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For decades, researchers have been developing algorithms for image processing pipelines.  

Image Processing Pipelines (IPPs) are algorithmic constructions built to iteratively modify an 

input image into a series of abstractions for the purposes of decoding its contents into a higher 

level representation.  There have been many proposed IPPs, varying in both physical 

construction, and in algorithmic paradigm, but by and large these propositions have been based 

in Boolean computation and arithmetic.  Studies and trends have shown that Boolean computers 

are hitting a theoretical ceiling on their performance in terms of transistor size, energy 

consumption/heat dissipation, clock rates, and by extension computational time.  Due to these 

issues, researchers have proposed using non-Boolean approaches, where possible, for various 

computations in common algorithms.  One of the emerging technologies in the field of non-

Boolean computation has been the use of coupled oscillators.  A proposed use of coupled 

oscillators is for pattern matching, which can also be interpreted as a high-dimensional distance 

measurement.  Using an approach based on the use of coupled oscillators as a basic 

computational primitive, this work aims to utilize the benefits gained from this new 

computational paradigm to gain performance in terms of both speed and power with respect to 

IPPs, without decreasing the accuracy of their algorithms. 
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1.0 INTRODUCTION 

Curiosity and the drive to solve problems has been the driving force behind science since 

humankind’s inception.  Since the dawn of computers, a lot of effort has gone into solving 

problems using automated computation and logic.  The drive to make computers smaller, faster 

and more power efficient has led to an insane leap forward technologically.  The technological 

backbone behind computers since approximately 1960 has been the use of transistors.  A 

transistor when used in CMOS circuitry is a switch which allows current either to flow, or not 

flow, between a source node and a drain node depending on the state of the input.  Using these as 

the basis for digital logic design, computers have been built for decades.  Due to the high 

consumer demand for faster and bigger computers, there has been and continues to be 

tremendous funding to improve the performance of transistors.  As a result, transistors are 

currently commercially synthesized nearly 500 times smaller (and as a result faster, since current 

has less distance to travel) since the first microchip was created in 1971 [1] [2] [3].  However, 

using transistors as digital logic building blocks represents just one of many families of 

computational paradigms; another family of computation using devices is called non-Boolean 

computation. 

This work explores the use of coupled oscillators to perform non-Boolean computation.  

By non-Boolean computation, for the purposes of discussion in this thesis, I mean a set of 

computations that are not based on Boolean operators OR, AND, etc.  Algorithms which can 
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make use of such computations include pattern recognition, pattern reconstruction, and analog 

processing.  Applications for the using of non-Boolean computation are vast, but in this work I 

focus on their use in image processing, specifically the use of coupled oscillator models to 

accelerate currently used image processing algorithms. 

1.1 MOTIVATION 

As computers have trended toward a denser placement of circuit elements, many design 

challenges have endangered the scalability of traditional digital architectures and von Neumann 

computational paradigms.  The main problem that has arisen in recent years has been increasing 

power consumption per chip area and by extension an inexorably increasing need for heat 

dissipation.  Economically minded processor designs do not run at state-of-the-art peak clock 

rates because the heat generated by the processor cannot be dissipated efficiently enough to 

rationalize the relatively insignificant gain in performance from these efforts.  Specifically, a 

linear increase in the clock rate of a logical circuit corresponds to a quadratic increase in the 

power dissipation needs [4].  Logically, comparatively compact processors end up having a 

slower clock rate to lessen the energy consumption which generally leads to slower calculation, 

while processors with faster clock speeds end up spending a large budget in solving the design 

challenge of heat dissipation.  Substantial research has been done to solve the problem of heat 

dissipation, in order to allow for the gain in performance by increasing clock speed [5] [6] [7].  

However, current trends suggest that the rate of increase in clock speeds is slowing, and current 

research trends indicate that researchers are predicting a tapering off of the rapid decrease in 

transistor size. 
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This theoretical limitation of current digital hardware technology motivates new research 

which has focused on novel hardware ideas to perform non-Boolean computation for existing 

applications.  Many applications that can make use of non-Boolean computations are located 

within the field of Artificial Intelligence (AI), with the examples of non-Boolean computations 

including analog arithmetic, and pattern matching.  One thing to note about the concept of non-

Boolean computation is that there is not necessarily a deterministic output from a given set of 

inputs, meaning that two sets of identical inputs do not necessarily yield sets of identical outputs, 

but rather sets of close-to-identical outputs.  The justification of using such computations is 

twofold.  First, AI often deals with non-determinism inherent in many algorithms, which attempt 

to model the unpredictable output of the human brain.  Therefore, having potential non-

determinism in the calculations attempting to mimic a non-deterministic algorithm may not be 

disadvantageous. Secondly, many algorithms in Computer Science solve extremely 

computationally intensive problems, in which an exact solution is not possible given the time 

constraints of the application.  To overcome the time constraints of such a problem, researchers 

frequently develop solutions which produce near-optimal solutions in a comparatively small time 

span, though still computationally expensive themselves.  However, these near-optimal solutions 

are guesses themselves, and therefore are not guaranteed to be the perfect solution.  In such 

algorithms, non-deterministic calculation may be used because exact computation in an 

algorithm that does not guarantee an optimal solution may not always be necessary. 

Boolean computation is hitting a theoretical limit as to how rapidly and efficiently the 

digital hardware can perform them.  In contrast, hardware devices capable of performing subsets 

of non-Boolean computations are hypothesized to have a much higher theoretical ceiling in terms 

of computational speed and power efficiency [8].  Therefore, if non-Boolean devices can achieve 
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close-to-ideal results on an AI algorithm with much faster speed and lower power consumption, 

then the tradeoff between exactness of calculation and speed/power efficiency should be 

considered.  For instance, one such application which has been at the forefront of AI research has 

been that of image processing and more specifically image recognition.  Real-time image 

recognition is currently a design challenge for modern researchers in the field, as many image 

processing algorithms are too complicated to perform in real time.  It is hypothesized that a non-

Boolean approach to solving image processing algorithms is an answer to the large power-

throughput product of Boolean approaches [8].  While there have been many proposed non-

Boolean devices, the one researched and discussed in this work is oscillators, and more 

specifically, coupled oscillators.  Oscillators are defined here as any analog device that changes 

value periodically in time consistently and unchangingly when uninfluenced by external factors.  

Recently, researchers have had success in making coupled oscillators act as a pattern matching 

computational device [9] [10].  In this work, I propose a hardware accelerator to accomplish 

common image processing computations using coupled oscillators as the backbone.  

1.2 PROBLEM STATEMENT 

One of the classes of image processing algorithms is called an Image Processing Pipeline.  For 

the purposes of discussion in my thesis, I define Image Processing Pipelines (IPPs) to be 

algorithmic constructions built to iteratively modify an input image into a series of abstractions 

for the purposes of decoding its contents into a higher level representation.  There have been 

many proposed IPPs, varying in both physical construction, and in algorithmic paradigm, but by 

and large these designs have been based with the assumption of using hardware capable of 
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performing only Boolean computation [11] [12] [13] [14].  Using coupled oscillators, this work 

aims to utilize the benefits gained from this novel hardware design to increase performance both 

in terms of speed and in power in the HMAX based IPP I explore, while minimally affecting the 

accuracy. 

 My work provides empirical evidence that inserting models which represent the behavior 

of coupled oscillators into an existing IPP algorithm does not compromise the accuracy of the 

image recognition, while at the same time provides a methodology for future work of inserting 

oscillators into an HMAX IPP design in order to create faster, more power efficient architectures. 

My hypothesis for this work is that coupled oscillator models can successfully perform 

computations that improve the efficiency of the HMAX architecture.  The work that I do to 

prove this is to construct a benchmark IPP based on the HMAX design, and construct a modified 

version of the algorithm which uses coupled oscillator models as a primary computation.  I 

compare the accuracy of the classification percentages between the two implementations to show 

the algorithmic effectiveness of the oscillator.  Finally, I incentivize the oscillator-based 

implementation based upon research evidence that using coupled oscillators will improve 

performance of calculation over CMOS implementations in both speed and power. For this 

thesis, I do not consider the frontend part of image recognition, called saliency, and only 

consider the backend and how to accelerate image classification with oscillators.  These terms 

are defined in the following chapters. 
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1.3 THESIS ORGANIZATION 

In Chapter 2.0 Background and Related Work, I explore previous work related to both 

oscillators and IPPs.  I discuss the general history of IPPs, and how people have gone about 

solving the problems inherent in their design.  Then, I discuss previous implementations of IPPs, 

and how they solve the problem of image extraction and classification.  The next section 

explores the hardware accelerators which have been made in the past to accelerate IPP 

computation.  Finally, I discuss previous work on performing non-Boolean computations using 

oscillators. 

In Chapter 3.0 Using GRBF as an Oscillator DoM Model I discuss models which can 

be used to mimic potential behaviors of oscillators.  I look at both theoretical and empirical 

models, and discuss which model I focus on for the purpose of constructing an IPP based on 

oscillator models. 

In Chapter 4.0 HMAX, I explore a biologically inspired IPP.  As a baseline, I construct a 

benchmark IPP based on a state-of-the-art implementation of an IPP, and then I modify it to use 

oscillator models instead of its traditional computations.  I run tests to tune the parameters of the 

oscillators to perform the algorithm as accurately as possible, so that the classification 

performance is comparable with benchmark IPP. 

In Chapter 5.0 HMAX Modification Discussion, I discuss the potential speedup which 

may arise from these changes, and also the power savings which are expected from using 

coupled oscillators to perform computation. 

Chapter 6.0 Conclusion, Summary, and future work summarizes my work, I draw 

conclusions based upon my research, and I discuss future directions based on the results that I 

found. 
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2.0 BACKGROUND AND RELATED WORK 

In this chapter, I outline previous research that has led to my work.  Specifically, I discuss a brief 

history of image processing, and the problems that people face in the field.  Next, I discuss the 

specific algorithms used in Image Processing Pipelines (IPPs), and explain the implementation of 

the IPP algorithm that I am most interested in for my work.  In the next section, I discuss 

research that was done to accelerate IPPs beyond the speed that a typical CPU can achieve.  

Research has largely been in the realm of GPU and FPGA based implementations, which are 

Boolean-based processing implementations.  This leads to the last section in this chapter, which 

discusses oscillators.  Namely, I focus on theoretical models as well as previous research efforts 

to create functional circuitry to use oscillators as a computational platform. 

2.1 IMAGE PROCESSING BACKGROUND 

For this work, we consider image processing as the method of taking an image, or series of 

images as input and decoding the images into information of a higher level representation.  For 

example, an image contains several objects, and an image processing algorithm tries to detect 

and determine the identity (class) of each object.  As a concrete example, Figure 1 is from the 

Stanford Tower Image Database and shows bounding boxes around objects of interest [15].  In 

general, the IPPs discussed in this work are composed of two fundamental stages of processing: 
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frontend processing and backend processing [16].  The frontend of image processing is the stage 

in which the bounding boxes around objects are drawn and these sections of the image, which we 

call image chips, are extracted (the “where”), and the backend is where the type of object inside 

of the bounding box is determined (the “what”) [16]. 

In the frontend, in order to determine where interesting objects are, a saliency analysis is 

typically done on the image.  The saliency of a region in the image is a loosely defined term 

which means “how interesting is this part of the image?”.  The goal of saliency analysis is to 

have it output high saliency for parts of the image that contain objects of interest, and to have a 

low saliency for as much of the rest of the image as possible.  This way, only the parts of the 

image with high saliency are the objects of interest and are passed to the backend for determining 

what is the object of interest.  There are many ways of performing saliency analysis, two of 

which are discussed in the next section.  The backend is responsible for determining the type of 

object contained in the image chips that are output from the front end.  There are many 

Figure 1 – Sample image from Stanford Tower Datasets with bounding boxes around objects of interest 
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algorithms for performing the backend computations, some of which are discussed in the next 

section. 

2.2 PREVIOUS WORK ON IMAGE PROCESSING 

In this section, I discuss prior research done for image processing including the frontend and 

backend.  The frontend discussion provides context to my work on the backend and gives a part 

of a more complete picture of the construction of an overall IPP.  For the backend discussion, 

which deals with classifying objects from an image, I talk about testing and training the 

algorithm separately, as they are two distinct algorithms.  Semantically, I often call the testing 

algorithm the “feed forward” algorithm, since conceptually we push data through the structure, 

and the training methods are done in a feed forward or backpropagation style, depending on the 

algorithm.  These terms are defined more clearly in the section in which they are discussed. 

2.2.1 Frontend Previous Work 

This section explores the work done on the frontend part of the IPP.  The frontend is responsible 

for taking a large image, and decomposing the image into segments, called objects of interest, 

which, hopefully, are parts of the image that we want to classify.  The idea behind this step is 

many-fold, however the main reason that this step is important is that it decreases the amount of 

work that needs to be performed by the backend of the IPP.  Saliency-based extraction on the 

front end of the IPP creates modularity between determining the “where” and the “what” of 

object recognition.  As I will discuss, this has the benefit of increasing IPP throughput, but also it 
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is a biologically inspired model as the visual cortex in the brain has two separate functional units 

to determine the “what” (ventral stream) and the “where” (dorsal stream) [17] [18].  By 

extracting small segments of the image, called image chips, the saliency detector eliminates the 

need for the IPP feature extractor and classifier (backend) to analyze large sections of input 

images, which has been shown to speedup IPP throughput [19] [20] [21] [22] [23].  As an 

example of saliency detection, Figure 1 shows the bounding boxes drawn around objects of 

interest.  The alternative to this methodology is for every possible section of the input image to 

be classified by the backend, which 1) decreases throughput and 2) puts more stress on the 

classifier to eliminate false positives on object classification.  There have been many proposed 

approaches to performing saliency analysis.  In this section I discuss a model based on center-

surround differences with normalization, and a model based on spatial Fast Fourier Transforms 

(FFTs) to extract conspicuous regions. 
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Some of the early work on saliency, and its use for scene analysis was done by Laurent 

Itti.  This early work can be summarized by his research in [20].  The work is inspired by 

neuroscience in the fact that Itti remarks how studies had shown how primate’s brains 1) are the 

most powerful image processing systems known, and 2) have separate dorsal and ventral streams 

for determining the location of objects and type of objects, respectively.  This inspired his work 

to have a system which mimics a neurological phenomenon of using only local receptors to 

achieve more global coordination.  Using this biologically inspired approach, he built the 

following saliency model, which is shown in Figure 2. 

Itti creates 9 image scales, and uses linear filtering to separate the image into 3 channels: 

a color channel, an intensity channel, and an orientation channel.  This step is shown in the linear 

filtering stage in Figure 2.  The next step is to use the center-surround differences and 

Figure 2 - © 1998 IEEE - general architecture of Itti’s saliency model (Itti, Kock, & 

Niebur, 1998) 
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normalization computation, which is 

calculated based upon a point by point 

difference between the pixel values in 

their respective channels at a smaller 

scale, and surrounding pixels values at a 

larger scale, shown in the “center-

surround differences and normalization” 

part of Figure 2.  A larger sum of 

differences calculated in this way 

corresponds to a larger the saliency at 

this location.  Using multiple pairs of 

scales to calculate the center-surround 

differences improves performance.  This 

computation is performed for all filters, 

and then pooled from scales down to a 

flat saliency model, shown in the two 

steps across scale and normalization, and 

linear combinations in Figure 2.  The last 

step is a summation of the saliencies of 

the filters, and a winner-take-all (WTA)-

meaning “largest saliency wins”-

approach to which chip is looked at first.  

Then, surrounding saliencies in the 

Figure 3 - ©1998 IEEE– Example of the operation with 

natural image.  First, three saliency channels are summed to 

create total saliency, and areas are chosen, and then inhibited 

in cyclical fashion to determine highly saliency regions of 

interest [20]. 

(a) 

(b) 

(c) 

(d) 

(e) 
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saliency map are reduced for this image chip chosen and the process is repeated some number of 

times.  All of the computations discussed are local, until the final WTA calculation.  The WTA is 

modeled as a firing mechanism in a local neuron, which is then inhibited from firing again, 

which has also been shown to occur in the primate visual cortex.  This cyclical WTA process is 

shown in Figure 2 at the bottom of the figure with the “winner-take-all” box and “Inhibition of 

return” arrow. 

As an example, consider Figure 3.  The original input image is filtered into a color, 

intensity, and orientation channels, and Itti creates 9 image scales of each of the 3 channels.  The 

saliency of each small scale pixel of the channels is computed based upon sum of the differences 

between the pixel at the small scale and the pixels surrounding the corresponding location at 

larger scales of the image.  The number of scales to consider and the size of the neighborhood of 

the center-surround computation are parameters of the algorithm.  The saliency maps of each of 

the channels are shown in (a) in Figure 3.  Step (b) represents the next step of the algorithm, 

which sums the saliencies of the 3 channels, condenses the 9 scales into one scale, and 

normalizes the results to create one complete saliency map of the image.  The WTA method then 

chooses the region with the largest saliency as an image chip, which is the yellow circle depicted 

in (c).  Itti then inhibits the saliency map at the surrounding location of the image chip chosen, 

re-normalizes the saliency map, then repeats the process described for (c) some set number of 

times.  Steps (d), (e), and (f) are continuations of this process, which output 3 more areas of 

interest within the original input image. 

Itti’s model solves a lot of problems, in that is gives the backend of an image processing 

algorithm specific locations of interest.  However, the number of locations in the image to 

analyze is data dependent and thus does not provide a data-independent way of determining 

(f) 
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which scenes have greater or fewer number objects of interest.  To solve this problem, work has 

emerged since, which looks at taking spatial frequency analyses to determine the saliency of 

regions. 

This way of determining salient regions is done by performing a FFT analysis on the 

spatial input of an image channel.  The work done by Hou and Zang in [19] is a starting point for 

this work in saliency, which came about 9 years after the work done by Itti.  This work uses an 

observation that analyzing the response swept over the spatial frequency of the input image has a 

characterizable shape for all natural images.  The saliency of a given region is then defined as the 

local difference between this curve and the characterized curve for natural images.  The method 

by the researchers was to average the FFT over many natural images, then using this for a 

baseline, run test images to discover regions of interest in the image, and use these to extract 

image chips. 

The extraction method is similar to the method used by Itti in [20], however, there are 

more defined regions of interest, and because there is no cyclical behavior and inhibiting 

saliency for given regions there can be different numbers of objects of interest in a given image.  

However, this approach is not as biologically driven, and is a more recent development, so less 

research has been done to expand upon this path. 

The work done for saliency detection and image chip extraction in this research is 

interesting, and worth exploring, but is beyond the scope of the work that I do in this thesis.  In 

my work, I focus on the backend of the IPP.  I assume that the input to my algorithm is an 

extracted image chip, with which I have to determine the class of the image chip.  The rest of this 

chapter discusses previous work done in this area and acts as an introduction to the work for my 

thesis. 
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2.2.2 HMAX 

My work is based upon a backend IPP called HMAX.  HMAX, in combination with a classifier 

at the end of the pipeline, composes the backend of an IPP created by Mutch and Lowe [24]. 

The HMAX IPP was developed in 2006 by Mutch and Lowe, who used the biologically 

feasible HMAX feature extractor with a Support Vector Machine (SVM) backend to perform 

image classification [24].  The input to their IPP is an image chip which is a member of a class to 

be determined.  Figure 4 shows the high level overview of the data flow of the IPP.  HMAX is 

broken into 5 distinct layers, Image Layer (IL), S1 Layer, C1 Layer, S2 Layer, and C2 Layer.  

The IL does scale invariance, the S1 layer does edge detection, the C1 layer performs pooling 

and max filtering, the S2 layer does template matching, and the C2 layer performs a max 

operation.  Figure 5 shows these 5 layers in more detail. 

Figure 4 – Data flow of the HMAX-based IPP 
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The IL is responsible for scale 

invariance, which is the concept that no 

matter how large an object is it should 

be recognized by the IPP.  To achieve 

scale invariance, the IL rescales the 

input images to multiple scales, and 

passes the output to the rest of the IPP.  

The number of scales of the images, the 

largest size of an image, and how much 

smaller each subsequent scale are, are all 

parameterizable. Mutch and Lowe’s 

implementation has 10 scales with the 

largest scale being 140x140, and each 

subsequent scale decreasing by a factor 

of 2
1/4

.

Moving up in Figure 5, the S1 

Layer is responsible for the 

preprocessing of the image, where, in 

this case, preprocessing means edge 

detection.  Edge detection is the process 

in which a filter designed to accentuate 

edges is convolved over an input image.  

For HMAX, this specific filter is called a Figure 5 – ©2006 IEEE - Pictorial representation of HMAX 

[24] 
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Gabor Filter [25] [26].  In order to detect various orientations of edges in the different scales of 

the image, 4 angles of Gabor Filters are used each of size 11x11.  These 4 outputs of the edge 

detection convolutions are saved and passed to the next level. 

Moving upwards again, the C1 Layer performs max/pooling operations on the output of 

the previous layer.  This means that between two adjacent scales of the images output from the 

S1 Layer, the C1 Layer passes a max filter over a 10x10x2 region of the pyramid, and 

downsamples by a factor of 5.  The idea of downsampling is a common theme among IPPs, as it 

is biologically inspired from neuron behavior in the brain [27]. 

Next, the S2 Layer performs template matching between known features extracted during 

the training phase, which is discussed later, and each location in the output pyramid from the C1 

Layer.  The result is d pyramids of Degrees of Match (DoMs), were each DoM represents the 

location result of the d template matches on each C1 pyramid output.  The idea is to look for the 

features in any location in the image, to achieve spatial invariance.  Spatial invariance is the idea 

that the location of the object within an image should not matter for detection or classification.  

In other words, an object that is located in the center of the image should be as easily classified 

as an object that is located on the edge of the image.  The DoM pyramids are output from this 

layer and input to the final layer of HMAX. 

Similar to the C1 layer, the C2 Layer performs a maximum operation on all of the DoMs 

in each of the d pyramids output from the previous layer.  The output of this layer is a d 

dimensional vector of values, each representing the maximum degree of match of a feature at any 

location of the preprocessed image pyramid. 

The last step in Mutch and Lowe’s IPP is the use of a Support Vector Machine (SVM), 

which is described in section 2.2.4 Feature Vector Classifiers. 
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2.2.3 Convolutional Neural Networks 

A second type of backend in IPPs can be generally called Convolutional Neural Networks.  

Convolutional Neural Networks (CNNs) are a byproduct of years of research and a solution to 

existing limitations of earlier neural network designs.  There have been many neural network 

designs developed since their inception, such as linear and non-linear neural networks (NNs) and 

CNNs, which each specialize in a particular area of neural computing.  This section introduces 

the ideas behind the inception of neural computing and why researchers continue to research 

them today. 

In 1962, Hubel and Wiesel discovered locally-sensitive, orientation-selective neurons in a 

cat’s visual cortex, which was a hint that larger intelligence can be achieved through smaller, 

narrow sighted individual pieces.  Around the same time, Widrow and Hoff developed the first 

successful adaptive neural network with local receptive fields.  Essentially, this started an entire 

research field in computer science based on the work by Widrow and Hoff inspired by the 

biologically inspired models found by Hubel and Wiesel [28] [29]. 

Over the decades, neural networks have been used as object classifiers, fuzzy logic 

control and decision systems, function mappers, associative memories, image classifiers, face 

detectors, and many more [30] [31] [32] [11] [33] [34] [35].  NNs, while they are nearly 

universal in their uses, are not specialized to one particular function. 

On the other hand, CNNs are a specialized version of NNs that are useful for image 

processing as they inherently include spatial locality in their architecture [30] [14].  Further, 

training that uses CNN backpropagation is robust, and can tolerate a wide range of learning rates 

and filter sizes [11] [36].  CNNs are also useful when preprocessing of an image chip is not 

desired before classification, which is used by many NN implementations of image recognition 
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[11] [37].  CNN backpropagation essentially creates its own feature extractor, thus features are 

not chosen beforehand like in HMAX [14].  Like its predecessors, CNNs are generally based on 

the backpropagation training methodology, which is discussed in the subsequent subsections. 

Here I discuss an implementation of a CNN, which uses several fully connected hidden 

layers of convolutions.  Typically in CNNs, there is one input matrix, with some number of 

neurons per layer, and some number of layers.  At each “C” layer, Equation 1 below determines 

the matrix outputs for a given layer, given the set of inputs at a given layer.  outj is the j
th

 matrix

of the output of the layer, ini is the i
th

 matrix of the input of the layer, and kij is the filter for the

connection from ini to outj.  The symbol ● represents a convolution, and sigm() represents a 

sigmoid function.  This can be implemented as a number of different functions, but an example 

of a sigmoid function is shown in Equation 2, with a plot of this function in Figure 6. 


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Figure 6 – Sigmoid function output shape 

Another type of layer often employed in a CNN is an “S” layer.  S layers are usually 

alternated with C layers.  An S layer pools data by averaging pixels within a certain region by 

filling the kernel of the layer with all ‘1’s and convolving it with the input image.  The result is a 

“blurring” of the input image.  The output of the S layer is a subsampled version of this blurred 

version of the input image.  Typically the image is subsampled by a factor of between 2 and 6, 

depending on the size of the filters.  Note that this layer is not trained and the filter always 

consists of all ‘1’s, since it should always act as an averaging filter. 

2.2.4 Feature Vector Classifiers 

In this section, I discuss three methods used to classify images by their feature vectors: Support 

Vector Machines, Neural Networks, and nearest neighbor classification. 

Support Vector Machines are classifiers that take as input a weight vector of known 

length, and output a class [38] [39].  An SVM classifier consists of a training phase and a testing 

phase.  In the training phase, a standard SVM classifier takes a set of vectors, which are 

si
g

m
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) 

x 
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predesignated into 2 classes.  Also in the training phase, a hyperplane is drawn between the 

points in the two classes.  In the testing phase, an input vector is classified based upon which side 

of the hyperplane the point falls.  For the IPP, the vectors used for classification are the outputs 

from HMAX.  In order to facilitate multiple classes (more than 2 classes), we must create many 

SVMs.  There are many methods, but the method used by Mutch and Lowe [24] is the same 

method that I implement here, called one-versus-one multiclass SVM.  The idea is to build a 

SVM hyperplane between each pair of classes in the test data, then perform a max-wins voting 

strategy in which every individual SVM classifies the input into one of two classes.  The class 

which has the most “votes” after all SVMs have classified the test vector is the class which we 

chose as the label for the image. 

Nearest neighbor classification is where the classifier remembers the feature vectors from 

all of the training images that it has seen in N dimensional space.  The testing phase of 

classification, then, simply performs a distance computation between the test image’s feature 

vector, and all of the training images’ feature vectors.  The training feature vector which is 

closest to the testing feature vector is determined to be the winner of the classification, and the 

testing image is classified as the same class as the corresponding training image. Figure 7 shows 

a pictorial representation of a training set, and the difference between how an SVM classifier 

classifies test images versus how a nearest neighbor classifier classifies test images, using 2D 

training vectors. 
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Figure 7 – SVM classifier versus nearest neighbor classifier: classifies the test input as class B in 2D space 

Neural Networks, or NNs, while used for many things, are often used as classifiers [14] 

[33].  The input is the same as for an SVM, namely a vector of weights, but the output is 

different.  In an SVM, multiclass classification comes from creating multiple SVM classifiers, 

but NN classification directly implements multiclass classification.  The training phase for NNs 

is discussed in section 2.2.5 Training Methodologies, but here I discuss the testing methodology 

for NNs as classifiers.  The specific NN on which I focus in this section has complete 

connectivity between the input vector and output vector, which is common in classification.  The 

input vector is the feature vector which is output from the feature extractor section of the IPP.  In 

this chapter, I discuss two different forms of feature extractors, HMAX and CNNs.  The output 

from both can be thought of as feature vectors.  The output of the CNN is an N dimensional 

vector which represents the confidences for each class to which the image might belong.  The 

connections from the input to the output are the weights that are associated with each of the 

features, with each weight representing how heavily this feature indicates which class it could be.  

Equation 3 determines the output for each of the N output elements from the F input elements.  
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outj is the j
th

 element of the output vector, ini is the i
th

 element of the input vector, and wij is the

weight of the connection from ini to outj. 





F

i

iijj inwout
1

Equation 3 

In general, the connectivity of the NN can be sparser, there can be more layers of 

computation between the input and output, and the transfer function can be non-linear.  In this 

case, it is a fully connected NN with one layer, and the transfer function is a multiplication.  

Figure 8 is a picture of such a network where F is 5, and N is 3.  Each line in the NN graph 

represents a multiplication, with the green output nodes performing a summation of the incoming 

edges. 

Figure 8 – Neural Network classifier with 5 features and 3 output classes 
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2.2.5 Training Methodologies 

In this section, I discuss the difference in methodology between backpropagation and feed 

forward training.  Backpropagation is the training paradigm used largely in NNs and CNNs, 

where the feed forward training is the method which is used in HMAX. 

Backpropagation is the process of setting the state of the IPP by determining how to 

change the weights, filters, or templates in order to correct the error that was found from a run of 

the current state of the IPP.  This is done differently depending on the type of network we are 

training, and there are many ways of performing backpropagation for each network.  In this 

section, I discuss one method of how to perform backpropagation training on the NN I discussed, 

as well as how to use backpropagation to train the CNN I presented earlier. 

For a given layer, the input to the backpropagation for this step is the Δout desired, and 

the current state of the filters and input (which was calculated during the feed forward part of the 

process from the previous layer(s)).  Equation 4 gives the formula for the computation of Δkij and 

Δinj based on the Δouti desired and the current state of the IPP (inj and kij). 

 
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krotoutin
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fij
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 
Equation 4 

Δk is used to determine the new state of the CNN and Δin is used to continue 

backpropagation to the previous layer.  Like in previous equations, the ● denotes a convolution, 

however in this case a ●f denotes a full convolution, and a ●v denotes regular convolution (over 

the valid range).  To compute ●f, a buffer of size n-1 is put on each side of the original input 

matrix, then a ●v convolution is performed on this modified input matrix with the original filter 
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(of size nxn).  The value in the buffered region around the modified input matrix is extrapolated 

from the nearest border on the original input matrix.  In other words, the value of a pixel in the 

border is identical to the closest associated pixel in the original input matrix.  The modified input 

image is of size 2(n-1)x2(n-1) larger than the original input image, which is depicted in FIG. 

Figure 9 – Example of how to modify input image to perform a full convolution operation ( ●f ) 

 Note that a Δinj for one layer is a Δouti of the previous layer.  Each layer computes the 

Δin and Δk for each of the states of the CNN, then simultaneously updates each of the filters (the 

input to a given layer is determined based upon the previous layers’ filters).  The filters are 

updated based upon the following formula. 

ijijij kkk   Equation 5 

α is a number between 0 and 1, and represents the learning rate of the system.  This entire 

process is repeated for each training image, and is called an epoch.  The process can then be 

iterated over for multiple times, which would constitute training the CNN for multiple epochs. 
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In HMAX, the training methodology is a feed forward methodology, which is split into 

two phases.  During the earlier discussion of the feed forward process, there were two pieces 

missing: 1) what templates do we use in the S2 layer, and 2) which SVM hyperplane do we use 

between the classes for classification.  Each of these is done separately. 

First, we determine the templates.  This is done by running all of the training images 

through the IL, S1 and C1 layers, then extracting a certain number of random templates from 

each training image.  For more or less extensive training, the number of extracted templates is 

parameterizable.  Second, using the templates we extract from the first training stage, we run the 

N training images through all 5 layers of HMAX and output N feature vectors to the SVM.  

Using the known labels and N feature vectors, we train the SVM by creating a hyperplane 

between each group of object classes and use these SVMs as the basis for the max-wins voting 

strategy discussed earlier. 

2.3 PREVIOUS WORK ON IPP HARDWARE ACCELERATORS 

In the past, many researchers have explored the possibility of building hardware accelerators for 

IPPs [40] [13] [41] [42].  In general, these have been based on Field Programmable Gate Arrays 

(FPGAs) and Graphical Processing Units (GPUs), which perform massively parallel Boolean 

computations.  In each of the designs, the idea is to save time, not power with these accelerators.  

For performing convolutions, template matching, or calculating the output of a NN, the 

operations in an IPP are extremely parallelizable by nature, meaning that at each layer the 

computations do not rely on the output of the other.  Researchers, therefore, have created 

programs to run on extremely parallel machines to speed up the computation. 
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In [40], Clement et al. developed an accelerator for CNNs by constructing a streaming 

architecture which computes the convolutions in pipeline-fashion. They built the program such 

that they could synthesize their design both in Application-Specific Integrated Circuit (ASIC) 

and FPGA fabrications.  The ASIC implementation of their design achieved a speedup of more 

than 100x their benchmark CPU implementation.  In [13], Al Maashri et. al. created an FPGA 

based accelerator on both a single FPGA platform and multi-FPGA platform to achieve speedups 

of up to 89X.  In [42], Sabarad et al. developed an accelerator for the HMAX algorithm 

discussed in an earlier section.  Their implementations were on both GPU and FPGA, and 

realized an improvement in performance-per-Watt of 14x and 33x respectively with these two 

implementations. 

From past work, it is clear that speedup is indeed possible and that parallelization is 

useful for speeding up computation.  However, due to the size of the accelerators and the 

massive number of computations per second that they are accomplishing, they also consume 

tremendous amounts of power.  For this reason, my thesis explores the algorithmic domain of 

using a lower power accelerator for the computations, while still hoping to achieve similar 

speedup through parallelization and streamlined pipeline architectures. 

2.4 NON-BOOLEAN COMPUTATION WITH OSCILLATORS 

This section explores some of the theory behind coupled oscillators, the models that describe 

oscillator behavior and previous research that have use coupled oscillators to perform 

computation. 
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2.4.1 Empirical DoM Model 

Probably, the first known discovery of the concept of synchronization of interacting 

systems was by Christian Huygens in 1673 [43].  He developed pendulum clocks, and realized 

that when sitting on the same base, the clocks would synchronize to the same phase, or exactly 

180 degrees out of phase.  Since then, many other models of interacting oscillatory systems have 

been created, among them electronic oscillators [44] [45] [46] [47] [48]. 

There has been a lot of research in modeling the energy transfer between coupled 

oscillating bodies, many of them applied to electronic circuitry.  Recently, researchers have 

developed simple circuitry to determine a Degree of Match (DoM) function using coupled 

oscillators [9] [10].  By DoM, I mean the oscillators’ ability to synchronize.  A higher DoM 

indicates a better synchronization (closer to the same phase and frequency), and a lower DoM 

indicates a worse synchronization.  The organization of the system is to have N oscillators 

coupled, where each oscillator’s uncoupled frequency is voltage controlled, meaning that an 

increase or decrease in input voltage increases or decreases the oscillators’ frequency, 

respectively.  The type of oscillator explored in [9] was a CMOS ring oscillator and the DoM 

circuit was an integrator of the rectified coupled voltage.  The researchers discovered that when 

the oscillators were closer to oscillating at the same frequency, the integrator would yield a 

higher value than when they were not at the same frequency.  A sample of the output of the 

oscillator after a fixed time period of the integrator yields a voltage which shows monotonically 

decreasing responses as the input frequencies get farther away from each other.  To more 

precisely model this behavior, the following formula was developed to describe this behavior. 
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Equation 6 – DoM formula found empirically from a CMOS ring oscillator using an integrator on 

the summing node from [9].  The input to this function is a difference between the input vectors: 

TXV  , where X  and T  are the input vectors to the circuit.

Vmatch is a voltage that represents a difference between the vectors of 0, to avoid aliasing.  

Aliasing is the term used for the following phenomenon: when the difference between the 

individual vector elements in X  and T  are constant, then there will be a perfect match even if 

X  and T  are not matches.  Vmatch solves this problem by inputting a voltage that represents a 

difference of 0 between the input vectors, to lessen the effect of aliasing.  α is the variable used 

to determine the strength of the coupling between Vmatch and the other input voltages, which 

represent the difference between X  and T .  Lastly, γ serves the same purpose as γ serves in the 

GRBF function: to affect the spread of the bell curve given by that term. 

For my work here, I use this model, or models which are similar to it, in order to emulate 

the behavior of the DoM circuit created in [9] and [10], so that I can develop an algorithm based 

upon the behavior of coupled oscillators. 
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3.0 USING GRBF AS AN OSCILLATOR DOM MODEL 

In this section I talk about different models representing the behavior of oscillators, and models 

to represent the degree of match (DoM) of the oscillators, and also empirical evidence to support 

using a Gaussian radial basis function as a model for oscillator behaviors [9] [10]. 

A radial basis function (RBF) is any function that takes as input two vectors, and based 

upon their distance from one another, outputs a value.  The distance that is used as input to the 

RBF can be a number of models, including Euclidean distance or Manhattan distance.  In other 

words, the exact location of either of the vectors is not used as the computation for the output of 

the RBF, but only the distance between the two.  Sometimes, an RBF can take as input one 

vector and the other point is assumed to be the origin.  Another possibility is to simply pass a 

distance to the RBF and have it return the value.  Due to its definition, there are many possible 

RBFs, but the one that I focus on for this work is a Gaussian RBF.  A Gaussian RBF (GRBF) is a 

function which scales a distance, d, by a Gaussian distribution as follows. 

)(
2

)( 

d

edGRBF


 Equation 7 

The output of this function is often called a response as a result of the distance between 

the input vectors.  γ determines the spread of the curve, where a larger γ creates a distribution 
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with a larger standard deviation.  Namely, the standard deviation, σ, is equal to 2 .  Figure 10 

shows a GRBF where γ=1. 

Figure 10 – GRBF with a γ=1 

From section 2.4.1 Empirical DoM Model, Equation 5 shows an empirical model for 

representing the degree of match between a set of oscillators.  To validate the idea of using 

GRBF as an estimate for this model, I ran the following experiment to determine the similarity 

between the two. 

For this experiment, I set α=0 from equation 5 and determined if there is a roughly linear 

relationship between GRBF and DoM with respect to the distance between the input vectors.  For 

the purposes of this test, I assumed that the γ for the GRBF function from Equation 7 scales as 

the square of the size of the input vector with respect to the γ for the DoM model from Equation 

6. Figure 11 shows the linear relationship between these two models for input vectors of size 16,

32 and 64. 
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Figure 11 – Scatter plot demonstrating the linear relationship between DoM and GRBF for input 

vectors of size 16, 32, and 64 

As a result of this experiment, it is clear that GRBF is a good model to represent the 

coupled oscillator behavior found in [9].  Since the actual response of other possible oscillator 

technologies is not well known, we will use both Equation 6 (DoM) and Equation 7 (GRBF) as 

two possible oscillator models when we develop our algorithms for our IPP in order to gain the 

potential speedup and power savings that can be offered from the coupling oscillator emerging 

device technologies. 
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4.0 HMAX 

In this Chapter, my goal is to show that oscillator models used as a replacement for traditional 

calculations performed in IPPs is a valid approach.  This chapter explores the parameters of 

HMAX, and discusses how we can adjust them to allow HMAX to perform image classification 

using oscillators as well as the traditional model.  In the next chapter, I discuss the performance 

impact of these changes. 

4.1.1 Data Set 

For this work, I use the Stanford Tower Dataset [15] with the objects of interest pre-extracted.  

From an “assumed” front end, the following table shows examples of the 5 classes used. 

Person Cyclist Car Bus Truck 

Table 1 – Example images from Stanford Tower Dataset used as input to HMAX IPP 
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For the purposes of separating the dataset into testing and training sets, I take 21 images from 

each class and put them in the training set, for a total of 105 images for the training set.  For the 

test set, I take 20 different images per class and put them into a test set.  When I give 

classification percentages, I am referring to the percent of the testing images that were classified 

correctly after the IPP is trained using the training images. 

4.2 BASELINE IMPLEMENTATION 

Using the parameters from Mutch and Lowe’s work from 2006, I was able to construct a 

representation of their IPP using Matlab as my platform.  There are many parameters in the 

layers of HMAX, but using theirs as the default parameters, I was able to achieve a classification 

percentage of up to 97%, and as low as 93%, depending on the templates that are randomly 

extracted during the training phase.  In this chapter, I discuss the various parameters of interest in 

the IPP, as well as a few modifications to Mutch and Lowe’s IPP to construct a benchmark IPP 

based on the traditional HMAX implementation.  The goal of this section is to maximize the 

performance of the benchmark HMAX IPP by adjusting the parameters at each layer in HMAX, 

generate benchmark results, and then create an oscillator based IPP to attempt to reproduce the 

results achieved from the benchmark IPP. 

4.2.1 HMAX Parameters 

For the Image Layer, the parameters are the number of image scales that are chosen and also how 

far apart the scales are.  For this, I wanted to minimize the number of image layers necessary, 
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since for this dataset, scale invariance should not be important due to the common scale of all of 

the input images.  To show this, I ran a test of 10 runs of the IPP with each of 2 through 10 

image layer scales used, and recorded the classification percentage.  Figure 12 shows the 

relationship between number of images layers and the classification percentage.  The error bars 

on the classification percentage represent a standard deviation of the classification percentages 

over 10 runs. 

 

Figure 12 - Number of Scales output by the Image Layer versus Classification Percentage 

 

This result shows that the classification percentage is not directly affected by the number 

of image scales produced by the image layer of the HMAX IPP.  Therefore, in order to reduce 

the amount of computation necessary by my IPP, I reduce the number of scales produced by the 

image layer to 2.  Note that due to the construction of the C1 layer, 2 layers are necessary in 

order for the biologically inspired portion of max filtering and pooling to correctly occur. 

The other parameter is the scale factor between the image scales output from the IL.  

Mutch and Lowe decided to use a scale factor of (1 / 2
1/4

), which I also use in this work.  Due to 
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the lack of scale invariance needed, I kept this factor the same as in their work since it should not 

have any drastic impact on the classification performance of the IPP. 

In the S1 layer, there are several parameters to adjust: the type of filter used (Gabor 

Filter), the size of the filter (11x11), as well as how many filter orientations to use (4).  The type 

of filter determines the pixel values of the filter, which is chosen statically before the IPP is 

trained.  Second, the size of the filter determines how many dot products are necessary for the 

convolution in the S1 layer, as well as the size of each dot product.  Increasing the filter size 

increases the size of the dot product, but also decreases the number of dot products necessary to 

perform.  The number of filter orientations is linearly proportional to the amount of work 

necessary. Following Mutch and Lowe, I kept this parameter constant at 4 orientations for 

rotational invariance. 

The Gabor Filter that I use in this work uses the same filter as from [24], where 

lambda=5.6, and sigma=4.5.  To demonstrate the output of a Gabor Filtering process using 4 

rotational channels each of size NxN, I construct the following table to show how the filter acts 

as an edge detection algorithm with respect to each of the 5 classes.  These images are the same 

images as from Table 1.  Remember that the output from the S1 layer is each of the 4 filters 

passed separately, not the summation of the filters.  The summation output in the last row of the 

table is just a visual illustration of the edge detection ability of the filter. 
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Table 2 – Examples of Gabor Filtering output on image samples from the 5 classes using multiplicative 

convolution 
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Another key parameter in the HMAX IPP is the size of the templates to extract for 

matching in the S2 layer.  For this part, I ran an experiment with the IPP to test the template size 

versus the classification percentage.  Figure 13 shows the results from using templates of size 

4x4 through 16x16.  In Mutch and Lowe’s work, they consider only templates of size 4x4, 8x8, 

and 16x16.  Note that the template sizes are actually NxNx4, which follows from the fact that 

there are 4 edge orientation channels which were output from the S1 layer.  The number of edge 

orientation channels was not explored in this work. 

Figure 13 – classification percentages versus S2 template size for the benchmark HMAX IPP 

This graph shows the average classification percentage for every template size over 10 

runs, with the error bars representing the min and max performances over the 10 runs.  

According to this data with limited runs, the optimal template size is somewhere between 4x4x4 

and 7x7x4.  For the benchmark design, I choose to have a template size of 7x7x4, since this is 

the peak in Figure 13.  Another parameter of the S2 layer affects the IPP during the training 

phase, which is the parameter to determine how many templates to extract from each test image 

96% 

classification 
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during training.  For the benchmark and the modified IPP, I choose to extract 6 templates per 

training image, for a total 6 templates x 105 training images = 630 templates of size 7x7x4. 

The only parameter to consider in the classification layer is whether or not to normalize 

the feature vector data, such that the feature dimensions of training data feature vectors all have a 

cumulative average of 0, and a variance of 1.  According to Mutch and Lowe, this improves 

performance.  For this work I also normalize the data.  My code uses the autoscale feature of the 

Matlab SVM classifier to perform this function. 

Using the parameters chosen above, the benchmark IPP results that I achieve are 

summarized in the following table.  More specifically, I have chosen to have 2 image scales 

output from the IL, use a Gabor Filter of size 11x11 in the S1 layer, a template size of 7x7x4 in 

the S2 layer, and to scale the feature vectors before I train and test the SVM classifier.  Table 3 

summarizes the information for the benchmark IPP.  The classification percentage given in the 

table is the average performance over 10 runs of the IPP.  The differences between runs are the 

templates that are extracted from the training images, since templates are chosen randomly 

during the training phase. 

Benchmark HMAX based IPP 
# IL 

Image 

Scales 

S1 Gabor 

Filter Size 

Convolution 

Type 

S2 γ for 

Template 

Match 

S2 

Template 

Size 

Classifier 

Method 

Scaling 

Feature 

Vector 

Classification 

Percentage 

2 11x11 Multiplicative 2 7x7x4 SVM Matlab 

autoscale 
0.958 

 

Table 3 – Benchmark IPP Parameters and Classification Percentage Performance 
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4.3 USING OSCILLATOR MODELS 

With the benchmark of the IPP set, I now explore places to replace the parameterized operations 

given in Table 3 with parameterized operations that oscillators can perform.  For my oscillator 

models, I use both DoM, which is the model I call the oscillator behavior given in Equation 4, 

and a GRBF model, which is given in Equation 7 in section 3.0 Using GRBF as an Oscillator 

DoM Model.  The places that I replace oscillator models are: 

1. changing the type of computation performed in the convolution in the S1 layer from

multiplication to DoM and GRBF, 

2. changing the S2 template match computation from GRBF to DoM as well, and

3. modifying the Classifier method from SVM to a Nearest Neighbor approach with GRBF

and DoM as the distance metric. 

Within each of these modifications, there are many parameters to adjust in order to maximize the 

performance of the IPP given the modifications.  Each of the modifications for the layers are 

optimized separately, with the rest of the IPP held to the benchmark discussed in the previous 

section.  Then, after an optimization has been determined for each layer, I combine the 

optimizations and discuss the performance of the modified IPP as a whole, using oscillator 

models as the computational backbone at the 3 locations discussed.  The S1 layer modifications 

are discussed and optimized in section 4.4, the S2 layer modifications and optimizations are 

discussed and optimized in section 4.5, and the classifier optimization is discussed in section 4.6.  

Lastly, section 4.7 discusses the results that I achieve with the complete replacement of all of the 

sections of the IPP with oscillator models. 
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4.4 S1 LAYER MODIFICATION 

In this section, I explore replacing the dot product using multiplication in the S1 layer with using 

both a DoM and a GRBF.  The idea is that multiplications are computationally expensive, 

meaning the circuits for multiplications take a long time to compute, and are power hungry.  By 

replacing the multiplications with an oscillator coupling circuit, we should be able to achieve 

both speedup and power savings. 

There are two parameters to tune in the S1 layer.  The size of the Gabor Filter and the γ 

used for the DoM and GRBF oscillator models both impact the performance of the edge 

detection.  Figure 14 shows a sweep of the two variables for DoM and Figure 15 shows a sweep 

of the two variables for a GRBF response computation.  The sweeps are for filter sizes of 5x5 

through 11x11, and γ values on a logarithmic scale between 0.001 and 1.  Figure 16 shows a 

sweep of another range of the two variables to demonstrate a better classification performance 

for GRBF, since the first sweep produced poor performance for a GRBF response.  Each run in 

the figure represents a complete training and testing of an IPP. 
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Figure 14 – Sweep of variables γ and Gabor filter size using DoM oscillator model as a replacement for dot 

product in the convolution in the S1 layer to optimize classification percentage 

Figure 15 – Sweep of variables γ and Gabor filter size using GRBF oscillator model as a replacement for dot 

product in the convolution in the S1 layer to optimize classification percentage 

max = 0.96 

min = 0.86  

Final Classification Performance using DoM in S1: 
Gamma for filter responses in S1 Layer vs. Filter size (NxN) 

max = 0.77 

min = 0.20  

Final Classification Performance using GRBF in S1: 
Gamma for filter responses in S1 Layer vs. Filter size (NxN) 
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Figure 14 demonstrates that the DoM model for oscillators can produce very good results 

when used in place of the dot product in the S1 layer convolution.  There is a wide range of γ 

values, which produce fairly high results, and in some cases it performs just as well as the 

benchmark IPP.  Figure 15 shows that γ does not scale the same way between DoM and GRBF 

and that classification percentage on the same range of γ for DoM and GRBF are not 

comparable.  In order to prove that GRBF can also perform well, I ran another sweep of different 

filter sizes and γ values to produce respectable results for using a GRBF computation as the 

convolutional backbone.  The results of this sweep can be seen in Figure 16.  Showing that either 

model is capable of performing well, while not critical for this work, is a sign that multiple 

different oscillator behaviors can be used in an IPP to produce good results. 
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Figure 16 – Second sweep of variables γ and Gabor filter size using GRBF oscillator model as a replacement 

for dot product in the convolution in the S1 layer to optimize classification percentage 

I found that the γ, filter size, and oscillator model that produced the highest classification 

percent (in Figure 14) was with a classification percentage of 0.96 where γ=0.006, filter size = 

5x5, and the oscillator model was DoM.  However, DoM did not see a large change in results 

depending on the filter size.  Therefore, for the modified S1 layer, I choose to use values of 

γ=0.006, filter size = 5x5, and the oscillator model as DoM for the optimal performance in the S1 

layer. 

min = 0.77 

max = 0.90 

Final Classification Performance using GRBF in S1: 
Gamma for filter responses in S1 Layer vs. Filter size (NxN) 
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As a point of comparison between this model and the benchmark, the following table is 

the result of the same experiment using the optimal parameters that I found that was shown in 

Table 2 using multiplicative convolution. 
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Table 4 – Examples of Gabor Filtering output on samples images from the 5 classes using DoM convolution 
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Looking at Table 2 and Table 4 we can see several advantages and disadvantages to using 

the DoM filtering computation instead of the multiplication-based dot product.  The main 

advantage is that there are well defined edges in each of the filtering orientations, and there 

seems to be less noise on the edges.  However, the difference between the different orientation 

channels when using the DoM based convolution is less than in the dot product based 

convolution, and therefore we lose some information about the orientation of the edges for DoM 

convolution.  Overall, the HMAX IPP performance classifies with about the same accuracy using 

the two methods, as shown by the maximum classification percentage in Figure 14. 

4.5 S2 LAYER MODIFICATION 

For the S2 layer, I concluded in a previous section that using templates of 7x7x4 was the 

optimum template size for this dataset.  Because the template size and the choice of the model 

used for template matching are independent of one another in terms of their effect on the 

classification percentage, I also use 7x7x4 template sizes for the modified IPP. 

Next, I determined the optimal γ value for the DoM and GRBF oscillator models when 

used as template matching distance metrics.  In the original work by Mutch and Lowe, they use a 

value of 2 for γ.  For this reason, for both tests I decided to sweep γ equidistant from 2 on both 

the larger and smaller side of γ on a logarithmic scale.  This gives a range of γ=0.25 to γ=16 

using 7 data points.  Figure 17 shows the results from sweeping γ for GRBF over this range and 

Figure 18 shows the results from sweeping γ for DoM over this range. 
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The figures show that γ has little impact on the performance of the IPP in this stage for 

either DoM or GRBF as the template response function.  The performance plateaus after γ 

reaches a certain magnitude, which corresponds to a closer-to linear region in the GRBF and 

DoM models.  However, the larger the γ, the more precision is necessary in order for the models 

to behave correctly in hardware.  This is due to the fact that a larger γ corresponds to a smaller 

difference between outputs of each of the GRBF and DoM functions for a given difference 

between input vectors.  The tradeoff is to have γ be as small as possible and still have the best 

possible classification percentage. 

Figure 17 – S2 Layer DoM template response, γ parameter’s impact on the classification performance 

96% 

classification 
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Figure 18 – S2 Layer GRBF template response, γ parameter’s impact on the classification performance 

Based upon the results shown in Figure 17 and Figure 18 I decided to use a DoM 

function with a γ of 0.25.  The reason that I choose DoM is for consistency, since I also chose 

DoM for the oscillator model in the S1 layer.  Because GRBF and DoM produced very similar 

results, GRBF could also be used, but for my final design I use DoM as the oscillator model in 

the S2 layer. 

4.6 CLASSIFIER MODIFICATION 

For the classifier, I decided that using a nearest neighbor classifier with oscillator models as the 

distance metric was a good substitute for the SVM considering that I want to use oscillator 

models as much as possible for the computational workhorse of the classifier.  For the 

95% 

classification 
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optimization of this layer, I swept γ over the same range as in the S2 layer.  Figure 19 shows the 

results from sweeping γ for GRBF over this range and Figure 20 shows the results from 

sweeping γ for DoM over this range. 

Figure 19 – Classifier DoM template response, γ parameter’s impact on the classification performance 

With these tests, it is clear that the nearest neighbor classification does not perform as 

well as an SVM, but still does not perform badly.  The maximum classification rate for the 

nearest neighbor classification was 92%.  For the oscillator model that I choose to implement, I 

choose one of the better classification percentage results, which is to use DoM as the model with 

γ=0.25. This is also a choice in order to maximize consistency between the oscillator models 

used in the IPP, since the S1 and S2 layers use DoM as well for the modified version.  Further, in 

the S2 layer, the same γ value of 0.25 was chosen as well. 

92% 

classification 
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Figure 20– Classifier GRBF template response, γ parameter’s impact on the classification performance 

4.7 OVERALL PERFORMANCE AND RESULTS 

The following table gives a summary of the DoM oscillator model-based HMAX IPP, along with 

the data from Table 3 from section 4.2.1.  A * in the table denotes a modification from the 

benchmark IPP.  The dataset for both tests was to use 21 training and 20 test images for each of 

the 5 classes.  The results are based upon an average percentage over 10 runs for each case. 

88% 

classification 
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Modified HMAX based IPP 
# IL 

Image 

Scales 

S1 Gabor 

Filter Size 

Convolution 

Type 

S2 γ for 

Template 

Match 

S2 

Template 

Size 

Classifier 

Method 

Scaling 

Feature 

Vector 

Classification 

Percentage 

2 5x5 * DoM, 

γ=0.006 * 

DoM, 

γ=0.25 * 

7x7x4 DoM 

nearest 

neighbor, 

γ=0.25 * 

none * 0.925 

Benchmark HMAX based IPP 
# IL 

Image 

Scales 

S1 Gabor 

Filter Size 

Convolution 

Type 

S2 γ for 

Template 

Match 

S2 

Template 

Size 

Classifier 

Method 

Scaling 

Feature 

Vector 

Classification 

Percentage 

2 11x11 Multiplicative GRBF, 

γ=2 

7x7x4 SVM Matlab 

autoscale 
0.958 

Table 5 – Summary of oscillator model and parameter modifications to the HMAX IPP, along with the results 

from the benchmark IPP.  A * denotes a change in the parameter from the benchmark IPP 

This table shows that a classification drop was experienced from when we use oscillator 

models as compared to the conventional benchmark IPP algorithm, from an average 

classification percentage of 0.958 to an average classification percentage of 0.925.  In the next 

chapter, I discuss the parameterization of speedup and power savings based upon the IPP 

discussed in Table 5.  The speedup and lower power consumption justifies using a new hardware 

approach, since there is only a slight classification hit from the benchmark IPP to the modified 

IPP where all 3 modifications are considered. 
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5.0 HMAX MODIFICATION DISCUSSION 

In this chapter, I show the potential speedup and power savings achievable by using oscillators as 

replacements for the computations in the IPP that were discussed in the previous chapter.  I show 

this in multiple steps.  First, I parameterize the reduction of computation for both the traditional 

IPP computation and for the modified IPP’s oscillator coupling based computation.  Based upon 

this parameterization, I explore potential speedups depending on the characterization of the 

oscillator coupling circuit.  Secondly, I cite some previous work done to create coupled oscillator 

systems and show the potential for extremely lower power consumption. 

5.1.1 Parameterization of Speedup 

In this section, I determine the number and type of operations that are required in each stage of 

the benchmark IPP, and also the number and type of operations that are performed in each stage 

of the modified IPP.  Using these values, I determine what I call the computational load, which I 

define as the amount of time to perform all of the necessary operations sequentially, for both the 

benchmark IPP and the modified IPP.  Based upon these values, I compute a computational 

reduction from using the modified IPP as opposed to the benchmark IPP. 

It is important to note the significance of computing the computational reduction, as it is 

not an implementation specific metric.  Regardless of the parallelization of the algorithm, the 
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computational reduction is a constant.  This is an accurate measure of how expensive the 

algorithm is to run.  If we have more hardware, then we can perform more in parallel than if we 

only had a single computational unit but the total computational load is identical in either case.  

Further, the data flow and the data dependencies of the benchmark and modified IPPs are 

identical; therefore the potential for parallelization for both algorithms is similar.  For these 

reasons, the computational reduction is an estimate for the speedup from using the modified IPP 

as opposed to the benchmark IPP assuming similar parallelization for the benchmark and 

modified IPPs. 

For the S1 layer, I consider the number of dot products that are computed, and the size of 

each dot product for the benchmark IPP.  In the S2 layer, GRBF computations are necessary in 

the benchmark IPP, so I determine how many multiplications it takes for the distance 

computation, how many square roots are needed, and how many exponential computations are 

used.  For the classifier, the SVM requires a dot product against each of the support vectors, as 

well as a summation and another multiplication [38].   I only consider the dot products however, 

because this is the most computationally expensive part of this step.  For each layer in the 

modified IPP, I consider how many degrees of match are necessary, and the size of each degree 

of match. 

The following table summarizes the number of computations that are necessary for 

computing each layer in the HMAX IPP for both the benchmark and modified versions.  Based 

on these numbers, I create a performance model, in order to determine a computational reduction 

equation based upon how long multiplications, exponential calculations, square roots, and DoM 

calculations take.  These results use the parameters from the previous chapters for the respective 

IPPs, and are based upon the work needed in order to classify a single input image. 
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Benchmark IPP Modified IPP 

S1 Layer 
dot products: 22504 

(1)

filter size: 11x11 = 121 
(2) 

# of multiplications = 2,722,984 
(3) 

DoM calculations: 25120 
(10) 

filter size: 5x5 = 25 
(11) 

S2 Layer 
GRBF calculations: 161,280 

(4) 

multiplications: 31,610,880
 (5) 

square roots: 161,280 
(6)

DoM calculations: 204,120 
(12) 

template size: 7x7x4 = 196 
(13) 

Classifier 
dot products: 10 

(7) 

feature vector size: 630 
(8) 

# of multiplications: 6,300 
(9) 

DoM calculations: 105 
(14) 

feature vector size: 630 
(15) 

Table 6 – Number of computations which are the main computational differences between the benchmark 

and modified IPP.  These are used as the basis for determining the computational reduction of the modified 

IPP.  The superscripts are pointers to the list below to show how to compute the value shown in the table. 

(1) 2 sizes of input images: 112x112 and 120x120 for 

a total of 102x102 + 110x110 dot products (with 

11x11 filters) = 22,504 dot products 

(2) Each dot product is of size 11x11 = 121 

(3) # of multiplications = # of dot products x size of 

each dot product = 22,504 * 121 = 2,722,984 

multiplications 

(4) By GRBF, I mean solely the exponential 

calculation.  There are 630 templates extracted. S2 

layer input is of size 22x22x4. Templates are of 

size 7x7x4, for a total of 16x16 = 256 template 

matches per template. 256*630 templates = 

161,280 template matches. 

(5) # of distance computations = # GRBFs = 161,280. 

# of multiplications per distance computation = 

size of the template = 7x7x4 = 196.  # 

multiplications = 161,280 * 196 = 31,610,880. 

(6) # square roots needed = # distance computations 

that are performed = # GRBFs performed = 

161,280. 

(7) # of dot products = # of SVMs needed for the one-

to-one multiclass SVM classifier.  5 classes 

necessitates 4+3+2+1 = 10 SVMs, for 10 total dot 

products. 

(8) The feature vector size = # templates extracted = 

630. 

(9) # of multiplications = # of dot products x size of 

dot product = 630 x 10 = 6,300. 

(10) 2 sizes of input images: 112x112 and 120x120 for 

a total of 108x108 + 116x116 = 25,120 DoMs 

(11) Each DoM has vector inputs of size 5x5 = 25 
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(12) There are 630 templates extracted. S2 layer input is 

of size 24x24x4. Templates are of size 7x7x4, for a 

total of 18x18 = 324 template matches per 

template. 324*630 templates = 161,280 template 

matches. 

(13) # template match vector size = 7x7x4 = 196 

(14) # DoM computations = # of training images = 105 

(15) The feature vector size = # templates extracted = 

630.

Here, I define the parameters for my computational reduction equation for the modified 

IPP versus the benchmark IPP.  For this equation, I only consider the computational reduction of 

these three layers, and I do not consider the IL, C1 nor C2 layers.  Based upon my software 

simulations in Matlab, the S1 and S2 layers accounted for 93% of the total feed forward run time 

of classification for the benchmark IPP. 

For the purposes of defining computational load performed by the benchmark IPP, I 

consider the term M, which I call the “time to perform a multiplication”.  This is a general term, 

since there are other computations besides multiplications in Table 6. To account for this, I find 

the time necessary to perform square roots and GRBF in terms of M based upon simulation 

results in Matlab and a compiled C++ program.  This way, I have a simple way of 

parameterizing the computational load of the benchmark IPP.  Even though an increase in the 

time for multiplications does not necessarily correlate to increase the time for square roots, 

multiplications are the dominant computations necessary for the benchmark IPP so 

parameterizing the computational load based upon M is a good estimate.  

For this work, I determine that the time for a GRBF = ~123M and time to compute a 

square root = ~32M.  This is based upon a simple test run in the Matlab environment to compare 

their speed of execution.  Note that by GRBF, I mean only the time to compute the exponential, 

since the computational load of finding the distance is based upon the size of the input vectors.  I 
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consider the time it takes to compute the distance separately and base the distance computation 

in terms of the number of necessary multiplications and square roots.  Based upon this 

assumption, the following equation gives the total computational load (CL) in terms of M for the 

benchmark IPP.  This can be calculated as a result of the values in Table 6, in combination with 

the assumption that a GRBF = 123M, and sqrt = 32M.  I compute the computational load of each 

of the layers, and then compute the total computational load in order to modularize the analysis. 

For notational purposes, bm is an abbreviation for benchmark, and mod is an abbreviation for 

modified, with respect to which IPP I am referring. 

MCL Sbm 984,722,21, 

MsqrtMGRBFCL Sbm 280,609,56280,161880,610,31280,1612, 

MCL classifierbm 300,6, 

 classifierbmSbmSbmbm CLCLCLCL ,2,1, 

  MMCLbm 564,338,59300,6280,609,56984,722,2 

Equation 8 – Formulas for determining the computational load of the benchmark IPP 

In order to define the computational workload of the modified IPP, I define two 

parameters: the length of time necessary to perform a degree of match (D), and the size of the 

vector used in computing a degree of match using oscillators (k).  k is an important parameter 

since in actual hardware, arbitrarily large input vectors run into physical limitations for coupling 

from the oscillators themselves.  The amount of work for each layer using this model is the 

number of DoMs, multiplied by the ceiling of the vector size divided by k.  This is based on the 

assumption that a DoM model for larger input vectors can be comprised as a sum of results from 

smaller DoM calculations from input vector sizes.  I compute the computational load of each of 

the layers of the modified IPP, and then compute the total computational load in order to 

modularize the analysis. 



 57 

 

 k
DCL

k
DCL

S

S

196120,204

25120,25

1mod,

1mod,




 

 k
CL classifier

630105mod, 
 

D
kkk

CL

CLCLCLCL classifierSS







































630
105

196
120,204

25
120,25mod

mod,2mod,1mod,mod  

Equation 9 – Formulas for determining the computational load of the modified IPP 

 

Based upon the two computational loads of the modified and benchmark IPPs, I compute 

the computational reduction as a ratio of workloads.  Note that this is a good model for 

determining the speedup since the computational load is independent of the parallelization.  The 

parallelization is similar for the two IPPs, since the data flow and therefore data dependencies are 

identical; the difference between the two is the cost of the computations that need to be 

performed.  The following equations give the computational reduction as a result of using the 

modified IPP instead of the benchmark IPP for each of the layers, and also overall in the IPP 

architecture. 
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Equation 10 – Computational reduction (CR) for each layer, and for overall IPP as a function of the time to 

multiply using CMOS (M), the time for a DoM to complete using oscillators (D), and the number of coupled 

oscillators in the oscillator circuit (k) 

I now consider two parameters for the computational reduction equation as the ratio of 

the time to compute a degree of match versus time to compute a multiply (D/M), and the 

coupling capacity of the oscillator circuit (k), and their effect on the computational reduction. 

To give an estimation of the value for D/M, I estimate the amount of time it takes for 

convergence to happen on STO oscillators, and I estimate the time it takes for an Intel processor 

to execute a 64 bit floating point multiplication.  According to [8], synchronization for the STO 

oscillators take around 6-10 cycles of oscillation, and are able to oscillate “on the order of a few 

– a few tens of GHz”.  This means that we can expect a time to couple of roughly 1-10

nanoseconds, with slightly longer or shorter times also possible.  Estimating the amount of time 

necessary to compute a 64-bit multiplication on a pipelined processor is complicated because the 

latency is not a good estimate of serialized code.  To give a range of values possible depending 

on the program’s implementation, a multiplication will take between 1 cycle and the number of 
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stages in a pipeline.  In past years, Intel processor pipelines have had depths of 20 stages, making 

multiplications take between 0.3ns-6ns, depending on the number of multiplies that need to be 

performed, assuming a clock cycle of ~3GHz [49].  For this reason, I decided to sweep the D/M 

parameter from 0.25 to 32 to account for potential conditions, and I chose k from 4 to 64, and 

output the corresponding computational reduction (CR).  This plot is shown in Figure 21 for each 

of the layers as well as the overall IPP. 

Figure 21 - Plot of the computational reduction of (top left, top right, bottom left, bottom right) S1 layer, S2 

layer, classifier, and entire IPP backend as a function of time to compute DoM (D), time to compute a 

multiplication in CMOS (M), and number of coupled oscillators in the DoM circuit (k).  The black plane in 

each graph represents a computational reduction of 1. 

To demonstrate the computational reduction in each of these graphs, I give eight CR 

values based upon different values for D/M and k in Table 7 from the graphs in Figure 21. 
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 S1 Layer S2 Layer Classifier Overall 

D/M = 0.25, k = 64 434x 277x 24.0x 282x 

D/M = 0.25, k = 16 217x 85.3x 6.00x 87.6x 

D/M = 1, k = 64 108x 69.3x 6.00x 70.4x 

D/M = 1, k = 16 54.2x 21.3x 1.50x 21.9x 

D/M = 4, k = 64 27.1x 17.3x 1.50x 17.6x 

D/M = 4, k = 16 13.5x 5.33x 0.375x 5.48x 

D/M = 16, k = 64 6.77x 4.33x 0.375x 4.40x 

D/M = 16, k = 16 3.39x 1.33x 0.0938x 1.37x 

Table 7 – CR values for three examples of D/M and k parameter pairings 

 

To extrapolate from the results in Table 7, note that D/M has a linear relationship with 

CR given a constant k, and k also has approximately a linear relationship given a constant D/M.  

Table 7 shows the capability of computational reduction between the benchmark IPP and the 

modified IPP, depending on the parameters D, M, and k.  The next table is a summary of the 

results.  The results shown are 1) what percent of the computation is performed in a given layer 

according to Table 6, 2) what is the computational reduction assuming that we have D/M=1, and 

k=64, and 3) what was the classification percentage for this configuration.  The classification 

percentages are taken from the results given in Chapter 4.0 HMAX.  These characteristics show 

how effective coupled oscillators are at increasing performance in each of these layers 

independently of one another. 
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Name of the Layer S1 Layer S2 Layer Classifier Overall 

Relative % of total 

computational load for 3 

layers in benchmark 

4.59% 95.4% 0.0106% 100% 

Computational reduction 

assuming k=64, D/M = 1 
108x 69.3x 6.00x 70.4x 

Classification Percentage 

for Modifying layer(s) 
96% 96% 92% 92.5% 

Table 8 – Summary of the results in this work.  Each column represents a location in the algorithm for a 

modification to the benchmark IPP, and each row specifies a result associated with that modification. 

This table shows that we can achieve a large computational reduction by using coupled 

oscillators instead of the traditional multiplications, square roots, and exponentials.  However, 

this reduction is largely seen by the S1 and S2 layers, and the classifier does not have the same 

benefit.  However, this is acceptable since the computational load of the SVM in the benchmark 

IPP is so small compared to the S1 and S2 layers.  Further, replacing the SVM with a nearest 

neighbor classifier constitutes the largest hit in the classification percentage in the modified IPP.  

If we replace only the S1 and/or S2 layer(s), we observe a comparable classification percentage, 

while at the same time observing the largest computational reduction. 

5.1.2 Discussion of Power Savings 

In a progress report from Intel, there are results which show a large reduction in power for the 

use of coupled oscillators to perform Gabor Filtering over an input matrix [8].  Of the oscillator 

technologies discussed, they research the use of Spin-Torque Oscillators (STOs) and Resonant 

Body Oscillators (RBOs).  These oscillator technologies have been studied as a possible 

backbone for an associative memory architecture [50] [51] [52]. 

Based on the work done in [8], there is evidence to support that oscillator arrays will be 

able to perform 4 orders of magnitude more efficiently than a general purpose processor, and up 
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to 2 orders of magnitude more efficiently than an ASIC accelerator in terms of energy 

consumption.  Further, the work done in [50], [51], and [52] shows further evidence that STOs 

and RBOs show promise in being able to perform the computations necessary for this work. 

Here, I perform some analysis using some assumptions to show the power savings that 

oscillators are hypothesized to offer.  According to [53] and [54], STO oscillators can operate at 

about 0.1-10mA, with an operating resistance ranging between 1-500Ω and an oscillation 

waveform of 1-15GHz.  Assuming a current of 1mA, resistance of 10Ω, frequency of 10GHz, 

and 10 cycles of oscillation before coupling, then this corresponds to 10fJ/bit for oscillator 

coupling.  According to [55], a low power 16-bit multiplier consumes roughly 540μW.  These 

multiplications are performed at 1GHz and thus this corresponds to an energy consumption of 

540μJ, or 34μJ/bit.  This brief analysis demonstrates the several orders of magnitude power 

savings that other researchers have claimed are achievable using these oscillators [8] [50] [52]. 
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6.0 CONCLUSION, SUMMARY, AND FUTURE WORK 

6.1 SUMMARY 

Using an approach based on the use of coupled oscillators as a basic computational primitive, 

this work used the benefits gained from using this new computational paradigm to gain 

performance in terms of both speed and power with respect to IPPs, without decreasing the 

accuracy of their algorithms.  More specifically, this work explored the use of coupled oscillators 

to perform non-Boolean computation.  By non-Boolean computation, for the purposes of 

discussion in this thesis, I mean a set of computations that are not based on Boolean operators 

OR, AND, etc.  My work provides empirical evidence that inserting models which represent the 

behavior of coupled oscillators into an existing HMAX IPP algorithm does not compromise the 

accuracy of the image recognition, while at the same time provides a methodology for future 

work of inserting oscillators into an HMAX IPP hardware implementation in order to create 

faster, more efficient architectures.  The work that I do to prove this is to construct a benchmark 

IPP based on the HMAX design, and also construct a modified version of the algorithm, which 

uses coupled oscillator models as the primary computation.  I compare the accuracy of the 

classification percentages between the two implementations to show the algorithmic 

effectiveness of the oscillator.  Finally, I justify the oscillator-based implementation based upon 
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research evidence that using coupled oscillators improves performance of calculation over 

CMOS implementations in both speed and power. 

6.2 CONCLUSIONS 

My conclusions from this work are three-fold.  First, I conclude that oscillator models are 

definitely able to perform computations within the HMAX IPP structure without compromising 

the accuracy of the algorithm.  I show this result in chapter 4.0 HMAX, and summarize the 

results in Table 5.  Second, I conclude that oscillators effectively reduce the amount of work 

necessary compared to typical HMAX implementation, since they are able to replace many of 

the expensive operations within the IPP.  This result was shown in 5.0 HMAX Modification 

Discussion.  Last, based upon current research trends, this speedup can be achieved while also 

decreasing the amount of power that is necessary for the computations.  This final result is seen 

in Section 5.1.2 Discussion of Power Savings. 

For this work, I proposed three locations within the HMAX IPP of inserting oscillator 

models: in the S1 layer, in the S2 layer, and also to replace the SVM classifier.  Using a DoM 

operation instead of a dot product as the fundamental computation performed in the convolution 

in the S1 layer, I was able to achieve the same accuracy as the benchmark implementation.  

Further, with certain assumptions about the speed of the oscillators, I was able to achieve a 

computational reduction of two orders of magnitude over the benchmark architecture.  In the S2 

layer, I was able to use the DoM model to replace the template response function in the 

benchmark implementation to achieve identical classification percentages as well.  Further, using 

the DoM model to replace the GRBF template response using CMOS based computation I was 
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able to save over three orders of magnitude in computational load.  Finally, replacing the SVM 

had less successful results, with only a maximum of 6X speedup while also reducing the 

accuracy of the IPP from a 95.8% classification percentage to a 92% classification percentage. 

Based upon these results, I conclude that using the oscillator models in only the S1 and S2 layers 

will maximize the performance increase while not compromising the accuracy of the IPP. 

6.3 FUTURE WORK 

Based on my observations and conclusions, there are many future research projects to explore.  

First, this work strongly motivates the future research of using coupled oscillators to perform 

pattern matching, and more general applications of high dimensional distance metrics.  Second, 

this work proves that using coupled oscillators as a computational primitive is effective in their 

use in the HMAX IPP, and constructing a hardware IPP with this design would increase 

performance over other accelerator implementations.  Last, future work should explore using 

oscillator models in other IPP architectures discussed in 2.2 Previous Work on image 

processing.  Convolution is a typical computation performed in several IPPs, including CNNs.  

Because HMAX successfully uses a DoM as a replacement for the dot product in the convolution 

in the S1 layer, there should be a method to implement this modification in CNNs, and other 

IPPs as well. 
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