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Abstract
We propose the autoregressive HMM for speech synthesis. We
show that the autoregressive HMM supports efficient EM para-
meter estimation and that we can use established effective syn-
thesis techniques such as synthesis considering global variance
with minimal modification. The autoregressive HMM uses the
same model for parameter estimation and synthesis in a con-
sistent way, in contrast to the standard HMM synthesis frame-
work, and supports easy and efficient parameter estimation, in
contrast to the trajectory HMM. We find that the autoregress-
ive HMM gives performance comparable to the standard HMM
synthesis framework on a Blizzard Challenge-style naturalness
evaluation.

Index terms: HMM-based speech synthesis, acoustic model-
ling

1. Introduction
It has been shown that it is possible to synthesize natural sound-
ing speech with HMMs and the quality of the best HMM-based
synthesis systems now rivals the best unit selection synthesis
systems [1]. A breakthrough that helped make this possible was
realizing how to use dynamic feature information during syn-
thesis, by respecting the constraints between static and dynamic
features [2].

However the established approach to HMM-based syn-
thesis is inconsistent in the enforcement of these constraints [3].
During synthesis we take the constraints between static and dy-
namic features into account, whereas during parameter estim-
ation we assume the static and dynamic feature sequences are
independent.

This is a recognized problem and has been addressed pre-
viously. Zen showed how a trajectory HMM [3] could be em-
ployed so that the same model is used for both parameter es-
timation and synthesis in a consistent way. Synthesis quality
improved as a result [3]. However parameter estimation for
the trajectory HMM is more complicated than for the standard
HMM, requiring alignment with a delayed-decision Viterbi al-
gorithm and gradient-based parameter re-estimation procedures
[3]. The challenge remains to find a model which can easily
and consistently be used for both parameter estimation and syn-
thesis.

In this paper we propose using the autoregressive HMM
[4, 5, 6, 7] for speech synthesis. The autoregressive HMM re-
laxes the traditional HMM conditional independence assump-
tion, allowing state output distributions which depend on past
output as well as the current state. In this way the autoregress-
ive HMM explicitly models some of the dynamics of speech
and introduces the continuity and context dependence needed
for good quality synthesis.

Autoregressive HMMs have been used before for speech
recognition [4, 5, 6, 8], but to our knowledge they have not

been previously investigated for speech synthesis. Note that for
the autoregressive HMM considered here, the observations are
acoustic feature vectors. This is distinct from the hidden filter
HMM (also sometimes called the autoregressive HMM) [9, 10]
for which the observations are waveform samples.

We show that the autoregressive HMM supports efficient
parameter estimation and synthesis techniques, with the same
model used in both parameter estimation and synthesis in a con-
sistent way. From a theoretical viewpoint we highlight some
of the similarities and differences between the autoregressive
HMM and current models. We compare the autoregressive
HMM to the standard HMM synthesis framework on a Bliz-
zard Challenge-style naturalness evaluation and find that the
autoregressive HMM gives performance that is comparable to
the standard HMM synthesis framework.

In section §2, we present the autoregressive HMM. We spe-
cify the model itself and show how to do efficient parameter
estimation using expectation maximization. We show that the
autoregressive HMM is similar enough to the current use of
HMMs in synthesis that we can use established effective syn-
thesis techniques, such as synthesis using dynamic features and
synthesis considering global variance, with little modification.
In section §3, we give experimental results showing that the nat-
uralness of speech synthesized by the autoregressive HMM is
comparable to the standard framework. Finally, in section §4
we give conclusions.

2. Autoregressive HMM
We start with a general generative model for sequences of
acoustic feature vectors. Conceptually we first generate a hid-
den state sequence θ = θ1:T and then generate an observed
or output feature vector sequence c = c1:T given this state se-
quence. We consider models with a joint probability distribu-
tion of the form:

P (c, θ) = P (θ)P (c|θ)

=
Y

t

P (θt|θt−1)P (ct|c1:t−1, θt)
(1)

The state transition probabilities P (θt|θt−1) are conditioned
only on the previous state. The state output distributions
P (ct|c1:t−1, θt) are conditioned on both the current state and
all past output. This is in contrast to the standard HMM assump-
tion that the state output distribution P (ct|θt) is conditionally
independent of past output.

The autoregressive HMM with summarizers special-
izes the above to a particular form of output distribution
P (ct|c1:t−1, θt). We assume ct is conditionally Gaussian, with
covariance depending only on the state θt. Rather than allowing
the mean for each state to be an arbitrary function of past output
c1:t−1, we restrict it to be a linear function of a fixed set of sum-
marizers of past output. Each summarizer fd is a function that
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window offset

-3 -2 -1 0

w1
· 1.0

w2
· -1.0 1.0

w3
· 1.0 -2.0 1.0

Table 1: Example autoregressive window coefficients

takes the entire past output c1:t−1 and produces a vector-valued
summary fd(c1:t−1). We consider state output distributions of
the form:

P (ct|c1:t−1, θt) = N (ct|µθt(c1:t−1), Σθt) (2)

µq(c1:t−1) ,
DX

d=1

Ad
q

“
fd(c1:t−1)− µd

q

”
+ µ0

q (3)

where Σq is a state-dependent covariance matrix, Ad
q is a mat-

rix for each summary d and state q, µ0
q is a state-dependent

bias vector, and following Woodland [6], we have intro-
duced redundant bias vectors µd

q for each summary d and
state q as a trick to make re-estimation easier. The set of
parameters specifying the autoregressive HMM is therefore
(Ad

qij , µ
d
qi, µ

0
qi, Σqij), where q ranges over states, i and j range

over feature vector components, d ranges over summarizers,
and Ad

qij is the (i, j)-component of the matrix Ad
q in (3).

We are free to choose the summarizers (fd) to be anything
which might distill useful information about past output. How-
ever, for simplicity we will take each fd to be a fixed linear
combination of the past ld feature vectors:

fd(c1:t−1) =

−1X
k=−ld

wd
kct+k (4)

We call the linear summarizers windows, with window coeffi-
cients wd

k. These window coefficients are only non-zero in the
past (k < 0). An example of autoregressive window coeffi-
cients is shown in Table 1.

By setting the windows to be wd
k = δ−d

k we recover a ca-
nonical autoregressive HMM [4, 5, 7]. By setting the windows
to be delta functions at fixed offsets from the current time we
obtain the form of model used by Woodland [6] and Chin [8].
We refer to all these models, including the mild generalization
with summarizers presented above, as the autoregressive HMM.

Note that we only explicitly deal with the static feature vec-
tor sequence c for the autoregressive HMM. However, the role
played by linear summarizers here is somewhat similar to that
of dynamic features in the standard HMM framework.

As is common in modelling speech, we will assume the
feature vector sequence components are independent given the
state sequence. This corresponds to using diagonal matrices in
(3), so Ad

qij = ad
qiδij and Σqij = σ2

qiδij for some ad
qi and σ2

qi.

2.1. Parameter estimation

To set the parameters (ad
qi, µ

d
qi, µ

0
qi, σ

2
qi) of the autoregressive

HMM we use expectation maximization (EM) [11]. We first
compute the state occupancies γq(t) , P (θt = q|c), then use
these to re-estimate the model parameters.

2.1.1. Forward-Backward algorithm

Define:

αq(t) , P (c1:t, θt = q)

βq(t) , P (ct+1:T |c1:t, θt = q)

Then we have the following recursions

αq(t) =
X

p

αp(t− 1)upqP (ct|c1:t−1, θt = q) (5)

βq(t) =
X

r

uqrP (ct+1|c1:t, θt+1 = r)βr(t + 1) (6)

where upq , P (θt = q|θt−1 = p) is the state transition prob-
ability. This allows us to efficiently compute α and β, and thus
the state occupancies:

γq(t) =
αq(t)βq(t)P
q αq(t)βq(t)

2.1.2. Parameter re-estimation

We write fd(t) for the value of summarizer d at time t, that is
fd(c1:t−1). We use the notation˙

g
¸

q
,

P
t γq(t)g(t)P

t γq(t)

to denote the conditional expectation of an arbitrary function
g(t) with respect to the occupancies γq(t) of state q.

The EM re-estimation formulae giving the updated para-
meter values (bad

qi, bµd
qi, bµ0

qi, bσ2
qi) for the autoregressive HMM

are [12]: bµ0
qi =

˙
ci

¸
q

(7)

bµd
qi =

˙
fd

i

¸
q

(8)

DX
e=1

Rde
qibae

qi = rd
qi (9)

bσ2
qi = r0

qi −
DX

d=1

bad
qir

d
qi (10)

where q ranges over states, i ranges over feature vector com-
ponents, d and e range over summarizers, and:

Rde
qi ,

˙
fd

i fe
i

¸
q
−
˙
fd

i

¸
q

˙
fe

i

¸
q

rd
qi ,

˙
cif

d
i

¸
q
−
˙
ci

¸
q

˙
fd

i

¸
q

r0
qi ,

˙
cici

¸
q
−
˙
ci

¸
q

˙
ci

¸
q

Note that computing the (bad
qi) using (9) involves inverting

a D × D matrix for each q and i. In our experiments, we use
D = 3 summarizers, so this is not computationally intensive.

2.2. Synthesis

During synthesis, we produce an output feature sequence c for
a given word sequence. We show how to do synthesis with the
autoregressive HMM by adapting two standard algorithms.

In fact, from the point of view of synthesis there is a strong
similarity between the autoregressive HMM and standard HMM
synthesis framework. In both cases, P (c|θ) is a multidimen-
sional Gaussian over vector sequences with band diagonal pre-
cision matrix [12, 13]. This common structure is what makes
it possible to use current HMM synthesis methods with the
autoregressive HMM.
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2.2.1. Synthesis using dynamic features

For synthesis using dynamic features ([2] and case 1 in [14]),
we first choose a state sequence θ and then choose the feature
sequence c which maximizes P (c|θ). For standard HMM syn-
thesis models, P (c|θ) is a multidimensional Gaussian over vec-
tor sequences [3], and so the maximum value is at its mean,
which can be computed efficiently [14].

For the autoregressive HMM with linear summarizers,
P (c|θ) is also a multidimensional Gaussian over vector se-
quences. The mean functions µq(c1:t−1) in (3) are now affine-
linear, and expectation is a linear operator. Therefore the mean
vector sequence c , E[c|θ] can be computed efficiently by a
one-pass forward recursion over time:

ct = µθt(c1:t−1) (11)

2.2.2. Synthesis considering global variance

Standard techniques in HMM synthesis, such as synthesis using
dynamic features, are found to produce utterances that sound
“flat” or “dull” [15]. In particular, it is found that synthesized
utterances tend to have far less global variance (GV) than nat-
ural ones, where the global variance v(ci) of the ith component
of the feature vector sequence is defined as [15]:

v(ci) ,
1

T

X
t

c2
ti −

 
1

T

X
t

cti

!2

Toda [15] introduced parameter generation considering
global variance as a way to alleviate this lack of global vari-
ance, while using existing models. The distribution of global
variances observed in training utterances is modelled by a Gaus-
sian, typically treating each component of the feature vector as
independent. The HMM and GV parameters are trained inde-
pendently of each other. During synthesis, we use some form of
gradient descent to optimize a cost function that is a weighted
sum of the HMM log probability of the output sequence and the
GV log probability of the output sequence (keeping the state se-
quence fixed). This procedure is found to dramatically improve
the naturalness of synthetic speech [15].

It is trivial to adapt this for use with the autoregressive
HMM. Since we keep the state sequence fixed during gradient
descent, the HMM log probability is in both cases just a mul-
tidimensional Gaussian. Therefore we can do parameter gener-
ation considering global variance for the autoregressive HMM
simply by passing the appropriate multidimensional Gaussian
to the GV generation algorithm.

2.3. Comparison to current models

The parameterization of state output distribution for the autore-
gressive HMM in (2) and (3) is very different to the parameteriz-
ation of output distribution shared by the standard HMM frame-
work and the trajectory HMM (equation 9 in [2], equation 5 in
[3]). Nevertheless, in all three cases the distribution over tra-
jectories P (c|θ) given the state sequence is a multidimensional
Gaussian with band diagonal precision matrix [3, 12]. This sug-
gests the difference in parameterization of state output distribu-
tion might result in only a small difference in the kind of tra-
jectories generated by the different models. Indeed, anecdotally
we have found that the trajectories generated by synthesis using
dynamic features are extremely similar for the autoregressive
HMM and standard HMM synthesis framework.

Additional similarities and differences were discussed in
§1. The autoregressive HMM and trajectory HMM share the

system description

A natural speech
B autoregressive HMM with global variance
C standard HMM with global variance
D autoregressive HMM without global variance

Table 2: Systems in the listening test

property of consistency, in contrast to the standard HMM syn-
thesis framework. The autoregressive HMM and standard
HMM synthesis framework both have easy and efficient para-
meter estimation procedures, in contrast to the more complic-
ated parameter estimation methods required for the trajectory
HMM.

3. Experiments
To evaluate the autoregressive HMM for synthesis, we built a
baseline standard HMM system and an autoregressive HMM
system, and compared them in a Blizzard Challenge-style [16]
mean opinion score (MOS) listening test. We chose an MOS
evaluation over a preference test since we were interested in
whether the two methods were broadly comparable – that is, in
the magnitude of the difference between the systems – rather
than a consistent preference of unknown magnitude.

Both systems were built using the HMM-based speech syn-
thesis system (HTS) [17]. The similarity in parameter estimation
and synthesis methods between the autoregressive HMM and
standard HMM framework allowed us to implement the autore-
gressive HMM relatively easily in HTS. The systems were
trained on the CMU ARCTIC corpus [18] for a single speaker
(approximately 1 hour), with 50 held-out utterances. The static
features were mel-generalized cepstra (MGC), log F0, and band
aperiodicity, and we used STRAIGHT vocoding [19]. For the
autoregressive system only spectral features were modelled us-
ing the autoregressive HMM. The windows in Table 1 were used
for the autoregressive HMM, and standard HTS windows for the
autoregressive HMM. The training regime was adapted from the
HTS speaker dependent training demo [17].

For simplicity and ease of implementation, the autoregress-
ive HMM used acoustic clustering determined by decision trees
taken from the baseline HTS system. There may be scope for
improvement by direct state clustering of the autoregressive ob-
servation densities, which can easily be done.

The complexity of the two systems is similar, with 5
free parameters per state per feature vector component for the
autoregressive HMM and 6 for the standard HMM.

The listening test was conducted using the four systems
shown in Table 2. The systems to be investigated are B and
C. Systems A and D are included so that the systems of interest
are less likely to be at the extreme ends of the MOS spectrum,
and to help detect lack of listener seriousness, though we did
not find any occurrences of this. The test consisted of 2 sec-
tions, of 25 utterances each. For both sections, listeners were
asked to rate the naturalness of each utterance on a scale of 1
to 5. Prompts were the 50 held-out utterances in a fixed or-
der. Listeners were allotted to one of 4 groups, and the ordering
of the systems for each group was determined with a balanced
Latin square design for the first 4 prompts in each section, and
randomly after that. The listening test was conducted as an in-
teractive website for one week.
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system native non-native

mean median mean median

A 4.7 5 4.8 5
B 2.3 2 2.2 2
C 2.3 2 2.4 2
D 2.0 2 1.6 1

Table 3: MOS listening test results

A B C D

1
2

3
4

5

System

Sc
or

e

Figure 1: MOS listening test results (native)

3.1. Results

In total, 39 volunteers (24 native English speakers, 15 non-
native) completed the test. A summary of the results is shown
in Table 3 and an MOS box plot [20] for the native listeners is
shown in Figure 1. The non-native box plot is not shown here
due to lack of space and showed a slight preference for system
C consistent with Table 3.

We can see that the naturalness of speech from the autore-
gressive HMM (system B) is broadly comparable to that of the
standard HMM synthesis framework (system C), which is what
we wished to establish.

4. Conclusion
We have investigated the possibility of using the autoregressive
HMM for speech synthesis. We have shown that it is possible
to use the same autoregressive model to do efficient parameter
estimation and synthesis. The autoregressive HMM is therefore
efficient and consistent whereas current models have only one of
these two desirable properties. There is also considerable simil-
arity to current models and minor modifications to existing pro-
cedures are needed for implementation. We have demonstrated
that the autoregressive HMM can be used to synthesize natural
speech of comparable quality to the standard HMM synthesis
framework.
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