

UNIVERSITY
 OF
 \qquad
 JOHANNESBURG

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESISI DISSERTATION

Ccreative
 commons

o Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
o NonCommercial - You may not use the material for commercial purposes.
o ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date).

ON AN ILL COMPUTER UTILIZING A STOCHASTIC NETWORK ANALYSIS PACKAGE)
by IAN-GRENHEEIE DOUGLAS KINGON DISSERTATION
submitted in partial fulfilment of the requirements for the degree

MASTER OF SCIENCE
in

COMPUTER SCIENCE
in the

FACULTY OF SCIENCES
at the

RAND AFRIKAANS UNIVERSITY

SUPERVISOR : DR J D RODE

ABSTRACT

This dissertation details the implementation of SNAP, a stochastic network analysis package, as the basis of an in-house computer configuration planning facility. The work was performed at Head Office, Gold Fields of South Africa Limited, Johannesburg, South Africa (GFSA) during the period April 1980 to December 1981.

SNAP was developed by the Institute of Applied Computer Science at the University of Stellenbosch, Stellenbosch, South Africa. The implementation of SNAP at GFSA signalled the first in-house SNAP facility, and the first SNAP implementation on an ICL computer (although implementation had been in progress at another ICL site since 1979).

Although this dissertation is very specific in nature, it is intended to provide an insight into the methodology employed in planning and implementing an in-house configuration planning facility. An overview of multiclass queueing network models and the SNAP package is provided, although no attempt is made to explain the stochastic theory of queueing networks in any detail.

Attention is thereafter focussed on the various phases of the project. Problems were encountered in monitoring performance data, and these are looked at in some depth. The question of workload characterization and the difficulties of producing a satisfactory GFSA classification strategy are then presented:

The model design, calibration and validation stages are explained using the GFSA model. Thereafter, use of the model for prediction purposes is illustrated by means of a number of examples.

Finally, the memory management model is discussed - main memory does not form part of the SNAP model and has to be dealt with as a separate issue.

SINOPSIS

In die skripsie word bespreek die implementeering van SNAP, 'n stogastiese netwerkontledingspakkie, as basis vir 'n konfigurasie -beplanningsfasiliteit. Die navorsing is gedoen gedurende die periode April 1980 tot Desember 1981 te Hoofkantoor, Gold Fields van Suid Afrika Beperk, Johannesburg, Suid Afrika (GFSA).

SNAP is ontwikkel deur die Instituut vir Toegepaste Rekenaarwetenskap te Stellenbosch Universiteit, Stellenbosch, Suid Africa. Die SNAP implementeering te GFSA was die eerste gebruik van SNAP as 'n binnenshuise fasiliteit asook die eerste SNAP implementeering op 'n ICL rekenaar (alhoewel 'n ander ICL installasie sedert 1979 besig is met die implementeering).

Alhoewel die skripsie baie spesifiek van aard is, poog dit om insig te gee in die metodologie wat gebruik word in die beplanning en implementeering van 'n binnenshuise konfigurasie-beplanningsfasiliteit.
'n Oorsig van multiklas-toustaannetwerkmodelle en die SNAP pakkie word gegee. Die teorie van stogastiese toustaannetwerke word egter nie volledig verduidelik nie.

Vervolgens word die verskillende fases van die projek behandel. Probleme wat ondervind is met die versameling van werkverrigtingsdata word bespreek.

Die probleem van werkladingkarakteriseering en hoe om 'n bevredigende klassifikasiestrategie vir GFSA te ontwikkel word dan behandel.

Die ontwerp; kalibrasie en geldigheidstoetsing word aan die hand van die GFSA-model bespreek. Die gebruik van die model vir die doel van voorspelling word verduidelik met behulp van 'n paar voorbeelde.

Laastens word die geheuebestuurmodel bespreek - hoofgeheue vorm nie deel van die SNAP-model nie en moet as 'n afsonderlike onderwerp hanteer word.

DECLARATION

The subject matter of this dissertation is taken from a joint project carried out between Gold Fields of South Africa Limited (GFSA), and the Institute of Applied Computer Science (ITR) at the University of Stellenbosch. The terms of the project were for GFSA staff to perform all the necessary work, only calling on assistance from ITR when required. It is with regard to this project status and due to the fact that I am the only member of the GFSA staff assigned to the configuration planning project, that I am able to declare that the compilation and content of this dissertation is my own work. I nevertheless fully acknowledge the help and guidance I have received from my associates, both at GFSA and ITR.

CONTENTS

Page
Abstract ii
Sinopsis iii
Declaration v
List of abbreviations ix
List of tables x
List of illustrations xi
Chapter

1. INTRODUCTION 1
1.1 Computer configuration planning 1
1.2 The GFSA-SNAP project 2
2. MULTICLASS QUEUEING NETWORK MODELS 4
2.1 Introduction 4
2.2 Queueing network models 4
2.3 Open and closed chains 6
2.4 Multiclass queueing network models 7
3. THE SNAP PACKAGE 8
3.1 Introduction 8
3.2 SNAP operation 8
4. IMPLEMENTATION OF THE SNAP PACKAGE AT GFSA 11
4.1 Introduction 11
4.2.2 Performance figures required for input to SNAP 13
4.2.3 Reps and Mod Amends 17
4.3 Analyzing the performance data 27
4.3.1 Requirement 27
4.3.2 New Report Program 27
4.4 Workload classification 31
4.4.1 Overview 31
4.4.2 GFSA workload characterization findings 32
4.5 Model design 41
4.5.1 Physical model design 41
4.5.2 Functional model design 45
4.5.3 Calculation of model parameters 54
4.5.4 Calculation of workload parameters 61
4.6 Model calibration 63
4.6.1 The calibration process 63
4.6.2 GFSA model calibration 64
4.7 Model validation 77
4.7.1 The validation process 77
4.7.2 GFSA model validation 77
5. PERFORMANCE PREDICTIONS 94
5.1 Introduction 94
5.2 Performance prediction examples 97
5.2.1 JUNO41 configuration 98
5.2.2 Configuration with disc traffic equalized 99
6. MEMORY MANAGEMENT MODEL 119
6.1 Introduction 119
6.2 Memory management theory 119
6.3 GFSA memory model investigations 120

APPENDICES

A JOURNAL MESSAGE TYPE (JMT) FORMATS A-1
B NRP REPORTS B-1
C GFSA JOBNAME STANDARDS C-1
D BACKGROUND PROFILES D-1
E EXAMPLE OF SNAP OUTPUT FORMAT . E-1

REFERENCES

CC Communications controller
CR10 Card reader
DFC Disc file controller
EDS Disc drive
GFSA Gold Fields of South Africa Limited
GPC General peripheral controller
ICL International Computers Limited
ITR Institute of Applied Computer Science
JMT Journal message type
LP Line printer
MC Magnetic tape controller
MPL Multiprogramming level
NRP New report program
OCP Order code processor
OP10 Operator's console
RIRO Roll in roll out
SAC Store access controller
SMAC Store multi-access controller
SNAP Stochastic network analysis package
VM Virtual machine
VSI Virtual store interrupt

LIST OF TABLES

Table
Page
4.1 Resource usage for the period 6/11/80-10/2/81 36
4.2 Workload parameters for the MACRESPOND workload 66
4.3 Workload parameters for the BATCH workload . 67
4.4 Workload parameters for the SYSTEM workload 68
4.5 Results of the first calibration run (scheduling service
rates set to infinity) for the MACRESPOND workload class 70
4.6 Results of the first calibration run (scheduling service
rates set to infinity) for the BATCH workload class
4.7 Results of the first calibration run (scheduling service
$:$ rates set to infinity) for the SYSTEM workload class
4.8 Results of the final calibration run (scheduling service
rates set to infinity) for the MACRESPOND workload class 74
4.9 Results of the final calibration run (scheduling service
rates set to infinity) for the BATCH workload class
4.10 Results of the final calibration run (scheduling service
rates set to infinity) for the SYSTEM workload class
4.11 MACRESPOND workload parameters for session JUN182 79
4.12 BATCH workload parameters for the session JUN182 80
4.13 SYSTEM workload parameters for the session JUN182 . 81
4.14 MACRESPOND validation results for session JUN182 83
4.15 BATCH validation results for session JUN182 84
4.16 SYSTEM validation results for session JUN182 85
4.17 MACRESPOND workload parameters for session JUNO81 88
4.18 BATCH workload parameters for session JUNO81 89
4.19 SYSTEM workload parameters for session JUNO81 90
4.20 MACRESPOND validation results for session JUN081 91
4.21 BATCH validation results for session JUNO81 92
4.22 SYSTEM validation results for session JUNO81 93

Figure

4.1 Program storage occupancy 23
4.2 GFSA system configuration 43
4.3 GFSA preliminary queueing network model 44
4.4 GFSA final queueing network model 49
4.5 Queueing network model for MACRESPOND workload class 52
4.6 Queueing network model for BATCH workload class 53
4.7 Queueing network model for SYSTEM workload class 55
4.8 The calibration process 63
5.1 JUNO41 configuration. Number of terminals vs OCP utilization 101
5.2 JUNO41 configuration. Number of terminals vs SYSOO1 and disc controller utilizations 102
5.3 JUNO41 configuration. Number of terminals vs response time 103
5.4 JUNO41 configuration. BATCH jobs vs OCP utilization 104
5.5 JUNO41 configuration. BATCH jobs vs SYSOO1 and disc controller utilizations 105
5. 6 JUNO41 configuration. BATCH jobs vs response time 106
5.7 JUNO41 configuration. OCP speed vs OCP utilization 107
5.8 JUNO41 configuration. OCP speed vs SYSOO1 and disc controller utilization 108
5.9 JUNO41 configuration. OCP speed vs response time 109
5.10 Disc traffic equalized. Number of terminals vs OCP utilization 110
5.11 Disc traffic equalized. Number of terminals vs SYSOO1 and disc controller utilizations 111
5.12 Disc traffic equalized. Number of terminals vs response time 112
5.13 Disc traffic equalized. BATCH jobs vs OCP utilization 113
5.14 Disc traffic equalized. BATCH jobs vs SYSOO1 and disc controller utilizations 114
5.15 Disc traffic equalized. BATCH jobs vs response time 115
Figure Page
5.16 Disc traffic equalized. OCP speed vs OCP utilization 116
5.17 Disc traffic equalized. OCP speed vs SYSOO1 and disc controller utilization 117
5.18 Disc traffic equalized. OCP speed vs response time 118
6.1 Paging behaviour model 121
6.2 Occupancy - inter-VSI scattergram for JUNO41 123
6.3 Occupancy - inter-VSI scattergram for JUNO41 with outliers removed 124
6.4 Occupancy - inter-VSI scattergram for JUNO81 125
6.5 Occupancy - inter-VSI scattergram for JUNO81 with outliers removed 126
6.6 Occupancy - inter-VSI scattergram for JUN182 127
6.7 Occupancy - inter-VSI scattergram for JUN182 with out1iers removed 128
6.8 Occupancy - intermVSI scattergram for JUNO41, JUNO81 and JUNI82 129

1. INTRODUCTION

1.1 COMPUTER CONFIGURATION PLANNING

The level of sophistication of computer technology is rising at an ever increasing rate. The manager of a large computer installation is faced with the unenviable task of trying to determine the extent of the processing power required for his company's needs. More and more he is looking towards some formal methodology or tool to assist him in his decision making.

The efficient management of a large computer system is no easy task. Firstly, the system is made up of so many components that it is difficult for any one person to fully understand all their functions. Secondly, these components are interconnected to form a large number of co-operating subsystems which cannot be managed in isolation, since the failure or inefficiency of any one subsystem can affect the rest of the system.

In order to understand and control such a system, the analyst can make use of the process of modelling. Work in the area of computer performance modelling has advanced rapidly in recent years. It involves identifying the important components of a system and studying the inter-relationships between them. A mathematical model then expresses these relationships in the form of equations which can be solved to produce various performance indicators.

The theoretical development has emerged in the form of a number of commercially available modelling packages. This dissertation explains how such a package was installed as the basis of an in-house computer configuration planning facility at the Head Office of Gold Fields of South Africa Ltd (GFSA), Johannesburg.

1.2 THE GFSA-SNAP PROJECT

The need for a configuration planning facility at GFSA was recognized as long ago as 1979. Many avenues were investigated. This included the evaluation of a number of computer modelling packages. Finally, the decision was taken to install one of these packages - the Stochastic Network Analysis Package (SNAP).

SNAP was developed by a university research institute, namely the Institute of Applied Computer Science at the University of Stellenbosch, Stellenbosch, South Africa. It is a multiclass queueing network analyzer, i.e. the jobs that make up the computer workload can be divided into a number of groups or classes depending on the amount of each system resource they have utilized. This makes SNAP a most versatile modelling package.

The main reason behind GFSA's decision to install SNAP, as opposed to any other package, was due to the fact that SNAP was currently being installed at another Johannesburg site. This site employs the same make of computer as does GFSA, namely an ICL 2900 series computer. SNAP had never before been installed on such a computer. GFSA was assured that all the problems associated with an ICL-SNAP installation had been resolved. As it turned out, this was not the case. These problems are discussed further in chapter 4.

In the end, installation was finalized at GFSA prior to the completion of the project at the other ICL site. This resulted in GFSA being the first ICL site to install SNAP as the basis of a configuration planning facility.

This dissertation is intended to demonstrate the methodology employed in installing a package such as SNAP in a commercial environment. After a brief overview of multiclass queueing network models, the various phases of the GFSA project are discussed in detail. Chapter 5 then gives an insight into the
way in which the facility may be used for predicting machine performance.

2. MULTICLASS QUEUEING NETWORK MODELS

2.1 INTRODUCTION

It is not the intention of this dissertation to present the theory of queueing network models. The emphasis is on the implementation of a configuration planning facility and not on the underlying mathematical theory. A brief overview of the subject is given here in order to clarify what is to follow. Further detail regarding the various aspects of the modelling process are given in chapter 4 when discussing the GFSA model.

2.2 QUEUEING NETWORK MODELS

Modelling involves extracting all the important components of a system and representing them in terms of a mathematical model. The relationship between the various components must also be identified and catered for in the model. Not all of the system components justify being included in the design. The modeller has to decide which ones contribute significantly to the system resources, and which ones will only serve to make the model unnecessarily complex.

A queueing network model is simply a set of inter-connected queues with their associated service centres. Each service centre represents some component or aspect of the system where service can be obtained. Various service disciplines can be defined, which will determine the manner in which the service centre can give a customer service. These are explained further in section 3 .

The easiest way to define a model is to present it graphically.

A queue/service centre combination is presented thus:

QUEUE SERVER

The service given by a centre may be such that no queueing ever results. The service centre is then presented thus;

SERVER

Once the network model has been designed it needs to be analyzed. This is done by expressing the model in terms of a set of equations and then solving these equations to produce various performance indicators. Apart from being rather tedious, this phase is often beyond the capabilities of the average modeller. However, many computer packages are available commercially which make model solving a pleasure. One simply has to design the model, express it in terms of a set of model parameters, feed these parameters into the package being utilized and wait for the results of the analysis to be produced.

One such package is the Stochastic Network Analysis Package (SNAP) developed by the Institute of Applied Computer Science at the University of Stellenbosch. It employs the stochastic approach to queueing network model solving. Basically this means that all arrivals to the various centres are regarded as having an exponential distribution. The model parameters do not specify the total time spent at each centre by a job passing through the system, as does the 'operational analysis' approach. Different solution methods require different model parameters. Section 4.5
explains the model design process in depth and, together with section 4.6 , discusses what parameters are required when using the SNAP package.

Naturally, having analyzed the model, we expect some results that reflect the effects experienced by the queues and service centres. The characteristics of a queue will depend on:

- how frequently customers join the queue;
- how much service each customer requires;
- the service discipline of the service centre.

Various performance indices exist to explaiti the performance of the queue/service centre combination. The most useful indicators are:

- the time each customer spends in the queue;
- the length of the queue;
- the utilization of the service centre;
- the throughput rate of customers through the centre.

2.3 OPEN AND CLOSED CHAINS

Jobs can circulate through the network using an 'open' or a 'closed' chain. An open chain implies that jobs arrive at the network, entering at one or more of the service centres. They proceed around the network receiving service at one or more of the centres and finally depart once processing is complete. For the network to be stable the arrival rate must obviously equal the departure rate. However, the number of customers in the system at any one time need not be constant.

Closed chains maintain a constant number of jobs circulating through the network. There are neither arrivals nor departures. The multiprogramming level, or concurrency, is determined by one of the model parameters that define the model.

2.4 MULTICLASS QUEUEING NETWORK MODELS

A multiclass queueing network model can cater for more than one 'class' of job. In other words, the jobs that make up the workload can be separated into groups depending on the type of resource usage they display. Each group forms a separate chain in the network. These chains are run simultaneously so that the effect of one group on another is correctly reflected in the model.

The advantage of a multiclass network is that different service rates can be defined at each centre for each of the classes. A set of performance indices is produced for .each class as well as for the network as a whole.

Each chain can be defined using a number of classes. This means that a job can obtain one amount of service at a centre, leave it and, some time before returning to that centre, change class and thus receive a different amount of service the second time round.

Just how the multiclass queueing network model is defined will depend on the application that one is trying to model. The point that is being made here is that multiclass models show enormous versatility in the variety of applications that can be modelled. The artful designer is almost limitless in the manner of systems he can implement.

3. THE SNAP PACKAGE

3.1 INTRODUCTION

The Stochastic Network Analysis Package (SNAP) was developed by the Institute of Applied Computer Science at the University of Stellenbosch. It is a multiclass queueing network analysis package based on the stochastic theory of queueing networks.

3.2 SNAP OPERATION

An intuitive understanding of the way in which SNAP operates is as follows. Customers are routed around a network that contains a finite number of service centres. The routing is performed by means of a set of branching probabilities, defined for each class in the network. A customer of class x will therefore have a certain probability of being routed from centre A to centre B for all classes x and for all centres A and B defined in the network. The branching probabilities may have a value of zero. This simply means that customer classes can be routed around a subset of the service centres in the model.

Once a customer has joined the queue at a centre, it remains in the waiting line until selected for service according to the service discipline defined at that centre. SNAP permits four types of service discipline. These are:

- TYPE 1 : First-come-first-served (FCFS). All the customer classes that visit the centre must have the same exponential service time distribution.
- TYPE 2 : Processor sharing (PS). The service capacity of
the centre is shared equally among all the customers present at the centre. If there are n customers at the centre, then each receives service at a rate of $1 / n$ of its own service rate. Each class may have a distinct service time distribution. The distribution is general, but must have a rational laplace transform.
- TYPE 3 : Infinite server (IS). Each customer receives service immediately upon arrival as if it were the only customer at the centre. The service of each customer is therefore independent of the other customers at the centre. Each class may have a distinct service time distribution. The distribution is general but must have a rational laplace transform.
- TYPE 4 : Last-come-first-served pre-empt-resume (LCFSPR). Each new arrival to the centre pre-empts the currently executing customer and pushes it on to a LCFS stack. The newly arrived customer may in turn be pre-empted by a later arrival. When a customer's service is completed, it leaves the centre and the customer on top of the LCFS stack regains control of the centre to resume its service. Each class may have a distinct service distribution. The distribution is general, but must have a rational laplace transform.

SNAP requires only the centre type and the mean service times for each class to be input. SNAP itself produces the service time distribution from these two parameters.

The concept of open and closed chains described in section 2.3 and the soncept of multiclass chains discussed in section 2.4 are both catered for by SNAP.

This brief outline has served to introduce SNAP and the various facilities it offers. Further insight into the operation of the package will be gained in chapter 4.

4. IMPLEMENTATION OF THE SNAP PACKAGE AT GFSA

4.1 INTRODUCTION

Implementation of a configuration planning facility using a package such as SNAP involves a lot more than simply loading the SNAP programs onto the computer. We require various parameter values to feed into SNAP. These values include parameters defining the present system configuration on the one hand, and parameters defining the present workload on the other. The former are relatively easy to determine, whilst the workload parameters are dependent on the type of monitoring available on the computer. The ICL 2900 series does have a sophisticated monitoring facility, but it does not supply all of the figures required by SNAP. Obtaining these figures proved to be the biggest headache and almost caused the GFSA-SNAP project to be terminated. Determining just what was and was not being monitored turned out to be a major part of the project. It is therefore dealt with in some detail in the following sections.

Of course, monitoring the performance data is not the only work required. There are many phases to the implementation of the SNAP package and they can be broken down as follows:

- monitoring performance data
- analyzing the performance data
- designing the model
- model calibration
- model validation
- memory management model

The memory management model is in fact a separate issue, and one which cannot be satisfactorily resolved using the ICL virtual
machine concepts. It is discussed further in chapter 6.

The above phases are required simply to get the package into a usable form for a particular installation. The actual use of the facility for configuration planning or performance analysis is dealt with in chapter 5.

4.2 MONITORING PERFORMANCE DATA

4.2.1 ICL's journals system

Job processing under ICL's VME/B operating system is done by creating a self-contained unit, called a virtual machine (VM), for each job. This logical address space contains all the code and data structures to make the VM appear as an independent machine. In reality the operating system code is not duplicated but the same physical memory resident copy is mapped by the address translation hardware into the logical address space of each VM, thereby making it appear to be part of each VM. Each VM gathers resource statistics whilst it is running. These statistics may be stored in special files, known as journals.

The information is written to the journals using predefined message formats. The data is logically grouped according to the type of statistics being logged. Each logical grouping may contain one or more message formats, and is identified by a unique journal message type (JMT) number. Message type numbers fulfil two important roles:

- they provide a means of classifying messages;
- they make possible the selective routing of certain types or classes of message to relevant journals.

This latter facility is provided by the following mechanism: When a procedure generates a JMT message to be placed in
a journal, it does not specify the journal itself, but supplies only the JMT. By means of a special table, called the journal map, the system determines to which journals the message of the indicated JMT should be written. One message may therefore be written to more than one journal, depending on how the journal map has been defined.

The JMT specifies the logical grouping but does not identify one particular message format (eg. a JMT 16 records file transfer statistics. However, there are many different JMT 16 formats, depending on the type of file involved). In order to determine the exact format we make use of what is known as the PETE text number. PETE stands for Print Extended TExt and is used to select the identifying text that should accompany the statistical information when it is written to the journal. The JMT number and PETE text number together identify a particular message format. A program that processes the journal can therefore make use of these two numbers to identify the nature of the data item. (Examples of JMT message formats are given in appendix A).

4.2.2 Performance figures required for input to SNAP

The performance data required as input to the SNAP package depends to a large extent on the way in which the model is designed. The model itself is discussed in detail in section 4.5. However, for the purpose of this section a list of the parameter values required is given below. Explanations, where necessary, are given after the list.

- session identity and date;
- session start and end times;
- identifying data for each job (usernames, jobnames, and profiles);
- job start and end times;
- OCP time per job;
- VSIs per job;
- number of transfers to each disc drive per job;
- average size of transfers to each disc drive per job;
- number of transfers to each tape deck per job;
- average size of transfers to each tape deck per job;
- number of RIROs per job;
- main store occupancy per job;
- number of records spooled per job;
- average concurrency (i.e. MPL) per workload class;
- number of jobs in the session per workload class.

VSIs are virtual store interrupts - i.e. page faults. They access what are known as secondary storage sites. The GFSA system has two secondary storage sites defined on two separate discs. If the VM quota sizes are set too low, many VSIs will be incurred, causing a definite bottle-neck situation.

RIRO stands for 'roll in roll out' and refers to the moving of an entire VM either into main store (roll in) or out to a secondary storage site on disc (roll out). The RIRO site may or may not be the same as the VSI site. GFSA has a separate RIRO site. All terminal jobs are RIROed once every interaction. All background jobs are only RIROed when there is contention for store.
'Records spooled' refers to records being printed on a printer. ICL's printers are run in the same way as batch jobs, the printer jobs being known as spooler jobs. Only the spooler jobs print records and so only those jobs will collect statistics on the number of records spooled. A user job that lists a file is in fact requesting the spooler to list the file.

The data produced by the VME/B monitoring facilities was found to be inadequate in two areas. The first was concerned with the collection of file statistics, while the second was concerned with the main store occupancy of VM's (i.e. jobs) running in the machine.

VME/B monitoring only provides a total file transfer figure per job. It does not separate this total amount into those transfers that went to each device (i.e. disc drive or tape deck) or into each file accessed. It also only provides the number of block transfers, and not the blocksize. Without the blocksize one cannot determine the actual amount transferred. In order to model the file traffic to each device for each job, one needs the following information:

- job number;
- user name;
- file name;
- device identification;
- number of blocks transferred;
- block size (in bytes).

It is important to have this information for each job so that one may classify the jobs into behavioural groups (i.e. workload classes - see section 4.4).

4.2.2.2 Main store occupancy

Knowledge of the main store occupancy of each job is required so as to model the paging behaviour of jobs. It should be noted that this is a separate issue and does not form part of the model to be analyzed by SNAP. SNAP represents each entity in the system as a centre providing service for customers one at a time. Memory does not behave in this way. It is a resource shared, and competed for, by a time varying number of jobs. It cannot be successfully included in the model, although a centre is present to represent the action of the
scheduler. This is discussed further in section 4.5 (model design) and in section 6 (discussion of the paging model).

VNE/B does in fact produce a main store occupancy figure. However it is calculated on elapsed time rather than on OCP time, and hence gives a fairly meaningless figure (VMs are rolled out of main store whilst idle and spend a lot of their lives on secondary storage). The OCP integral therefore gives a much more reliable indication of the time a VM spent in main store. It was therefore required that a change be made to the way in which this occupancy figure was calculated, so as to represent an integral of the occupancy over OCP time.

Therefore, two changes were required to be made to the VME/B monitoring procedures. It was not until May 1981 that these changes were accepted as being adequate for the SNAP package. Reaching that stage was really a 3-way effort: ITR defined the required changes, ICL wrote the code to effect the changes and I determined to what extent these changes had been successful. This was the most critical phase of the whole project - without the breakdown of the file transfers we could not have successfully built a model to represent the configuration in sufficient detail. The project was very nearly aborted on this point. The following section therefore looks at the changes in some detail and explains the manner in which I went about establishing their degree of effectiveness.

4.2.3 Reps and Mod Amends

One is able to 'bend' the VME/B operating system by means of what are known as 'mod amends' (module amendments) and 'reps' (repairs!). These are simply pieces of code that are inserted each day at load time to modify certain areas of the operating system's code. The additional performance data that was required was obtained through the use of these reps and mod amends.

4.2.3.1 File Statistics

Two types of journal messages are produced when a file is accessed. A JMT 62 is produced at file open and a series of JMT 16's are produced at file close. Two reps and a number of mod amends had to be written.

The first rep was designed to log the VOLUME IDENTITY, BLOCKSIZE and SYSTEM REFERENCE NUMBER (SRN) of the file as a JMT 62. The SRN is reused once a file is closed and in itself does not provide sufficient information to match the JMT 62 with the JMT 16^{\prime} s occurring at file close. Additional information, namely the job number, is required. The job number forms part of the standard message header, which is normally inserted into every journal message. However, this message header can only be inserted above a certain level in the operating system's hierarchy (namely ACR level 5). The JMT 62 is logged by a call at an ACR level less than 5, and hence the second rep had to be written to force the standard message header onto the JMT 62.

Apart from these two reps, module amendments had to be - written. These mod amends were applied to each of the following record access mechanisms (RAMs) of VME/B:

- the serial RAM
- the indexed sequential RAM
- the hashed random RAM

Three changes had to be made to each of these RAMs:

- there is a macro, SET FILE_OPTIONS, in VME/B's SCL (system control language) which allows a user to select whether or not he wants file information to be produced in his job journal. By setting various parameters he can determine the extent and nature of the file information produced. As we wanted the file information (i.e. JMT $16^{\prime} \mathrm{s}$) to be produced for all files a mod amend was required to ensure that the JMT 16's would always be produced, irrespective of any user setting. (Note that obtaining journal messages is a two-stage event: the JMT must first be PRODUCED and secondly it must be MAPPED (i.e. routed) to the journal(s). We were thus able to produce JMT 16's and route them to the performance journal without incurring a lot of garbage in the users' job journals. Those users that wish to have the file information printed in their job journals can still accomplish this by means of the SCL macro SET_FILE_OPTIONS).
- for multi-section files the logging mechanism did not automatically switch on the logging when file sections were switched. A mod amend was therefore required to ensure that this did happen.
- a file is uniquely identified by its fully qualified filename together with the absolute generation number. However, this information is not available to the RAM. But, while the file is
open, it is uniquely identified by its SRN, and this is available to the RAM. The mod amend therefore inserts the SRN into one of the JMT 16 messages which are produced when the file is closed.

Determining the success of the changes

There were two aspects to determining whether the reps and mod amends were performing their required functions correctly. The first was concerned with whether they were actually logging the data, message headers, and so on to the relevant messages. The second concern was, given that the logging mechanism was working, whether the figures being logged were in fact correct.

The first aspect was easily verified. One simply had to look at the messages being logged to a performance journal to see whether the data was in the right place. This was indeed the case.

Checking the validity of the figures was somewhat more complex. A series of short sessions had to be run, in a very controlled environment. This meant learning how to operate the computer, so as to be able to carry out the tests in the middle of the night when no one was around to interfere. The sessions had to be short so that the messages in the performance journals would be easy to follow. All the jobs that were run, interactively and in background, had to be carefully recorded. The sizes of the files that were transferred to disc or tape, or loaded into main store, had to be predetermined, so as to be able to verify the transfer figures reported in the performance journals. Needless to say, tests had to be performed on all types of files, using all the utilities that could invoke file transfer activity (for
example: COPY utilities, EDIT routines, facilities that access the catalogue such as library lists, and so on).

The multitude of tests that were performed will not be presented here. What is of importance are the results and their impact on the monitoring as a whole. The data that was recorded was deemed to be of a sufficiently high standard for the project to continue. However, we need to be aware of the areas where it was not adequate and the extent of the inadequacy.

Obseryations involving file transfer statistics

The first fact to become apparant was that all loader activity was assigned an SRN of 1 in the JMT 62 at file open. To add to this sad state of affairs, no loader activity ever produced any JMT 16 s at file close to say how much had been transferred. The JMT 62 does log the volume identity, and so we are able to proportion the loader accesses amongst the volumes (taking one JMT 62 to represent one access).

Two utilities were found not to produce any JMT 16 s at file close. They are the COPYLIBRARYTOTAPE and the DUPLICATEBLOCK utilities. The former is very seldom used, so this slight deficiency could be ignored. However, the DUPLICATEBLOCK facility is used fairly often and is thus more serious. The reason that these two utilities fail to produce JMT 16 s is that they do not make use of the RAMs when accessing files. They are part of a series of older utilities that are being phased out. Although this discovery seemed to represent a major setback at first, it was found that none of the other utilities that were tested displayed this type of behaviour. A significant number of DUPLICATEBLOCKs are performed each day. However, when viewed in terms of
the total traffic, it was felt that this inadequacy would be acceptable for the level of accuracy required.

There was one more inaccuracy related to the amount of traffic transferred. When one lists a file or lists the contents of a library to a terminal, one has the option of 'breaking out' or 'quitting' the list before it has completed. When this happens no JMT 16 s are produced to record the traffic that was incurred. It is difficult to quantify just how much traffic we could be losing in this manner. It was decided that this inaccuracy could be ignored.

Determining job transfer figures

The state of the monitored data therefore dictated that the transfer figures for each job had to be obtained from three sources. A loader transfer figure, a file transfer figure (for the instances where the reps and module amendments functioned correctly) and an 'other' transfer figure (to cater for those transfers not recorded by the reps) would need to be determined. (Refer to appendix A for a description of the JMTs mentioned below).

- Loader transfers

Abstract

The JMT 9 gives a breakdown of the total disc transfers for the job. This breakdown allows one to determine a total loader block transfer figure. This figure is then split amongst the disc drives using the JMT 62 loader access proportioning described above. The blocksize may or may not be taken into account as well. GFSA users tend to use the default 2 kb blocksize for most applications, and so only the access figure

was used in developing the GFSA model.

- File transfer figure

The file transfer figures are those figures that are successfully recorded in the JMT 16 s at file close. The JMT 16s are matched with the JMT 62 to determine which volume was involved. The JMT 61 gives the drive on which that volume was mounted (see appendix A).

- 'Other' transfer figure

The remaining transfers which did not record the JMT 16 s can be obtained from the JMT 9 produced at job end. As with the loader figure, this is a total transfer figure for the job. It has to be split according to the JMT 62 proportioning.

For each workload class it is therefore possible to determine a total transfer figure for each disc drive.

4.2.3.2 OCP-integral

Figure 4.1 below illustrates the storage occupancy of a program during its execution lifetime in the computer:

Figure 4.1 Program storage occupancy

The average storage occupancy of the program while in execution is calculated by weighting a particular storage occupancy value by the OCP-time for which that occupancy lasted. It can be seen in figure 4.1 that
occupancy O_{1} lasted from t_{0} to $t_{1}, 0_{2}$ from t_{2} to t_{3}, and so on. In other words the occupancy O_{1} lasted for a length of time $t_{1}-t_{0}, O_{2}$ for a time $t_{3}-t_{2}$, etc.

The OCP-time occupancy integral is thus simply:
$I_{O C P}=o_{1} *\left(t_{1}-t_{0}\right)+o_{2} *\left(t_{3} t\right\}_{2}+\ldots o_{n}^{*}\left(t_{n}-t_{n-1}\right)$.

The total OCP-time is:
$T_{O C P}=\left(t_{1}-t_{0}\right)+\left(t_{3}-t_{2}\right)+\ldots\left(t_{n}-t_{n-1}\right)$

The average execution occupancy, which is the quantity required, is computed from

Average Occupancy $=\mathrm{I}_{\mathrm{OCP}} / \mathrm{T}_{\mathrm{OCP}}$

This change was effected fairly easily by writing one rep. Problems of overflow and levels of significance were experienced, but eventually a version was produced which seemed to be stable. However, trying to prove that the rep produces a correct figure is virtually impossible, as is discussed below.

Determining the functional correctness

Although each type of $V M$ is given a certain quota, this is only a minimum guaranteed size for that VM. When the machine is busy each job will be restricted to its set quota. If this size is not adequate it simply means that a number of VSIs will be incurred, swopping pages in and out of main memory as they are required. On the
other hand, if the machine is idlc, or there are very few jobs being run, then those VMs that are busy executing are permitted to use up any main. store that is available. Pages will only be swopped out when no memory remains unused.

This may make for a very efficient main store strategy. However, it makes it very difficult when trying to determine whether a main store occupancy monitor is functioning correctly or not.

The method employed to test the occupancy rep was as follows.' A fortran program was written to initialise a large 2 -dimensional array to zero. The compilation listing showed that the program size was 402 kb .

The program was first run during the day while the machine was fairly busy. Many runs were executed. The occupancy figures obtained ranged from about 200kb to 500 kb . The VM size was set at 216 kb . Of course, these figures raised a lot of doubt as to the validity of the measurement.

The test was then run at night in a dedicated machine. Running the program on its own (i.e. no other programs in the machine, apart from the operating system) produced figures as high as 1800 kb . It seemed almost unbelievable that so much extra software should be drawn into the $V M$ to run what was a very simple program.

The final test was to run four versions of this program. They were different in that the array sizes were varied. The resulting program sizes were 200 kb , $400 \mathrm{~kb}, 600 \mathrm{~kb}$ and 800 kb . When run singularly they again produced what seemed to be meaningless figures. However, when a number of each version of the program
were run together (a maximum concurrency of 12 jobs was used), the figures produced represented the respective quota size of the profile that the job was running in (a number of different quota sizes were used). This was the first really positive evidence that the main store occupancy figure was working correctly.

The occupancy figure only affects the paging model (see chapter 6). It does not affect the basic model to be analyzed by SNAP. In view of this, it was decided to accept the figure as a reliable indicater until proved otherwise.

4.3 ANALYZING THE PERFORMANCE DATA

4.3.1 Requirement

Once the performance data has been collected in the performance journal, it needs to be analyzed and the parameters extracted for input to SNAP. Basically this entails writing a program to read the performance journal, extract the relevant information and print it out. There is no great mystery surrounding this programi. However, the facilities it provides are important to what follows. Therefore a brief explanation of its facilities will be provided here.

4.3.2 New Report Program

The New Report Program (NRP) was written by ITR. ICL do have a couple of programs that analyze the performance journal, but these were not adequate in that they obviously do not cater for the information provided by the reps and mod amends. Hence the 'new' in New Report Program.

The NRP is only applicable to ICL machines running under VME/B. However, the ideas are universally applicable. The NRP consists of a set of COBOL programs that read the JMT messages in the performance journal and produce the following four reports:

4.3.2.1 Summary Report

This report gives a one line entry for each job run in the session being analyzed. It includes the following data;

- user name
- job name
- profile
- job start time
- elapsed time
- ocp time
- ocp time including system overhead
- machine speed in thousands of instructions per second
- vsis per second
- user pages per vsi
- system page transfers
- file transfers
- user disc transfers
- user tape transfers
..... = magnetic media transfers per second
- director transfers
- occupancy in kilobytes
- number of riros

Not all of these figures are used in calculating the model parameters, and further explanation of these figures will only be given where required.

4.3.2.2 Device Usage Report

The device usage report is concerned with the transfers to the disc drives and tape decks. For each device, it provides:

- the device address;
- the volume identity (where removable volumes have been used, the identity of the volume last mounted is recorded);
- the average blocksize (in bytes);
- file accesses and transfers;
- loader accesses;
- other accesses.

The motivation behind the three types of accesses has been explained in section 4.2.3.

The loader and 'other' transfers are determined from the statistics report. These transfers are divided up according to the percentage of the total accesses that each device represents. This is of course, not strictly true. One should take the blocksize into account as we11. However, it was felt that sufficient accuracy could be achieved using a pure percentage split, as was proved to be the case once the calibration stage was reached (see section 4.6).

4.3.2.3 Statistics report

The statistics report lists various figures together with the average and variance for each value. We are interested in the following figures:

- ocp time;
- ocp utilization;
- vsis;
- director transfers - total (used for loader transfer figure);
- I/O transfers - (discttapé)-files (used for 'other' accesses figure);
- records spooled (for the printer workload);
- nember of riros;
- elapsed time (used when calculating the MAC arrival rate).

4.3.2.4 Concurrency distribution

This report gives the time and percentage of time that the multiprogramming level for this workload class was
at each level. It also gives an average concurrency, and this is the figure we are interested in.

Examples of each of these four reports are given in appendix B.

The NRP has a number of selection facilities. In other words one may select (or exclude) certain jobs from a session based on the following criteria:

- user name;
- job name;
- profile;
- start and end times for a selected session;
- store occupancy - min and/or max values;
- ocp time - " " " "
- vsi rate - " " "
- I/O rate - " " " "

By employing various combinations of these selection criteria one can divide the jobs in a session into workload groups. In other words, one can group together all jobs which exhibit similar behaviour (eg. OCP bound jobs, I/O bound jobs) or one can extract all jobs belonging to a certain user, say, to see just what tendencies his jobs exhibit. Obviously there are many combinations that one could try, so it is important to be realistic when classifying the total workload into workload groups. The GFSA workload does not lend itself very well to such classification. A fair amount of effort went into the whole question of worklvad classification and this is discussed in detail in section 4.4 below.

4.4 WORKLOAD CHARACTERIZATION

4.4.1 Overview

The function of workload characterization is to identify the various workload types and to specify their resource demands. A workload type can be defined as a set of jobs with similar resource requirements. Each workload type is then represented in the network model by a unique workload class. The number of customers in each workload class is set to the concurrency or multiprogramming level (MPL) for that class, as determined by the concurrency report of the NRP (see section 4.3.2.4).

The facilities offered by the NRP have been explained, in particular the facility to select jobs according to certain criteria. Having decided on which jobs to select for a particular workload type, the NRP will produce a summary report, device usage report, statistics report and concurrency distribution for the subset of jobs that qualify for that workload type. A series of selections is made, one for each workload type to be represented in the functional model. So, once one has decided on the criteria to be used in selecting the workload types, it is a simple matter, to obtain the workload parameters for input to the model. The problem, obviously, is to define just what is to constitute each workload class. This is no easy task. It is influenced by such diverse items as:

- hardware being used;
- software being used;
- jobname standards;
- programmer discipline;
- office hours.

I delved quite deeply into the whole question of workload characterization, using the BMDP statistical package to plot
scattergrams, histograms and cluster analyses. The results were fairly unsatisfactory in that most users performed a variety of work (eg editing, compilations, program runs - in background as well as via a terminal) but usually used the same job code when logging in to the system, thus giving no indication of the actual work performed by that job. Below is a summary of my findings which indicate the unsatisfactory conclusion I was forced to reach - namely that for the purpose of building a GFSA model, we could not effectively break the workload down any further than into three classes. These are a BATCH workload class, a terminal (MAC) workload class and a SYSTEM workload class comprising such jobs as the printer, card reader and operating system control jobs. (MAC is short for MACRESPOND and stands for multi-access-responder).

4.4.2 GFSA workload characterization findings

4.4.2.1 Bottom-up approach

This approach implies arranging the jobs into subsets according to their resource usage. One would typically take a daily session, although a group of sessions may show more clearly defined clusters. On the other hand, it may be that the workload varies depending on the day of the week, so one would need to be careful that one does not obscure such daily trends when combining many sessions together.

Basically, the bottom-up approach involves:
> - deciding which measurement to use in forming the sets (eg. file transfers, OCP time, VSI rate, OCP/elapsed time, or any combination of the available measurements);

- deciding on the number of sets (classes) to be created;
- producing a list of the allowed ranges for each measurement appearing in each set, as determined by the cluster analysis package, to be used as selection parameters for the NRP.

Abstract

The bottom-up approach would produce the most accurate classification of different workload types. However, I see it more as a once off exercise to be used for the purpose of performance improvement, rather than in a configuration planning exercise. It assumes that we accep.t. that the resources being utilized are necessary and makes no attempt to identify just which jobs or users are responsible for bad machine usage. One can of course do a separate analysis to see which jobs were responsible for each type of resource usage, but what is implied here is that it should be possible to do the workload characterization dynamically and to prepare the parameters automatically for input to SNAP.

4.4.2.2 Top-down approach

The available data must be analyzed in an attempt to define various sets. However, in this approach, these sets must be labelled by job identity information (and not by the data as in the above approach) such as:

- user name
- user number
- system code
- accounting code
- job code
- job identification
(The GFSA jobname standards are described in appendix C).

One could also use some broader form of set labelling such as a division between background and interactive terminal jobs. Or a wider split for the background jobs could be achieved using the batch profiles (see appendix D). Another possible division could involve the various sections within the computer division. GFSA has the following sections: ISD (Information Systems Development), OR (Operations Research), SW (Software, or Technical Support). This division could be achieved using parameters in the job name. Once the set labels have been defined, it is a relatively simple matter to separate the jobs into their respective classes using the NRP.

This approach has an additional advantage. It is fairly easy to model the effect of a new system on the machine resources. We will need to know enough about the new system in order to classify it according to our predefined sets. It could be inserted into a set in three ways:

- increase the concurrency of that class in the model;
- duplicate a job already in that set;
- try to estimate resource usage (this will maybe require discussion with the systems analyst) and then insert a dummy job into the data.

4.4.2.3 Application of the above theory to the GFSA system

As mentioned above, the bottom-up approach would give the most accurate results in terms of response time and - showing where the bottlenecks occur. One could build a model and make predictions concerning changes to the configuration, but it would not be as easy or realistic
to make changes to the workload parameters. When one is working in a commercial environment, one has to be able to relate one's figures to managerial understanding. This implies making changes to the workload in terms of jobs or systems being run on the machine, not purely in terms of the resources being used. VSI's and RIRO's are Greek terms so far as managers are concerned (I should explain that managers in GFSA are moved from division to division in order to gain experience in all aspects of the company. This does mean, however, that the DP manager is very often not from a DP background). The bottom-up approach is certainly a valid approach, but not in the GFSA context. Nevertheless, I did run an exercise to extract all the high resource usage jobs. The resources used were: OCP time, virtual store disc transfers, magnetic tape transfers, VSIs and main store occupancy. The following results were apparant:

- the line printer and master operator jobs were present in most runs. This is deceptive as these jobs run for the whole session and therefore their readings are bound to be high.
- table 4.1 shows those usernames and/or jobnames that could be associated with high resource usage. The figures given indicate the percentage of jobs labelled with that username/jobname combination that displayed the resource usage indicated at the top of each column, eg. 16% of al1 CCGEOLDB jobs used more than 150 seconds OCP time.

Some job types could be specifically identified eg. :SYSTEM.B8140PRPS4070. This type of job would be easy to separate into a specified workload class.

JOB	$\left\|\begin{array}{ll} \text { TOTAL } \\ \text { NO } & \text { OF } \\ \text { JOBS } \end{array}\right\|$	OCP TIME			VSIs			TAPE TRANSFERS			VIRTUAL STORE			MAIN STORE		
		GREATER THAN:														
		150	250	500	2500	4000	9000	5000	6000	10000	30000	50000	75000	50	100	150
CCGEOLDB	473	16,0	11,1	7,4	13,1	5,1	0,0	1,5	1,5	1,3	20,0	10,9	6,1	7,4	1,5	1,1
CSSTFR	404	12,1	7,7	3,7	10,9	4,2	0,0	11,1	9,7	3,5	18,9	11,0	6,9	3,7	0,5	0,0
ENGINEER	227	4,2	0,9	0,4	1,3	0,4	0,0	12,2	11,5	6,6	15,1	11,8	6,2	0,0	0,0	0,0
ORANB	92	10,9	8,2	4,3	2,2	0,0	0,0	0,0	0,0	0,0	13,8	9,1	6,8	1,1	0,0	0,0
ORORE	244	14,3	11,3	4,9	5,7	0,8	0,4	0,0	0,0	0,0	34,2	22,7	16,3	1,6	0,4	0,0
ORROCK	96	12,5	11,5	9,4	3,8	0,0	0,0	0,0	0,0	0,0	19,7	11,2	10,7	2,1	0,0	0,0
ORSTATS	98	5,4	3,4	1,1	13,3	5,2	2,1	4,3	3,0	3,0	11,3	7,6	3,4	3,2	2,1	0,0
MIS BP	315	35,5	27,5	16,5	20,7	13,3	0,0	41,4	29,1	25,3	2,6	1,3	0,6	23,9	12,9	1,3
MISBP. UP	106	76,6	58,6	43, 2	52,4	33,9	0,0	73,0	69,2	59,4	0,0	0,0	0,0	62,8	30,2	2,8
SYSTEM. B8140PRPS $4 \emptyset 7 \emptyset$	43	88,7	88,7	86,3	42,6	30,8	0,0	58,5	56,9	56,9	0,0	0,0	0,0	91,2	91,2	91,2
SYSTEM. B1 \emptyset ¢OP	311	0,0	0,0	0,0	0,0	0,0	0,0	83,6	80,8	62,5	0,0	0,0	0,0	0,0	0,0	0,0
TOTAL JOBS IN SAMPLE	13273	1119	626	251	1352	672	163	627	561	416	2225	1311	762	589	208	81
$\frac{\text { JOBS IN SAMPLE }}{\text { TOTAL JOBS }}(\%)$		8,4	4,7	1,9	10,2	5,1	1,2	4,7	4,2	3,1	16,8	9,9	5,7	4,4	1,5	0,6

TABLE 4.1 Resource usage for the period 6/11/80-10/2/81
Figures shown are percentages $: \frac{\text { No of jobs in classification }}{\text { Total jobs of that identity }}$

However, in most cases the username was the only criteria that could be used for identification, eg. there was nothing in the job identifiers of the 16% of CCGEOLDB jobs mentioned above that could be used to differentiate these jobs from the other 84% of CCGEOLDB jobs. In other words, if we decide that the percentage of CCCEOLDB jobs showing high OCP usage is great enough to warrant a separate class of CCGEOLDB jobs, then we would have to include all the CCGEOLDB jobs in the class. (If we checked the actual OCP time for each job before assigning it to a class, we would be reverting to the bottom-up approach).

There are three aspects to consider when deciding on a separate class:

- the cut-off point for the data (150 seconds in this case);
- the percentage of jobs of this type greater than the cut-off point (16% in this case);
- the size of the sample ($8,4 \%$ in this case).

It should also be noted that table 4.1 only shows nine usernames. GFSA, at the time when this analysis was performed, had defined 82 usernames. In other words only 11% of the users showed some form of abnormal resource usage. The other 89% all showed similar job tendencies. Obviously these percentages are directly related to the sampling levels taken in the analysis. Nevertheless, it was clear that the bottom-up approach was unsuited to the type of class formation we were aiming at.

The top-down approach has the advantage of being
intuitively sound so far as management is concerned. There are a few clear cut divisions that one can make, and it is a simple matter to select the jobs falling into each division using the selection facilities offered by the NRP. For example, the two character system code (see appendix C) can be clearly related to the various sections within the computer division. We could therefore select jobs according to the sections by selecting on system code. Whether this is a valid selection to make is of course a totally different question.

The GFSA system allows for the following top-down divisions to be made:

- Profiles. The five background profiles (see appendix D) would form an ideal basis for dividing the batch work. I use the word 'would' advisedly. The problem is that the profiles are rarely used in the manner for which they were designed. The programmers tend to use whichever profile is available. A further point is that we are only interested in the batch workload in so far as it affects the terminal response times. This is really in the area of performance tuning which is done by adjusting the scheduling parameters. It would only serve to make the model unnecessarily complex if one were to set aside five workload classes purely for the batch workload.
- Sections. As I mentioned earlier, this is a nice intuitive division to make. However, in practice I found that there were not many differences in the workload produced by each section. The exercise performed here was to divide the data into the following sections: SW (software i.e.

```
technical support section), ISD (information systems development), OR (operations research), production jobs and 'other' (eg. interactive programs run by the Financial Division). The jobs in each of these five sections were then further subdivided into MAC and batch.
```

The only differences of any note were:

> - high magnetic tape transfers for production jobs and SW batch jobs;
> - high disc transfers (i.e. to user files) for OR MAC jobs;
> - high magnetic media transfers (i.e. total disc traffic) for ISD batch jobs.

The data used in this exercise spanned a period of five weeks. It can therefore be accepted that the workload is reasonably stable from one section to another.

- Batch, MAC and 'other'. This seems to be the neat way of dividing the workload into classes. I feel that this is still a rather broad form of classification. However, one can use the NRP to select a set of jobs and then investigate such things as inter-VSI time. One dces not always have to take the analysis through SNAP. Therefore, for the broader requirements of configuration planning it is sufficient to build the model on these three classes. There is really no point in struggling to form several classes from a workload that does not display varying characteristics.

Apart from the brief reference to production jobs above
nothing has been said about separating production and development work. This is because the GFSA production jobs are run almost totally after hours, and we are not too concerned with this period of the day. The only requirement is that the production runs be completed by 0800 the following morning. Therefore the analysis of the workload is restricted to the period 0800-1630. Any production jobs that do 'creep' in before 1630 are treated in the same way as the normal batch jobs.

To conclude, the question of worklnad characterization has been dealt with fairly thoroughly. However, the method of operation at GFSA does not lend itself to an ideal classification strategy. However, the three work types finally chosen proved to be a satisfactory basis for the functional model, and as discussed in the next section, resulted in rather encouraging calibration results.

There are two main aspects to designing a model to represent a computer configuration. These are the physical model design and the functional model design. The former is concerned with representing the hardware configuration of the computer installation as a set of service centres connected in accordance with the physical connections of the real system. The latter involves the functioning of the system, how the components interact, their relationships and any software or workload idiosyncracies.

4.5.1 Physical model design

The procedures used in physical model design are relatively straightforward. One starts with a diagram that includes all the hardware components of the computer system. These are then translated into a queueing network model with a number of centres representing each important component of the system. It is not necessary that every component or device be included in the queueing network model. Some devices experience no processing delay, whilst others, such as control units, do not form part of any of the logical routings in the system. An item such as main memory can be used by a number of jobs at the same time, and in itself does not represent a delay. Jobs may have to wait for store to become available, but this is then modelled by a service centre which represents the scheduler. Once a job is in store and executing, memory plays no part so far as the queueing network model is concerned.

Note that a service centre need not represent a hardware component of the system. The scheduler mentioned above is an obvious example. This means that we may find ourselves adding more centres during the functional design phase (see section 4.5.2).

4.5.1.1 GFSA physical model design

The GFSA configuration is shown in figure 4.2. It shows all the major components of the system. Figure 4.3 shows the corresponding queueing network model that represents this configuration. Many of the items in figure 4.2 are not included in figure 4.3 and brief explanations are given below.

The SMACs (Store Multi-Access Controllers) and the SAC (Store Access Controller) do not form part of any logical routing as discussed earlier. They are thus not included in the model.

The timesliced nature of the $O C P$ is represented by a service centre with a service discipline of PS (see section 3.2).

The DFCs (disc file controllers) and disc drives are represented by FCFS service centres. At first glance it may seem odd that the DFCs appear after the disc drives. This is because the delay at the disc drive centre is representing the seek time. The delay at the DFC represents the duration that the channel is busy. In other words, a seek may be performed on one disc while the channel is busy transferring data to or from another disc, and this is the effect we wish to model.

The GPC (general peripheral controller) causes no significant delay and is not included in the model.

There are six tape decks, all connected to two magnetic tape controllers (MC). The system is designed such that a job wishing to access a tape simply chooses whichever ME is available, or becomes available first. The only limiting factor is then the number of MCs and this is modelled by having two service centres each handling

Figure 4.2 GFSA system configuration

Figure 4.3 GFSA preliminary queueing network model
half of the magnetic tape transfers using a FCFS service discipline.

The operators' station is not included in the model as a service centre. However, the workload imposed by the operators' station is included in that the console is run by a job, called the 'master operator responder' job. This job behaves in esscntially the same way as any other job so far as gathering statistics is concerned. It is included in the SYSTEM workload.

The line printers are run by jobs as well. They are fired off from the operators' station in the same way as a batch job would be, and collect statistics in the same way as well. These jobs also form part of the SYSTEM workload.

The card reader is ignored. The statistics are gathered in the normal way, but no provision is made for the card reader job in the model. Its impact on the machine is so slight that it would only serve to make the model unnecessarily complex.

The communications controller and terminals are not modelled explicitly as service centres. The MACRESPOND workload is modelled as an open chain and this is discussed further in the following section.

4.5.2 Functional model design

There are two aspects to functional model design. The first is concerned with the logical routings within the queueing network model, which is really a software refinement of the 'hardware' model discussed above. The second concerns the definition of the various classes to be used. The three workload classes (BATCH, MAC and SYSTEM) each form one chain in the model. Each
chain may consist of one or more classes, and it is the definition of these classes that is of concern here. These two aspects will be explained by describing each of them in terms of the GFSA model.

4.5.2.1 Logical routings

The first addition to make to the model design as presented in section 4.5.1, is to include a termination centre. It will have a routing equivalent to the number of jobs that completed, and will be given a very large sefvice rate so that no delay will be experienced by jobs passing through it. These jobs are routed straight back into the network and serve to maintain the MPL or concurrency at a constant level.

The second addition to be made is to include a service centre to represent the scheduler, or more specifically to represent the delay for jobs waiting to get into main store. This time is not measured. The service rate for this centre is in fact the parameter that we vary during the calibration stage, in order to get the model to produce the same performance indices as given by the measured results. The validation stage will then show whether or not the value set for this parameter is valid.

The model is now essentially complete, and is in fact in a usable form (apart from the class definitions which are discussed below). However, we can make it a lot more 'user friendly' by making some more additions. As it stands at the moment we will need to calculate branching probabilities from the OCP to each disc drive, each magnetic tape controller, each line printer and to the termination centre. If we then wished to
change just one value, for example the number of jobs completing, we would need to recalculate each of these branching probabilities. This is made simpler and more usable by the use of 'micro centres'. These centres are characterized by a very fast service time and so do not invoke any delay. The following micro centres are defined in the GFSA model:

- UTERM : this is the termination centre described
above;
- UVSI : this micro centre represents all the VSIs (i.e. page faults): VSIs access what are known as secondary storage sites. There are two of these sites, on two different discs, so the UVSI centre effectively serves two disc drives;
- UDISC : all the disc traffic, excepting VSIs and RIROs, are routed through this centre. From this centre the traffic can then branch to any of the eleven disc drives;
- URIRO : the RIRO traffic passes through this centre. There is only one RIRO site, so this traffic is then routed directly to the disc drive containing the RIRO site;
- UTAPE ; the magnetic tape trafinic is routed through this centre to the tape controllers, with the traffic being equally split between the two controllers;
- UPAPER: the records that are spooled proceed through this micro centre. They are then equally distributed amongst the three printer centres.

The model now contains all the service centres and
routings that are necessary in order to define the GFSA system configuration. The final version of the queueing network model is shown in figure 4.4.

4.5.2.2 Definition of workload type models

As explained earlier, the three workload types that are implemented in the GFSA model are the BATCH; MAC and SYSTEM workloads. In some instances different service rates are required for each workload type. It goes without saying that a separate set of branching probabilities is required for each workload type. The methods used to calculate the branching probabilities and service rates are essentially the same for each workload type, and are discussed in sections 4.5.3 and 4.5.4.

Each workload type is represented by one or more classes in the mode1. The final model shown in figure 4.4 needs to be refined for each workload type, in some cases even removing certain service centres and routings.

MAC workload

The MAC workload type is modelled using classes 1 and 2. It is modelled as an open chain. An arrival processing - departure sequence represents one terminal interaction. Processing is as follows: the user presses the SEND button. A short burst of processing power at the $0 C P$ is required to initiate 'roll in', i.e. to move the VM into main store. After this a mixture of OCP -processing power, disc transfers and tape transfers is required until the interaction is complete. The VM is then 'rolled out' onto secondary storage and the OCP

Figure 4.4 GFSA final queueing network model
has a final burst before sending the invitation to type back to the user. (This sequence only includes those aspects that are included in the model. A true sequence would also reflect the action of the communications controller, scheduling priorities, etc. The effect of these items is effectively modelled by the adjustment of the scheduler service rate during the calibration stage).

This processing sequence needs to be reflected in the model. It does not need to be an exact duplicate of the real situation, but must include all the delays that a job can experience. The MAC workload makes use of classes 1 and 2. Processing is as follows: the job arrives at the OCP (calculation of arrival rate is explained in section 4.5.4) as a class 1 job. It proceeds to the scheduler, then to the URIRO centre, on to the disc drive containing the RIRO site and finally to the DFC, all as a class 1 job. At the DFC it obtains double service to represent the roll in and roll out time. From the DFC it returns to the OCP, at the same time changing to a class 2 job. It now proceeds to loop round the network, through the UTERM, UVSI, UDISC or UTAPE subsystems, returning to the OCP each time, until it departs along the DEPART branch. (Obviously the network is solved by means of a set of equations, and this idea of jobs proceeding around the network model is a purely intuitive one. It is nevertheless a valid one). Note that the MAC workload never visits the printer centres. Only the printer jobs access the printers and so only the SYSTEM workload contains these centres.

When there is contention for store we may get what are known as forced RIROs, i.e. the VM is forced out of store before it has finished processing and immediately joins the queue for jobs waiting to enter store. These
forced RIROs are included in the total RIRO figure and so are already represented in the model. The number of forced RIROs is a function of the main store size and VM sizes. The GFSA system is scheduled so that very few forced RIROs are incurred.

The final model for the MAC workload is shown in figure 4.5. The arrows and numerals indicate class changes.

BATCH workload

The BATCH workload makes use of classes 3 and 4. It is very similar to the MAC workload in that it uses class 4 for the RIRO routings. It is, however, a closed chain, and so the sequence is slightly different: from the OCP a job may proceed to the UTERM, UVSI, UDISC, URIRO or UTAPE centres. There is a certain probability that it will go to each one (see section 4.5.4). It always leaves the $O C P$ as a class 3 job. If it proceeds to the URIRO centre, the class changes to class 4. It remains a class 4 as it proceeds to the RIRO disc and on to the DFC. It naturally receives a different service rate at the $D F C$ as a class 4 job than it would as a class 3 job. It is delayed for both the roll in time and the roll out time. From the DFC it proceeds to the scheduler, changing to a class 3 job as it does so.

The BATCH VMs only RIRO when there is contention for store. Any contention will first force the MAC VMs to RIRO, so BATCH VMs do not RIRO very often. However, it does not happen so infrequently, so we must make provision for it.

The final model for the BATCH workload is shown in figure 4.6.

Figure 4.5 Queueing network model for MACRESPOND workload clas

Figure 4.6 Queueing network model for BATCH workload class

The SYSTEM jobs can also be RIROed. However, MAC and BATCH jobs are RIROed first, so it very rarely happens that a SYSTEM job will be RIROed. There is therefore no need to include this possibility in the model. We can thus model the SYSTEM workload using only one class. This is class 5.

The SYSTEM model is shown in figure 4.7.

4.5.3 Calculation of model parameters

The model parameters are those values that are fixed, or would only vary if there were some change in the configuration. They include such things as number of centres, service rate at each centre, centre names, number of classes and so on. The model parameters for the GFSA configuration are as follows:

- number of centres : there are a total of 26 service centres in the model (the fact that some workload chains may not include all the centres is immaterial here);
- centre names : most hardware units have a spécific ICL nomenclature. As far as possible, these naming standards have been followed.

The disc drives are named in one of two ways. Where a disc is permanently mounted on a drive, the disc name is given. Where a drive is used for removable disc packs, the disc drive identification is given. The permanent discs are:

- - system discs | : SYSOO1 | |
| ---: | :--- |
| | SYSOO2 |
| | SYSOO3 |

Figure 4.7 Queueing network model for SYSTEM workload class

- user filestore : GFSAO1

GFSAO2
GFSAO 3
GFSA12
GFSA13

The reusable disc drives are:

ED16
ED17

- number of classes : 5 (see section 4.5.2.2);
- service disciplines : the centre service disciplines are discussed in section 3. Only types. 1, 2 and 3 are used in the GFSA model.

The following centres have a type 1 service discipline:

- all disc drive centres;
- magnetic tape controller centres;
- line printer centres.

The following centres have a type 2 service discipline:

- OCP centre;
- DFC centres.

The following centres have a type 3 service discipline:

- scheduler centre;
- micro centres.
- service rates : some service rates will vary as the workload changes. These are discussed in section 4.5.4. The service rates that are fixed are determined in the
- disc drive centres : ICL engineering manuals give a seek time of 30 ms , and a latency time of 8.33 ms - i.e. a total service time of 38.33 ms . The inverse of this gives us the service rate, namely 0.026 per second.
- DFCs : the disc file controllers are rated at $806 \mathrm{~kb} / \mathrm{secs}$. The blocksize can vary, if the users specifically place their files with a different blocksize. The GFSA users tend to be lazy in this regard. Hence a standard blocksize of 2 kb can be assumed, giving a service rate of 403 per second.

The RIRO transfers obviously require a different service rate. The MAC VMs have a quota size of 216 kb . The 'roll in roll out' delay is incurred during one pass through the DFC (as described in section 4.5 .2 .2) . Hence the model must cater for a transfer of 432 kb . With a speed of $806 \mathrm{~kb} / \mathrm{sec}$ this gives a service rate of $806 / 432=1.8657$ per second. The BATCH quota is 288 kb for all the profiles except the BMILL profile, which has a quota of 432 kb . The BMILL profile is not used very often, so a figure of 288 is used here. This is a total transfer of 576 kb , i.e. a service rate of $806 / 576=1.3993$ per second.

- MCs : the magnetic tape controllers are rated at $200 \mathrm{~kb} / \mathrm{sec}$, giving a service rate of 1002 kb blocks per second. Again, the users may define blocksizes other than 2 kb , but this is very rare. However, this figure of 100 is not strictly correct. The GFSA daytime work is not very 'tape bound'. It is likely that only one controller is in use for most of the day, giving an effective
service rate of 100. The model on the other hand will give an effective service rate of 2×100. An arbitrary figure of $2 / 3$ of the service rate was therefore chosen i.e. each controller was given a service rate of 67 blocks per second. The calibration would show just how reliable this figure was.
- LPs : the line printers present a slight problem. The information we have is as follows:
- the line printers are rated at 1600 lmp;
- the lines per minute speed will vary as the line length varies;
- the monitored data gives a figure for the number of records spooled;
- records can be any length;
- the spoolers have buffers which means that there is no hidden delay.

It is therefore fairly difficult to even estimate an average service rate in terms of records spooled per second. It was clear that the SYSTEM workload would need to be calibrated on the spooler service rate (section 4.6.1 explains the calibration process). A starting point for the calibration had to be decided on. By assuming an average records per minute rate of 1200 , the service rate for the spoolers is then set to $1200 / 60=20$ records per second.

- micro servers : these centres are given a very large service rate so as to cause no delay. The service rate is set to 9999 per second.
- scheduler : the scheduler service rate is the parameter that is varied during the calibration
stage to allign the results obtained from the model with those obtained from the measured performance indices (see section 4.6).
- branching probabilities : many of the routings are considered as workload parameters and are discussed in the next section. Those that are fixed are presented here:
- branching probability frum UTERM : all jobs proceeding through the UTERM centre are sent to the OCP. Therefore, for all classes, a branching probability of 1.0 is given for jobs going from centre 21 to centre 1 ;
- branching probabilities from UVSI : traffic to the two secondary storage sites is split equally. There is therefore a branching probability of 0.5 from the UVSI centre to each of the disc drives centres containing a secondary storage site (i.e. SYS002 and SYSO03);
- branching probabilities from URIRO : there is only one RIRO site and it is situated on SYSOO4. There is thus a branching probability of 1.0 from the URIRO centre;
- branching probabilities from UTAPE : the tape traffic is split equally amongst the two tape controllers, i.e. a branching probability of 0.5 from the UTAPE centre to each of the magnetic tape controller centres;
- branching probabilities from UPAPER : the printer traffic is divided equally amongst the three printer centres, i.e. branching probabilities of $0.3333,0.3333$ and 0.3334 ($=1.0$!) from centre 26

```
to centres 18, 19 and 20 respectively;
```

- the disc drives are connected to one DFC as shown in figure 4.4. There is a routing probability of 1.0 from each drive to its respective DFC;
- the DFCs, MCs and LPs are all routed to the OCP with probability 1.0 , except for the BATCH RIRO. routing. Class 4 jobs proceed from centre 4 to centre 2 (the scheduler) with probability 1.0, changing to a class 3 job en route;
- the scheduler has a branching probability of 1.0 to the OCP for all classes except MAC, which has a routing of 1.0 for class 1 from the scheduler to URIRO.

4.5.4 Calculation of workload parameters

The workload parameters are those values which will vary from session to session, such as number of transfers to disc or tape, amount of OCP time used, number of jobs completing. The idea is not to calculate these parameters every time. During calibration they must obviously all be cal.culated. However, during validation only a subset of these workload parameters is recalculated. These are the values that typically define the size of the workload, such as concurrency.

The workload parameters and their methods of computation are as follows:

- OCP service rate : referring to figure 4.4 it can be seen that from the OCP a job will branch one of 7 ways (i.e. to the UTERM, UVSI, UDISC, URIRO, UTAPE or UPAPER centres, or in the case of the MAC chain, it may depart from the network). It will then return to the OCP before taking one of these routings again. The total number of routings possible from the OCP is therefore:

$$
\begin{aligned}
\text { TOTAL }= & J O B S ~+~ V S I S ~
\end{aligned}+\text { DISC TRANSFERS }+ \text { RIROS }+
$$

The time spent at the OCP each time round the loop can be calculated as follows:
SERVICE TIME = OCP TIME / TOTAL

The OCP service rate is the inverse of this figure.

- branching probabilities from the OCP : the branching probabilities for each micro centre are calculated thus:

$$
\begin{aligned}
& \text { UTERM }=\text { JOBS } / \text { TOTAL } \\
& \text { UVSI }=\text { VSIS } / \text { TOTAL }
\end{aligned}
$$

```
UDISC = DISC TRANSFERS / TOTAL
URIRO = RIROS / TOTAL
UTAPE = TAPE TRANSFERS / TOTAL
UPAPER = RECORDS SPOOLED / TOTAL
```

The departure probability for the MAC chain is simply RIROS / TOTAL. However, this does not need to be explicitly inserted into the model as a parameter. SNAP recognizes the fact that the branching probabilities do not sum to one, and assumes the remaining probability represents a departure from the network;

- branching probabilities from UDISC : from the UDISC centre jobs may branch to any of the disc drive centres. The probabilities for each branch are simply calculated as the number of transfers to the relevant disc drive divided by the sum of all these disc transfers;
- MAC arrival rate ; this is determined by:

```
ARRIVAL RATE = (RIROS * MPL) / ELAPSED TIME
```

- concurrencies : for the BATCH and SYSTEM workload chains the MPL is simply obtained from the concurrency report of the NRP (see also section 4.6.2).

4.6.1 The calibration process

Once the configuration and functional models have been designed the calibration stage can begin. Calibration is the process whereby it is determined whether or not the performance indices predicted by the model fall within a certain acceptable error margin when compared to the actual performance indices as displayed by the real system. The calibration process is shown in figure 4.8 below. One can approach the calibration phase in

Figure 4.8 The calibration process
many ways. For this reason it is regarded as more of an art than a science. Many iterations of the process are normally required before the specified level of accuracy is achieved. These iterations generally take the form of varying some parameter that is not directly measureable until the indices fall within the accepted error margin, or if one is fortunate enough to have all the required parameters available, then the
model will need to be refined and/or the workload parameters will need to be calculated to a greater level of significance.

Failure of the model to achieve the required accuracy could be attributed to one of the following:

- model - incorrect design, incomplete design or an over simplified design;
- parameters - incorrect calculation of the workload parameters, level of significance of the workload parameters not great enough or over simplification or errors in the design of the functional model;
- solution method - incorrect or too simple method used to solve the network model. (Using SNAP, we could be fairly confident that this would not be the case!!).

The calibration process is generally performed using one set of data that is deemed to be representative of the workload. Having arrived at a model design and set of parameters that display the required accuracy, one then proceeds to the validation process, which tests the robustness of the model using performance data gathered from other monitored sessions.

4.6.2 GFSA model calibration

Calibration of the GFSA model was performed using data collected during the session of 4 June 1981 (session identity JUNO41). A series of sessions were inspected before deciding on JUNO41. This session was chosen because it lasted the full day and also it displayed no obviously abnormal behaviour. As we were only interested in the 'office hours' period, the data was run through the NRP with the time selection facility set to select only those jobs falling between 0858-1255 and 1400-1630. The NRP was run three times to select the three
workload types, BATCH, MAC and SYSTEM (see section 4.4 and 4.5.2.2). Appendix B shows the NRP listings for JUNO41.

The workload parameters were calculated in the manner described in section 4.5.2. The parameters for the three workload classes are shown in tables 4.2 to 4.4. As mentioned earlier, the value for the scheduler service rate is unknown and so this is the parameter that we vary until the performance indices predicted by the model agree with those calculated directly using the NRP.

The model was first run with the schedulor service rate set to zero. Unfortunately, SNAP can only run with an integral concurrency value. The SNAP analysis therefore had to be run four times varying the concurrency parameter values for the BATCH and SYSTEM workloads as follows:

BATCH	SYSTEM
3	3
3	4
4	3
4	4

A four-way linear interpolation was then performed to obtain the performance indices in terms of 3.35 BATCH jobs and 3.79 SYSTEM jobs.

It is true that the SYSTEM workload consists of jobs that run for the whole session and so by including these jobs we are including work that was performed outside the 0800-1630 timeslot. However, it must be remembered that we are dealing with averages and branching probabilities. So long as the same type of work is done, eg. the spooler jobs access the discs in the same proportion for their print files throughout the session, then the figures will not be too incorrect. This is acceptable because, firstly, the spooler jobs and master

Table 4.2 Workload parameters for the MACRESPOND workload

Table 4.3 Workload parameters for the BATCH work1oad

```
OCP SERVICE RATE = 543.7725 per second
AVERAGE CONCURRENCY = 3.79 jobs
```

BRANCHING PROBABILITIES

FROM	т0	VISITS	PROBABILITY
OCP	UTERM	5	0.00001
	UVSI	59527	0.0694
	UDISC	86082	0.1004
	UTAPE	306	0.0004
	UPAPER	711578	0.82979
		857498	1.00000

	- SYS002	4340	0.0504
	- SYS003	14925	0.1734
	- SYS001	39063	0.4537
	- GFSA13	30	0.0004
	- ED16	6173	0.0717
UDISC	ED17	4082	0.0474
	- GFSAO1	151	0.0017
	- GFSA02	8089	0.0940
	GFSA03	3786	0.0440
	- GFSA12	5241	0.0609
	- SYS004	202	0.0024
		86082	1.0000

Table 4.4 Workload parameters for the SYSTEM workload
operator job do perform work of the same nature throughout the day, and secondly, their resource demands are so small when compared with the BATCH and MAC workloads that an inaccuracy in the SYSTEM workload will not affect the model as a whole very significantly.

The results for this first run are shown in tables 4.5 to 4.7, where they are compared with the measured results. These 'measured results' are obtained either directly from the NRP (eg. OCP utilization) or by performing some calculation on the figures obtained from the NRP (eg. each djsc utilization is obtained by the following calculation :

$$
\text { number of accesses } X \text { access time }(=0.03833 \text { seconds })
$$

elapsed time for this class

The percentage errors presented in table 4.5 show that the MAC workload class is excellently represented by the model. This is due to the fact that the MAC workload is modelled as an open chain. The amount of work that can be done is restricted by the arrival rate. The scheduler service rate does not affect the performance indices. This is because there is one visit to the scheduler for each interaction. Changing the time spent at the scheduler only serves to change the response time for this open chain. The abnormal error for disc drive ED17 is simply because the branching probability was not calculated to a sufficient degree of accuracy. Very few transfers take place to ED17 and so the associated routing probability is very small. The significance was increased by one more decimal place. The result is apparant in table 4.8.

The BATCH and SYSTEM classes are modelled as closed chains and thus behave differently, Tables 4.6 and 4.7 are encouraging in that the percentage errors are of the same magnitude for each centre. It therefore seems likely that adding in the scheduler delay will cause these percentage errors to decrease at the

PERFORMANCE INDICE	RESULTS		\% ERROR
	MEASURED	MODEL	
UTILIZATIONS (\%) :			
OCP	20.07	20.0889	+0.094
SYSOO2	16.4813	16.5541	+0.44
SYSO03	13.3208	13.3777	+0.43
SYSOO1	28.5541	28.6761	+0.43
GFSA13	2.2547	2.2689	+0.63
ED16	0.0	0.0	-
ED17	0.0108	0.0088	-22.73
GFSAO1	0.9466	0.9516	+0.53
GFSAO2	3.3495	3.3659	+0.49
GFSAO3	1.9756	1.9869	+0.57
GFSA12	0.7557	0.7578	+0.28
SYSOO4	1.5499	1.5540	+0.26
DC10	2.8575	2.8601	+0.091
DC40	22.2018	22.2014	-0.002
MCOO	0.2802	0.2809	+0.25
MC10	0.2802	0.2809	+0.25
THROUGHPUT RATES: (per second)			
- UTERM	0.00725	0.0074	+2.07
UVSI	6.2268	6.2302	+0.055
UDISC	11.4471	11.4546	+0.066
URIRO	0.3857	0.3857	0.0
UTAPE	0.3754	0.3765	+0.29

Table 4.5 Results of the first calibration run (scheduler service rates set to infinity) for the MACRESPOND workload class

PERFORMANCE INDICE	RESULTS		\% ERROR
	MEASURED	MODEL	
UTILIZATIONS (\%) :			
OCP	16.51	41.1520	+149.0
SYS002	5.9820	14.9896	+150.6
SYS003	7.7895	19.5161	+150.5
SYS001	18.0107	45.1478	+150.6
GFSA13	0.9801	2.4539	+150.4
ED16	0.0	0.0	-
ED17	0.0	0.0	-
GFSAO1	1.0769	2.6983	+150.6
GFSAO2	4.0830	10.2359	+150.7
GFSAO3	0.2477	0.6159	+148.6
GFSA12	7.6435	19.1521	+150.6
SYS004	0.3334	0.8252	+147.5
DC10	1.7337	4.3302	+149.8
DC40	1.7087	4.1084	+140.4
MCOO	1.2757	3.1855	+149.7
MC10	1.2757	3.1855	+149.7
THROUGHPUT RATES: (per second)			
UTERM	0.0030	0.0069	+130.0
UVSI	1.8552	4.6325	+149.7
UDISC	10.1777	25.4189	+149.8
URIRO	0.0064	0.0137	+114.1
UTAPE	1.7094	4.2685	+149.7

Table 4.6 Results of the first calibration run (scheduler service rates set to infinity) for the BATCH workload class

PERFORMANCE INDICE	RESULTS		\% ERROR
	MEASURED	MODEL	
UTILIZATIONS (\%)			
OCP	2.72	7.7397	+184.5
SYS002	2.0998	6.4359	+206.5
SYS003	2.7515	8.4349	+206.6
SYS001	2.4051	7.3734	+206.6
GFSA13	0.00185	0.0065	+251.4
ED16	0.3801	1.1653	+206.6
ED17	0.2513	0.7703	+206.5
GFSAO1	0.0093	0.0276	+196.8
GFSA02	0.4980	1.5277	+206.8
GFSA03	0.2331	0.7151	+206.8
GFSA12	0.3227	0.9897	+206.7
SYSOO4	0.0124	0.0390	+214.5
DC10	0.3748	1.1452	+205.5
DC40	0.2056	0.6281	+205.5
мсOO	0.0037	0.0126	+240.5
MC10	0.0037	0.0126	+240.5
THROUGHPUT RATES: (per second)			
- UTERM	0.00008	0.0004	+400.0
UVSI	0.9562	2.9208	+205.5
UDISC	1.3827	4.2255	+205.6
UTAPE	0.0049	0.0168	+242.9
UPAPER	11.4302	34.9227	+205.5

Table 4.7 Results of the first calibration run (scheduler service rates set to infinity) for the SYSTEM workload class

Calibration now began in earnest. The accuracy of the MAC chain was considered as being more than adequate. Only one change was made to it, namely the scheduler service rate was set to 2 per second. This was designed to add a scheduling delay to the MAC chain so as to produce a more realistic response time figure. This value is more intuitively than scientifically based as there is no monitored figure available.

Two changes were made to the BATCH chain:

- the branching probabilities from the OCP to the UTERM and URIRO centres were given a greater degree of significance;
- the scheduler service rate was varied. It was finally set at 0.0039 per second.

Turning to the SYSTEM chain, the UTERM and UTAPE branching probabilities were given added significance. The scheduler service rate was varied but without much success. This is because the scheduler is only visited at the end of a job. There were only 5 SYSTEM jobs, so this results in a very small routing probability to the scheduler. It was decided to calibrate the SYSTEM workload on the printer service rate. This produced an immediate improvement. The service rate was finally set at 6.4 per second. (The SYSTEM scheduler service rate was set at 0.1 per second).

The final calibration results are presented in tables 4.8 to 4.10. The terminal response time is 4.98 seconds.

An example of a SNAP output listing is given in appendix E.

PERFORMANCE INDICE	RESULTS		3 ERROR
	MEASURED	MODEL	
UTILIZATIONS (\%) :			
OCP	20.07	20.0889	+0.094
SYSOO2	16.4813	16.5541	+0.44
SYSO03	13.3208	13.3777	+0.43
SYSOO1	28.5541	28.6761	+0.43
GFSA13	2.2547	2.2667	+0. 53
ED16	0.0	0.0	-
ED17	0.0108	0.0110	+1.85
GFSA01	0.9466	0.9516	+0.53
GFSAO2	3.3495	3.3659	+0.49
GFSA03	1.9756	1.9869	+0.57
GFSA12	0.7557	0.7578	+0.28
SYSOO4	1.5499	1.5540	+0.26
DC10	2.8575	2.8601	+0.091
DC40	22.2018	22.2014	-0.002
MCOO	0.2802	0.2809	+0.25
MC10	0.2802	0.2809	+0.25
THROUGHPUT RATES: (per second)			
UTERM	0.00725	0.0074	+2.07
UVSI	6.2268	6.2302	± 0.055
UDISC	11.4471	11.4546	+0.066
URIRO	0.3857	0.3857	0.0
UTAPE	0.3754	0.3765	+0.29

Table 4.8 Results of the final calibration run (scheduler service rates set to infinity) for the MACRESPOND workload class

PERFORMANCE INDICE	RESULTS		\% ERROR
	MEASURED	MODEL	
UTILIZATIONS (\%)			
OCP	16.51	16.3928	-0.71
SYSOO2	5.9820	5.9708	-0.19
SYS003	7.7895	7.7738	-0.20
SYS001	18.0107	17.9825	-0.16
grsal3	0.9801	0.9774	-0.28
ED16	0.0	0.0	-
ED17	0.0	0.0	-
GFSAO1	1.0769	1.0748	-0.20
GFSAO2	4.0830	4.0771	-0.14
GFSAO3	0.2477	0.2453	-0.97
gFSA12	7.6453	7.6284	-0.20
SYS004	0.3334	0.3318	-0.48
DC10	1.7337	1.7248	-0.51
DC40	1.7087	1.6951	-0.80
мс00	1.2757	1.2689	-0.53
MC10	1.2757	1.2689	-0.53
THROUGHPUT RATES: (per second)			
UTERM	0.0030	0.0030	-0.0
UVSI	1.8552	1.8454	-0.53
UDISC	10.1777	10.1245	-0.52
URIRO	0.0064	0.0063	-1.56
UTAPE	1.7094	1.7004	-0.53

Table 4.9 Results of the final calibration run (scheduler service rates set to infinity) for the BATCH workload class

PERFORMANCE INDICE	RESULTS		\% ERROR
	MEASURED	MODEL	
UTILIZATIONS (\%)			
OCP	2.72	2.77	+1.84
SYSOO2	2.0998	2.1725	+3.46
SYS003	2.7515	2.8011	+1.80
SYS001	2.4051	2.4347	+1.23
GFSAl3	0.00185	0.00189	+2.16
ED16	0.3801	0.3872	+1.87
ED17	0.2513	0.2580	+2.67
GFSAOL	0.0093	0.0095	+2.15
GFSAO2	0.4980	0.5011	+0.62
grsao3	0.2331	0.2367	+1.54
grsal2	0.3227	0.3285	+1.80
SYSOO4	0.0124	0.0127	+2.42
DC10	0.3748	0.3810	+1.65
DC40	0.2056	0.2092	+1.75
MCOO	0.0037	0.0038	+2.70
MC1O	0.0037	0.0038	+2.70
THROUGHPUT RATES: (per second)			
UTERM	0.06008	0.0001	-20.00
UVSI	0.9562	0.9725	+1.70
UDISC	1.3827	1.4062	+1.70
UTAPE	0.0049	0.0050	+2.04
UPAPER	11.4302	11.6245	+1.70

Table 4.10 Results of the final calibration run (scheduler service rates set to infinity) for the SYSTEM workload class

4.7 MODEL VALIDATION

4.7.1 The validation process

Once the model has been calibrated to a specified degree of accuracy, it needs to be validated. We need to be confident that when we come to use the model for prediction purposes, it will produce results that lie within a known error margin. Validation implies taking the workload parameters calculated from another session, changing only those parameters that have a direct bearing on the size of the workload, and seeing whether the performance indices now given by the model reflect the same or nearly the same degree of accuracy as that given during the calibration stage. If they do not, it does not necessarily signify failure. One needs to determine the reasons behind any major deviation from the measured values. Such inaccuracies may only be present in certain areas of the model. Valid predictions could possibly still be made for the other components. It is shown below, for example, that the disc traffic is very erratic on the GFSA system. However, the validation results obtained for the OCP utilizations are very good. One can therefore perform OCP utilization predictions with a certain amount of confidence.

4.7.2 GFSA model validation

Validation of the GFSA model was performed using two sessions, namely JUNO81 and JUN182. These sessions were chosen firstly because they appeared to display no abnormalities, and secondly because their workloads differed somewhat from JUNO41.

JUNO81 was a morning session lasting for just under five hours. The concurrencies for the BATCH and SYSTEM workloads were 2.52 and 2.84 jobs respectively. The arrival rate for the MACRESPOND workload was 0.2249 per second. This session therefore had a
considerably lighter workload than JUNO41, indicating that it would be a good test of the model validity.

JUN182 lasted for a full day. The BATCH concurrency was 4.23 jobs (higher than JUNO41), whilst the SYSTEM concurrency was 2.89 jobs and the MACRESPOND arrival rate was 0.2989 (both lower than the values for JUNO41).

The validation process requires that only those parameters that have a bearing on the size of the workload be changed. If the model were perfectly behaved, this would imply changing only the concurrency values for the closed chains and the arrival rate for the open chain. It was soon realized that the GFSA workload was not very well behaved, and that further changes had to be made. In the end, three runs were performed on each validation session. These are termed Model 1, 2 and 3 and contain the following variations:
> - Model 1 : BATCH and SYSTEM concurrencies and MACRESPOND arrival rate changed to reflect the measured values;

- Model 2 ; OCP service rates altered for each class;
- Model 3 : branching probabilities from the OCP to each micro server changed for each class.

The two validation sessions and their associated validation results are discussed below.
4.7.2.1 Validation session JUN182

The workload parameters for the three workload groups are shown in tables 4.11 to 4.13 . These values can be compared with those given in tables 4.2 to 4.4 for session JUNO41.

Table 4.11 MACRESPOND workload parameters for session JUN182

Table 4.12 BATCH workload parameters for session JUN182

Table 4.13 SYSTEM workload parameters for session JUN182

The first is that the OCP service rates compare exceptionally well. It can therefore be expected that only a slight difference will be exhibited between model 1 and model 2. This is indeed the case, (The results for each class are given in tables 4.14 to 4.16).

The results for the first two models are, however, rather erratic. If the percentage errors were all of the same magnitude, the deviation from the measured value could then be attributed to the scheduler service rate setting. The fact that they are not of the same order is due to the varying behaviour of the GFSA workload. Looking at the branching probabilities from the OCP to the micro servers, it is apparent that significant differences exist between the corresponding figures for JUN041 and JUN182. A number of sessions should be analyzed in an attempt to determine mean values for these routing probabilities. One needs to be aware of the deviation that is possible, so that predictions can be performed using a three-way analysis strategy, namely a worst, average and optimum case analysis.

These branching probabilities are changed in model 3 to the correct values for JUN182. This may at first appear to be an illegal move for the validation process. However, the aim is to verify that the scheduler service rate values, reached during the calibration phase, are valid. If satisfactory results are achieved in this way, one can then be confident that the model structure is an accurate representation of the system. Major variations in the workload from day to day can not be resolved within the model itself. This does not mean that the model can not be shown to be valid. GFSA is unfortunate in having such a varying workload, but meaningful evaluations can still be performed. One just needs to be aware of the constraints of the system.

PERFORMANCE INDICE	RESULTS						
	MEASURED	MODEL 1	\% ERROR	MODEL 2	\% ERROR	MODEL 3	\% ERROR
UTILIZATIONS (\%) :							
OCP	21.43	15.57	-27.34	15.11	-29.49	21.64	0.98
DC10	3.1060	2.2164	-28.64	2.2164	-28.64	3.0275	-2.53
DC40	17.7333	17.2051	-2.98	17.2051	-2.98	17.8168	0.47
MC	0.5428	0.2177	-59.89	0.2177	-59.89	0.5430	0.04
THROUGHPUT RATES : (per second)							
UTERM	0.0070	0.0057	-18.57	0.0057	-18.57	0.0070	0.0
UVSI	8.8444	4.8281	-45.41	4.8281	-45.41	8.8476	0.04
UDISC	10.5868	8.8768	-16.15	8.8768	-16.15	10.5910	0.04
URIRO	0.2989	0.2989	0.0	0.2989	0.0	0.2989	0.0
UTAPE	0.7274	0.2917	-59.90	0.2917	-59.90	0.7276	0.03

Table 4.14 MACRESPOND validation results for session JỮ 182

PERFORMANCE INDICE	-			RESULTS			
	, MEASURED	MODEL 1	\% ERROR	MODEL 2	\% ERROR	MODEL 3	\% ERROR
UTILIZATIONS (\%) :							
OCP	34.27	20.82	-39.25	19.91	-41.90	36.27	5.84
DC10	5.6490	2.1905	-61.22	2.2005	-61.05	4.3070	-23.75
DC40	1.2291	1.5817	28.69	1.5889	29.27	3.0383	147.20
MC	1.5911	1.6116	1.29	1.6189	1.75	1.6347	2.74
THROUGHPUT RATES : (per second)							
UTERM	0.00281	0.00381	35.59	0.00381	35.59	0.00289	2.85
UVSI	2.7302	2.3437	-14.16	2.3544	-13.76	2.8048	2.73
UDISC	26.0842	12.8583	-50.70	12.9171	-50.48	26.7969	2.73
URIRO	0.00176	0.00799	353.98	0.00801	355.11	0.00188	6.82
UTAPE	2.1321	2.1595	1.29	2.1694	1.75	2.1905	2.74

Table 4.15 BATCH validation results for session JUN 182

Table 4.16 SYSTEM validation results for session JUN182

The validation results for model 3 are exceptional. ITR's past experience has shown that a percentage error of up to 30% is still acceptable. Tables 4.14 to 4.16 show errors of $0 \%, 2.7 \%$ and 13.5% for the three groups. Two points should be mentioned. The discrepancy in the BATCH URIRO rate is most likely due to the level of significance assigned to the branching probabilities. They were all increased to five decimal places for the validation run, but this is still not really enough for. the centres with very low utilizations.

The second point concerns the accuracy of the DFC utilizations. These values are obviously dependent on the amount of traffic going to each disc drive. The behaviour of the branching probabilities from UDISC to the disc drives is even more erratic than those from the OCP. For example, ED17 caters for removable disc packs. On 4 June no BATCH job accessed this drive, while on 18 June over 4% of the total BATCH disc traffic was routed there. These probabilities can vary an enormous amount, and hence the disc utilizations are not reported in the validation results. The DFC utilizations will vary accordingly (note that DC40 also contains the RIRO traffic, hence the large value for the MACRESPOND workload group).

The validation values given for JUN182 show the model to be well designed and calibrated. Obviously one can not rely on the figures obtained from one validation session. A new session was therefore chosen, namely that of JUNO81.

4.7.2.2 Validation session JUNO81

The workload parameters for this session are shown in tables 4.17 to 4.19 , while the validation results are
given in tables 4.20 to 4.22 .

The same considerations apply for this session. The OCP service rate for the MACRESPOND group is very close to the JUNO41 value. However, the figure for the BATCH and SYSTEM classes are very different to the corresponding JUNO41 values. This is reflected in the validation results for models 1 and 2.

The correction of the OCP branching probabilities once ${ }^{\text {© }}$ again provides model 3 with excellent results.

The model has thus been shown to be remarkably accurate. One final figure of interest is the MACRESPOND response time. The value for JUN182 is 8.42 seconds and that for JUNO81 is 6.60 seconds.

Table 4.17 MACRESPOND workload parameters for session JUNO81

Table 4.18 BATCH workload parameters for session JUNO81

Table 4.19 SYSTEM workload parameters for session JUNO81

PERFORMANCE INDICE	RESULTS						
	. MEASURED	MODEL 1	\% ERROR	MODEL 2	\% ERROR	MODEL 3	\% ERROR
UTILIZATIONS (\%) :							
OCP	17.61	11.96	-32.08	11.77	-33.16	17.85	1.36
DC10	2.7384	1.6677	-39.10	1.6677	-39.10	2.5068	-8.46
DC40	16.0038	12.9455	-19.11	12.9455	-19.11	13.4501	-15.96
MC	0.3599	0.1638	-54.49	0.1638	-54.49	0.3600	0.03
THROUGHPUT RATES : (per second)							
UTERM	0.0054	0.0043	20.37	0.0043	20.37	0.0054	0.0
UVSI	6.1692	3.6328	-41.11	3.6328	-41.11	6.1708	0.03
UDISC	9.5535	6.6791	-30.09	6.6791	-30.09	9.5562	0.03
URIRO	0.2249	0.2249	0.0	0.2249	0.0	0.2249	0.0
UTAPE	0.4823	0.2195	-54.49	0.2195	-54.49	0.4823	0.0

Table 4.20 MACRESPOND validation results for session JUNO81

PERFORMANCE INDICE	RESULTS						
	measured	MODEL 1	\% ERROR	MODEL 2	\% ERROR	MODEL 3	\% ERROR
UTILIZATIONS (\%) :							
OCP	17.11	12.83	-25.01	10.61	-38.00	15.21	-11.10
DC10	2.5453	1.3504	-46.95	1.3664	-46.52	2.1001	-17.50
DC40	1.4254	0.9751	-31.60	0.9867	-30.78	1.5161	6.36
MC	0.8080	0.9935	22.96	1.0053	24.42	0.7201	-10.88
THROUGHPUT RATES : (per second)							
UTERM	0.0034	0.0024	29.41	0.0024	29.41	0.0031	-8.82
UVSI	2.5102	1.4448	-42.44	1.4620	-41.76	2.2374	-10.87
UDISC	13.8400	7.9269	-42.72	8.0209	-42.05	12.3359	-10.87
URIRO	0.0030	0.0049	63.33	0.0050	66.67	0.0027	-10.00
UTAPE	1.0827	1.3313	22.96	1.3471	24.42	0.9650	-10.87

Table 4.21 BATCH validation results for session JUNO81

PERFORMANCE INDICE	RESULTS						
	MEASURED	MODEL 1	\% ERROR	MODEL 2	\% ERROR	MODEL 3	\% ERROR
UTILIZATIONS (\%) :							
OCP	4.47	2.41	-46.09	4.18	-6.49	4.33	-3.12
DC10	0.5162	0.3571	-30.82	0.3554	-31.15	0.4581	-11.26
DC40	0.1823	0.1959	7.46	0.1949	6.91	0.2502	37.25
MC	0.0	0.0035	-	0.0035	-	0.0	0.0
THROUGHPUT RATES : (per second)							
UTERM	0.0002	0.0001	-50.0	0.0001	-50.0	0.0002	0.0
UVSI	1.1401	0.9108	-20.11	0.9063	-20.51	1.1562	1.4122
UDISC	1.6747	1.3176	-21.32	1.3112	-21.71	1.6984	1.4152
UTAPE	0.0	0.0047	-	0.0047	-	0.0	0.0
UPAPER	10.5340	10.8905	3.3843	10.8375	2.881	10.6836	1.4202

Table 4.22 SYSTEM validation results for session JUNÓ81

5. PERFORMANCE PREDICTIONS

5.1 INTRODUCTION

The validated model can now be used to answer what are commonly termed "what-if" questions, i.e. What will happen to the machine performance If a certain change is made. The envisaged changes may apply to the workload or the system configuration, and may cause the performance to increase or decrease.

Predictions can be divided into three categories. These are represented by the diagrams in figures 5.1, 5.2 and 5.3. In each diagram the user population U supplies a workload W_{1} to a system configuration C_{1} giving a measured performance P_{11}. The first

Figure 5.1 Performance prediction methodology 1
prediction methodology, shown in figure 5.1, is to increase the workload to a value W_{2}, apply this to the present configuration C_{1} and observe the predicted performance P_{21} given by the model.

In figure 5.2 the workload is left unchanged. However, the configuration is altered in some way to produce a configuration C_{2}. When the model is run with the new parameter values it produces a predicted performance ${ }^{P} 12$.

Figure 5.2 Performance prediction methodology 2

The final prediction methodology involves changing both the workload and the system configuration. Figure 5.3 shows how workload W_{2}, when applied to configuration C_{2}, produces a predicted performance P_{22}.

Figure 5.3 Performance prediction methodology 3

The recognition of these three methodologies provides an insight into the manner in which predictions should be carried out. There are obviously an enormous number of possible changes one can make to the workload and to the configuration. It is essential that meaningful predictions be made. Otherwise, unnecessary processing power will be consumed, as well as a lot of time being spent in analyzing the results.

The following section provides a number of examples which were performed for GFSA management. Idealy, the "what-if" questions should be posed by management. However, with a non-technical management structure, it falls to the performance analyst to provide not only the answers, but also the questions. Only a very broad directive can be expected from management.

The GFSA user community has only one performance concern, and that is the terminal response time. Terminal usage is fairly undisciplined. Users are encouraged to submit long program runs and compilations via a background profile, but this is not compulsory.

This strategy does not ease the performance analyst's task. There is, however, one advantage. Batch turnaround time is of no concern to any of the users. This means that performance tuning does not have to be a trade-off between batch throughput and terminal response time. In the examples that follow, only the response time and various centre utilizations will be used as performance indicators.

Looking at the final calibration results in tables 4.8 to 4.10 , it can be seen that disc SYSOOl has a much higher utilization than any other disc. SYSOO2 and SYSOO3 also have relatively high usage. The disc controller DC4O is heavily utilized by the MACRESPOND workload group. This is due to the RIRO traffic. It therefore seems likely that the disc subsystem could be causing a bottleneck situation. It is less likely to be caused by a lack of OCP processing power.

The examples shown below are divided into two sections. The first analyses the system as per the calibrated model of JUN041. The second performs the same set of analyses, but with the disc traffic equalized to all the disc drives (i.e. the branching probabilities from UDISC are equalized). In reality one would never be able to equalize all the traffic. However, the analysis is important in showing just how bad the bottleneck situation is.

Three prediçtion runs are performed for each configuration:

- the number of batch jobs is increased;
- the OCP speed (rated in MIPS - millions of instructions per second) is increased.

Three performance indicators are used. These are:

- the OCP utilization for each workload group, as well as the total OCP utilization;
- the utilization of the service centres representing SYSOO1, DC1O and DC40;
- the terminal (MACRESPOND) response time.

A graph is plotted for each set of results. There are thus nine plots for each section. All the plots have been drawn using a BATCH concurrency of 3 and a SYSTEM concurrency of 4, in order to avoid the interpolation overhead.

5.2.1 JUN041 configuration

Figures 5.1 to 5.3 show the results obtained when increasing the number of terminals (this is done by increasing the arrival rate proportionately. GFSA currently has 16 terminals. The assumption is made that one more terminal will lead to $1 / 16$ more work being performed, two more terminals will give $2 / 16$ more work, and so on).

The MACRESPOND OCP utilization increases steadily, whilst the BATCH OCP utilization decreases slightly. For the SYSTEM class it remains virtuall unchanged.

Steady increases are shown in the utilization of SYSOO1, DC1O and DC40. Note that the utilization of DC40 increases faster than that of DC1O, due to the RIRO traffic.

The response time, shown in figure 5.3, rises dramatically. It increases by about 10% after only 4 terminals have been
added. Doubling the number of terminals leads to a 60% increase in the response time.

Figures 5.4 to 5.6 show the results of increasing the number of BATCH jobs. Note that the MACRESPOND OCF utilization is not affected significantly. However, the response time is. The problem seems to lie in the exceptionally high utilization of SYSOO1 (almost 90% with 14 BATCH jobs).

The results of increasing the OCP speed is shown in figures 5.7 to 5.9. The OCP utilizations show an understandable drop. Note that the disc and disc controller utilizations will rise slightly because the jobs are not delayed for so long at the OCP. The response time drops by 10% when the OCP speed is doubled. It is doubtful that this would be noticed by the terminal user.

5.2.2 Configuration with disc traffic equalized

The graphs in figures 5.10 to 5.18 correspond to those in figures 5.1 to 5.9. The characteristics are the same as discussed in section 5.2 .1 . The following points should be noted:

- the removal of the disc bottleneck allows more work to be performed - i.e. the OCP utilizations will increase;
- the utilization of SYSOO1 drops dramatically (note that all discs will have the same utilization);
- the utilization of DC40 rises, while that of DClO drops. This is due to the fact that traffic that previously went through DC10 is now routed through DC40. DC40 also has six discs attached to it, compared with the five on DC10. Finally, DC40 also has the RIRO traffic. A pure equalization of the disc file traffic is therefore not
the optimal solution. One can (and should) perform further experiments. This is the beauty of the model. One can make numerous predictions without ever having to interfere with the live system;
- the response times are all consistently lower than the corresponding examples in section 5.2.1.

Figure 5.1 JUNO41 configuration. Number of terminals vs OCP utilization.

Figure 5.2 JUNO41 configuration. Number of terminals vs SYSOO1 and disc controller utilizations.

Figure 5.3 JUNO41 configuration. Number of terminals vs response time.

Figure 5.5 JUNO41 configuration. BATCH jobs vs SYSOO1 and disc controller utilizations.

Figure 5.7. JUNO41 configuration. OCP speed vs OCP utilization.

Figure 5.8 JUNO41 configuration. OCP speed vs SYSOO1 and disc controller utilizations.

Figure 5.9 JUNO41 configuration, OCP speed vs response time.

Figure 5.11 Disc traffic equalized. Number of terminals vs SYSOOl and disc controller utilizations.

Figure 5.12 Disc traffic equalized. Number of terminals vs response time.

Figure 5.13 Disc traffic equalized. BATCH jobs vs OCP utilization.

Figure 5.14 Disc traffic equalized. BATCH jobs vs SYSOOl and disc controller utilizations.

Figure 5.15 Disc traffic equalized. BATCH jobs vs response time.

Figure 5.18 Disc traffic equalized. OCP speed vs response time.

6. MEMORY MANAGEMENT MODEL

6.1 INTRODUCTION

Memory management is an important part of a configuration planning exercise. Too little memory will result in excessive page faults being incurred thus causing a possible 'bottleneck' situation at one or more of the disc drives. Too much memory is a financial waste. As explained in section 4.5.1, the main store is not included in the GFSA model, and can therefore not be evaluated using SNAP. Memory management forms a completely separate issue. A special memory model is created to determine the optimum amount of main store required.

The ICL virtual machine concept does not lend itself to an ideal memory management strategy. This chapter first discusses the theory behind memory management and then explains the work done in trying to produce a satisfactory memory model for the GFSA system.

6.2 MEMORY MANAGEMENT THEORY

Under ICL's VME/B operating system, as with all multiprogramming virtual memory systems, many jobs simultaneously compete for OCP processing power and for main memory. While a job is executing, it is allocated a number of page frames greater than or equal to some specified minimum quota size. During its execution, a job may wish to access a page which is not present in main storage. A virtual store interrupt, or VSI, will result, causing the page to be loaded into main memory.

The expected execution time between VSIs or, equivalently, the
average number of instructions per VSI, is obviously a function of the size of main storage and the minimum job store quota. If a job is allocated too many or too few page frames, it tends to use them inefficiently. Idealy, it should be provided with sufficient page frames to maintain its working set in main storage.

Figure 6.1 illustrates the ideal relationship between inter-VSI time and the average main store occupancy. The curve shows a low inter-VSI time for jobs with a small store allocation, a steadily increasing inter-VSI time as the store is increased until the curve starts to taper off (in theory if one gives a job enough store it will eventually load everything it could use and so not require any more VSIs, producing an inter-VSI time of infinity. This is obviously not practical and so the graph is drawn only as far as the upper plateau, although some theorists would prefer it to continue upwards after the plateau).

The idea is to plot the occupancy against the inter-VSI time in an attempt to produce a curve which can be used to determine the optimum amount of main memory. A system with a very disciplined memory allocation strategy should produce a worthwhile curve. This was unfortunately not the case with the GFSA system.

6.3 GFSA MEMORY MODEL INVESTIGATIONS

The problem with the ICL memory policy, so far as the memory model is concerned, is that pages are only discarded when the space is required. A job which is run when the machine is busy will be restricted to its quota size. It is possible that the same job, run in an idle machine, will incur nearly the same number of VSIs, and yet have a reported storage occupancy many times its "quota size. This is because pages that are no longer required will remain in store until the space they are occupying is required for some other purpose.

ayerage page frames allocated to a job during execution
Figure 6.1 Paging behaviour model

The approach taken in attempting to produce a GFSA memory model was as follows. A number of scattergrams were plotted showing main store occupancy versus inter-VSI time. Figures 6.2, 6.4 and 6.6 show the resulting plots for sessions JUN041, JUNO81 and JUN182. Figures $6.3,6.5$ and 6.7 are plots of the same sessions, except that the outliers have been removed. Figure 6.8 shows all three sessions together, with the outliers removed.

The first observation is that no curve is apparant. Secondly, the bulk of the points are clustered around the quota size. It is clear that simply producing plots of a number of sessions will not provide a satisfactory curve. A possible strategy would be to continually alter the quota sizes. One could then plot a series of points based on the centre of each cluster. This would mean an enormous amount of processing. The collection of data would have to take place over a long period, as one could not change the quota sizes too frequently. One would also have to be prepared to accept bad performance whilst gathering statistics at either end of the scale - i.e. small quota sizes will incur a VSI overhead, while large quota sizes will incur an unbearable RIRO overhead. Needless to say, this exercise has not been carried out at GFSA.

Figure 6.2 Occupancy - inter-VSI scattergram for JUNO41

Figure 6.3 Occupancy - inter-VSI scattergram for JUNO41 with outliers removed

Figure 6.4 Occupancy - inter-VSI scattergram for JUNO81

Figure 6.5 Occupancy - inter-VSI scattergram for JUNO81 with outliers removed

Figure 6.6 Occupancy - inter-VSI scattergram for JUN 189

Figure 6.7 Occupancy - inter-VSI scattergram for JUN182 with outliers removed

Figure 6.8 Occupancy - inter-VSI scattergram for JUNO41, JUNO81 and JUN182

Only a subset of the possible JMT messages are routed to the performance journal. This appendix gives the format of these JMTs together with an explanation of their use.

The JMT messages are discussed in section 4.2.1. Each message forms one record in the journal, where it is stored in hexadecimal format. Two hexadecimal characters form one byte. A positional character translation is supplied with each JMT format. Note that numerals may either be stored using the character code format (eg, F6F5 = 65), or using a packed hexadecimal format (eg. F6F5 = 63221). The blank spaces in the translation formats are therefore due to numeric hexadecimal values that do not have a character code equivalent.

The message headers follow a standard format. For each message type, byte 8 contains the JMT number. Bytes 9 to 16 contain the time in microseconds since the start of the twentieth century. Bytes 18 to 21 contain the job number of the job that generated the JMT. Not all JMTs contain a PETE number (see section 4.2.1). Where applicable, it is situated in bytes 28 and 29.

Each JMT is dealt with separately on the following pages. In each case the hexadecimal format is given first, followed by the character code translation, followed by an explanation of the purpose of the journal message.

HEXADECIMAL FORMAT

0000020	00000006	000920EE	3D3A818E	O3D1FOFC	F9000001	000000EF	9R4DE4E2
0968	075DE2C4						
40404040	40400106	C26BE900	ODS0E9FS	FOF30404	CiC3E5F6	F5F5F440	40404040
40404040	40404007	090668E9	000A5004	C1C309C5	E2D 7	40	40404040
40404040	40404040	40404040	4040	C1E36RE2	F1F05dF1	F9F9F161	
	D4		F67	14			

TRANSLATION

EXPLANATION

The JMT 6 Job Start Message is characterized by a PETE number of HEX EF9B.

The following items are extracted from this message:

```
Bytes 39 - 69 : Username
Bytes 79 - 102 : Jobname
Bytes 112 - 142 ; Profile
Bytes 170 - 177 : Job start time
```


HEXADECIMAL FORMAT

00000405	00000006	O00920EE	53A4A06A	O3D1FDFD	F5000001	O00000EF	B44DE4E2
D96BE900	O65DE2C4	E3CSE2E3	40404040	40404040	40404040	40404040	40404040
40404040	4C4D01D6	C26日E900	ODSDE9F7	F1F9E2E3	E2E3C1F3	F2F4F140	40404040
40404040	40404DC4	C1E368E2	F1FOSDF1	F9F8F161	F0F661F0	F44DE3C9	0463E2F8
50FCF97A	F1F27AF4	F7					

TRANSLATION

```
+ J005 CUS+
+R,Z )SDTEST +
+ (JOB,Z )Z719STSTA3241 +
+ (DAT,S10)1981/06/04(T1M,S8+
t)09:12=47+
```


EXPLANATION

The JMT 6 Job End Message is characterized by a PETE number of HEX EFB4.

The job end time (bytes $130-137$) is the only item extracted from this JMT. The username and jobname will already have been obtained from the JMI 6 Job Start Message.

```
00000218 COOOO009 000920EE 3E3C32FC 0201FOFO F9201EC3 E4D9D9C5 DSE34OE3
D6E3C103 E27A2O2D 4OF6F8FO FSF1F8FS 6B404040 40F3F9F2 6B4DF2F5 F06140F1
F5F1F2F5 F2F5152D 2AC5D3C1 D7E2C5C4 4OESC1D3 E4C5E27A 4OF6F8FO F5D26B4D
4OF3F9F2 GB404040 FO4OESE2 4OE3D9C1 D5E2C6C5 09E27A40 40404040 F06140F1
F1FOF340 D4C9D3D3 61E5E2C9 40E3D6E3 C1037EF6 F4F4F3D2 6140F5F8 F015202A
O27E4040 4040F161 4040F2F2 40D37E40 404040F2 614040F6 FR4OC4TE 40404040
F16140F3 F9F24GC7 7E404040 40F16140 4040F840 D97E4040 4040F16i4 404040F3
LOC37E40 40404OF1 614040F6 FO4OE47E 40404040 F7614040 F2F7152O 2AC4C9E2
C34OE3D9 C1D5E2C6 C5D9E27A 4OE47E4O 4O4O4DFD 4OC44DD3 DGC3C1DS 5D7E4OLO
4OF4FO4O C44DDTE4 C2DSC9C3 5D7E4O4D F3F2F34D D37E4O4O 4OF2F94O E3C1D7C5
4OE3D9C1 D5E2CGC5 D9E27E4O 40404OFO 152O2AE2 E8E2E3C5 D44ODGES C5OPC8C5
C1C4E27A 4OF2F6F4 F06140F3 F3FDFGF1 F9F36B40 40404DFD 6140F5F8 F2F56540
40404040 4040F061 40404040 404040FO 6140F4F9 F1F4F7F4 D2614040440404040
40FO
```

TRANSLATION

EXPLANATION

The JMT 9 produces various resource usage figures for the VM that calls it. Some of the values are produced as cumulative totals (i.e. the figure is simply updated each time the JMT 9 is generated). The other values are expressed as elapsed values (i.e. the figure reflects the
amount of the resource used since the previous JMT 9).

Most of the figures given in the summary report of the NRP (see section 4.3) are obtained from the JMT 9. A JMT 9 is logged by calling the macro LOGPERFORMANCEDATA. This macro has a number of parameters which determine which values are to be logged. The JMT 9 format is therefore site dependent and thus the actual field positions will not be detailed here.

HEXADECIMAL FORMAT

00000267	00000010	000920EE	41F57C80	O301F0F0	F9000001	000000F6	384DE2E3
C56BE35D	00010104	4DE2E3E6	6BE3500	01010540	C509096B	C9500000	F6384005
E4D46EC9	50000000	OE4DD7C6	D56BC950	OBA80081	4DD9CEC3	68C95000	00050040
D3C60568	E9000750	C9C3D3F9	D3C6F140	D9C6D560	E9000950	0306C7C9	D5C4C1E3
C14DC2D3	D26AC950	00000000					
00000268	00000010	00n920EE	42026400	O3D1F0F0	F9000001	00000076	394DE2E3
C56BE35D	00010104	4DE2E3E6	68E35000	0101054 D		C9500000	F6374DD5
E40468C9	50000000	004007C6	D56BC950	OBA800日 1	4009C6C3	68C95000	0003004D
D3C6056日	E9000750	C9C3D3F9	D3C6F14D	D9C60568	E9000750	D306C7C9	D5C4C1E3
C14DC2D3	D26BC950	00000000					
0000026A	00000010	O00920EE	42100430	O3D1FOFO	F9000001	000000F6	3A4DE2E3
C56BE350	00010104	4DE2E3E6	68E35000	0101054D	C5090968	C9500000	F63A4DD5
E4D46EC9	50000000	014007C6	D56BC950	OBA80081	4DD9C6C3	68C95000	0000004D
D3C6D56日	E9000750	C9C303F9	D3C6F14D	D9C6056日	E9000950	D3D6C7C9	DSC4C1E3
C140C2D3	D26BC950	00000000					
0000026F	00000010	O00920EE	421 CBD29	C3D1F0F0	F9000001	000000 FS	354DE2E3
C56日E350	000101D4	40E2E3ES	6RE35DOD	0101054D	C509096B	C9500000	F6354D05
E4046BC 9	50000000	O04DD7C6	D568C95D	OBA800B1	4DD9C6C3	6BC95000	00000040
D3C6D56日	E9000750	C9C303F9	D3C6F14D	D9C6056B	E9000950	0306C7C9	DSC4C1E3
C14DC2D3	D26BC95D	00000000					
OOC00272	00000010	COO920EE	$422 E 43 C C$	O3N1FOFO	F9000001	000000F6	364DE2E3
C56BE350	00010104	4DE2E3E6	6BE35DOJ	0101054 D	C509096B	C9500000	F6354D05
E40468CO	50000000	OE4DO7C6	D568C950	08A800B1	4009C6C3	68C95000	00030040
D3C6D56日	E9000750	C9C3D3F9	D3C6F140	D9C6D56日	E9000950	D3D6C7C9	DSC4C1E3
C140C2D3	D26BC950	00000000					
00000275	0C000010	DCO920EE	42338902	O3D1FCFO	F9000031	D00000F3	3740E2E3
C56BE350	cc010104	4DE2E3E6	62E35000	0101054D	C509D968	C9500000	F6374DD5
E4D468C9	50000000	O日4DD7C6	DS6RC950	0BA800日1	4DD9C6C3	6BC95000	00000040
D3C6D568	E9000750	C9C3D3F9	D3C6F140	D9C6056日	E9000950	D3D6C7C9	D5C4C1E3
C14DC2D3	D26BC95D	00000000					

\footnotetext{
TRANSLATION

$+A(B L K, I)+$

EXPLANATION

The JMT 16 is generated when a file is closed. More than one JMT 16 is generated for each file, the actual amount being determined by the type of file. In this example six JMT 16 messages were produced. The corresponding JMT 62 produced at file open is shown on page A-12.

The SRN is given in bytes 70 to 73 of the message with a PETE number of HEX F637. This is the last message shown above. The PETE number is HEX OB $=11$. (Note the $S R N$ in the JMT 62 - page A-12).

The actual transfer figure is reported in the same position (bytes 70 to 73) of one or more of the other messages, depending on the type of file (the reader is referred to the relevant ICL manual for further details).

HEXADECIMAL FORMAT

```
COCOOCOF 00000015 000920EE 21B1BFOE 0301F0F0 F0000001 000000F0 4F4DE2C9
C468E900 065DD1E4 DSFOF4F1 40404040 40404040 40404040 40404040404J4DC&
C1E36BE2 F1FO5DF1 F9F8F161 FOF661FJ F44DE3C9 D46BE2F8 5DFOF87A F5F87AF4
F1
```


TRANSLATION

```
+ . J000 0!(SI+
+D,Z ) JUN041 (D+
+AT,S10)1981/06/04(TIM,S8)08:58:4+
+1+
```


EXPLANATION

The JMT 21 start message gives the session identity (bytes 39 to 62), the session start date (bytes 72 to 81) and the session start time (bytes 90 to 97).

HEXADECIMAL FORMAT

E3CEEZF1 FO5DF1FG FCF16TFO FGKIF1F1 4DE3C9D4 GEE2F85D FZF37AF5 F1TAFTF7

TRANSLATION

EXPLANATION

The session end date (bytes 39 to 48) and time (bytes 57 to 64) are provided by this message. Using the session start and session end messages, the session length can be calculated.

HEXADECIMAL FORMAT

```
00000404 0000001A OC0920EE 539FDATE O3DTFGFO F5000001 000000FO 184DD9FO
F06EC95D DOOOOOO6 4DD9FOF1 6EC95DOD 00015B4D D9F1F06G C95D0000 12974DD9
F1F36EC9 50000000 004DD9F1 F46BC95D 000019CA 4DD9F1F7 6BC95D00 0001174D
D9F2F26B C9500011 A9E54DD9 F2F56BC9 50000000 004DD9F5 F56BC95D 00000000
4DO9F1F2 68C9500S 00014E4D 40
```

TRANSLATION

+		$=J 005$	0	$(R O+$
$+0, I)$	$(R 01, I)$	$(R 10, I)$	$(R+$	
$+13, I)$	$(R 14, I)$	$(R 17, I)$	$(+$	
$+R 22, I)$	$V(R 25, I)$	$(R 55, I)$	+	
$+(R 12, I)$	+	+		

EXPLANATION

The JMT 9 only produces a total OCP time for the job - i.e. this includes the system overhead. The JMT 26 is used to obtain the OCP attributable to the user job only. The JMT 26 is used for accounting details. The format is site dependent and the reader is referred to the relevant ICL manual.

```
000002FB 0000003D OC0920EE 48449F14 02D1FGFG F0000000 00000800 11000000
0C11115C 5CE2E25C 5COOAO18 E914215C 5CE2E25C 5COOAO19 E414515C 5CE2E25C'
5COOEOOO 721100E2 E&E2FOFO F100CO39 B21110E2 E8E2FOFO F3OOFOO9 951150C7:
CGE2C1F1 F3OOFOCO O3142OEZ ESE2FOFO F2OOCOO1 EF143OCT CGEZC1FO F100F000'
03144OC7 CGEZC1FO F2OOFOOO 5B1450E2 E8E2FOFO F4OOFOOO OG146OC7 CGEZC1FO
F300COOO 231470C7 CGE2C1F1 F2ODFOOJ O3FF
```

TRANSLATION

EXPLANATION

The JMT 61 message is logged to the performance journal every two minutes. It records the name of the disc volume mounted on each disc drive.

JMT 62 - FILE OPEN DETAILS

HEXADECIMAL FORMAT

OOG00251 0000003E 000920 EE 40 F 2 CDF 2 02D1FUFC F90COOOO OBE2E8E2 FOFOF10C 000800

TRANSLATION

22 J009 SYS001 +

EXPLANATION

The JMT 62 records the SRN (bytes 22 to 25), the volume name (bytes 26 to 31) and the block size (bytes 32 to 35). The example above has an SRN of $H E X O B=11$ and is in fact the corresponding message for the JMT 16 on page A-5.

HEXADECIMAL FORMAT

000003FD 0000003F 000920EE 53096A3C D3D1FOFO F5000000 00000000 OFOODOOC 00 OFOOODOO 00000000 000J000C 00000000000000000000000 C 2200000000000000 C 270000000000000000030000 000005 A8 10000000 00000C8D $2 F 000000000078 D 4$ FEOODOOO . 000000046 OAOJOOOC $00006 C 96$ D0000000 0000000001

TRANSLATION

EXPLANATION

Although the JMT 63 logs many details, it is only used to obtain the RIRO figure (bytes 22 to 29).

APPENDIX B - NRP REPORTS

The NRP (New Report Program - see section 4.3) produces four reports for each workload class selected. They are:

- Job Summary Report;
- Device Usage Report;
- Statistics Report;
- Concurrency Distribution Report.

Examples of these reports are given here. They are taken from the session of 4 June 1981 (session identity : JUNO41) and show the performance data for each of the three workload classes in the GFSA model (i.e. MAC, BATCH and SYSTEM - see section 4.4). Note that the time selection facility has been set to select only those jobs falling in the periods $0858-1255$ and 1400-1630.

vorkload ghoup
USERMAME.JOAMARE \&PROFILE
*******AEA*************** CSSTOR.B104STPST6S56.BATCH EMSIME -RO25SUREWSOT1.DATCH RASTER oOPERATOK 9.0 ATCH SOPPAY T14PPCE33041 COMP CSETOR S104STM136556BATCH CISFB. 601FBJOP6554, BATCH HASTER 730SYPR86179, DEVEL CSMEDA.B100MAP2S6S54.BATCH SDMPAY-R713MPRJC3141.COMP CCGEOL.RT726BARS6026.BATCH CSPROJ.A723pCLAC3261.8ATCN CSMEDA.B 100MAP256554.日ATCH MISFE -RGOTFEGRB6554.DATCH TAPES .E8210PKPTSO71.EATCN SDMPAY-R713MPRJC3161.COMP ACCOUN-E8310PDAL8070.8ATCH CISFB .R601FBGRE6554.0ATCH CSMEDA.B IOOMARE26554.8ATCH TAPES.E8290PLTO8070.BATCH SYSTEM-R812SYIG1507Y.CONP CESPE 2 STRTESMT6550.AMTCH Cssirmode21rFSHT350.0ATCH CCOUM 83109DAC8070.8ATCM WISFO. R601FENSE6554.8ATCM GPEST-AT318TSTC3141.COMP 5 OHM RT95MmHx 3241 - OEVEL ORORE OT72GDCOR3O42-WILL SYSTEM-RE12SUIG35071.COMP TAPES . 28190 PRUI6770.8ATCN mastenarsizsuI 625071,BATCH SDMN -R727MFB393241.BATCN SOTEST.8731STMCN304TBATCH SDMA -R727mHB39361-BATCA SOMN -R727MAR393241.BATCK SDMM - R727MFB393264.BATCH MISFB -R601FDJOP6554.BATCH MASTER.R73OSVGETSOT1.DEVEL SYSTEM.R8125VIG45071.COMP ACCOUN. $88310 \mathrm{PCOP8} 070.8 A T C H$
 SYSTEM.RBTTSUKENSOTI BATCH CCGEOL RBZ2SUCSNSG71 AATCH SOTEST.AT315TMCN3061.RATCH

[^0]NEN REPORT PROGRAM SUMMARY REPORT
SESSION IDENTITY JUNOC

WOMKLOAD DEFINITION

PROFILEEBATCHECOMPS DEVELBMILLEBMILL
TIMEN08580081255008081400008163000810
SESSION END AT O1:05:S4 ON 1981/06/0S ELAPSE O TIME S8026 SECONOS WITH A TOTAL OF 299 JOBS IN THIS SESEION

INSTITUUT VIR TOEGEPASTE REXENAARGETENSKAPIIASTITUTE FOR APPLIED COMPUTER SCIENCE - UNIVERSITY OF STELLENROSCH - SOUTH AFRICA

SESSION END AT O1:0S:S4 ON 1981/06/OS ELAPSED TIME 58026 SECONDS UITH A TOTAL OF 299 JOBS IN THIS SESSION

INSTITUUT VIR TOEGEPASTE RERENAARUETENSKAPIINSTITUTE FOR APPLIED COMPUTER SCIENCE - UNIVERSITY OF STELLENAOSCH - SOUTH AFRICA

SESSION END AT O1:05:54 ON 1981/06/OS ELAPSED TIME 5802G SECONDS WITH A TOTAL OF 299 JOBS IN THIS SESSIOA

IMSTITUUT VIG TOEGEASTE REKENAARMETENSKAPIINSTITUTE FOR APPLIED COMPUTER SCIENCE - UNIVERSITY OF STELLENBOSCH - SOUTH AFRICA
I ITTTTTTRARR
11 TT RA RR
$\begin{array}{lll}11 & T T & R 日 R R \\ 11 & T T & R R R R\end{array}$
SESSION IDENTITY JUNOGY AT 08:58:41 ON 1981/06/04
II TT RRR
CONCURRENCY DISTRIRUTION
TOTAL TIME(SECS) NORMALISED

SESSION ENO AT O1:05:54 ON 1981/06/05 ELAPSEE TIME 58024 SECOMOS WITH A TOTAL OF 299 JOBS IN THIS SE $382 O M$
\%

 UPPOR. $2822 S W C S N 5$ S71. WACRESPOND 101032 CSINVM. 2100 IMmJ $66 C 52$ MACRESPOND 104242 CROCK. $2827 R H F C N X O 42$.MACRESPOND 102830

 MPLAN .7790 MLWES 5064 . MACRESPOND 101303 SOTEST. $2731 S T M C N S O 41$. MACRESPOND SD日PTE.272ABPDKP3241. NACRESPOND SDISD . $2723 S$ LLAC3241.mACRESPOND ORAND . $276806 R E C S O 42$.WACRESPOND 113500 ORORE. $2766 G T R H M S O 42$. MACRESPOND 10 OB O4 SYSTEM. 2818 SWKJFSOT1. MACRESPOND 120315 PEAT $2752 P$ POIS6O43. WACRESPOND UWPOR 2727 MHE393241. MACRESPOND YSTEM. SYSTEM. 2822 SUCSNSOTA - MACRESPOND GRORE . 2766 G7RHU3042. MACRESPOMB APES $28190 P R U 86770$.MACRESPONO APES R819OPRUROT70.MACRESPONO I NYGOL. 2711 INDODSO4 OMACRESPONB ORANE $276806 R E C 3042$.WACRESPOND
OMPAY. 2743 MPRJCSO 4 . FACRESPOND SUPPOR. $2817 S H R E W S O 71$ IMACRESPOND
ORCOMY. $276606 G O K 3042$. WACRESPOND YSTEM.ZB18SNKJFSOT1. WACRESPONS 1 NVGOL. 27111 MDDO3O41.MACRESPOND
GOTEST. 2711 INODDSO4. MACRESPOND SOTEST. 2711 INDDDSO4 © WACRESPONO
OHROCK. 2771 RMMATSO42. WACRESPONO SDBPTE-2728OPDKP3241. MACRESPOND CSCEME. $2713 C T R J C 4061$. MACRESPONO
CSINVM. 2100 INHJ 66052 .WACRESPOND CSINVM. 21001 MMJ 66052 . MACRESPOND
 MPLAN 2791 LLOCRGO4 ERT $2752 P P O 156043$. WACRESPON SYSTEM.E8I8SURJFSOT1. WACRESPOND CSINVM. 2100 INESTS 052 . MACRESPONO ORORE EZ766GTRNGSO4Z. MACRESPONO MPLAM . $7790 \mathrm{MLWES6O6G}$. MACRESPOND CSBUDG.2725ECIMPSO41. WACRESPONO CSEUOG. 1725 CCCELSO41. WACRESPOND SOTEST. $2731 S T M C N 3041$.HACRESPOND STSTEN.Z818SURJFSO71. WACRESPOND
CSBURG.Z T29BCDRPS241, MACRESPOND PERT. Z7S2PPOIS6C43. WACRESPOND SOTEST. Z731STSTC3041. MACRESPOND
MASTER. ZSIZSUIGKSO71. WACRESPOND MASTER-2812SUIGK5071 MACRESPOND
CCROCR 2827 MMFCNSO42. WACRESPOND CCROCK 2827 HMFCNSO42. WACGESPOND
SYSTEM. 2817 SWKENSO71. WACRESPOND SYSTEM. 2817 SUKENSOT1. WACRESPOND
ORROCK. $2827 R F F K O O 42$. WACRESPOND CSBUOG. 2725 BCIMPSOLI FHACRESPONO SDMM . 2727 MMB 303261 - HACHESPOMD SOTEST. 173 STSRRSOL1 MACRESPONO PERT . $2752 P P O 1 S S O 63$. MACRESPOND SONPAY. 2713 MPRJC3O41. MACRESPONO SDTEST.2719STSTAS241. WACRESPOND ORROCK. 2771 RMMATYOLZ. WACRESPONO

1089

$\begin{aligned} & 1089 \\ & 3473 \end{aligned}$	
	436
710	
1503539	
420	
	330
578	
	298
5034	
$\begin{array}{r} 1742 \\ 10279 \end{array}$	
	141
437	
740316	
286	
294	
	399
704	
	767
189	
147	
678	
659	
	002
858	
171	
	655
1004	
2203	
	559
1072	
	291
849	
156	
259	
130944	
198	
550	
	450
1878	
130	
4273	
1507	
263	
335	
213545	
355	
	132
	131

99	10
163	122
231	32
218	1242
220	56
72	63
211	32
201	131
289	16
270	9
128	24
187	60
16	15
216	28
222	45
272	29
232	10
162	50
237	11
188	366
240	42
169	22
234	17
218	5
231	5
229	8
219	23
220	314
264	26
253	19
322	5
255	201
187	207
228	26
248	16
124	59
117	0
267	2
267	8
222	17
256	3
231	19
239	21
231	34
67	12
110	7
289	4
324	11
127	54
236	40
244	14
238	16
214	18
118	674
393	12
258	4
264	2

10
122
32
1242
56
63
32
131
16
9
24
60
15
28
65
29
10
50
11
366
42
22
17
5
5
8
23
314
26
11
5
201
207
26
16
50
0
2 MACRESPOND WORKLOAD GROUP

TMERE ARE 162 JOBS IN THIS YORKLOAD GROUP

ORKLOAD DEFIMITION
 - ***************

PROFILEMAC*
TIMERO8S8ODE 1255008081400008163000810

INSTITUUT VIA TOEGEPASTE RERENAARUETENSKAPIINSTITUTE FOR APPLIED COMPUTER SCIENCE - UNIVERSITY OF STELLENROSCH - SOUTH AFRICA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{IITtTTTRARRR}

\hline 11 \& TT \& Rn Rn \& R \& \& \multicolumn{4}{|l|}{SESSION IOENTITY JUNOG1} \& \multicolumn{5}{|l|}{AT OB:58:41 ON 1981/06/04}

\hline 11 \& T1 \& \multicolumn{3}{|l|}{grra} \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{23}{*}{11} \& TT \& \multirow[t]{23}{*}{RR RR

$*$
$*$

$*$

$*$
$*$
$*$
$*$
$*$} \& R \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{NEU REPORT PROGRAM - DEVICE USAGE REPORT}}

\hline \& \& \& \& \& \& \& \& \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \multicolumn{11}{|l|}{\multirow[b]{2}{*}{| *** |
| :--- |
| - device volume blocksile * file . file transfers * loader accesses o other accesses * |}}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \multicolumn{11}{|l|}{}

\hline \& \& \& * \& * \& - ave \& * var * \& * \& * total * \& A 52 \& total \& - AS x \& TOTAL \& AS 2

\hline \& \& \& \multicolumn{11}{|l|}{***}

\hline \& \& \& - 01010100 \& srs003 \& 2019 \& 9808739 \& 174 \& 8089 \& 9.567 \& 0 \& 0.000 \& 16 \& 1.942*

\hline \& \& \& - 01010000 \& SYS001 \& 225 \& 5548351 \& 281 \& 3129 \& 3.701 \& 3875 \& 90.920 \& 34 \& 4.126 *

\hline \& \& \& - 01040200 \& srs002 \& 2042 \& 21501307 \& 5 \& 19225 \& 22.737 \& 173 \& 4.059 \& 6 \& 0.728*

\hline \& \& \& - 01040700 \& Gr3atz \& 2048 \& 80 \& 25 \& 4407 \& 5.212 \& 0 \& 00.000 \& 0 \& 0.000*

\hline \& \& \& - 01040400 \& GFSAO2 \& 1237 \& 73757521 \& 494 \& 15189 \& 17.964 \& 103 \& 2.417 \& 305 \& $37.015 *$

\hline \& \& \& - 01010500 \& GFSA13 \& 4977 \& 723436852 \& 7 74 \& 13148 \& 15.550 \& 0 \& 0.000 \& 13 \& 1.578*

\hline \& \& \& - 01040600 \& 6FSAO3 \& 1732 \& 2549202 \& 313 \& 8780 \& 10.384 \& 65 \& 51.525 \& 12 \& 1.456*

\hline \& \& \& - 01050001 \& DEv262 \& 2048 \& 8 - 0 \& - 1 \& 3 \& 0.004 \& 0 \& 0.0 .000 \& 0 \& 0.000*

\hline \& \& \& -01040300 \& GFSA01 \& 522 \& 2797491 \& 128 \& 3581 \& 4.235 \& 46 \& 1.079 \& 414 \& $50.243 *$

\hline \& \& \& ******** \& DEV214 \& 3422 \& 17399215 \& 3 \& 136 \& 0.161 \& 0 \& 00.000 \& 20 \& 2.627*

\hline \& \& \& - 01050103 \& PRFOOB \& 6144 \& 40 \& 2 \& 6179 \& 7.308 \& 0 \& 00.000 \& 0 \& 0.000*

\hline \& \& \& - 01050100 \& devzsz \& 7606 \& 30904528 \& 2 \& 1120 \& 1.325 \& 0 \& $0 \quad 0.000$ \& 0 \& 0.000*

\hline \& \& \& -01040500 \& Sv3004 \& 2048 \& 80 \& 14 \& 416 \& 0.492 \& 0 \& 00.000 \& 4 \& 0.485*

\hline \& \& \& - 01010700 \& GFsal1 \& 2048 \& 8 - 0 \& 04 \& 63 \& 0.075 \& 0 \& 0.0 .000 \& 0 \& 0.000*

\hline \& \& \& - 01050102 \& DEv088 \& 13165 \& - 0 \& - 1 \& 1089 \& 1.288 \& 0 \& 00.000 \& 0 \& 0.000

\hline \multicolumn{3}{|l|}{} \& \multicolumn{11}{|l|}{***}

\hline $\stackrel{1}{\omega}$ \& \& \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& * 0 \& - ave \& - var \& - ${ }^{\text {a }}$ \& - total \& as x \& total \& - As X \& total \& AS z

\hline
\end{tabular}

SESSION END AT OI:05:54 ON 1981/06/05 ELAPSED TINE 58024 SECONDS WITH A TOTAL OF 299 JOES IN THIS SESSION
instituut vir toegepaste rekenaaruetenskapiinstitute for applied computer science - university of stellenaosch - south africa
 $\begin{array}{lll}11 & T T & R R R R \\ 11 & T T & R R R R \\ 11 & T Y & R R\end{array}$

SESSION JDENTITV JUNOG
AT 08:58:61 ON 1981/06/04
sTaTISTICS FOR THIS WORKLOAO GROUP

SESSION END AT O1:05:56 ON 1981/06/0S ELAPSEOTIME S8C26 SECONOS UITH A TOTAL OF 290 JORS IN THIS SESSION

INSTITUUT VIR TOEGEPASTE REKENAARMETENSKAP/INSTITUTE FOR APPLIED COMPUTER SCIENCE - UNIVERSITY Of STELLENAOSCH - SOUTH AfRICA
ITYTITTARRR

```
11 TT RRRRR
II TTT RRRR
SESSION IDENTITV JUNOG
11 TT RR RR
```

TOTAL TIME(SECS) NORMALISED CONCURENCY DISTRIRUTION

LEVEL	0	4211	18.83
LEVEL	1	453	2.02
LEVEL	2	492	2.20
LEVEL	3	479	2.14
LEEEL	4	590	2.64
LEVEL	5	984	4.40
LEVEL	6	683	3.06
LEVEL	7	1295	5.79
LEVEL	8	2186	9.78
LEVEL 9	2361	10.56	
LEVEL 10	1965	8.79	
LEVEL 11	2403	10.75	
LEVEL 12	1381	6.18	
LEVEL 13	2074	9.27	
LEVEL 14	4213	18.84	
LEVEL 15	803	3.59	
ONCURRENCY	9.96		

1
$\stackrel{1}{N}$

INSTITUUT VIA TOEGEPASTE REKENAARWETENSKAP/INSTITUTE FOD APPLIED COMPUTER SCIENCE - UNIVERSITY OF STELLENAOSCH - SOUTH AFRICA

instituut vir toegepaste rekenaarvetenskapifnstitute for applied computer science - university of stellenposch - south africa

instituut vir toegepaste rekenampetenskapiinstitute for applieo computer science - university of stellentosch - south africa

instituut vip toegepaste rekenaangetenskapitnstitute frr appligd computer science - university of stellenrosch - south africa

$\begin{array}{lll}11 \\ 11 & \text { TT } \\ 1 & \text { RRRRR } \\ \text { RR R }\end{array}$
total time(secs) normaliseo
CONCURRENCY DISTRIPUTION
LEVEL 0 0.00
Level
LEVEL
LEVEL
LEVEL
4299
167
254 LEVEL 5

57586
49
$\begin{array}{rr}49 & 92.38 \\ 3.79 & 0.08\end{array}$
aVERAGE CONCURPEACT
3.79
0.00
6.90
0.24
0.40
92.38
0.08

OS with a total of 299 jobs in this session
$\stackrel{1}{1}$
$\stackrel{\rightharpoonup}{a}$

SYSTEM WORKLOAD GROUP

CONCURRENCY DISTRIBUTION REPORT

Jobs run on the GFSA computer are classified in two ways - firstly by a user name (up to ten characters in length), and secondly by a fixed format 13 character job name. The format is as follows:
:username.MAAASSXXXJJCC

The meanings of the various fields are as follows:

```
M = mode (Z = MACRESPOND (i.e. terminal);
    B = BATCH (job inserted via cards);
    R = REMOTE BATCH (job inserted via a terminal))
AAA = 3 digit account code (one code per user)
SS = system code (eg. ST ; stores;
                                    FB : financial budgeting;
                                    SW : software)
XXX = any 3 character job identifier
JJ = job code (eg. compile, test, edit)
CC = cost centre (for accounting use)
```

The facility exists under VME/B for each site to define its own background profiles. This allows the system manager to control his resources in an optimal fashion by setting up specific profiles to do specific tasks, eg. preloading the compilers into a profile designed to run compilations.

The following profiles have been defined at GFSA:

BATCH - a general profile for work that does not fall into any of the other categories;

COMP - a profile to be used for compilations. The compilers are preloaded into the profile;

DEVEL - used for development work for quick testing to avoid the need to run programs from the terminals;

MILL - a profile placed at the bottom of the OCP priority queue for jobs that use a lot of OCP (i.e. mill) time;

BMILL - similar to the mill profile, but with a larger main store allocation - designed for mill intensive jobs that also require a lot of main store.

It is impossible to reproduce all the SNAP listings generated during the calibration and validation stages. This appendix contains one such listing, namely that produced during the final calibration run with concurrencies of 4 and 3 for the BATCH and SYSTEM workloads respectively.

The output provides details of the network parameters together with a list of the chains identified by SNAP. The analysis is then presented for each class in the model as well as an analysis independent of class. Finally the response time for each open chain is given.

OEVELOPED BY THE PERFORMANCE EVALUATION RESEARCH GROUP DEPARTMENT OF COMPUTER SCIENCE EPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF STELLENBOSCH

STELLENBOSCH 76OC
SOUTH AFRICA

COPYRIGHT (C) 1977 日Y PETER TEUNISSEN

EXTERNAL ARRIVAL RATES TO CENTERS:
1234

OCP	0.386	0.000	0.000	0.000	0.000
SCHEO	0.000	0.000	0.000	0.000	0.000
OCIC	0.000	0.000	0.000	0.000	0.000
OCAC	0.000	0.000	0.000	0.000	0.000
SYSCO2	0.000	0.000	0.000	0.000	0.000
SYSCO3	0.000	0.000	0.000	0.000	0.000
SYSCO1	0.000	0.000	0.000	0.000	0.000
GFSA13	0.000	0.000	0.000	0.000	0.000
EOIG	0.000	0.000	0.000	0.000	0.000
ED17	0.000	0.000	0.000	0.000	0.000
GFSAO1	0.000	0.000	0.000	0.000	0.000
GFSAO2	0.000	0.000	0.000	0.000	0.000
GFSAO3	0.000	0.000	0.000	0.000	0.000
GFSA12	0.000	0.000	0.000	0.000	0.000
SYSCO4	0.000	0.000	0.000	0.000	0.000

$$
\begin{aligned}
& \begin{array}{llllllllll}
\circ & \circ & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 8 \\
0 & 8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}
\end{aligned}
$$

n
EXTERNAL ARRIVAL RATES TO CENTERS:
N
$\begin{aligned} & 8 \\ & 8 \\ & 0\end{aligned}$
$\begin{array}{lll}8 & 8 & 8 \\ 8 & 8 & 8 \\ 0 & 0 & 0\end{array}$
0.000
0.000
0.000
$\begin{aligned} & 0.000 \\ & 0.000\end{aligned}$
0.000
$\begin{aligned} & 8 \\ & 8 \\ & 0\end{aligned}$
$\begin{aligned} & \text { MCOC } \\ & \text { HCIC } \\ & \text { LPIC } \\ & \text { LPZC }\end{aligned}$
LP3C
UTERM
UVSI
UDISC
URIRO
$\begin{aligned} & \text { UTAPE } \\ & \text { UPAPER }\end{aligned}$

BRANCHING PROBABILITIES

DEPARTURE PROBABILITIES

OCP	0.000	0.021	0.000	1.000	0.000
sched	0.000	0.000	0.000	1.000	0.000
DCic	1.000	0.000	0.000	1.000	0.000
D'cse	0.000	0.000	0.000	0.000	0.000
srscoz	1.000	0.000	0.000	1.000	0.000
srscos	1.000	0.000	0.000	1.000	0.000
srscor	1.000	0.000	0.000	1.000	0.000
6FSal3	1.000	0.000	0.000	1.000	0.000
E09e	1.000	1.000	1.000	1.000	0.000
E017	1.000	0.000	1.000	1.000	0.000
6FSAO1	1.000	0.000	0.000	1.000	0.000
6FSAO2	1.000	0.000	0.000	1.000	0.000
6FSAO3	1.000	0.000	0.000	1.000	0.000
6FSA12	1.000	0.000	0.000	1.000	0.000
sYSCO4	0.000	0.000	0.000	0.000	0.000

departure probabilities


```
NO OF SUBCHAINS= 3
    * CHAIN no 1 (ClOSED)
    (1,3)
    (8,3) (11, 3)
    *CHAIN NO 2 (CLOSED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (1,5) & (21. 5) & (22, 5) & (23, 5) & (25,5) & (26, 5)
(13, 5) & \((2,5)\) & \(\left(\begin{array}{lll}5,5) \\ (15,5)\end{array}\right.\) & \[
\begin{aligned}
& (6,5) \\
& (16,5)
\end{aligned}
\] & \[
\begin{aligned}
& (7,5) \\
& (17,5)
\end{aligned}
\] \\
\hline (8,5) & (9.5) & (10,5) & (11. 5) & (12, 5) & (13. 5) & (14.5) & (15.5) & \[
(16,5)
\] & (17,5) \\
\hline (18, 5) & (19, 5) & (20,5) & (4.5) & (3,5) & & & & & \\
\hline
\end{tabular}
M
\begin{tabular}{|c|c|c|c|}
\hline (1.01) & (2, 1) & (24. 1) & (15. 1) \\
\hline (2) 2 ) & ( 5, 2) & (6, 2) & (7)2) \\
\hline \((15,2)\) & (16.2) & (17, 2) & (4,2) \\
\hline
\end{tabular}
NUPGER OF CUSTOMERS IM CLOSED SUBCHAIMS:
```


analysis for customers of class 1

	cénter	UTILIEATION	E(QUEUE)	E(time spent	cycle time	RATE
	10 CP	0.19414340	0.3071	0.0190	0.2279	16.2009
	2 SCHED	9.09090900	2.8248	256.4102	106.6748	0.0110
	$3 \mathrm{DC10}$	0.02042677	0.0215	0.0026	0.4833	8.2320
	40 C 40	0.01474980	0.0194	0.0033	0.6697	5.9442
	5 sys002	0.07071376	0.0929	0.0505	2.1251	1.8386
	6 srs003	0.09206659	0.1194	0.0499	1.6212	2.3937
	7 3rs00 1	0.21297130	0.3938	0.0711	0.6513	5.5373
	8 GFSA13	0.01757562	0.0120	0.0397	13.2508	0.3010
	11 GFSAO1	0.01272854	0.0130	0.0392	12.0475	0.3309
如	12 GFSAD2	0.04828557	0.0522	0.0416	3.1446	1.2554
$\stackrel{1}{-}$	13 6FSaO3	0.00290543	0.0030	0.0394	52.9119	0.0755
\cdots	14 GFSAM 2	0.09034685	0.0980	0.0417	1.6612	2.3490
	15 SY5006	0.00364331	0.0037	0.0392	42.1878	0.0947
	16 MCOO	0.01502823	0.0152	0.0151	3.9575	1. 0069
	17 Mc10	0.01502823	0.0152	0.0151	3.9575	1.0069
	21 UTERM	9.09090900	0.0000	0.0001	1122.2650	0.0036
	22 Uvsi	9.09090900	0.0002	0.0001	1.8301	2.1855
	23 UDISC	9.09090900	0.0012	0.0001	0.3335 36.7359	11.9907
	24 URIRO	9.09090900	0.0000	0.0001	536.7351	0.0075 2.0138
	25 UTAPE	9.09090900	0.0002	0.0001	1.9862	2.0138

Center	Utilization	e(queue)	E(TIME SPENT)	cycle time	rate
4 DC40	0.00532583	0.0070	0.9393	535.7981	0.0075
15 SY5004	0.00028663	0.0003	0.0392	536.6985	0.0075

		CENTER	UTILIZATION	E(QUEUE)	E(TIME SPENT)	crcle time	RATE
		OCP					13.4436
	1	OCP SCMED	0.02472300 9.09090900	0.0416 0.0008	0.0031 10.0000	$\begin{array}{r} 0.2201 \\ 37181.9700 \end{array}$	13.4436 0.0001
	2	SCHED	9.09090900 0.00365810	0.0039	0.0026	3718.0324	1.4742
	6	- C40	0.00200625	0.0027	0.0033	3.7072	0.8085
	5	SYS002	0.02055855	0.0275	0.0514	5.5611	0.5345
	6	SYS003	0.02694386	0.0357	0.0510	4.2314	0.7005
	7	SYSOO1	0.02355299	0.0472	0.0771	4.8218	0.6124
	8	GFSA13	0.00002077	0.0000	0.0398	5556.5630	0.0005
	9	ED16	0.00372219	0.0037	0.0386	30.9606	0.0968
	10	ED17	0.00246069	0.0025	0.0385	66.8526	0.0640
	11	GFSAOI	0.00008825	0.0001	0.0393	1307.3960	0.0023
tri	12	GFSAO2	0.00487984	0.0053	0.0421	23.6031	0.1269
$\stackrel{1}{1}$	13	GFSAD3	0.00228419	0.0023	0.0394	50.4751	0.0594
$\stackrel{\square}{V}$	14	GFSA12	0.00316153	0.0035	0.0427	36.4538 926.0599	0.0822
	15	SYSOO4	0.00012659	0.0001	0.0392	926.0591	0.0032
	16	MCOO	0.00003582	0.0000	0.0152	1250.1420	0.0024
	17	me10	0.00003582	0.0000	0.0152	1250.1420	0.0024
	18	LP10	0.57523540	0.9267	0.2517	0.5632	3.6815 3.6815
	19	LP20	0.57523540	0.9267	0.2517	0.5632	3.6815
*	20	LP30	0.59266670	0.9683	0.2553	0.5356	3.7931
*	21.	UTERM	9.09090900	0.0000	0.0001	37192.1300	0.0001
	22	UVSI	9.09090900	0.0001	0.0001	3.2154	0.933 1.3497
	23	UDISC	9.09090900	0.0001	0.0001	2.2225	1.3497
	25	UTAPE	9.09090900	0.0000	0.0001	625.0774	1.0048 11.1561
	26	UPAPER	0.00037191	0.0011	0.0001	0.2688	11.1561

ANALYSIS INDEPENDENT OF CLASS

		CENTER	UTILIEATION	E(QUEUE)	E(TIME SPEMT)	crcle time	RATE	
	1	OCP	0.42395440	0.6967	0.0144	9999998000000000.0000		48.4845
	2	SCHED	9.09090900	3.0221	7.4772	9999998000000000.000 C		0.4042
	3	OC10.	0.05268584	0.0555	0.0026	9999998000000000.0000		21.2324
	4	-C40	0.24409560	0.3227	0.0243	9999998000000000.0000		13.3044
	5	SYS002	0.25681350	0.3426	0.0513	9999998000000000.0000		6.6772
	6	SYSOO3	0.25278720	0.3335	0.0507	9999998000000000.0000		6.5725
	7	SYSOD1	0.52328560	1.0204	0.0750	9999998000000000.0000		13.6054
	8	GFSA13	0.03626325	0.0354	0.0398	9999998000000000.0000		0.8968
	9	ED16	0.00372219	0.0037	0.0386	30.9606	0.0968	
	10	E017	0.00257083	0.0026	0.0385	9999998000000000.0000		0.0668
	11	GFSAOI	0.02233291	0.0228	0.0393	9999998000000000.0000		0.5807
	12	GFSAO2	0.08682418	0.0944	0.0418	9999998000000000.0000		2.2574
的	13	GFSAO3	0.02505891	0.0257	0.0394	9999998000000000.0000		0.6515
$\stackrel{1}{\square}$	14	GFSA12	0.10108390	0.1099	0.0418	9999998000000000.0000		2.6282
∞	15	SYSDO4	0.01959404	0.0200	0.0392	9999998000000000.0000		0.5094
	16	MCOO	0.01787350	0.0181	0.0151	$9999998000000000.00 C 0$		1.1975 1.1975
	17	MC10	0.01787350	0.0181	0.0151	9999998000000000.0000		1.1975
	18	LP10	0.57523540	0.9267	0.2517	0.5632	3.6815	
	19	LP20	0.57523540	0.9267	0.2517	0.5632	3.6815	
	20	LP30	0.59266670	0.9683	0.2553	0.5356 0990998000000000000	3.7931	0.0110
	21	UTERM	9.09090900	0.0000	0.0001	$99999980000 C O O O C . O O C O$ $99999980000 C O C C C . O O C O$		0.0110 9.3487
*	22	UVSI	9.09090900 9.09090900	0.0009 0.0025	0.0001 0.0001	9999999800OOCOOOC.OCCO		24.795 C
	23.	UDISC	9.09090900 9.09090900	0.0025 0.0000	0.0001	9999998000000000.0000		0.3932
	24	UTAPE	9.09090900	0.0002	0.0001	9999998000000000.0000		2.3951
	26	UPAPER	0.00037191	0.0011	0.0009	0.2688	11.1561	

FERRARI D Computer Systems Performance Evaluation (1978)

ITR Publications:

An introduction to computer performance modelling (1980) An introduction to system modelling using the Stochastic Network Analysis Package (1977)
Stochastic Network Analysis Program User's Manual (1977)

Numerous ICL manuals

Project documentation

[^0]: arexa oantronecacei.ontru

