pyDockTET. The function of 
Elinker of pyDockTET, where Xm is the average end-to-end 
distance of a linker with specific length, and SD is the stand-
ard deviation of the Xm.
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