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Abstract
Background: Pseudorabies virus (PRV) is an alphaherpesviruses whose native host is pig. PRV
infection mainly causes signs of central nervous system disorder in young pigs, and respiratory
system diseases in the adult.

Results: In this report, we have analyzed native host (piglets) gene expression changes in response
to acute pseudorabies virus infection of the brain and lung using a printed human oligonucleotide
gene set from Illumina. A total of 210 and 1130 out of 23,000 transcript probes displayed differential
expression respectively in the brain and lung in piglets after PRV infection (p-value < 0.01), with
most genes displaying up-regulation. Biological process and pathways analysis showed that most of
the up-regulated genes are involved in cell differentiation, neurodegenerative disorders, the
nervous system and immune responses in the infected brain whereas apoptosis, cell cycle control,
and the mTOR signaling pathway genes were prevalent in the infected lung. Additionally, a number
of differentially expressed genes were found to map in or close to quantitative trait loci for
resistance/susceptibility to pseudorabies virus in piglets.

Conclusion: This is the first comprehensive analysis of the global transcriptional response of the
native host to acute alphaherpesvirus infection. The differentially regulated genes reported here are
likely to be of interest for the further study and understanding of host viral gene interactions.

Background
Pseudorabies virus (PRV), is a member of the alphaher-
pesvirus subfamily and has multiple closely related family
members, such as the herpes simplex virus1 (HSV-1), vari-
cellovirus (VZV), avian herpes viruses, bovine herpesvi-
ruses (BHV-1), equine herpesviruses (EHV-1 and EHV-4),
feline herpesvirus type 1 and canine herpesvirus type

[1,2]. Thus PRV has served as a useful model organism for
the study of herpesvirus biology[1]. Owing to its remark-
able propensity to infect synaptically connected neurons,
PRV is also studied as a "live" tracer of neuronal path-
ways[1]. Finally, while vaccination strategies to eradicate
PRV in the United States and Europe have shown great
progress, they fail to eradicate completely viral infection
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from a population. Thus outbreaks in swine populations
result in substantial economic losses. These include
restrictions on animal movement and trade for affected
countries, with disease and infection control measures
increasing production costs owing to antibody testing,
vaccination programs and extra labor.

Although PRV has been widely studied (especially its agri-
cultural impact, its viral pathogenesis, its molecular biol-
ogy, its use as a neuronal tracer, and in DNA vaccine
exploration [1]) how the native host responds globally
after infection with wild type PRV is still poorly under-
stood. Clinically, infection in older pigs ranges from
asymptomatic to severe respiratory disease but with lim-
ited mortality. Young piglets exhibit more serious clinical
signs and often succumb to fatal encephalitis preceded by
typical behaviors consistent with infection of the central
nervous system. In recent years, microarray technology
has proven useful to assess the cellular transcriptional
responses to herpesvirus infections in human and mouse
cell lines [3-5]. It has been used to study host gene expres-
sion after PRV infection of rat embryo fibroblasts [5], and
the central nervous system (CNS) in rodent brain at vari-
ous times post infection in vivo [6]. However few porcine
genome-wide expression studies have been published.
Most experiments have used 'in-house' cDNA arrays to
study transcriptional events in pig tissues, such as the
stress-genes related to early weaning of piglets [7]. The
down side of these cDNA-based clone libraries is that the
genes represented on the array are often very focused on a
given biological system or process and lack a whole
genome overview.

In this study, piglet samples were hybridized onto an Illu-
mina Human Refset Chip (Illumina Inc. San Diego), cor-
responding to 23,000 transcript probes. This cross-species
comparison potentially allows the study of the whole
transcriptome. There are now porcine arrays available
from commercial suppliers (e.g. Affymetrix and Qiagen),
but these are not all representative of the entire pig
genome and were not widely available at the time of this
study. In the absence of a comprehensive species-specific
array deeper interrogation of the pig gene complement
was afforded by the use of the better annotated human
geneset. Although the use of this approach can only be
partially informative when there are no confirmed pig
orthologues in the public databases, we have identified
host cellular genes whose mRNA levels change during nat-
ural PRV infection of piglet brain and lung. The resulting
data define key pathways of host-gene expression that
characterize the host response to an acute central nervous
system (CNS) and respiratory infection.

Methods
Experimental pigs and housing
The experimental animals were sourced from an outbreak
of PRV that occurred in the farrowing house of a local
commercial farmer due to a reduced level of protection via
maternal antibody. Clinical signs were described as fol-
lows: suckling piglets were listless, febrile, and uninter-
ested in nursing. Within 24 h of exhibiting these clinical
signs, some piglets progressively developed indications of
central nervous system infection including trembling,
excessive salivation, lack of coordination, ataxia, and sei-
zures. Infected piglets sat on their haunches in a "dog-
like" position, lay recumbent and paddled, or walked in
circles. The appearance of the dissected organs in selected
piglets was typical of PRV infection: bleeding in meninges,
oedema in the brain, bleeding spots in the lung and on
the adenoids [1,8].

Three strict criteria were imposed for the selection of pig-
lets included in this study: 1) piglets exhibited the typical
clinical signs described above; 2) piglets exhibited the
expected pathology, especially in brain and lung; 3) virus
isolation, antibody identification or detection of viral
antigen-positive tissues were used to confirm the organic
infection by PRV, and diseases including Swine Fever (SF),
Porcine Reproductive and Respiratory Syndrome Virus
(PRRSV) and other potential bacterial infections which
could be clinically and pathologically confused with PRV
infection were excluded by viral antigen, antibody identi-
fication and PCR detection.

Six piglets aged from 2 to 4 days (commercial breed Lan-
drace X Yorkshire) which were infected by PRV but not by
the other tested diseases (see above) and 3 healthy piglets
(not infected, and negative for all tests under the strict cri-
teria used above), matched for age and breed from the
same farm were used in this experiment. All experiments
were carried out in strict accordance with accepted
HuaZhong Agricultural University, China and govern-
mental policies.

Microarray experimental design
Total mRNA samples from the brains and lungs of the 3
normal piglets were pooled for the reference mRNA. Ten
independent RNA samples (6 biological replicates for
brain and 4 biological replicates of lung) from the 6
infected piglets were paired with the reference sample for
hybridization on two-color microarrays. Using a dye-swap
configuration, comparing each sample provides technical
replicates to adjust for dye bias[9]. A total of 20 slides were
used in this study.

RNA purification
Total mRNA was prepared using Qiazol reagent (Qiagen,
Crawley, West Sussex, UK) following the manufacturer's
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instructions. A second purification step was performed
immediately post extraction on the isolated total mRNA
using the RNeasy Midi kit (Qiagen Inc., Valencia, CA) and
each sample was treated with DNase (20 U of grade I
DNase; Roche, Lewes, UK) to remove any genomic con-
tamination following the manufacturer's instructions.
With a cut-off of 150 bp, 5S rRNA and tRNAs were
removed from the samples by the columns, limiting inter-
ference in downstream experiments. RNA concentration
and integrity were assessed on the Nanodrop ND-1000
spectrophotometer (Nanodrop, USA) and on the Agilent
2100 bioanalyzer system (Agilent Technologies, Palo
Alto, CA), using an RNA 6000 Nano LabChip kit.

SMART amplification and labeling of the samples
The extracted RNA was amplified using the SMART ampli-
fication protocol (BD Smart TM Amplification Kit, UK)
and labeled with cy5 or cy3 using Klenow enzyme as
described by Petalidis et al 2003 [10] with two modifica-
tions; (a) a constant number of 14 cycles was used, and
(b) for the labeling step, 1 μL of Cy3 or Cy5-dCTP was
used with 22 μL (250 ng) of second strand cDNA. The
labeled products were purified using G50 columns,
according to manufacturer's instructions (Amersham Bio-
sciences, UK). Labeled samples were combined and pre-
cipitated for at least 2 hours at -20°C with 2 μL of human
Cot-1 DNA, 1 μl PolyA (8 μg/μl), 1 μl yeast tRNA (4 μg/
μl), 10 μl Na acetate (3 M, pH5.2) and 250 μl 100% eth-
anol.

Microarray hybridization and scanning
The labeled product was re-suspended in 40 μL hybridiza-
tion buffer (40% deionised formamide, 5 × SSC, 5 × Den-
hart's, 1 mM Na Pyrophosphate, 50 mM Tris Ph 7.4 and
0.1%SDS) and hybridized onto a microarray slide con-
taining 23,000 human oligonucleotides (Illumina Inc.
San Diego), printed in-house on to Codelink slides using
a BioRobotics Microgrid II arrayer. After over-night
hybridization of the slides at 48°C in a water bath, they
were washed in 2 × SSC, 0.1 × SSC, 0.05% Tween 20, and
0.1 × SSC sequentially for 5 min each and scanned using
an Axon 40001A scanner. Signal quantification was per-
formed using Bluefuse software (2.0) (BlueGnome, Cam-
bridge, UK).

Analysis of the data
Data exported from Bluefuse was analyzed using the R
package http://www.r-project.org/ library FSPMA [11],
which is based on the mixed model ANOVA library
YASMA [12]. Expression values in both channels were
converted to log ratios and normalized by subtracting a
M/A (i.e. log ratio/log amplitude) loess fit and adjusting
the within-slide scale of the data. The ANOVA model used
a nested design with spot-replication (1) as the innermost
effect, nested inside biological replication (6 for brains; 4

for lungs), with dye-swap (2) as the outermost effect.
Spot-replication was considered to be a random effect and
biological replication and dye-swap fixed effects. Genes
were considered to be up or down regulated, if the average
channel log ratios relative to the control were found to be
highly significantly different from zero, using a p-value
threshold of 0.05. The p-values were calculated within the
ANOVA model, using FSPMA's VARIETY option and a cor-
rection for multiple comparisons by false discovery rate.
This analysis takes into consideration the variance across
samples and excludes those genes with a high level of var-
iance. We can, therefore, be confident that the smaller fold
changes observed are real.

70-mer human oligonucleotide sequences from differen-
tially expressed probe sets with a p-value < 0.01 were used
to BLAST search pig sequences in the public databases
http://www.ncbi.nlm.nih.gov/BLAST/ including Unigene
and ESTs [13]. For matches to Unigene clusters, Homolo-
gene was used to indicate orthology to the human probe
sets. With novel ESTs, pig data were matched against the
human genomic and transcript database to confirm that
the best matches were to orthologous sequences. Hits
were considered to be reliable if there was a putatively
orthologous match of 60-70 bp, and oligonucleotides
with fewer matches, in the range of 50-59 bp, were also
selected if p-values were significant in this study. Probe
sets that could not be verified by BLAST as described
above are not reported in this paper. Analysis of the signal
intensity distribution of the cross-species hybridizations
for both the lung and brain experiments showed a normal
distribution similar to that obtained when homologous
human RNA is hybridized to the chip. The proportion of
the approximately 23K probes showing a signal greater
than 100 signal value (i.e. above background) in the cross-
hybridization is 22,300 from the 22,800 probes on the
chip (~97%). The microarray data (accession number E-
MEXP-2376) is available through ArrayExpress.

Functional annotation of gene expression data
In order to understand the biological phenomena studied
here and reduce the interpretive challenge that is posed by
a long list of differentially expressed genes. Onto-Express
was used to classify our lists of differentially regulated
genes into functional profiles characterizing the impact of
the infection on the two different tissues http://vor
tex.cs.wayne.edu/ontoexpress/[14]. Initial analysis used
the non-filtered dataset, i.e., all differentially regulated
probe sets against the full human oligonucleotide geneset.
We then looked at differentially expressed probes (p-value
< 0.01) identified from our microarray analysis, and sta-
tistical significance values were calculated for each cate-
gory using the binomial test available in Onto-
Express[15]. This makes no assumptions about those
probesets with good matches to known pig sequences.
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However, only those probesets for which we could confi-
dently assume orthology are reported in the tables in this
paper. Here we present categories of gene ontology based
on a maximum pairwise p-value of 0.05 for the "biologi-
cal processes". To gain a better understanding of the gene
interactions (pathways) involved in the disease, Pathway-
Express was also applied to our data. In order to quantify
the over/under representation of each category, the library
composition has been taken into account in the presenta-
tion of the results.

Quantitative RNA analyses using real-time PCR 
methodology (qRT-PCR)
Quantitative real-time reverse transcriptase polymerase
chain reaction (qRT-PCR) analysis using SYBR green and
selected primers was carried out following the manufac-
turer's protocol (QIAGEN, QuantiTect SYBR Green RT-
PCR) to confirm the microarray results. All probes and
primers were designed using Express Primer 3 software
developed by the Whitehead Institute for Biomedical
Research. The nucleotide sequences of selected genes were
obtained from GenBank, and the primer information is
shown in table 1. PSMD2 (primers kindly provided by Ms
Gina Oliver and Dr Claire Quilter) was selected for use as
the reference gene because it was previously shown to be
a good control for pig brain (personal communication
from Ms Gina Oliver and Dr Claire Quilter) and was also
shown to be one of the most constant housekeeping genes
in a human tissue study. Quantitative RT-PCR was per-
formed on 300 ng RNA equivalents in 25 μL/reaction/well
on an Icycler (Bio-Rad Laboratories Ltd, USA) (50°C for
60 min; 95°C for 15 min; 40 cycles of 95°C for 15 sec,
58°C for 30 sec and 72°C for 30 sec). For each gene reac-
tions were performed in triplicate to allow statistical eval-
uation of the data. The average Ct (threshold cycle) was
used for the analysis. Relative expression levels were calcu-

lated by using the 2-(ΔΔCt) method as previously described
[16].

Results
Microarray analysis of gene expression profiles in brain 
and lung
Six brain samples and four lung samples were used for
microarray hybridization and qRT-PCR, and two of the
lung samples were excluded as they were found to be
degraded. Table 2 shows the number of differentially
expressed human probe sets initially identified in brain
and lung tissues (p-value < 0.01 and p-value < 0.05).
Based on BLAST analysis, those probes with putative pig
gene homologues have been considered for further analy-
sis and numbers are shown in table 2. This avoids making
assumptions about other probes that detect expression
changes but have weaker matches to pig ESTs. Most
probes with porcine homologues remained unchanged,
and few showed a reduction in transcription level by
microarray analysis. For example, expression of only 4
(60-70 bp human match category) and 1 (50-59 bp
human match category) were decreased in infected lung
tissue (p-value < 0.01). In contrast, a large number of host
transcripts were induced in response to wild type PRV
infection (table 2). Here we identified 120 and 866 up-
regulated transcripts in brain and lung (p-value < 0.01)
with pig: human matches ≥ 60 bp, and 42 and 259 genes
with matches of 50-59 bp for further gene ontology and
pathway classification (table 2).

Of the transcripts with matches ≥ 60 bp, 76, correspond-
ing to 74 unique pig gene homologues, are up-regulated
in common between the two tissues and are listed in
Additional file 1. Forty-four probe sets corresponding to
41 unique pig gene homologues with matches of 50-59

Table 1: validation of array data by real-time PCR

Microarray data qRT-PCR data

Gene name Pig homologene Primer sequences
(5'-3')

Brain
(n-fold change)

Lung
(n-fold change)

Brain
(n-fold change)

Lung
(n-fold change)

PSMD2 Ssc.1642 F: tggggagaataagcgttttg
R: tattcatgaccccatgatgc

Ref Ref Ref Ref

AKT1 Ssc.29760 F: tgggcgacttcatccttg
R: tggaagtggcagtgagca

NDa 1.68 ND 2.19

CDC42 Ssc.6687 F: aaagtgggtgcctgagata
R: ctccacatacttgacagcc

-b 2.03 - 7.38

LY96 Ssc.25550 F:cattgcacgaagagacataca
R: tgtattcacagtctctcccttc

1.37 3.32 6.91 9.23

PIK3R1 Ssc.49949 F: cccaggaaatccaaatga
R: ggtcctcctccaaccttc

- - 0.61 0.45

SERPINE1 Ssc.9781 F: ccagcagcagatccaaga
R: cggaacagcctgaagaagt

-1.66 2.36 -0.64 4.28

aND, not done;
b-, not changed or absent.
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Table 2: Number of probe sets and pig gene homologues in brain and lung tissues affected by wild type PRV infection

p- value Up/down regulated Brain Lung

A B C D A B C D

p-value < 0.01 down 253 35(34) 14(14) 17 195 4(4) 1(1) 11
up 528 132(120) 44(42) 115 2283 888(866) 261(259) 424

p-value < 0.05 down 588 77(76) 26(26) 43 1657 25(24) 4(4) 51
up 879 209(196) 69(67) 173 3284 1122(1075) 357(355) 545

A = Total number of differentially expressed human probes.
B = Total number of pig Unigene matches of 60-70 basepairs (subset of verified gene or thologues).
C = Total number of pig Unigene matches of 50-59 basepairs (subset of verified gene or thologues).
D = Total number of EST matches >50 basepairs with no assigned Unigene ID.

Table 3: Classes of biological processes involving up regulatedpig gene homologues (p-value < 0.01) in brain and lung tissues infected 
with wild type PRV.

Biological Process Library Brain Pig Unigene 
Matches over 60 base-

pairs 
(gene homologues)

Brain Pig
Ungene
Matches

between 50-
59b base-pairs (gene

homologues)

Lung Pig Unigene 
Matches over 60 base-

pairs 
(gene homologues)

Lung Pig Unigene 
Matches between 50-

59b base-pairs 
(gene homologues)

Apoptosis 230 3* 0 30* 4
Biological function 
unknown

472 4 0 31 10

Cation transport 139 2* 3* 0 2
Cell adhesion 429 8* 5* 11 4
Cell cycle 303 3 0 31* 3
Cell differentiation 230 4* 1* 7 2
Immune response 255 0 0 7 3
Intracellular protein 
transport

135 5* 0 16* 5*

Intracellular signaling 
cascade

285 4* 0 14 3

Ion transport 304 5* 1 6 4
Metabolism 280 3* 3 15* 9*
Nervous system 
development

239 9* 3* 9 3

Protein amino acid 
dephosphorylation

108 1 2* 14* 1

Protein amino acid 
phosphorylation

412 1 2* 29 7

Protein folding 165 4* 0 27* 5*
Protein transport 217 2 2* 33* 4
Proton transport 47 1* 2* 3 7*
Regulation of 
progression through cell 
cycle

215 2 2* 20* 4

Regulation of 
transcription, DNA 
dependent

1285 9 2 73 7

Signal transduction 1110 6 1 40 6
Synaptic transmission 164 4* 4* 5 1
Transcription 945 7 1 63 7
Ubiquitin cycle 217 1 0 30* 4

* Biological processes with at least two times the expected number of genes (calculated from the library composition).



BMC Microbiology 2009, 9:246 http://www.biomedcentral.com/1471-2180/9/246
bp also displayed increased expression in both tissues
after infection by wild type PRV (Additional file 1).

Gene Ontology and bioinformatics analysis
To characterize the sets of functionally related genes that
are differentially expressed between the infected and
uninfected group, we used the Onto- Express tool to clas-
sify up-regulated genes in each tissue according to their
biological process. Table 3 summarizes the largest classes
identified on the basis of biological process. Twelve
defined biological processes with matches ≥ 60 bp, and 10
with matches of 50-59 bp, are observed in brain at least
two fold more often than expected. In comparison, 9
processes with matches ≥ 60 bp, and only 4 with matches
of 50-59 bp are over-represented in lung, although the
total number of up-regulated genes in lung is more than
that in brain tissue (table 2).

Pathways affected by wild- type PRV infection in brain and 
lung
One indication that the observed transcript differences (p-
value < 0.01) may have biological relevance is that sets of
genes in known pathways show coordinated regulation.
Accordingly, the functionally classified genes were
mapped to known cellular pathways. Fifteen pathways
with at least five times the expected number of genes
(matches ≥ 60 bp) have been highlighted with pathway-
express in the infected brain. Interestingly, most of them
belong to neurodegenerative disorders, nervous system
and immune system pathways. Twelve pathways (includ-
ing the calcium signaling pathway, the phosphatidylinosi-
tol signaling system and the TGFβ signaling pathway)
with at least five times the expected number of genes
(matches of 50-59 bp) were also highlighted in the
infected brain. However only 4 pathways (ubiquitin
mediated proteolysis and prion disease, matches ≥ 60 bp;
ALS and mTOR signaling pathway, matches of 50-59 bp)
showed at least five times the expected number of genes in
the infected lung (table 4). Interestingly, ubiquitination of
PRV glycoproteins for vaccination has been shown to be
related to decreased cellular immune responses following
wild type infection. Additional file 2 lists the details of
genes that were assigned to cellular processes, environ-
mental information processes and human disease path-
ways.

Ten genes up-regulated in both tissues by wild-type PRV
infection segregated into known pathways (Additional
file 2). Most of them are involved in multiple pathways,
such as SPP1 in the immune response pathway, the ECM-
receptor interaction and focal adhesion pathway, and FOS
and CDC42 in the T cell receptor signaling pathway and
MAPK signaling pathway. Moreover, it is also interesting
to note that a few genes such as SERPINE1 and LCP2
respond differently in the two tissues studied, and while

some of the pathways responding to the infection are
ubiquitous, others appear to be tissue specific (Additional
file 2).

qRT-PCR analysis for validation of microarray results
In order to verify the data obtained in the microarray
experiment, we confirmed the expression profile of 5
selected genes with different patterns of expression: LY96
is differentially expressed in the same direction in both tis-
sues; SERPINE1 is down-regulated in the brain but up-reg-
ulated in the lung after infection; CDC42 and AKT1 are
significantly up-regulated in lung tissue only, and PIK3R1
is not significantly differentially expressed. Results from
real-time quantitative RT-PCR confirmed the direction of
expression (up or down-regulated) obtained by microar-
ray analysis in the 5 genes tested (table 1). The magnitude
of the fold change is not the same. This is most probably
due to the fact that the array analysis is based on a cross-
species hybridization whereas the RT-PCR has been per-
formed using species homologous primers. It is likely that
the RT-PCR analysis reflects more accurately the fold
change in expression.

Discussion
The virus replication cycle involves a series of host-virus
interactive processes causing changes in expression of cel-
lular genes, and an infected host activates both innate and
adaptive immune responses to eliminate the invading
virus [17]. The pig is an ideal animal model for studying
human diseases, so the identification of pig model
biomarkers for viral diseases is an important step towards
identification of human counterparts. The identification
of biomarkers has already been proposed as a way to cre-
ate new diagnostic tools for specific microbial infection
[18,19].

Previous studies have shown the value of using cross-spe-
cies hybridization [20]. Here, using the Illumina human
oligonucleotide Refset in a cross-species study we identi-
fied hundreds of probes with expression levels that were
altered in brain and lung following wild type PRV infec-
tion of young piglets, which typically have more severe
clinical manifestations than the adult. In adult pigs one
observes mainly, or exclusively, the respiratory symptoms,
whereas in piglets and rodent hosts there is invariably
invasion of the central nervous system (CNS) [21,22]: pig-
lets exhibit signs in the form of tremor, trembling and
incoordination. Thus piglets permit the potential identifi-
cation of a wider spectrum of genes involved in the dis-
ease processes in different tissues.

Classification of the genes that are differentially expressed
in piglet brain into functional groups(Additional file 2)
revealed that several genes are also implicated in human
neurodegenerative disorders. These include genes in the
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Table 4: Cellular Pathways involving up-regulated (p-value < 0.01) pig gene homologues in brain and lung tissues infected with wild 
type PRV.

Pathway Name Library Brain
Pig Unigene Matches 

over 60 base-pairs (gene 
homologues)

Brain
Pig Unigene

Matches
between 50-

59b base-
pairs (gene

homologues)

Lung Pig Unigene 
Matches over 60 base-

pairs (gene homologues)

Lung
Pig Unigene Matches 
between 50-59b base-

pairs (gene homologues)

Behavior
Circadian rhythm 17 0 0 1 0

Cancers
Colorectal cancer 73 2* 0 9 0

Cell Communication
Adherens junction 72 2* 0 9 2
Focal adhesion 187 4 1 11 4
Gap junction 91 3* 0 5 0
Tight junction 106 2 0 13 3

Cell Growth and Death
Apoptosis 81 0 0 3 1
Cell cycle 105 1 1* 12 4

Cell Motility
Regulation of actin 
cytoskeleton

195 6* 0 12 2

Development
Axon guidance 119 2 1 7 3

Endocrine System
Adipocytokine 
signaling pathway

68 1 0 2 2

GnRH signaling 
pathway

94 3* 2* 6 1

Insulin signaling 
pathway

125 2 1 8 1

Folding, Sorting and 
Degradation

Regulation of 
autophagy

24 0 0 2 0

SNARE interactions in 
vesicular transport

28 0 1* 3 1

Ubiquitin mediated 
proteolysis

41 0 1* 11* 1

Immune System
Antigen processing and 
presentation

80 0 0 3 0

B cell receptor 
signaling pathway

61 2* 0 6 1

Complement and 
coagulation cascades

60 0 0 1 0

Fc epsilon RI signaling 
pathway

73 2* 0 4 1

Leukocyte 
transendothelial 
migration

111 1 0 6 3

Natural killer cell 
mediated cytotoxicity

119 2 0 4 2

T cell receptor 
signaling pathway

87 3* 0 5 3

Toll-like receptor 
signaling pathway

87 1 0 6 0

Infectious Diseases
Epithelial cell signaling 
in Helicobacter pylori 
infection

45 1 0 5 1

Metabolic Disorders
Type I diabetes 
mellitus

42 1 1* 2 0

Nervous System
Long-term depression 74 2* 0 5 0
Page 7 of 11
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pathways for amyotrophic lateral sclerosis (NEF3, NEFL,
NEFH), Huntington's disease (CALM3, CLTC, CLTB),
neurodegenerative disorders (APLP1, NEFH, FBXW7),
Parkinson's disease (GPR37) and prion disease (APLP1,
NFE2L2). It is not known if these transcriptional changes
are primary or secondary effects of the PRV infection.

Several members of the immune response pathways (eg.
the B cell receptor signaling pathway, the Fc epsilon RI sig-
naling pathway, natural killer cell mediated cytotoxicity
and the T cell receptor signaling pathway) were also tran-
scriptionally regulated by PRV infection in brain. This is in
agreement with the results from PRV or HSV-1 infection in

primary cultures of rat embryonic fibroblasts [5]. In addi-
tion, similar changes to immune response pathway (e.g.
antigen processing and presentation, complement and
coagulation cascades), cell differentiation and metabo-
lism pathway genes have been described in the host fol-
lowing PRV infection in rat CNS [6]. Our experiment not
only identified pathways, but also several genes in com-
mon with these previous studies: FOS and LCP2, both
involved in T cell receptor signalling pathways; the TGFβ
signal transduction pathway components ID4 and
THBS4, highlighted in the study of PRV infection of pri-
mary cultures of rat embryonic fibroblasts [5,6]; and SER-
PINE-1, identified in both earlier rat studies. These genes

Long-term 
potentiation

65 2* 2* 5 3

Neurodegenerative 
disorders

Neurodegenerative 
disorders

33 2* 1* 0 1

Alzheimer's disease 18 0 0 2 0
Amyotrophic lateral 
sclerosis (ALS)

17 3* 0 0 2*

Dentatorubropallidolu
ysian atrophy (DRPLA)

12 0 0 1 0

Huntington's disease 26 2* 1* 4 0
Parkinson's disease 15 1* 0 0 0
Prion disease 10 1* 0 3* 0

Sensory System
Olfactory transduction 30 0 2* 2 0
Taste transduction 51 1 0 1 0

Signal Transduction
Calcium signaling 
pathway

173 0 4* 3 3

Hedgehog signaling 
pathway

54 0 0 3 0

Jak-STAT signaling 
pathway

147 0 0 6 2

MAPK signaling 
pathway

267 5 2 18 7

mTOR signaling 
pathway

44 0 0 4 3*

Notch signaling 
pathway

39 0 0 1 0

Phosphatidylinositol 
signaling system

77 0 1* 0 0

TGF-beta signaling 
pathway

70 1 1* 11 0

VEGF signaling 
pathway

68 3 0 5 2

Wnt signaling pathway 138 0 1 12 2
Signaling Molecules and 
Interaction

Cell adhesion 
molecules (CAMs)

123 2 1 3 2

Cytokine-cytokine 
receptor interaction

242 0 0 3 2

ECM-receptor 
interaction

85 1 0 3 2

Neuroactive ligand-
receptor interaction

275 1 0 1 0

* Cellular pathways with at least five times the expected number of genes (calculated from the library composition).

Table 4: Cellular Pathways involving up-regulated (p-value < 0.01) pig gene homologues in brain and lung tissues infected with wild 
type PRV. (Continued)
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may be potential diagnostic and therapeutic targets for
viral encephalitis and other neurodegenerative or neu-
roinflammatory diseases.

Several genes of the TGFβ pathway were also identified
here in the infected lung tissue (e.g. PPP2CA, PPP2CB,
ID2, ID3 and ID4). After PRV infection, most older swine
exhibit signs of respiratory disease, and the study of the
lung is therefore important for understanding what genes
may be involved in the disease process. We identified
1130 differentially expressed probes as a result of wild-
type PRV infection; this is 5 times higher than in the brain.
The lung may be more transcriptionally active, or have a
more pronounced immune response that might involve
more immune cell types than the brain. In addition, we
have identified 5 possible viral receptors, normally neces-
sary for the spread of virus between cells, up-regulated in
the infected lung: HveC (PVRL1), PVRL3, HveD (PVR,
CD155), HS3ST4 and HS3ST5 [23,24]. Finally, a number
of members of the TNF receptor family, usually involved
in apoptosis, were identified (TNFRSF10, 21, 25, 9, 17, 8,
1α). This apoptotic pathway was also described in the
study of HSV infection of glial cell types [25]. However,
the result is interesting as the family member TNFRSF14
has been shown to be involved in some cases of viral
entry, but we do not know whether these other family
members are involved in viral entry and cell fusion, or
only have a downstream role.

Numerous other genes involved in cellular proliferation
(YWHAB, BUB1, PCNA, GADD45, MCM7, CDK4, CDK7)
and apoptosis (PRKACA, PDCD8, AKT1, PPP3CA), were
identified. These pathways were previously described fol-
lowing PRV and HSV infection in several models [5,25]
and might reflect the proliferation of immune cells. A
number of other genes differentially expressed in the lung,
such as HSPD1, HSPB2, SERPINE-1, are in common with
human and mouse models infected by HSV-1 [5,26].

Recently, Flori et al [27] have published a time course
transcription profiling study (based on the Qiagen 8541
gene porcine oligonucleotide array and a 1789 porcine
and PRV cDNA array) investigating both the PRV tran-
scriptome and the host transcriptome responses of PK15
(porcine kidney) cells in culture. This study reports the
early down-regulation of many cellular genes in contrast
to the data in this paper. This difference most probably
arises from the artificial cell culture study where there is a
homogeneous cell population, whereas our present study
is an in vivo investigation of complex tissues. It is entirely
possible that minor tissue cell types exhibit down-regula-
tion of many of the same genes, however, their contribu-
tion to the overall signal renders these changes
undetectable. This may also explain the differences in
gene expression changes for shared genes between lung

and brain. In general, fold changes are lower in brain
which probably reflects the complexity of cell types in the
tissue, not all of which may respond equally to infection.
Nevertheless, it is clear that the Flori et al. study has also
observed changes in gene expression in the main catego-
ries of cellular functions described in this paper; most
notably genes involved in immune responses and cell pro-
liferation and apoptosis.

Genetic differences have been reported in the susceptibil-
ity to PRV between European Large White and Chinese
Meishan pigs, with differences in cell-mediated and
humoral immunity, as well as the outward clinical signs
in young pigs [28]. In this study we identified several dif-
ferentially expressed genes located at or close to the QTL
regions previously reported. Two genes (CD36 and NPL)
up-regulated in the infected brain and lung are located
near the SW749 marker, which is associated with changes
in body temperature and neurological signs. ETA1 (alias
SPP1), which is involved in the recruitment of T-lym-
phocytes [29,30], was up-regulated in both tissues after
natural PRV infection, and is linked to the QTL region of
chromosome 8. One of the PRV receptors, PVRL3, which
is differentially expressed in infected lung, is linked to a
QTL on chromosome 13. CLDN7, which is involved with
cell communication, was down-regulated in the infected
brain and is linked to a QTL on chromosome 13 associ-
ated with neurological signs.

Conclusion
By combining the array data presented here with the infor-
mation from the previous QTL study, it may be possible
to identify the best candidates for the clinical features and
increased resistance to PRV infection. In addition, further
studies and functional analysis of these candidates will
broaden the scientific understanding of PRV infection,
provide biomarkers to use as diagnostic tools, and may
also lead to the development of novel antiviral treatments
and/or the application of marker assisted selection for dis-
ease resistance.

Abbreviations
μL: microliter(s); AKT1: v-akt murine thymoma viral
oncogene homolog 1; ALS: amyotrophic lateral sclerosis;
APLP1: amyloid beta (A4) precursor-like protein 1; BHV-
1: bovine herpesvirus 1; bp: basepair(s); BUB1: budding
uninhibited by benzimidazoles 1; CALM3: calmodulin 3;
CDC42: cell division cycle 42; CDK4: cyclin-dependent
kinase 4; CDK7: cyclin-dependent kinase 7; cDNA: com-
plementary deoxyribonucleic acid; CLTB: clathrin light
chain; CLTC: clathrin heavy chain; CNS: central nervous
system; Ct: threshold cycle; DNA: deoxyribonucleic acid;
EST: expressed sequence tag; FBXW7: F-box and WD
repeat domain containing 7; FOS: v-fos FBJ murine oste-
osarcoma viral oncogene homolog; GADD45: growth
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arrest and DNA-damage-inducible alpha; GPR37: G pro-
tein-coupled receptor 37; h: hour; HS3ST4: heparan sul-
fate (glucosamine) 3-O-sulfotransferase 5; HS3ST5:
heparan sulfate (glucosamine) 3-O-sulfotransferase 5;
HSPB2: heat shock 27 kDa protein 2; HSPD1: heat shock
60 kDa protein 1; HveC (PVRL1): herpesvirus entry medi-
ator C (poliovirus receptor-related 1); HveD (PVR): her-
pesvirus entry mediator D (poliovirus receptor); ID2:
inhibitor of DNA binding 2; ID3: inhibitor of DNA bind-
ing 3; ID4: inhibitor of DNA binding 4; LCP2: lymphocyte
cytosolic protein 2; MAPK: mitogen-activated protein
kinase; MCM7: minichromosome maintenance complex
component 7; mRNA: messenger ribonucleic acid; mTOR:
mechanistic target of rapamycin; Na: sodium; NEF3: neu-
rofilament, medium polypeptide; NEFH: neurofilament,
heavy polypeptide; NEFL: neurofilament, light polypep-
tide; NFE2L2: nuclear factor (erythroid-derived 2)-like 2;
ng: nanogram(s); PCNA: proliferating cell nuclear anti-
gen; PCR: polymerase chain reaction; PDCD8: pro-
grammed cell death 8; PIK3R1: phosphoinositide-3-
kinase regulatory subunit 1; PPP2CA: protein phos-
phatase 2 catalytic subunit alpha isoform; PPP2CB: pro-
tein phosphatase 2 catalytic subunit beta isoform;
PPP3CA: protein phosphatase 3 catalytic subunit alpha
isoform; PRKACA: protein kinase, cAMP-dependent, cata-
lytic, alpha; PRRS: porcine reproductive and respiratory
syndrome; PRV: pseudorabies virus; PSMD2: 26S proteas-
ome non-ATPase regulatory subunit 2; PVRL3: poliovirus
receptor-related 3; qRT: quantitative real time; QTL: quan-
titative trait locus; rRNA: ribosomal ribonucleic acid;
SERPINE1: plasminogen activator inhibitor, type I; SPP1:
secreted phosphoprotein 1; TGFβ: transforming growth
factor, beta; THBS4: thrombospondin 4; TNFRSF: tumor
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tophan 5-monooxygenase activation protein, beta
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