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Biological processes are regulated with high spatial and temporal resolution at the 

molecular, cellular, and systems level. To control and study processes with the same resolution, 

researchers have employed light-sensitive moieties to optically activate and deactivate protein 

function. Optical control is a non-invasive technique in which the amplitude, wavelength, spatial 

location, and timing of the light illumination can be easily controlled. This review focuses on 

applications of genetically encoded unnatural amino acids containing light-removable protecting 

groups to optically trigger protein function, while also discussing select optogenetic approaches 

using natural light-sensing domains to engineer optical control of biological processes.  
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1.0  INTRODUCTION TO THE OPTICAL CONTROL OF PROTEIN FUNCTION 

Key to the study of biological processes is the ability to selectively control protein 

function in order to link it to cellular response. Traditional methods to regulate the function at the 

genome level, such as knock-in, knockdown, or small molecule approaches typically suffer from 

long induction times, off-target effects, stability and inefficient delivery. Pharmacological 

manipulation often lacks cell-type specificity and temporal precision; typical genetic approaches 

often don’t have the temporal precision necessary to drive specific perturbations in response to 

external behavioral and environmental triggers. However, by directly regulating processes at the 

genomic level, these strategies are often more robust in their control; direct gene regulation can 

induce more specific and global changes in the gamut of protein function. The use of light to 

control protein activity, however, provides precise spatial and temporal control to biological 

processes using a non-invasive control element, and allows more precise control than other 

biological perturbations.1–10 Furthermore, optically controlled systems have been developed 

within the realm of “classic” gene manipulation techniques, to allow more spatiotemporal 

control.11–15 

The genetic encoding of light-responsive proteins, termed “optogenetics”, has taken 

advantage of naturally occurring photosensitive protein domains. Optogenetic approaches have 

been used to control biological processes such as transcription, protein localization, protein 

phosphorylation, and ion channel activity.16–22 Commonly employed, naturally occurring 
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photoreceptors include the rhodopsin family of ion channels, Light-Oxygen-Voltage (LOV) 

sensitive domains, as well as phytochrome and cryptochrome proteins. These receptors respond 

with reversible conformational changes upon exposure to light.  

The genetic incorporation of unnatural structures relies on suppression of naturally 

occurring stop codons, through the use of tRNA that naturally suppress these truncation sites. 

Stop codon suppressors were noted with point mutations in the DNA that didn’t correspond to 

the resulting amino acid, where either the natural or structurally similar amino acid was 

incorporated. Reports for the suppression of a naturally occurring stop codon emerged in the 70s 

and early 80s, and design of in vitro suppression systems were developed using acylated 

tRNAs.23–25 An in vitro stop codon suppression system was reported, where several unnatural 

phenylalanine derivatives were incorporated through chemically misacylated suppressor 

tRNAs,26 and set the foundations for the incorporation of unnatural amino acids (UAAs). 

Although the use of the ortho-nitrobenzyl (ONB) group as a light-sensitive protecting group 

dates back to the 1960s,27 it’s use as a light-sensitive protecting group for amino acids by R. B. 

Woodward, gave it an impetus for further applications.28 It was reported much later as a general 

method for masking nascent amino acid functionality; through stop codon suppression, an ONB-

protected Aspartate was incorporated into the phage T4 lysozyme.29 It wasn’t until mutation of 

the synthetase active site generated a fully genetically encoded system, as developed by the 

Schultz lab.30,31 

Using this methodology, light-responsive proteins have also been engineered based on 

the expansion of the genetic code with unnatural, photocaged amino acids. UAAs can be 

genetically encoded through the addition of orthogonal protein biosynthetic machinery to pro- 

and eukaryotic cells.32,33 The use of light-cleavable protecting groups – so called “caging groups” 
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– allows for modulation of protein function with a single, small, covalently-linked chromophore 

that can be removed through exposure to non-damaging UV light, thereby restoring the native 

protein function.8–10 Here, recent developments in the engineering of light-sensitive proteins and 

their application to the optical control of enzymatic and cellular processes will be discussed, with 

an emphasis on the use of genetically encoded, caged amino acids (Figure 1). 

 

Figure 1: Different approaches to optochemically control protein function with light. 

A) Caged amino acids can be genetically incorporated into proteins of interest, thereby rendering them inactive, 

until UV irradiation removes the caging group and restores protein activity. B) An effector molecule can be caged 

and UV irradiation can regenerate the active molecule. C) Protein dimerization can be induced upon light exposure, 

e.g., of cryptochrome (Cry) and the Cry Interacting Basic helix-loop-helix (CIB). D) Light-sensitive ion channels, 

such as channelrhodopsin, can be activated upon light exposure. E) Protein activity can be controlled by fusion of a 

LOV domain that generates an active enzyme upon irradiation.  
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2.0  OPTOGENETIC CONTROL WITH NATURALLY OCCURRING LIGHT-

SENSITIVE DOMAINS 

Recent developments in the understanding and engineering of naturally light-sensitive 

proteins have greatly advanced the application of optogenetic tools to regulate complex 

biological processes. Photon absorption induces conformational changes in these proteins 

through isomerization of a double bond (e.g., in opsin ion channels or in phytochromes) or 

covalent adduct formation between the protein and the chromophore (e.g., in cryptochromes or in 

LOV domains). Regeneration of the chromophore can occur via absorption of another photon of 

different energy, or as a slower thermal process in the dark. Most often, these optogenetic 

techniques require significant protein engineering and optimization in order to obtain excellent 

light-switching behavior, if the desired process to be regulated differs from optochemical ion 

channel activation. However, these genetically encoded fusion proteins are capable of a high 

degree of spatiotemporal control over diverse processes. 

2.1 OPTOCHEMICAL CONTROL OF MEMBRABE LOCALIZATION THROUGH 

PHY-PIF DIMERIZATION 

Phytochromes (Phy) are proteins that switch between two stable states through 

isomerization of the bilin chromophore by absorbing red (Pr state) and far-red light (Pfr).34 
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Absorption of ~650 nm light converts the Pr form into the Pfr conformation, to allow binding 

with the Phytochrome Interacting Factor (PIF); irradiation with ~750 nm far-red light switches it 

back to the Pr state. These processes are rapid and repeatable with no observable chromophore 

decomposition. Thus, any proteins of interest could be brought in close proximity to one another 

through an optically triggered dimerization, if fused to Phy or PIF. The optical control of protein-

protein interactions in cells was first demonstrated with the PhyB-PIF3 pair, showing that PIF3 

dimerized with PhyB in the Pfr, but not the Pr state.35 This reversible, PhyB-PIF3 dimerizing 

system was used to optically control transcription in yeast through fusion of Gal4 binding 

(Gal4BD) and activation domains (Gal4AD) to PhyB and PIF3, respectively.  

The Phy-PIF system was also employed to optically regulate protein localization to the 

membrane, enabling spatial activation.36 Using PhyB-PIF constructs, rates of membrane 

association and dissociation were determined to be on the second timescale, faster than previous 

methods that used small molecules to induce membrane localization.37–39 The guanine exchange 

factor (Tiam-DH-PH) activates the GTPase Rac1, which is in turn responsible for dynamic 

regulation of the actin cytoskeleton. Using a Tiam-DH-PH–PIF and a membrane bound PhyB 

fusion constructs, reorganization of the cytoskeleton was demonstrated in live NIH3T3 cells, 

showing that spatially localized, activating red light could induce lamellapodial protrusion 

formation through localized activation of Rac1, via light-induced PhyB-PIF dimerization, and 

recruitment to the membrane by the Rac-activating Tiam (Figure 2A). 
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Figure 2: Optogenetic approaches to control protein function with Phytochromes and 

Cryptochromes. 

A) Fused constructs for membrane localization and recruitment of signaling proteins (top). Light-induced 

dimerization of the fusion constructs, leads to protrusion formation upon localization of red light irradiation away 

from the cell body (bottom). Scale bar is 20 µm. B) Nuclear translocation upon blue light irradiation and CRY2-CIB 

dimerization to control transcriptional activation. TALE: Transcriptional Activator-Like Effector, C2P: CRY2-PHR 

(PHotolyase Related domain), Effector: transcriptional activator (VP64) or repressor (SID4X). Figures taken with 

permission from references 36 (A) and 40 (B). 

 

2.2 OPTOCHEMICAL CONTROL OF TRANSCRIPTION THROUGH CRY-CIB 

DIMERIZATION 

Cryptochromes (Cry) are blue-light sensing flavin binding proteins that undergo covalent 

adduct formation with the flavin adenine dinucleotide (FAD) chromophore and a corresponding 

conformational shift when irradiated.41–43 These conformational changes allow dimerization of 

Cry and its binding partner CIB. Activity of fused proteins can be controlled in a similar manner 
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to the Phy-PIF system, and dimerization is thermally reversible in the dark. Dimerizing Cry-CIB 

constructs have been used to induce membrane localization through blue light illumination using 

cytosolic Cry2-mCherry and membrane-associated CIB-EGFP components. Near complete 

membrane localization occurs 10 seconds after irradiation in HEK293T cells.16 Additionally, a 

split Cre recombinase system, fused to Cry2 and a truncated CIB, was developed for the 

optochemical control of DNA recombination through light-induced protein dimerization. Cre 

recombinase catalyzes strand exchange between defined target sequences, recognizing 

palindromic loxP sites to insert, delete or invert DNA sequences.44 A low level of recombination 

was observed in the dark, with a 158-fold increase in EGFP expression through excision of a 

stop codon after irradiation with 450 nm blue light.  

A similar system was designed, using a customizable Transcription Activator-Like 

Effector (TALE) DNA-binding domain and TALE activator domains, fused to either Cry2 or 

CIB1, to photochemically modulate transcription of endogenous mammalian DNA upon Cry-

CIB dimerization.40 Using a TALE domain specific for the Grm2 gene sequence and a 

transcriptional activator (VP64), TALE(Grm2)-CIB1 and CRY2-NLS-VP64 constructs were 

generated, which reduced background transcriptional activity of TALE in the absence of light by 

incorporating a nuclear localization signal (NLS) in the effector fusion domain. Irradiation 

allowed for nuclear translocation of the Cry-CIB dimer and activation of Grm2 transcription 

(Figure 2B). Customization of the TALE binding domain allows for localization to any gene 

sequence, and switching from a transcriptional activator to a repressor allows for positive and 

negative regulation of transcriptional activity, thus creating a highly modular optogenetic gene-

control system. 
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2.3 OPTOCHEMICAL CONTROL OF TRANSCRIPTION USING LOV DOMAINS 

Similar to Cryptochromes, LOV domains also use a covalent flavin adduct to modulate 

conformational changes.45 Earlier studies used structural shifts in LOV fusion proteins to 

modulate the activity of a tryptophan-activated protein,46 dihydrofolate reductase,47 and zinc 

finger transcription factors.48 More recently, a LOV fusion was used to optically control peptide 

affinity for their binding partners by reversibly blocking binding-critical residues (Figure 3A).49 

For example, invasive plasmin antigen A (ipaA), a vinculin binding protein (VinD1), shows a 

sequence overlap with the LOV Jα helix, allowing for optochemical control over ipaA-VinD1 

dimerization. Gal4AD-LOV-ipaA and VinD1-Gal4BD fusion proteins were generated and blue-

light-activated transcription was achieved in yeast. Irradiation increased Gal4-driven LacZ 

expression 10-fold compared to the dark state, achieving 30% of wild-type ipaA activity. A 

similar system was also developed for mammalian cells using small stable RNA A (SsrA) 

protein and its adapter protein SspB, illustrating that photoswitchable, steric blocking of peptide-

protein interactions can be designed based on LOV fusions and may be generally applicable. 

 

 

Figure 3: Optogenetic approaches to control protein function with LOV domains and Opsin Ion 

Channels 

A) LOV domain fused to a peptide sequence. Irradiation induces helix deformation and allows the target to 

bind. Blue circles: critical for LOV association. Purple circles: critical for target-peptide recognition. Red circles: 

critical for both. White circles: unimportant for binding. B) Fiber optic probes were inserted into the dorsomedial 
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striatum of mice to deliver blue light and optochemically control motor function (left). Movement path (lines) for 

D1-ChR2 mice and D2-ChR2 mice were measured every 300 ms for 20 sec total (right), to activate and inhibit 

movement, respectively. Figures taken with permission from references 49 (A) and 50 (B). 

2.4 OPTOCHEMICAL CONTROL OF MOTOR FUNCTION USING A 

CHANNELRHODOPSIN ION CHANNEL  

Opsin ion channels bind retinal as a blue light-sensitive chromophore and photon 

absorption converts the all-trans isomer to the 13-cis isomer, inducing conformational changes in 

the channel that lead to pore opening and ion influx. The channelrhodopsin (ChR) subfamily has 

been widely applied as they provide benefits over other optogenetic ion channels. They show ion 

flux comparable to natural ion channels51 and better efficacy over previous photostimulatory 

methods.52 ChR2 allows Na+, Ca2+, H+ and K+ influx in a pH dependent manner, and controls 

whole-cell electrochemical activation with rapid switching between lit and dark states within 

milliseconds.19 ChR2 has been used to optochemically control pathway-specific motor function, 

involved in Parkinson’s disease, within the dorsomedial striatum region of the brain of mice.50 

Two dopamine receptor-based pathways, D1 and D2, have been proposed to activate and inhibit 

motor function, respectively.53,54 A Cre recombinase-dependent viral expression system was 

used, in which ChR2-YFP is only expressed in neurons containing either D1- or D2-receptors.55 

Light irradiation through fiber optic cannulas inserted into mice striata selectively activated 

ChR2-expressing neurons and confirmed that D1-pathway activation increased movement, while 

D2-pathway activation decreased movement (Figure 3B). The mouse’s gait was found to be 

unaffected in D1-ChR2 and D2-ChR2 mice after illumination, indicating that the dorsomedial 
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striatum mediates motor control, but not motor coordination. Taken together, these optogenetic 

applications emphasize the diversity of biological processes that are optochemically controlled 

by light using naturally occurring photosensory domains. 
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3.0  EXPANSION OF THE GENETIC CODE FOR THE INCORPORATION OF 

UNNATURAL AMINO ACIDS 

 With proteins being the primary workforce of the cell, they are able to carry out a diverse 

set of functions through a limited set of structures; the chemistries available to the canonical 20 

amino acids are sufficient to sustain life. However, exogenous cofactors such as flavin, heme 

groups, vitamins, and metal ions, are often needed to assist in the desired transformations. 

Moreover, post-translational modifications further the diversity of the natural 20 amino acids 

through modifications such as acetylation, methylation, phosphorylation and glycosylation. With 

the human genome having roughly 25,000 genes and 500,000 proteins, added modifications are 

required to drive a biological system, notably through these post-translational modifications to 

regulate function. Each post-translational modification, and requisite cofactor, is highly and 

dynamically regulated. Several archaea and eubacteria have added to their chemical diversity, 

and been shown to encode noncanonical amino acids, such as selenocysteine56 and pyrrolysine.57 

Thus the creation of an expanded genetic code, beyond the common 20 amino acids, allows for 

the incorporation of enhanced or novel chemistries to probe protein function within a biological 

context. 
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3.1 EVOLUTION OF THE BIOSYNTHETIC MACHINERY 

To encode an unnatural structure, site-specifically, into a defined peptide sequence, one 

requires a host-orthogonal method to acylate a tRNA with the UAA and a codon that can 

recognize the amino-acylated tRNA to allow specific incorporation into the growing peptide 

chain. Specifically, tRNA synthetases have been engineered to acylate their cognate tRNAs 

exclusively with the UAA and not any of the canonical amino acids, and retain selective 

recognition of the orthogonal tRNA over any endogenous tRNAs.58–62 The UAA-tRNA pair can 

then deliver the UAA site-specifically into the growing peptide chain; to accomplish this, a less 

common stop codon or frameshift codon is used to allow recognition of the orthogonal tRNA by 

the host biosynthetic machinery, over any endogenous tRNAs.63,64  The host-orthogonal aaRS 

binds the UAA and facilitates acylation of the UAA onto the orthogonal tRNA; the UAA is then 

delivered to the peptide chain in response to a stop or frameshift codon, e.g., in response to the 

amber stop codon, TAG, (Figure 4). Any endogenous aaRS or tRNA will not cross-react with 

the unnatural aaRS or amino acid. The amino-acylated tRNA delivers the UAA site-specifically 

to any desired position within a protein of interest in both pro- and eukaryotic live cells. 

In order for the aminoacyl tRNA synthetase (aaRS) to discern and install the UAA onto 

the tRNA, the active site of the aaRS can be randomly mutated to generate a library of mutant 

synthetases, which are then put through rounds of positive and negative selection to ensure 

selective UAA incorporation.31,33,65 Evolution of the synthetase active site is accomplished by 

identifying residues within the binding pocket, and randomly mutating each residue to any of the 

common 20 amino acids, this typically generates about 106 to 108 mutants. The positive selection 

round is based upon the conference of resistance to chloramphenicol by suppression of an amber 

mutation at a permissive site in chloramphenicol acetyl transferase. Resistance to 
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chloramphenicol is conferred if either the natural or unnatural amino acid is charged onto the 

cognate tRNA. The surviving mutants are then put through a negative selection process using the 

barnase gene, and in the absence of the unnatural amino acid. If the natural amino acid is 

incorporated into the barnase gene, the cells will die. Sequential rounds of positive and negative 

selection are done to generate a manageable library of mutants that are selective for the UAA in 

response to the stop codon.  

 Initial efforts to reprogram the genetic code focused on E. coli, because of the wealth of 

knowledge of its translational machinery, and the ease of manipulation of the genetic code.26 The 

amber codon is the least used stop codon in E. coli and mammalian cells, therefore using it to 

incorporate additional amino acids is less detrimental than replacing a more commonly used stop 

codon. In addition, recognition of the tRNA by the ribosome can be weakly dependent on the 

anticodon arm,66 and the length and binding recognition of the variable arm is species 

dependent;67 thus, non-native tRNA sequences can allow for the tRNA to still be accepted by the 

host ribosomal machinery. This approach of engineering an orthogonal aaRS/tRNA pair has been 

used with other host species, such as mammalian and yeast cells, and tRNA allows for selectivity 

such that it incorporates the UAA and not any native amino acids, and still functions within the 

host machinery. 
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Figure 4: Expansion of the genetic code for UAA incorporation. 

The orthogonal aaRS (red) acylates the orthogonal tRNA (blue with red anticodon) with the unnatural 

amino acid (blue X), which then transfers the UAA to the growing peptide chain in response to the amber codon (red 

UAG). The endogenous aaRS/tRNA pair is shown (grey), where it acylates the endogenous tRNA with the natural 

amino acid (black Tyr). The ribosome is shown in brown. Figure taken from reference 68 with permission. 

3.2 UNNATURAL AMINO ACID MUTAGENESIS  

Since the discovery of the incorporation of selenocysteine56 and pyrrolysine57 encoded by 

archaea and eubacteria, there have been nearly 100 unnatural amino acids that have been 

genetically encoded for various chemistries, a sample of which are shown in Figure 5. To this 

end there have been several UAAs that have been incorporated as bioorthogonal handles (1-4). 

p-benzoylphenylalanine (1) and the diazarine (2) have been incorporated as photocrosslinking 
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agents for investigating biomolecular interactions; irradiation at ~350 nm UV light induces non-

discriminate insertion within C-H bonds.69,70 Similarly p-azidophenylalanine (3) and 

proprargyloxyphenylalanine (4) have been used as species for “click chemistry” as bioorthogonal 

conjugates.59,71,72 The tyrosine derivatives 3-hydroxytyrosine (5) and 3-nitrotyrosine (6) have 

been incorporated into myoglobin73 and MnSOD74 proteins, respectively, as the unnatural amino 

acids are commonly involved in an altered redox state. In addition, aminophenylalanine (7) was 

incorporated as a probe for a redox-active tyrosine,75 used for the generation of a bacterium with 

an expanded genetic code, which could biosynthesize the unnatural amino acid,76 and as a 

synthetase active site probe.65 Hydroxycoumarin77 (8) and dansyl78 (9) derivatives have been 

incorporated as fluorescent amino acids, which have been used as an indicator of protein 

conformation and intermolecular interactions. They are more advantageous than GFP, as they 

can replace single residues within a protein versus a full sequence peptide.  

Furthermore, other light-sensitive amino acid derivatives have been incorporated into 

proteins of interest. Diazophenylalanine (10) was incorporated into the BamHI endonuclease,79 

and catabolite activator protein (CAP)80, both at their homodimeric interfaces, and is being 

pursued for other applications (unpublished results, Deiters Lab). As well, caged amino acids 

have been genetically incorporated, in which irradiation induces photolytic cleavage of a 

protecting group and regenerates the native amino acid (and thus native protein). Various caged 

amino acids (11-14) have been used to control processes such as translocation, translation and 

signaling, and their applications will be presented herein. 
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Figure 5: Chemical structures of some genetically encoded unnatural amino acids 

Structures of some genetically incorporated amino acids. The ortho-nitrobenzyl (ONB) group of the 

photocaged amino acids (11-14) is shown in blue. 
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4.0  PHOTOCAGED AMINO ACID MUTAGENESIS FOR THE OPTOCHEMICAL 

CONTROL OF PROTEIN FUNCTION 

Caging groups have commonly been introduced into proteins and peptides through 

chemical modification.81,82 Issues frequently faced using these approaches are size limitations of 

synthetic peptides, requirements for chemical ligation approaches,83,84 non-specific caging group 

installation onto expressed proteins, and the necessity to deliver the caged peptides and proteins 

into cells and organisms for biological studies. These problems have been addressed through the 

genetic encoding of caged amino acids in cells with an expanded genetic code.32,33 Using this 

amber codon suppression approach, ONB derivatives (Figure 5) of Lys (11),62,85–87 Cys (12),58,88 

Ser (13),61and Tyr (14),60,89–91 have been genetically encoded in pro- and eukaryotic cells, and 

have been applied to the optochemical control of a wide range of biological processes. 

4.1 EARLY APPROACHES TO THE OPTOCHEMICAL CONTROL OF PROTEIN 

FUNCTION: CAGED ION CHANNEL, CAGED CASPASE AND CAGED 

GALACTOSIDASE 

Preceding opsin-mediated control, nicotinic acetylcholine receptor (nAChR) ion channels 

have been light-activated through site-specific incorporation of a caged tyrosine.92 This was 

achieved through chemical acylation of an amber-suppressor tRNA and injection into Xenopus 
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oocytes. The caged tyrosine was placed at three specific, highly conserved Tyr residues of a 

nAChR, two of which participate in acetylcholine binding. Voltage clamping was used to 

measure membrane potential during flash decaging of the ONB caging group and ion channel 

activation with precise temporal control. Irradiation power and duration was tuned to decage 

~5% of the caged tyrosine residues per flash, allowing for depolarizing activation of decaged ion 

channels, while the cells were kept in the presence of high concentrations of agonist. Changes in 

electrochemical current after light pulses marks an increase in cell potential, followed by a 

compensatory repolarization to restore the cell to resting potential (Figure 6A). Time-resolved 

kinetic analyses of changes in electrochemical potential at each residue showed that each residue 

has differing effects on pore opening. Two-activation phases were noted: one closely resembling 

physiological activation, likely due to incomplete incorporation or baseline activity, and the other 

indicating a conformational change critical for activation after diffusion of the caging group. The 

generation of light-activated ion channels allowed for the unprecedented light-mediated control 

over pore activation, and structure-function interpretations of agonist binding.  

In order to eliminate the need for chemical tRNA acylation and injection, tRNA/tRNA 

synthetase pairs were engineered to genetically encode caged amino acids. Early applications 

included amber codon suppression in EGFP,62 optochemical control of caspase activity through a 

caged cysteine,58 and β-galactosidase function through a caged tyrosine.60 The first incorporation 

of a caged cysteine into proteins in mammalian cells was also recently reported.88 The caged 

cysteine was incorporated into the Tobacco Etch Virus (TEV) protease in live HEK293T cells 

and optochemical control of protease activity was monitored with a FRET assay. 
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Figure 6: Optochemical control of Ion Channels and Signaling Pathways 

A) Electrochemical current over time induced through flash decaging, every 20 sec with an 80 sec interval 

between flash 3 and 4 (as indicated by dots), of a tyrosine-caged nAChR in Xenopus oocytes. B) Caged MEK1 

kinase is inactive due to occlusion of ATP from the active site by the caging group, through blocking of a critical 

ATP-Lys interaction. Irradiation removes the caging group and restores kinase activity. C) Normalized nuclear-to-

cytoplasmic fluorescence, F(n/c), measuring ERK1/2 nuclear translocation after photoactivation, indicating a steady 

state of ERK1/2 in the nucleus (black circles). In contrast to light-activation, EGF stimulation (grey line) leads to a 

peak in nuclear ERK1/2. D) Stimulation of the MEK signaling cascade by growth factors activates the whole 
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pathway, whereas photoactivation of caged MEK1, enables partial pathway activation. Figures taken, with 

permission, from references 92 (A) and 87 (B-D). 

4.2 OPTOCHEMICAL CONTROL OF SIGNAL TRANSDUCTION THROUGH 

CAGED KINASES AND THEIR SUBSTRATES 

Optochemical control over kinase signaling was achieved through genetic incorporation 

of a caged lysine into the MAP kinase kinase MEK1, by replacing a highly conserved Lys that is 

critical for anchoring ATP within the catalytic domain (Figure 6B).87 MEK1 is part of a 

signaling network that propagates signals through ERK1/2 phosphorylation. The caged kinase 

was completely inactive showing no catalytic activity until decaging through UV exposure, as 

shown by the analysis of phosphorylation levels of downstream substrates of ERK1/2. After 

phosphorylation by activated MEK1, ERK translocates from the cytoplasm to the nucleus. 

Optochemical activation, in conjunction with an EGFP-tagged ERK2, allowed for the 

measurement of translocation kinetics from a precisely defined starting point (Figure 6C). ERK2 

translocation occurs faster through direct light-activation of caged MEK1 (t1/2 = 1.5 min) and a 

steady state of ERK2 in the nucleus was observed. In contrast, EGF-stimulated whole-pathway 

activation leads to slower translocation (t1/2 = 4.5 min) and only a temporary peak in nuclear 

ERK2. This type of desensitization and adaption to persistent stimuli has been documented in 

cellular systems and is likely to involve negative feedback. Here, once in the nucleus, ERK2 is 

dephosphorylated by MKP, constituting a negative feedback loop and leading to diffusion of 

ERK2 back into the cytoplasm. However, light-activation of caged MEK1 shows a stationary 

stimulus and unlike EGF stimulation of the entire pathway (Figure 6D); the light-activated sub-
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network is not subjected to adaptation. Thus, adaptation most likely occurs upstream of MEK1, 

independent of MKP function.93 

In contrast to caging the active site of a kinase, a corresponding phosphorylation substrate 

has been caged as well. This was demonstrated by incorporating caged tyrosine at the 

phosphorylation site of Signal Transducers and Activators of Transcription (STAT1).89 The 

Janus Kinase (JAK) /STAT pathway is activated through cytokine binding to extracellular 

surface receptors and phosphorylation of STAT to induce its homodimerization, nuclear 

translocation, and activation of transcription.94,95 Interferon stimulation of HEK293 cells 

expressing a caged STAT1 showed phosphorylation only after photolytic cleavage of the caging 

group from the phosphorylation site (Figure 7A). 

 To monitor the kinetics of nuclear translocation of the transcription factor Pho4, a caged 

serine was incorporated at several phosphorylation sites.61 Depending on the concentration of 

inorganic phosphate, Pho4 is either phosphorylated at the Ser6 position and localized to the 

nucleus to activate gene expression, or is phosphorylated at Ser2 and Ser3 and is exported to the 

cytoplasm. Introduction of a caged serine at Ser3 blocked this phosphorylation site and retained 

GFP-tagged Pho4 in the nucleus until irradiation removed the caging group, allowing for Ser3 

phosphorylation and nuclear export (Figure 7B). Nuclear-to-cytoplasmic GFP-Pho4 localization 

was quantified by a fluorescence line scan, enabling the measurement of translocation kinetics 

from a defined start point (Figure 7B). Optochemical activation of Ser3-caged Pho4 showed 

faster translocation (with a time constant of ~29 sec) than Ser2-caged Pho4 (with a time constant 

of ~47.0 sec), in agreement with previously reported kinetics.96  

Common strategies for perturbing signaling networks include gene knock-out and knock-

in approaches. Even though these approaches are suitable for epistasis experiments, they suffer 



 

 22 

from long induction times, which limits their usefulness in dynamic studies and enables cellular 

compensation effects. In contrast, the examples of optochemical activation using caged amino 

acids summarized here can provide precise spatiotemporal control over specific nodes of 

signaling networks with very high temporal resolution.  

 

Figure 7: Optochemical control of kinase substrate activity and nuclear translocation  

A) Caged STAT1 is unable to be phosphorylated by JAK and thus is localized in the cytoplasm. 

Irradiation removes the caging group to allow phosphorylation and STAT1 homodimerization, 

which induces translocation to the nucleus. B) Irradiation of the caged Pho4 transcription factor 

leads to its export from the nucleus. Changes in fluorescence were measured by a fluorescence line 
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scan of two magnified cells. Scale bars are 10 µm. C) Irradiation of a caged NLS-GFP construct 

induces its translocation to the nucleus. An asterisk in the sequences indicates the caged lysine 

residue. Analysis of the changes in F(n/c) as a function of time after irradiation reveals a time 

constant for translocation of ~20 sec. Figures taken with permission from references 89 (A), 61 (B)  

and 86 (C). 

 

4.3 OPTOCHEMICAL CONTROL OF PROTEIN TRANSLOCATION THROUGH 

CAGED TRANSLOCATION SEQUENCES 

Optochemical control of nuclear translocation was also achieved by site-specific 

incorporation of caged lysine into a classical bipartite NLS (Figure 7C).86 The bipartite 

recognition sequence consists of two basic amino acid domains, each of which helps to form a 

complex with an importin receptor to cross the nuclear membrane.97 An NLS-EGFP reporter was 

constructed to analyze nuclear translocation after UV-induced NLS decaging in live cells. The 

caged NLS-EGFP construct was found to be cytosolic, consistent with alanine mutants; 

irradiation increased nuclear import roughly four-fold when measuring the nuclear-to-cytosolic 

fluorescence, revealing a time constant of ~20 sec (Figure 7C). The NLS of p5386 and SatB198 

were also caged to monitor nuclear translocation; thus, optical protein localization may be 

applicable to any protein of interest.  



 

 24 

4.4 OPTOCHEMICAL CONTROL OF GENE EXPRESSION: CAGED 

RECOMBINASES, CAGED NUCLEASES AND CAGED POLYMERASES 

Several DNA cleaving proteins have been engineered to control sequence-specific strand 

breaks.99–102 These systems have been applied to manipulate genomes, induce gene deletions, 

and gene additions. Optochemical control over gene editing was first demonstrated using the Cre 

recombinase-loxP system.103 A nucleophilic tyrosine in the active site was caged, rendering the 

protein completely inactive until the caging group was removed through UV exposure. 

Spatiotemporal control of DNA recombination in mammalian cells was demonstrated through 

transfection of the purified protein, followed by localized irradiation and a fluorescent readout of 

the simultaneous deactivation of GFP and activation of DsRed. 

 Moreover, a zinc-finger nuclease (ZFN) system has been caged for optical control of 

DNA cleavage through caged tyrosine incorporation at a site crucial for DNA binding.104 The 

caged chimeric proteins consist of an N-terminal domain, with three zinc finger domains for 

sequence-specific DNA binding and a C-terminal FokI restriction enzyme. This artificial 

endonuclease recognizes a 24 bp long DNA sequence and initiates a double strand break. The 

caged ZFN was completely inactive, thereby preventing previously reported ZFN-mediated non-

specific DNA cleavage105 and cellular toxicity.106 A brief UV irradiation restored DNA-cleavage 

activity and application of the light-activated ZFN in mammalian cells was demonstrated by 

using a luciferase reporter. The ZFN recognized a FokI cleavage site introduced within the 

luciferase gene sequence. Light-activation of the ZFN induces a double-strand break, followed 

by homologous recombination that repairs the previously non-functional luciferase gene and 

leads to the expression of an intact enzyme. Transfection of the reporter construct and the caged 

ZFN into HEK293T cells showed no luciferase activity before irradiation, however, UV 
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exposure activates the ZFN to wild-type levels leading to an optically induced, sequence-specific 

double-strand break and luciferase expression. 

 A similar strategy was employed with both a caged DNA91 and RNA85,90 polymerase in 

order to obtain optical control of oligonucleotide polymerization. The T7 RNA polymerase (T7-

RNAp) consists of three classical domains resembling a right hand, a structure that is commonly 

found in other polymerases.107,108 The O-helix of the finger domain is critical for activity by 

facilitating orientation of the incoming nucleotide, and is highly conserved across many DNA 

and RNA polymerases. A crucial tyrosine within the O-helix plays a role in ribose vs. 

deoxyribose nucleotide discrimination, and moving the new RNA strand out of the active 

site.109,110 Thus, caging of this tyrosine allowed for optochemical control of T7RNAp function.90  

A different approach was taken through the site-specific caging of a lysine residue that is 

involved in binding the incoming nucleotide phosphate groups to enable optical control of 

T7RNAp activity in mammalian cells (Figure 8A).85 T7-driven luciferase expression showed no 

activity of the caged polymerase before irradiation and a 10-fold increase in activity after a brief 

UV exposure of HEK293T cells. Additionally, EGFP expression under T7-driven promoter 

control was used to demonstrate spatial control of T7RNAp activity as only illuminated cells 

showed reporter gene expression (Figure 8B). This system was then applied to photochemically 

control RNA interference through T7-driven expression of a small hairpin RNA (shRNA). As 

proof-of-principle, an shRNA targeting Eg5 gene repression was optically triggered (Figure 5C), 

showing an expected binucleated cell phenotype only after UV illumination. qRT-PCR 

quantification of Eg5 mRNA showed a 55% reduction in the case of both wild-type and light-

activated T7RNAp. Overall, these examples illustrate the ability to optically control DNA and 
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RNA editing and expression through site-specific incorporation of genetically encoded 

photocaged amino acids into oligonucleotide-processing enzymes.  

 

Figure 8: Optochemical control over T7RNAp and firefly luciferase 

A) A caged Lys was incorporated into the active site of T7RNAp in mammalian cells rendering 

the polymerase inactive. Irradiation removes the caging group and allows for translation of, e.g., 

mRNA or shRNA sequences of interest. B) Masked irradiation of live HEK293T cells expressing 

caged T7RNAp to drive localized EGFP expression after irradiation. Scale bar represents 200 µm. 

C) In the absence of UV irradiation the T7RNAp is inactive, whereas irradiation produces active 

Eg5 shRNA expression leading to a binuclear phenotype, shown by DAPI-stained nuclei. Scale 
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bars are 20 µm. D) Masked irradiation of live HEK293T cells expressing caged firefly luciferase 

to generated localized luminescence after UV irradiation. Scale bar represents 10 mm. Figures 

taken with permission from references 85 (A-C) and 111 (D). 

4.5 OPTOCHEMICAL CONTROL OF CAGED GFP AND LUCIFERASE PROTEIN 

REPORTERS 

Light-activated GFP mutants have been generated through incorporation of photocaged 

tyrosine into the GFP chromophore.112,113 Incorporation of caged fluorotyrosine analogs enabled 

not only light-activation but also modulation of the electronic properties and thus the 

fluorescence wavelengths of GFP.112 Since the caged tyrosine-GFP mutants still seem to form 

the mature fluorophores,113 photoregulation efficiency may be the result of lower quantum yields 

due to quenching of the fluorophore singlet-state by the nitrobenzyl group.114 

Recently, a caged firefly luciferase (fLuc) was reported through incorporation of caged 

lysine at the active site residue Lys529, thereby blocking binding of ATP and formation of the 

luminescent oxyluciferin (Figure 8C).111 Time-resolved irradiation of HEK293T cells 

expressing a caged fLuc enabled the measurement of intracellular ATP dynamics, in contrast to 

more cumbersome earlier methods.115 In contrast to a constitutively active fLuc, the caged fLuc 

does not disrupt cellular ATP concentrations as it is inactive until UV-induced decaging, 

allowing for easier quantification. These experiments demonstrated the ability for light-activated, 

spatiotemporally controlled gain-of-function studies within live cells in which reporter activity 

can be restored through light exposure. 
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5.0  CONCLUDING REMARKS 

 The optical activation of proteins in live cells and organisms provides high spatial and 

temporal control over biological processes, with a resolution that is theoretically only limited by 

light diffraction. A wide range of protein functions has been placed under optical control, 

enabling precise investigations of their molecular mechanisms in their respective biological 

environments. Unnatural amino acid mutagenesis with caged amino acids and other optogenetic 

approaches using natural, light-responsive proteins and protein domains, have been developed to 

achieve genetically encoded light-activated protein functions. These optical tools have been used 

to induce light-mediated control of ion channels, signal transduction, protein localization, 

transcription, translation, gene silencing, and other fundamental biological processes. The 

incorporation of caged amino acids into protein active sites in live cells has several distinct 

advantages: (1) the very small caging group (150-250 Da) induces no (or only minimal) 

perturbation on the protein structure, enabling precise photocontrol of enzymatic function; (2) 

the required location of the caging group in order to inhibit protein function can be predicted 

based on structural and mechanistic protein data; (3) irradiation cleaves the caging group and 

delivers the wild-type, non-modified, and active protein. The advantages of optogenetic 

approaches using natural light-responsive proteins are: (1) the protein biosynthetic machinery of 

cells and organisms does not need to be engineered to expand the genetic code with an 

additional, caged amino acid; (2) the optical regulation of protein function is reversible, adding 
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an additional layer of control; and (3) optical regulation of protein function has been 

demonstrated in systems as complex as freely moving mice. The evolution of both technologies 

is currently expanding to the control of biological processes in additional model organisms, as 

unnatural amino acid mutagenesis has been demonstrated in flies116 and worms117,118 and 

optogenetic methods have been applied in non-human primates.119–121 Full control of protein 

function with the flip of a light switch holds tremendous promise to help understand mechanisms 

at the molecular, cellular, and systems level with unprecedented spatial and temporal resolution. 
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