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Abstract

Background: With the growing availability of entire genome sequences, an increasing number of scientists can
exploit oligonucleotide microarrays for genome-scale expression studies. While probe-design is a major research
area, relatively little work has been reported on the optimization of microarray protocols.

Results: As shown in this study, suboptimal conditions can have considerable impact on biologically relevant
observations. For example, deviation from the optimal temperature by one degree Celsius lead to a loss of up to
44% of differentially expressed genes identified. While genes from thousands of Gene Ontology categories were
affected, transcription factors and other low-copy-number regulators were disproportionately lost. Calibrated
protocols are thus required in order to take full advantage of the large dynamic range of microarrays.
For an objective optimization of protocols we introduce an approach that maximizes the amount of information
obtained per experiment. A comparison of two typical samples is sufficient for this calibration. We can ensure,
however, that optimization results are independent of the samples and the specific measures used for calibration.
Both simulations and spike-in experiments confirmed an unbiased determination of generally optimal experimental
conditions.

Conclusions: Well calibrated hybridization conditions are thus easily achieved and necessary for the efficient
detection of differential expression. They are essential for the sensitive pro filing of low-copy-number molecules.
This is particularly critical for studies of transcription factor expression, or the inference and study of regulatory
networks.

Background
Since the introduction of DNA microarrays [1-5], the
technology is now well established for the investigation of
diverse problems in biology and medicine [6]. Historically
PCR products were often used as microarray probes. Oli-
gonucleotide microarrays have now become more popu-
lar, especially since the number of fully sequenced
genomes is increasing fast (cf. [7]). Synthetic oligonucleo-
tide probes allow the manufacture of probe sets with
consistent validated quality. In addition, the increased
experimental control available with oligonucleotide

probes allows the construction of highly uniform arrays
[8,9]. With careful probe design, both sensitivity and spe-
cificity in target detection can be greatly improved
[10,11].
It should, however, be emphasized that it is always the

combination of careful probe design together with well-
matched experimental conditions that determines the
performance of an array [12]. Although this has been
recognized, the issues of experimentally validating a
newly designed array and the determination of well-
matched conditions that optimize sensitivity and specifi-
city of the probe set have in general received considerably
less attention than probe design itself. While microarray
probes are designed for minimal cross-hybridization at
certain idealized reaction conditions, calculations are
based on corresponding model parameters. Surface
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interactions, however, moderate effective local concentra-
tions, and buffer additives determine the effective hybri-
dization temperature. These complex effects are only
partly understood and the correct parameters can hence
not be calculated in advance. The effective hybridization
temperature in probe design computations thus differs
from the optimized physical temperature that should be
used for hybridizations.
For each probe, hybridization below its optimal hybri-

dization temperature results in increased cross-hybridi-
zation giving reduced signal specificity. Hybridization
above that temperature, however, is less sensitive, yield-
ing reduced signal intensities and thus a degraded sig-
nal-to-noise ratio. An essential property of a well
designed probe set is its ability to discriminate as many
gene transcripts as possible. Strong sequence similarities
between related transcripts often restrict the choice of
specific probes to just a few suitable oligonucleotides,
which can have very different thermodynamic proper-
ties. Consequently, even for well designed probe sets,
the hybridization temperature that optimizes the perfor-
mance of individual probes can vary considerably. For
maximizing overall array performance, the challenge
hence is to find, by calibration, the optimal experimental
conditions that form the best compromise for the entire
probe set.
Although several aspects of array performance and

calibration have been studied [13-17], finding an optimal
trade-off between probe sensitivity and specificity, poses
a particular challenge. Maximizing the contrast between
two differentially expressed samples may be a promising
way of determining optimal conditions empirically.
While one can easily construct a variety of quality mea-
sures based on differential expression, quality measures
need to be chosen with care, and intuition can be mis-
leading. Cross-hybridization of differentially expressed
targets, in particular, can create spurious signals. These
confound quantitative analysis and can invalidate quality
measures based on differential signal strength alone. It
can consequently be shown that neither visualizations
like scatter plots nor simple summary statistics of differ-
ential expression provide robust performance indicators.
This manuscript demonstrates, for the first time, how

a simple comparison of two typical biologically distinct
samples can be used to reliably calibrate experimental
conditions for the optimal detection of differential gene
expression, the predominant use of microarrays. For this
purpose, a family of complementary quality measures is
introduced that quantitatively reflect the amount of
information that can be extracted from a set of microar-
ray measurements. Method bias is avoided by the com-
plementary consideration of model-based performance
measures and model-free diagnostics. Running tests on
arbitrary measurement subsets corresponding to samples

with very different characteristics then verifies that the
calibration is independent of the actual samples used for
calibration. This is further confirmed using experiments
with spiked-in RNAs.
The general practical importance of robust calibration,

finally, is highlighted by an examination of the detrimen-
tal effects of suboptimal conditions, considering in parti-
cular the severity of sensitivity loss across all types of
genes and the measurement bias against low-copy-num-
ber molecules like transcription factors. In comparison to
alternative genome scale high-throughput technologies,
the quantitative assessment of low-copy-number tran-
scripts is a particular strength of microarrays. To make
the most of this strength, however, careful lab-oratory
calibration is essential.

Results
Optimal hybridization temperature
For each probe, depending on its structure and that of
its potential binding partners, there will be optimal con-
ditions under which it binds the intended target strongly
while minimally binding any non-targets. An essential
property of a well designed probe set is its ability to
uniquely target as many gene transcripts as possible. In
the design of specific probes, strong sequence similari-
ties between related transcripts often require the selec-
tion of oligonucleotides with a wide range of binding
affinities. Even for well designed probe sets, the hybridi-
zation temperatures that optimize the performance of
individual probes can thus vary considerably. For maxi-
mizing overall array performance, the challenge is hence
to find, by calibration, the optimal experimental condi-
tions that form the best compromise for the entire
probe set.
Finding the optimal hybridization temperature consti-

tutes a particularly important step. The hybridization
temperature has an effect on the binding behavior of
nucleotide strands, where the Boltzmann factor

γT(p, π) ∝ exp
(

−�GT(p, π)
kBT

)
, (1)

describes the equilibrium temperature dependence
[18], with the Boltzmann constant kB and the Gibbs
binding free energy ΔGT (p, π) < 0 for a pair of nucleo-
tide strands (p, π) that bind exergonically at the effective
hybridization temperature T.
For a well designed probe set P , the Boltzmann fac-

tors gT (p, π) should be similar for all p Î P and there
exists a temperature T such that for most probes gT
(p, π) ≫ gT (p, π’) for all non-targets π’ ≠ π. Hybridiza-
tion below this temperature will result in increased
cross-hybridization with reduced signal specificity. Probe
cross-hybridization potential will, on average, affect all
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genes equally, independent of their expression levels and
whether they are differentially expressed, with cross-
hybridization depending on non-target concentration
and the corresponding ΔGT (p, π ’) [19,20]. Cross-
hybridization at a lower than optimal temperature will
reduce the specificity of a large number of probes. The
biological samples which are used for calibration must
therefore be chosen with care to avoid situations
where cross-hybridization yields an apparent overall
increase in differential expression. Since cross-hybridi-
zation induced signals are an average response from
many cross-hybridizing non-targets, a suitable biologi-
cal experiment will have a sufficient number of
strongly and non-differentially expressed targets
(’house-keeping genes’), and avoid a clear bias towards
either up- or down-regulated genes. Cross-hybridiza-
tion in a calibration experiment with largely balanced
differential expression and many ‘house-keeping genes’
leads to a loss of differential signal when averaging
over all probes. An increase in the detection of average
differential signal is then an indication of measurement
specificity.
Hybridization above the optimal hybridization tem-

perature, however, will yield reduced signal intensities,
giving a degraded signal-to-noise ratio and lower sensitiv-
ity. This directly leads to a loss of power in the detection
of differential expression at high temperatures, because
genes of low expression level cannot be measured reli-
ably, and subtle differences are drowned out by noise. If
we choose a suitable biological experiment, both the sen-
sitivity and the specificity of the measurement process
can be assessed by quantifying the differential expression
at different hybridization temperatures.
For calibration, we can thus use a comparison of two

typical biologically distinct samples. These are chosen
such that a large number of strongly and non-differentially
expressed genes are expected, avoiding very different tis-
sue or cell types or other situations where there are likely
to be biased or strong global gene expression changes.
Overall probe sensitivity and specificity can then be
assessed simultaneously by quantifying the amount of
information about sample differences that can be extracted
from the differential signal. An increased amount of infor-
mation directly corresponds to greater power in the detec-
tion of differential expression (reflected in smaller p-values
in significance tests), and thus yields more genes reliably
detected as differentially expressed. Several related quality
measures are introduced and discussed below.
The above calibration approach and quantitative

assessments form the basis of an objective optimization
protocol. To ensure general validity and relevance of the
optimum for arbitrary experimental conditions, we also
demonstrate how we can confirm that the protocol

assessment is independent of the particular samples
studied.

Quantitative objective measures
Assessment measures for an optimization of protocols
should be of direct relevance to typical microarray
experiments. Despite the flexibility of the platform, dif-
ferential expression analysis is still the dominant appli-
cation of microarrays. Current computational methods
for the identification of individual differentially
expressed genes calculate significance tests separately
for each gene [21]. The amount of information that a
particular gene carries about sample differences is
reflected by the corresponding p-value: Large differences
in expression levels relative to random noise result in
small p-values, indicating the reliable identification of
differential expression.
We can take two alternative approaches to relating

(suitably transformed) gene expression levels xg for a
gene g to the labels y of the compared biological sam-
ples. The first of which arises from the p-value calcula-
tions in linear ANOVA modelling:

xg = yTµg + ε, (2)

where

ε ∼ N (0, λ)

and we have converted the binary label y into a row
vector using a one-of-two target coding to simplify nota-
tion,

yT =

{
[1, 0] if y = 0

[0, 1] if y = 1
.

For each gene g, the model relates the expression
levels xg to the biological labels y. Observing small
p-values for a gene g in an ANOVA test corresponds to
obtaining large likelihoods for the linear model of Eq.
(2). The amount of information found in the expression
levels xg about the biological label y can thus alterna-
tively be assessed via the p-value of the ANOVA signifi-
cance test or the likelihood of the linear model Eq. (2).
To formalize the comparison of alternative protocols,
we introduce a discrete protocol label K. The perfor-
mance measure for assessing the effect of a hybridiza-
tion protocol needs to be an adequate summary for all
genes. The independence assumptions of typical p-value
calculations are appropriately taken into account by
regarding all gene specific models of Eq. (2) as indepen-
dent, when conditioning on the protocol indicator
K. The likelihood function for protocol K is then a pro-
duct of all gene specific likelihood functions. Denoting
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all labels as D = {y1, ..., yN} and the expression levels as
X = {xg,n|∀n, g} , the linear model from Eq. (2) thus
leads to the protocol dependent likelihood

p(X |µ1, ..µG,D, K) =
∏

g

∏
n

p(xg,n |µg, yn) (3)

as a suitable measure of information content. Rather
than applying this directly, however, we pursue a second
approach, in which we introduce a dual representation
that allows the derivation of complementary diagnostic
measures that do not depend on modelling assumptions.
The linear model Eq. (2) can be interpreted as implying
that, conditional on the sample label y, the expression
level xg has a Gaussian distribution with standard devia-

tion
√

1/λ and mean μg,y:

p(xg | y) = N (xg; μg,y, λ).

The joint density p(xg,y) is a product of the prior
probability of the label P(y) times the conditional density
p(xg|y):

p(xg, y) = P(y)p(xg | y).

The prior probability P(y) is given by the proportion
of arrays measuring the respective biological sample and
does not contribute to the information we gain from
expression levels about the samples. That information is
contained entirely in the conditional density p(xg|y).
Using elementary rules of probability calculus, the joint
density can also be expressed as the product of the
unconditional density of expression patterns p(xg) and
the conditional probability of a biological sample P(y|xg):

p(xg, y) = p(xg)P(y | xg).

In this formulation, the amount of information about
the samples encoded in expression levels determines the
probability P(y|xg) with which we could predict the cor-
rect sample label y from the observed expression level xg.
The assumptions of a linear ANOVA model corre-

spond to class-conditional normal densities of different
means and a common standard deviation. The posterior
probability then takes the form of a logistic cumulative
distribution function [22]:

P(y | xg) =
1

1 + exp ((2y − 1)(αg + βgxg))
(4)

with

αg = log
(

P(y = 1)
P(y = 0)

)
+ λ

μ2
g,0 − μ2

g,1

2

and

βg = λ(μg,1 − μg,0),

where μg,0 and μg,1 denote the means of the Gaussian
densities for the different biological samples. Variants of
this generalized linear model have successfully been
used in the context of microarray analysis [23-25]. This
dual representation of the linear model Eq. (2) in parti-
cular also allows the derivation of model diagnostics for
protocol assessment that are independent of the model
Eq. (2, 4). These are introduced and further discussed in
the next section.
Within this paradigm we can derive a likelihood as a

quantitative measure for assessing hybridization protocol
performance: With gene independence follows the likeli-
hood

p (D |α1, β1, ..αG, βG,X , K) = const×∏
n

1

P(yn)G−1

∏
g

p(yn|αg, βg, xg,n, K). (5)

The likelihood function in Eq. (5) is known in statis-
tics and machine learning as the likelihood function of a
naïve Bayes classifier [22], where ‘const’ represents a
normalization constant which is independent of the yn.
For assessing the hybridization protocol K, we maxi-

mize the likelihood for all model coefficients to get the
maximum likelihood p(D|X , K) conditional on the pro-
tocol K used for measuring the microarray expression
patterns X .
To summarize, we have introduced two equivalent

representations with identical modelling assumptions
that allow an assessment of how much information the
observed expression patterns provide about the mea-
sured biological samples. Differential expression based
assessment of hybridization conditions requires valida-
tion that cross-hybridization does not confound our
conclusions. To this end, the following section provides
an analysis of the behavior of the likelihood function,
Eq. (5), in dependence of sample characteristics and
hybridization temperatures.

Information content and sample characteristics
Synthesized sample data could be used to demonstrate
how reliable the proposed approach is for assessing
hybridization conditions, while identifying potential lim-
itations and requirements on sample characteristics.
Data was generated such as to study the effects of cross-
hybridization on the proposed likelihood measure in Eq.
(5). First, we investigated the effects of cross-hybridiza-
tion for samples with varying amounts of differential
expression. Cross-hybridization was studied by adding
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small off sets to the mean expression of some genes
with low expression levels.
The results illustrated in Figure 1 were obtained by

selecting 100 genes each with zero, low, medium, and
high differential expression (Z, L, M, H). Figure 1 illus-
trates the log likelihoods for nine samples with very dif-
ferent fold-change distributions. All likelihood measures
are compared to the likelihood we observe in the non-
contaminated case (’no xhyb’) constituting the baseline
reference. For simulating cross-hybridization, signals for
half of the weakly expressed genes in each of the groups
were modified by adding a small off set. This was done
for each individual group (’xhyb Z’, ‘xhyb L’, ‘xhyb M’,
and ‘xhyb H’), for all possible pairs of groups and,
finally, for all groups together (’xhyb unbiased’). Results
allow us to draw two conclusions: The increased log
likelihood we observe when considering non-differen-
tially expressed genes only (’xhyb Z’) indicates that
unsuitably chosen biological samples can be susceptible
to artefacts from cross-hybridization. This suggests that
computations need safeguards for diagnosing this pro-
blem. On the other hand, the gain observed for non-

differentially expressed genes is far outweighed by the
loss incurred from genes with medium or high differen-
tial expression (’xhyb M’ and ‘xhyb L’). As a conse-
quence, in situations where cross-hybridization also
affects genes with medium or high differential expres-
sion (’xhyb Z+M’, ‘xhyb Z+L’, and ‘xhyb unbiased’),
cross-hybridization yields an overall reduction of the
likelihood, Eq. (5). This is due to an intrinsic property
of likelihood functions and confirms that the proposed
measure is not confounded by cross-hybridization as
long as the differential expression introduced by cross-
hybridization is balanced by a loss of differential expres-
sion for other probes. We further examine the resulting
requirements on biological samples used for calibration
by means of a Langmuir model.
For this, we test the dependency of the temperature

calibration on different expression scenarios. Expression
intensities are represented using a Langmuir model (cf.
[18]), as function of physical binding properties (free
energies), target concentrations, and the hybridization
temperature. A microarray chip can then be character-
ized by a set of binding properties for the desired probe
to target pairings and for the undesired probe to non-
target pairings. Different biological samples can be
tested by varying the distributions of sample specific
RNA concentrations. After adding small random mea-
surement noise, the generated data can be used to
examine the response of the likelihood measure (cf. Eq.
(5)) to the hybridization temperature for calibration
samples of different properties. We studied a typical
chip design with 12,000 genes with random probe-to-
target binding free energies. Cross-hybridization is
assumed to occur for 10% of the probes, with 1-12 non-
targets, at a smaller scale than self binding and with ran-
dom cross-binding affinities. For a randomly chosen
chip design, we simulated calibration runs for five differ-
ent types of calibration sample. Here, genes were classi-
fied by their expression levels into Z/L/M/H categories.
Each simulation had varying fractions of genes

assigned from these categories (rows in Table 1). Differ-
ent hybridization temperatures were considered by
means of a temperature proportional coefficient in
the Langmuir equation. To investigate a condition
susceptible to differential expression induced by cross-
hybridization, we simulated a bias towards down-
regulation with 20% of the genes being down-regulated,
70% being non-differentially expressed and 10% of the
genes being up-regulated.
Nevertheless, the ranking of the six different tempera-

tures was highly consistent (Table 1), demonstrating that
the same optimum is reliably found over a wide range of
sample characteristics. Our study of synthetically gener-
ated data therefore verifies that the proposed likelihood
measure can be used for optimizing hybridization

Figure 1 Simulation study of cross-hybridization effects. To
examine the impact of cross-hybridization, we considered 100
genes each with zero, low, medium, or high differential expression
(Z/L/M/H). The effects of cross-hybridization were tested by adding
a small off set to half of the genes in the channel with lower
expression values. The likelihood, Eq. (5), is shown relative to the
non-contaminated case (’no xhyb’) as a baseline. From a selective
perturbation of individual gene groups (’xhyb Z’, ‘xhyb L’, ‘xhyb M’,
‘xhyb H’) we could see that cross-hybridization to probes for non-
expressed genes can inflate the objective function. On the other
hand, the corresponding loss for genes with medium and high
expression levels is considerably larger. The overall effect of cross-
hybridization for biological samples which do not show a strong
bias towards either down- or up-regulation is labelled ‘xhyb
unbiased’. The obtained degraded likelihood shows that, as
required, cross-hybridization in general has a deleterious outcome
as long as unsuitably biased biological samples are avoided.
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conditions with confidence as long as biological samples
showing a strong unidirectional bias in differential
expression and many weakly-expressed genes are avoided.
In the following section we present computational safe-
guards for avoiding situations where cross-hybridization
can confound results and which ensure that conclusions
are independent of the examined calibration samples and
any modelling assumptions.

Computational evaluation strategies
We can introduce two strategies for ensuring that
assessments are independent of the measured samples,
and thus generalize to other experiments, and that
results are not affected by modelling assumptions.
Assessing biological bias
Protocol assessment is independent of the measured
samples if probe sequence specific binding properties
are not correlated with measured fold-change. Else, sam-
ples with different fold-change distributions would give
different results. A validation strategy can thus examine
the effects of samples with different distributions of
fold-change on the assessment results, corresponding to
laboratory experiments testing different sample pairs.
Samples with different fold-change distributions are

simulated by randomly selecting different pro-portions
of genes with zero, low, medium, or high differential
expression (Z/L/M/H) from the original measurements,
as is illustrated in Figure 2 by the pie charts on the left.
The performance of all protocols is then quantitatively
assessed using an objective measure such as the likeli-
hood of Eq. (5). While likelihoods obtained for different
samples cannot be compared in general, the protocols
can be ranked independently for each set of samples.
A robust assessment procedure will consistently reach a
similar protocol ranking if protocol performances are
sufficiently different. The distribution of ranks obtained
from many samples actually indicates to what degree

the observed ranking is independent of the samples
used for calibration, and how well it will apply to future
arbitrary measurements. The example shown in Figure 2
illustrates this approach for five protocols labelled ‘A’ to
‘E’. The fraction of times that protocols achieved a parti-
cular rank is represented through pie charts. In this
example, protocol ‘C’ performed best, followed by proto-
cols ‘A’ and ‘B’, with the lowest ranks shared by ‘D’ and
‘E’. The overlaps in rank shown for protocols ‘A’ and ‘B’
and also for ‘D’ and ‘E’ reflect similar performances. In
the context of temperature evaluation, such overlaps
could typically occur for two protocols with hybridiza-
tion temperatures that are on opposite sides of the opti-
mum. When such an overlap in the optimal rank
position is observed, the higher hybridization tempera-
ture should be selected, to minimize cross-hybridization
potential for high specificity of the measurement
process.
The nature of the rank distribution, however, can also

identify inappropriate calibration samples, as resulting
from a strong bias in up- or down-regulation. For such
samples, randomly drawn subsets with large numbers of

Table 1 Test for cross-hybridization induced differential
expression

Fraction of genes Temperature Ranking

Z L M H # 1 # 2 # 3 # 4 # 5 # 6

30% 20% 20% 30% T 4 T 3 T 2 T 5 T 1 T 6

40% 15% 25% 20% T 4 T 3 T 2 T 5 T 1 T 6

45% 10% 30% 15% T 4 T 3 T 2 T 5 T 1 T 6

50% 10% 30% 10% T 4 T 3 T 5 T 2 T 1 T 6

55% 10% 30% 5% T 4 T 5 T 3 T 2 T 1 T 6

Possibly confounding effects of cross-hybridization induced differential
expression were examined using a Langmuir model of microarray
hybridization. Samples of varying properties were considered by selecting
different fractions of genes with zero (Z), low (L), medium (M), and high (H)
expression levels. Each table row shows results for a different simulation. The
obtained ranking robustly identified T4 as the best performing temperature
for a wide range of sample properties. Figure 2 Simulation of different biological samples. We consider

biological samples with very different characteristics in order to
confirm that the protocol assessment is independent of the
particular samples used for calibration. The pie charts in the second
column of this figure show the varying distributions of differential
expression examined. They were obtained by randomly selecting
different proportions of genes with zero, low, medium, or high
differential expression (Z/L/M/H) from the original measurements.
The performance of the competing protocols (A... E) is quantitatively
assessed and ranked for each simulation, represented by the rows
in the second column. The distribution of ranks (third column) then
indicates to what degree the obtained ranking is independent of
the samples used for calibration. A stable ranking means that the
found optimum will equally apply to arbitrary future measurements.
In the example illustrated here, the optimum ‘C’ was robustly
ranked first, whereas the protocols ‘A’ and ‘B’ as well as ‘D’ and ‘E’
show similar average performances. The optimum ‘C’ was therefore
reliably identified.
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genes of low expression level will tend to underestimate
the optimal hybridization temperature, whereas random
subsamples with large numbers of strongly expressed
genes will show higher temperatures as optimum. The
resulting uncertain rank distribution indicates that a
reliable temperature calibration cannot be based on the
samples used.
Assessing modelling bias
We now ensure that protocol assessments are free of
modelling bias. Above, we have derived a quantitative
measure that directly reflects protocol performance in
typical microarray applications. While based on a linear
model, Eq. (2), the validity of this measure can be con-
firmed by examining complementary diagnostic mea-
sures that are free of modelling assumptions.
To this end we adopt a technique that is commonly

applied in the fields of Machine Learning and Pattern
Recognition: We evaluate how well the selected model
can predict the labels of ‘test’ samples. The classification
accuracy is naturally obtained from the ‘dual’ represen-
tation of the linear model as a classifier, Eq. (4), and can
be estimated by N-fold cross-testing [26]. For this, the
experiment is split into N blocks of similar numbers of
microarrays. If N is chosen equal to the total number of
arrays, each block consists of exactly one microarray.
Each one of the N blocks is used as the test case for a
model built using the remaining N - 1 blocks. Figure 3

illustrates six-fold cross-testing of a typical experiment
with six replicates. Performance is then assessed for the
N tests.
For uniform misclassification costs, the generalization

accuracy provides an immediate measure of classifica-
tion performance,

acc =
1
G

G∑
g=1

ncorr(g)
N

, (6)

where the proportion of correct sample label predic-
tions by each individual gene-specific model is averaged
for a joint assessment of all genes g.
For the more general case, Receiver-Operator-Charac-

teristic (ROC) curves [27] are considered. The area
under the ROC curve provides a summary measure
independent of misclassification costs. Importantly, both
the generalization accuracy and ROC curves are free of
modelling assumptions [26] and can thus be used as
model diagnostics: Agreement between the ranking of
protocols by these criteria and the ranking by the linear
model log-likelihood Eq. (5) confirms the appropriate-
ness of the model, Eq. (2).
We therefore examined the consistency of protocol

rankings achieved according to the following comple-
mentary criteria: the linear model log-likelihood Eq.
(5), the number of differentially expressed genes pas-
sing a significance test in the corresponding ANOVA
model for Eq. (2), the generalization accuracy Eq. (6),
the area under the ROC curves, and the mutual
information. The last three criteria are model-free
measures.
The number of differentially expressed genes is of

immediate relevance to typical microarray applications.
Similarly, the mutual information [28], a quantity
directly related to the probabilities expressed in Eq. (4),

I(y, xg) =
∫

xg

p(xg)
∑

y

P(y | xg)log2

(
P(y | xg)

P(y)

)
dxg

≈ 1
N

N∑
n=1

∑
y

P(yn | xg,n)log2

(
P(yn | xg,n)

P(yn)

) (7)

is easily interpreted as the average amount of informa-
tion obtained by the gene expression measurements xg
about the biological samples y in form of a bit rate. Bit
rates are well known in the characterization of the capa-
city for information transfer, such as the bandwidth of
an Internet connection. For a joint assessment of all
genes g we consider the average bit rate per gene,

I =
1
G

∑
g

I(y, xg).

Figure 3 Illustration of N-fold cross-testing. Illustration of N-fold
cross-testing based on an A vs B assay of six replicates with dye-
swap. Slides One to Three measure A vs B, whereas slides Four to
Six assess B vs A in dye swap. With six-fold cross-testing every slide
is once used as the independent test sample. ROC curves,
generalization accuracies, and bit rates are estimated on the test
samples after inferring the model from the training set.
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Assessing the impact of suboptimal conditions on
biologically relevant observations
Calibration experiments constitute an investment. It is
thus interesting to consider how measurements under
suboptimal conditions affect the quality of biologically
relevant observations. For this, we consider two comple-
mentary aspects: Firstly, the quality measure Eq. (3) was
chosen to reflect how reliably differential gene expres-
sion can be identified for a particular protocol. Conse-
quently, under suboptimal conditions fewer differentially
expressed genes are expected to pass significance tests
under the corresponding ANOVA model for Eq. (2). To
quantify this in the context of a typical application, we
use the number of genes nsig that could be identified as
differentially expressed by FSPMA [29], a standard gene
expression analysis tool using a balanced ANOVA
model [30] for p-value calculation. Raw p-values were
obtained from vsn normalized [31] expression values
and converted to Benjamini-Hochberg corrected false
discovery rates (FDRs). Gene counts reported refer to an
FDR cut-off of q < 0.01. The corresponding FSPMA
gene lists are provided in the online supplement.
Losing genes by these criteria is problematic in its

own right. We can examine the type of genes affected to
test for bias. Specifically, we have mapped the genes lost
in experiments 1°C above the optimal hybridization
temperature to their FlyBase Gene Ontology (GO) terms
for a classification of the affected biological processes,
molecular functions, and cellular components (cf.
[32,33]). We were particularly interested in transcription
factors, which are often biologically active in low copy
number [34]. Subtle fold changes can therefore already
indicate biologically relevant regulation of transcription
factor activity. A reduced sensitivity for small changes in
expression levels, as expected at suboptimal conditions,
is thus likely to particularly affect results for these key
regulatory molecules. Annotation of Drosophila tran-
scription factors was downloaded from FlyTF October
2008 [35]. Significant enrichment of transcription factors
in the set of lost genes was confirmed by Fisher’s exact
test [36].

Protocol optimization
We have examined the effect of hybridization tempera-
ture on microarray measurements using a particular
oligonucleotide probe set. A suitable hybridization tem-
perature has to be high enough to avoid cross-hybridiza-
tion affecting specificity and low enough to allow strong
binding and, hence, bright signals and a good signal-to-
noise ratio for high sensitivity. Although modern
algorithms design probes for a given temperature,
experimental protocols need to be adjusted for unknown
buffer and surface effects.

Avoiding modelling bias as described, we evaluate
several complementary objective quality measures for all
hybridization temperatures (Table 2). The generalization
accuracy reflects protocol performance for equal mis-
classification costs. The more general case of variable
misclassification costs could be examined by a compari-
son of ROC curves (Figure 4).
The theoretical considerations presented here have

shown that the log likelihood of a linear classifier, Eq.
(5), can be used for the direct assessment of different
protocols. Its maximum points to 51°C as the optimal
hybridization temperature (Table 2). All the examined
complementary assessment criteria corroborate this.
Together, Table 2 and Figure 4 confirm 51°C as the
robust optimum of the hybridization temperature. This
also indicates that the modelling assumptions were met
to good approximation, and it validates that the assess-
ment was not adversely affected by modelling bias.
Results were independent of the chosen microarray data
normalization methods (data not shown).

General calibration validity, independent of the
samples used
We have examined the effects of samples with different
distributions of fold-change on the assessment results,
corresponding to laboratory experiments testing differ-
ent sample pairs. Different proportions of genes with
zero, low, medium, or high differential expression (Z/L/
M/H) were randomly selected from the original mea-
surements (Figure 2 pie charts on the left). Indepen-
dently for each of the 100 drawn sub-samples, all
hybridization temperatures were quantitatively assessed
and ranked by their likelihood, Eq. (5). We visualize the
performance rank distributions of the eight tested
temperatures as summary pie charts (Figure 5).
Some random variation in the observed protocol rank-

ings must be expected by random chance, just as small
fluctuations in microarray measurements can result in
large random variations in gene rankings [37,38]. For
90% of all rankings, however, the hybridization tempera-
ture of 51°C obtained the highest rank, with the remain-
ing 10% split between the two 50°C hybridizations (’50a’,
‘50b’), confirming the robustness of the calibration. Also
the remaining ranking was very robust, with larger
uncertainty only observed for the two hybridizations at
50°C, as would be expected. The high similarity of the
two 50°C hybridizations further confirms the reproduci-
bility of the calibration process. The obtained ranking
and, in particular, the obtained calibration optimum
have therefore been obtained robustly, independent of
the biological samples used for calibration, and will
equally apply to arbitrary future measurements with this
platform.
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Table 2 Summary of quality measures for temperature calibration

Hyb. Temp., k accfly Ifly log p(D|X , K)fly nsig accspk Ispk log p(D|X , K)spk

Hyb 47 C 71.74 0.405 -67616 2925 71.05 0.106 -19780

Hyb 49 C 72.25 0.417 -65697 1979 74.14 0.234 -16810

Hyb 50 C (a) 74.06 0.451 -60972 3201 71.94 0.133 -18930

Hyb 50 C (b) 75.05 0.461 -60111 3628 73.28 0.261 -16454

Hyb 51 C 75.06 0.467 -58616 3810 74.10 0.341 -14683

Hyb 52 C 71.79 0.402 -68745 2140 73.16 0.156 -18357

Hyb 54 C 70.35 0.385 -70643 2348 68.34 0.184 -18371

Hyb 56 C 64.25 0.292 -83426 1213 60.64 0.094 -20323

The left part of the table shows results from the protocol assessment using biological samples for calibration (’fly’). In comparison, the corresponding results for
spiked-in exogenic RNAs are shown on the right (’spk’). Column ‘Hyb. Temp., K’ lists the considered protocol K and its hybridization temperature. For each
protocol, the table displays the achieved generalization accuracies (’acc’), the average mutual information I, the log likelihoods log p(D|X , K) and the number
n of genes with differential expression calls by FSPMA ANOVA at a 1% FDR threshold. The generalization accuracy reflects protocol performance for equal
misclassification costs. ROC curves are provided for the generic case (Fig. 4). Detailed results for each protocol can be found in the Supplement.

Figure 4 ROC curves for different hybridization temperatures. The information content of the measurements is reflected by ROC curves for
the prediction of sample type (male vs female). Prediction performance was obtained independently for each gene by 6-fold cross-testing (Fig.
3). The ROC curves show averages over all genes. Comparing performances at different hybridization temperatures, the largest areas under the
curve were observed for 51°C and 50°C (b). More subtle differences of the ROC curves can be examined in the zoomed detail plot (right panel),
which identifies 51°C as optimal hybridization temperature.
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The rank distributions shown by the pie charts in
Figure 5 further confirm that choosing too high a hybri-
dization temperature is worse than hybridizing at a
temperature that is too low. Results in Table 2 corre-
spondingly indicate a steeper performance loss when
moving to temperatures above the calibration optimum.
This essentially means that, for a well designed array, the
reduced signal sensitivity at higher temperatures is more
of a problem than the loss of specificity at lower tem-
peratures, which is also in line with the general tempera-
ture profile of the binding response, Eq. (1).
Finally, we could use spike in experiments for an inde-

pendent validation of the calibration results. These
employed the 196 replicate probes each for fourteen exo-
genic spike RNAs provided by the FL002/3 microarray
platform. The right-hand side of Table 2 shows the quan-
titative assessment of hybridization protocol performance

for measurements of spiked-in RNAs of known amounts
(Table 3). Results provide further corroboration of the
general validity of 51°C as the optimal hybridization tem-
perature for the studied platform. The observed agree-
ment in ranking moreover confirms the robustness and
reliability of the presented combination of an experimen-
tal approach and the set of computational methods intro-
duced for the generic calibration of microarray platforms.

Effects of protocol optimization on the quality of
biologically relevant observations
We have shown that our methods for protocol assessment
can robustly and reliably identify generally optimal mea-
surement conditions, irrespective of the samples used for
calibration, and validated by independent experiments.
The excellent agreement of the complementary quality
measures examined confirmed that modelling assumptions

Figure 5 Rank distributions of different hybridization protocols. Pie charts illustrate the rank distributions of competing protocols from
performance comparisons for 100 gene subsets that correspond to samples of different properties. Every subset was used for evaluating all
eight protocols to obtain a ranking (see schema in Fig. 2). While some random variation between the observed protocol rankings must be
expected, in 90% of all tests the hybridization temperature of 51°C performed best, with the remaining 10% split between the two 50°C
hybridizations (’50a’, ‘50b’). This verified the reliability of the original calibration. The remaining ranking was also very stable, with a larger
uncertainty, as expected, only seen for the two hybridizations at 50°C. The high similarity of the two 50°C measurements further confirmed the
reproducibility of the calibration process. In summary, the obtained ranking and, in particular, the obtained calibration optimum were robust and
independent of the biological samples used for calibration.
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were met to good approximation, and that the assessment
was not adversely affected by modelling bias.
Considering the investment required for calibration

experiments, it is interesting to consider how measure-
ments under suboptimal conditions affect the quality of
biologically relevant observations. Firstly, a deviation
from optimal conditions gave a considerable drop in the
sensitivity of detecting differentially expressed genes
(nsig, Table 2 ranging from 1,213 to 3,810). It is remark-
able that measurements just one degree Celsius above
the optimum of 51°C already identified 44% fewer differ-
entially expressed genes. Deviation by one degree Cel-
sius below the optimum also identified considerably
fewer differentially expressed genes (5% - 15%). Subopti-
mal hybridization protocols can thus lead to a consider-
able loss of biological evidence.
An examination of the involved Gene Ontology cate-

gories showed that this loss affected a large variety of
genes: The 1,670 genes missed in hybridizations at 52°C
mapped to 1,969 biological process terms, 879 for mole-
cular function, and 404 specifying cellular components.
Deviation from the optimal hybridization temperature
by just one degree Celsius thus led to a substantial loss
of information about the expression of genes across the
entire spectrum of biology.
Moreover, we could show that this loss of identified

genes was not uniform, introducing a bias into results at
suboptimal conditions. Figure 6 compares the strength of
differential expression of genes detected as significantly
up-regulated at optimal and suboptimal hybridization
conditions. The left-hand side shows the signal distribu-
tion from measurements one degree Celsius above the
optimal hybridization temperature. The right-hand side

plots the distribution for the additional genes identified
at the optimal temperature. Subtle fold changes, in parti-
cular, were lost at the suboptimal hybridization tempera-
ture. Similar observations hold for down-regulated genes
and other temperatures (Supplement).
Many transcription factors are biologically active in

low copy number [34]. Subtle fold changes can therefore
already reflect a biologically relevant regulation of tran-
scription factor activity. Examining the detection of dif-
ferential expression at neighboring temperatures, the
number of transcription factors compared to other
genes identified (Table 4) showed a significant enrich-
ment of transcription factors in the set of genes missed
under slightly sub-optimal conditions (Fisher’s exact
test, p < 0.01). Indeed, transcription factors were almost

Table 3 Spike-in ratios of exogenous RNAs

Accession symbol Cy5 Cy3

AB007987 1 1

ATU18126 1 1

L22585 2.4 1

O04513 2.2 1

O04600 2.4 1

O49366 2 1

O81842 1.8 1

Q9LJQ4 1.8 1

Q9LU32 1.6 1

Q9LZJ2 1 1

Q9XIB8 2.2 1

U74610 1.6 1

X64464 1 1

Z49777 2 1

The table shows the relative spike-in ratios of exogenous RNAs that provided
an independent test sample.

Figure 6 Box plots of log fold changes. We investigate the
distribution of the log fold change of genes identified as
significantly up- regulated at the optimal hybridization temperature
but lost when hybridizing one degree Celsius too high. The left box
plot shows that genes with sufficiently large fold change could also
be detected in hybridizations at 52°C. The right box plot contrasts
this with the distribution for genes only identified as up-regulated
at the optimal hybridization temperature. Genes with more subtle
fold changes were therefore lost at the suboptimal hybridization
temperature. This particularly affects small copy number molecules,
including many regulators.

Table 4 Identification of Drosophila transcription factors
at different hybridization temperatures

gene type detected at 52°C additionally at 51°C

transcription factors 32 47

other genes 2108 1623

The contingency table for the numbers of Drosophila transcription factors and
other genes identified as differentially expressed at optimal and suboptimal
hybridization temperatures shows that transcription factors were strongly
overrepresented amongst genes only detected at the optimal hybridization
temperature of 51°C (Fisher’s exact test p < 0.01).
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twofold enriched in the set of genes missed one degree
Celsius above the optimal hybridization temperature.
In summary, well calibrated hybridization conditions

are necessary for the efficient detection of differential
expression. Well calibrated conditions are, moreover,
essential for the sensitive profiling of low-copy-number
molecules. This is particularly critical for studies of tran-
scription factor expression, or the inference and study of
regulatory networks.

Discussion
While the importance of state-of-the-art probe design
[39-43] has been widely recognized as determining the
quality of microarray measurements, we have shown
that reliable measurements require empirical calibration
of experimental conditions. The correct hybridization
temperature is particularly crucial, because the effective
reaction temperature is a major parameter for probe set
design. This design temperature, however, differs con-
siderably from the true physical temperature that opti-
mizes the overall sensitivity and specificity of a
microarray assay: Thermodynamic calculations are based
on effective parameters. Surface interactions moderate
effective local concentrations and buffer additives influ-
ence the effective hybridization temperature. These
complex effects are only partly understood and the true
parameters can hence not be calculated in advance.
Even when these effects are eventually better under-
stood, most established microarray protocols rely on
commercial buffer and slide chemistries, which are
often not fully disclosed. Empirical calibration is fully
independent of these details, as it directly optimizes
the desired objective - maximum information gain per
experiment.
For this purpose, we have introduced and validated a

combined experimental and computational approach for
quantitatively assessing microarray measurement perfor-
mance. Direct calibration approaches based on extensive
spike-in experiments are both costly and difficult
[44,45]. Although they can provide valuable complemen-
tary information about individual probes, they are not
necessary for an identification of experimental condi-
tions that are optimal overall, for the entire array, and
that yield the largest possible amount of information in
generic experiments. Both the sensitivity and specificity
of all probes on an array can be quantified simulta-
neously. In particular, we have shown that a simple
comparison of two typical biologically distinct samples
can be used to calibrate experimental conditions for the
optimal detection of differential gene expression, the
predominant application of microarrays. Testing arbi-
trary measurement subsets corresponding to samples of
very different properties, our approach moreover verifies
that this calibration is independent of the actual samples

used for calibration. An additional independent assess-
ment using spike-in data confirmed that calibration
results do not depend on the chosen experimental
approach.
While traditional visualizations, like scatter plots, and

summary statistics can give a first impression of the
technical reproducibility achieved by a platform, they do
not allow a quantitative assessment of sensitivity and
specificity. Consequently, they are also of limited use in
optimizing array performance (Supplement). Meaningful
performance relevant quantitative measures can, how-
ever, be obtained from the linear ANOVA model in Eq.
(2). The corresponding dual representation as sample
classification problem, Eq. (4), leads to an alternative
quantitative assessment. A major advantage of the dual
formulation is that classification enables an evaluation
of protocol performance that is free of assumptions. In
this context, both ROC curves and generalization
accuracies [26] provide valuable information in addition
to the model likelihood Eq. (5). The complementary
consideration of both model-based and model-free qual-
ity measures avoids method bias.
This combined approach allows, for the first time, a

fully quantitative assessment of microarray protocol per-
formance. In particular, we have shown how this can be
applied to reliably optimize generic microarray experi-
ments of a laboratory. Optimization results were shown
to be remarkably robust. Considering even extreme,
arbitrary calibration samples, in more than 90% of tests
the 51°C protocol performed best (Figure 5), with the
most similar 50°C protocols making up the remainder.
This confirmed the independence of calibration results
from the chosen calibration samples. An additional
assessment on spike-in data validated the general applic-
ability of results for different experiments (Table 2).
We have furthermore evaluated how and to what

degree a deviation from the optimal hybridization condi-
tions is detrimental. A hybridization at 52°C instead of
the optimal 51°C reduced the mutual information from
0.467 to 0.402 bits per probe and sample. A deviation
by only one degree Celsius can therefore lose 14% of the
information about differences between the samples com-
pared. This is directly reflected in the reduced sensitivity
detecting differentially expressed genes. While 3,810 dif-
ferentially expressed genes could be identified at the
optimal temperature of 51°C, only 2,140 genes were
found at 52°C; that is a loss of 44%. At lower hybridiza-
tion temperatures the effect is less pronounced, with 5%
- 15% fewer genes identified. Similar observations have
been made in calibrating an array for two E. coli strains
and another Drosophila array (data not shown).
A wide variety of genes were affected by the loss of

sensitivity at non-optimal hybridization temperatures, as
reflected in the large number of Gene Ontology terms
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involved. Even assays deviating only 1°C from the opti-
mal temperature lost evidence across the entire spec-
trum of functional classes.
Moreover, this loss of genes identified is not uniform

and introduces a bias into results from suboptimal con-
ditions, disproportionately affecting genes with subtle
fold changes. The most severe implication is the signifi-
cantly reduced sensitivity in studies of transcription fac-
tors, which were almost twofold overrepresented in the
set of genes missed at 52°C.

Conclusions
We have introduced and validated an approach for the
reliable objective optimization of microarray protocols
using two typical biologically distinct samples. Several
quantitative quality measures were complemented by
simulations, corroborating the generic applicability of
the calibration results. In addition to computational
methods, validation experiments independently con-
firmed the robustness of calibration results.
While some strongly biased samples cannot be used

for calibration, suitable samples were easily identified by
verifying that there was a clear winner in the rank distri-
butions from randomly drawn subsets. This moreover
demonstrated the independence of calibration results
from the particular chosen samples.
We have shown that objective protocol calibration is

invaluable for every microarray laboratory, and should
precede any larger or critical experiments. Suboptimal
conditions severely reduce the efficacy of all assays and
introduce considerable bias. This is especially critical for
studies of transcription factors and other low-copy-
number transcripts. Complementing sensitive novel
approaches like targeted mRNA sequencing [46], the
quantitative assessment of low-copy-number transcripts
on a genomic scale is a particular strength of microarray
technology. To make the most of this strength, however,
careful laboratory calibration is essential.
Calibration experiments also provide direct proof of

the quality of a microarray platform, including its probe
design. The quantitative assessment introduced and vali-
dated in this paper therefore allows the objective com-
parison of alternative platforms and measurement
processes, supporting further technological advances.

Methods
Array production and hybridization
The proposed calibration approach was validated in an
optimization of the hybridization temperature of the
INDAC FL002/3 microarray platform for gene expres-
sion profiling of Drosophila melanogaster. Arrays were
printed by spotting amino-modified oligonucleotide
probes (Illumina) onto PowerMatrix slides (Full Moon
Biosystems) using a QArray2 robot with 48 aQu75

spotting pins (Genetix). All oligonucleotide probes were
supplied desalted and without PAGE purification, as is
common in the field.
For each source, 625 pmol of probe DNA were dis-

solved in 25 μl of 150 mM sodium phosphate buffer of
pH 8.5. All probes for D. melanogaster transcripts were
printed once per array. In addition, probes for 14
selected exogenic spike RNAs (Table 3) from Arabidop-
sis thaliana were printed four times per pin. Spatial
spot layout was randomized [47].
In assessing D. melanogaster males vs females, we

chose a typical sample comparison with a good fraction
of genes non-differentially expressed at reasonably high
concentration. As validated and discussed in the text,
this ensures that cross-hybridization of predominantly
differentially expressed genes would not misleadingly
increase the apparent information content.
Stocks of D. melanogaster, strain ‘Oregon R’ were

maintained on standard cornmeal-yeast-agar medium at
25°C. Adult flies were harvested and separated into
males and females 0-7 days post eclosion. RNA was
extracted using Trizol and multiple extractions were
pooled. 100 μg of total RNA were labelled by direct
incorporation of Cy3-dCTP (Amersham, Cat. No. PA
53021) or Cy5-dCTP (Amersham, Cat. No. PA 55021)
in a reverse transcription reaction primed by anchored
oligo(dT)23 (Sigma, Cat. No. 04387) using Superscript
III Reverse Transcriptase (Invitrogen, Cat. No. 18080-
044). For each experiment batch, this was repeated
twelve times for each combination of dye and sex, giving
a total of 12 × 2 × 2 100 μg of labelled RNA per batch.
All male-Cy3/female-Cy5 samples were then pooled and
split into 12 aliquots, sufficient for 24 arrays. Similarly,
all female-Cy3/male-Cy5 samples were pooled and ali-
quoted. Aliquots were dried down under vacuum while
being centrifuged, and stored at -20°C. Hybridizing ali-
quots from the same RNA mix permits a clean compari-
son of different protocols, ensuring that the observed
differences are only due to the different protocols
applied.
Before hybridization, the required number of labelled

sample aliquots were resuspended in Ocimum hybridi-
zation buffer (Biosolutions, Cat. No. 1180-200000) with
sonicated salmon sperm DNA equivalent to 20 μg per
array (Invitrogen; Cat. No. 15632-011), pooled, and split
into aliquots corresponding to the number of arrays to
be hybridized. Hybridization was performed in randomly
assigned hybridization chambers of an automated Gene-
TAC Hybridization Station (Genomic Solutions) at the
selected temperatures (50, 52, 54, 56, 47, 49, 50, and
51°C) for 16 hours. Assessing 50°C twice provides a
measure of the remaining random variation between
experiments under identical protocol conditions. Slide
surface temperature can be monitored and maintained
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with high precision (± 0.2°C), with no overshoot or
undershoot of the target temperature (S. Johnston, pers.
comm. 2007).
Complementing the computational approaches dis-

cussed above, measurements that were unrelated to the
Drosophila calibration samples were examined to corro-
borate that protocol assessments were indeed indepen-
dent of the calibration samples. For this purpose, 14
exogenic plant RNAs were ‘spiked in’ at known ratios
before labelling (Table 3). The dedicated spike control
probes were selected and experimentally validated to be
completely orthogonal to and thus independent of Dro-
sophila transcripts.
Further details of laboratory protocols are given in the

Supplement.

Data acquisition and post-processing
Arrays were scanned using a GenePix 4000B dual laser
scanner and GenePix Pro 5.1 imaging software (Axon
Instruments). The arrays were scanned at 5 μm resolu-
tion, simultaneously in the Cy3 channel (excited by a
532 nm laser) and the Cy5 channel (excited by a
635 nm laser). Laser power was set at 100% for both
channels but photomultiplier tube gain was separately
adjusted for each channel in order to balance the signal
from the two channels and to scan at the highest gain
avoiding saturation.
The effect of choosing a particular analysis tools to

locate spots and to quantify fluorescence intensities was
examined, testing three different tools: Dapple [48]
v0.88pre2 (cf. [49]), GenePix Pro 5.1 (Molecular
Devices), and BlueFuse (BlueGnome).
Similarly, different normalization methods were tried:

no normalization, normalization of the log signal by
location removal (subtraction of the mean) and/or scale
removal (division by the standard deviation), and var-
iance stabilizing normalization [50,51].
Conclusions were invariant under the examined image

analysis and normalization alternatives. All data were
added in MIAME compliant format [52] to the gene
expression omnibus repository (GEO) [53] and can be
accessed under the accession number GSE25625. For an
online supplement, including source code and all data,
see http://bioinf.boku.ac.at/pub/optMA2010/.
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