
Unifying Framework For Development of
Message-Passing Applications

Stanislav Böhm

Ph.D. Thesis
Faculty of Electrical Engineering and Computer Science

VŠB – Technical University of Ostrava

2013

ii

Acknowledgements

First and foremost, I would like to thank my advisor, professor Petr Jančar, for his
support and advices and the opportunity he provided to see science from both the
theoretical and applied sides. Thank you, I owe you so much.

I would also like to thank Marek Běhálek, Ondřej Meca, and Martin Šurkovský,
the coauthors of the project that is the subject of this thesis. Without their work,
this dissertation thesis would not reach its current state. I am also very grateful to
Martin Šurkovský for various comments on this text.

I would also like to thank all those who helped me during my Ph.D. studies,
especially Martin Kot and Zdeněk Sawa. They were always ready to provide useful
advice.

My thanks goes to Ondřej Jakl who believed in our project and allows us to use
hardware at Institute of Geonics in Ostrava. This access was very helpful for the
practical verification of our our ideas.

The tool Kaira, which is the central topic of this thesis, was supported by grants:
GAČR P202/11/0340, IT4Innovations Center of Excellence (project CZ.1.05/1.1.00/
02.0070), and student grant SP2011/25 prolonged as SP2012/127 and SP2013/145.

Last but not least, I thank Jana for her love and constant support.

iii

iv

Abstract

This thesis focuses on the development of applications for distributed memory sys-
tems in the area of scientific and engineering computations. The work addresses the
problems inherent to rapid development of parallel applications and the complexity
of tools used during their implementation.

Herein, an abstract computation model for describing MPI (Message Passing
Interface) applications is proposed. In the described topic of interest, MPI is the
de facto API. The proposed approach is based on the usage of visual programming
for expressing parallel aspects and communication in a developed application. The
intention is not to create a complete program visually; rather, a user writes sequential
parts of the application in C++ and puts them into the visual program. This allows
simple modification of the communication structure and provides immediate visual
feedback of the program’s behavior through a visual debugger. An abstract model
is also designed in a way that provides a unified view of activities that are used
during development, including debugging, performance analyses, and verifications.
While tools exist in all of these areas, they are usually single-purpose tools. In
the proposed approach, all these activities are roofed by a single conceptual frame;
everything from configurations to providing results of analyses uses one set of terms.

The thesis makes the following contributions: It introduces the syntax and se-
mantics of the visual language for describing parallel aspects and communication in
applications for distributed memory systems. The semantics of the language is for-
malized and the usage of the language is demonstrated for various problems. These
examples show that the sizes of diagrams describing the visual programs remain
reasonably small for many practical parallel applications. Measurements show that
the performance of the resulting programs is close to manually created C++ appli-
cations. Also, the features of the proposed approach may help in various ways in
common activities that occur during development.

The ideas presented in this thesis are implemented as a tool named Kaira
(http://verif.cs.vsb.cz/kaira/); it is an open source tool released under GPL
(GNU General Public License).

v

http://verif.cs.vsb.cz/kaira/

vi

Abstrakt

Tato práce se zabývá vývojem aplikací pro systémy s distribuovanou pamětí v oblasti
vědecko-technických výpočtů. Práce se zaměřuje na rychlý vývoj paralelních aplikací
a integraci nástrojů používaných při vývoji.

Navržený přístup je založen na abstraktním výpočetním modelu a vizuálním
programování. Tyto prostředky slouží k vyjádření paralelismu a komunikaci ve vy-
víjené aplikaci. Sekvenční části aplikace jsou psány přímo v C++ a tento kód je
kombinován s vizuálním modelem. Navržený přístup dovoluje jednoduchou manipu-
laci s programem a umožňuje poskytnout přímočarou vizualizaci chování aplikace.
Abstraktní model je také navržen za účelem sjednocení aktivit, které se objevují při
vývoji aplikací: debugování, analýza výkonu, predikce výkonu a verifikace. Pro tyto
aktivity existuje mnoho různých etablovaných nástrojů, které jsou mnohem vyzrá-
lejší a nabízejí více funkcí než zde předkládaná implementace. Z pohledu této práce
se ale většinou jedná o programy zaměřené pouze na jednu z oblastí. Navrhovaný
přístup spojuje všechny tyto aktivity do jednoho myšlenkového rámce s jednotnou
terminologií, konfigurací a prezentací výsledků.

Hlavní přínosy této práce spočívají ve vytvoření syntaxe a sémantiky vizuál-
ního jazyka pro popis paralelních částí a komunikace v aplikacích pro systémy s
distribuovanou pamětí. Sémantika jazyka je plně formalizována a využití jazyka je
demonstrováno na různých příkladech. Tyto příklady ukazují, že diagramy repre-
zentující program zůstávají relativně malé a přehledné při řešení různých praktic-
kých problémů. V této práci je dále ukázáno, že navržený přístup může sjednotit
a zjednodušit mnoho různých činností objevujících se v souvislosti s vývojem soft-
waru v oblasti zájmu této práce. Prezentované myšlenky jsou implementovány v
podobě nástroje Kaira (http://verif.cs.vsb.cz/kaira/). Kaira je uvolněna
jako open-source nástroj pod GPL (GNU General Public License).

vii

http://verif.cs.vsb.cz/kaira/

viii

Declaration

I declare that I composed this thesis, and I am the original author and leader of
the group that works on this project. I have also done most of the work related
to technical matters and programming. Some of these results have been previously
published in [1, 2, 3, 4, 5, 6, 7, 8].

ix

x

Contents

1 Introduction 1

2 State of the art 5
2.1 Message Passing Interface . 5

2.1.1 Debugging . 7
2.1.2 Performance analysis . 8
2.1.3 Performance prediction . 9
2.1.4 Verification . 10

2.2 High-level tools . 11
2.3 Visual parallel programming . 13
2.4 Petri nets . 13

3 Kaira 17
3.1 Design goals and decisions . 17
3.2 “Hello world” example . 20
3.3 Programming in Kaira . 21

3.3.1 Places . 24
3.3.2 Transitions . 24
3.3.3 The syntax of expressions on arcs 25
3.3.4 Input arcs . 26
3.3.5 Output arcs . 31
3.3.6 Net-instances . 32
3.3.7 Init-areas . 34
3.3.8 Sequential codes . 34
3.3.9 Global configurations . 35
3.3.10 Integration of C++ types . 36

3.4 History . 36
3.5 Comparison with selected tools . 38

4 Examples 41
4.1 Example: Workers . 41

4.1.1 Usage of GMP . 42

xi

xii CONTENTS

4.2 Example: Heat flow . 45
4.2.1 Rectangle variant . 45

4.3 Example: Heat flow & load balancing 47
4.4 Example: Matrix multiplication . 49
4.5 Example: Sieve . 51
4.6 Example: Ant colony optimization 54

5 Formal semantics 57
5.1 Basic definitions . 57
5.2 Basic transition system . 58
5.3 Kaira program . 59
5.4 Instantiation of Kaira program . 60

5.4.1 Run of a program . 62

6 Features of Kaira 67
6.1 Generating applications . 67

6.1.1 Performance of applications 68
6.2 Simulator . 69
6.3 Tracing . 74

6.3.1 Tracing of heat flow . 75
6.3.2 Tracing of ACO . 76

6.4 Performance prediction . 79
6.4.1 Performance prediction of the heat flow example 82
6.4.2 The experiment with load balancing 83

6.5 Verification . 86
6.5.1 Verification of the workers example 92

6.6 Libraries . 93
6.6.1 C++ libraries . 94
6.6.2 Integration with Octave . 95
6.6.3 Drawbacks . 96

7 Implementation 99
7.1 Architecture . 99
7.2 Generated programs . 101
7.3 Error messages . 103

8 Conclusions 107
8.1 Ideas for future work . 108

8.1.1 Collective communication . 108
8.1.2 Advanced libraries . 109
8.1.3 Hybrid computation . 109
8.1.4 Use of Kaira in education . 110

CONTENTS xiii

Závěr 111

Author’s publications 113

Bibliography 121

A Performance measurements 123

xiv CONTENTS

List of Algorithms

5.1 The definition of function FindBinding 63
5.2 The definitions of functions AddVars and AddVarsAndCheck 64
5.3 The definition of function PutTokens 65
7.4 The pseudo-code of the main cycle in a generated application 102
7.5 The pseudo-code generated for the transition from example 11 in

Figure 3.9 . 102

xv

xvi LIST OF ALGORITHMS

List of Figures

2.1 An example of a Place/Transition Petri net 14

3.1 The editor with a visual model in Kaira 19
3.2 Example “Hello world” . 21
3.3 Three steps of “Hello world” simulation 22
3.4 Inserting a C++ code into a transition 23
3.5 Visualizations of transitions and places 23
3.6 Basic examples of input arcs . 28
3.7 Examples of input arcs with configuration items 30
3.8 Examples of invalid configuration of input arcs 31
3.9 Examples of output arcs . 33

4.1 The net of the workers example . 42
4.2 Computing a heat distribution on a cylinder 46
4.3 The net of the heat flow example . 46
4.4 The net for rectangle variant of the heat flow example 47
4.5 The net for the heat flow with load balancing example 48
4.6 The communication scheme of Cannon’s algorithm 51
4.7 The net for the example of matrix multiplication 52
4.8 The net for the sieve example . 54
4.9 The net for the ant colony optimization example 55

6.1 Execution times of the heat flow example on Anselm 70
6.2 Execution times of the heat flow example on Hubert 71
6.3 The simulator during an execution of the heat flow example. 72
6.4 A screenshot of the control sequence viewer 73
6.5 The heat flow example with the tracing configuration for variant B . 76
6.6 A replay of a tracelog . 77
6.7 A magnified part of a chart showing a process utilization obtained

from a tracelog . 77
6.8 The histogram of transition execution times for each process 78

xvii

xviii LIST OF FIGURES

6.9 Execution times for tracing of the heat flow example in variants A,
B, C from Section 6.3.1 . 78

6.10 The tracing configuration for the example from Section 6.3.2 79
6.11 The process of exporting data from a tracelog 80
6.12 The fitness value of the token in place Best trail in time 81
6.13 Prediction of execution times for the heat flow problem (2600×8200;

5000 iteration) . 84
6.14 Prediction of execution times for the heat flow problem (2600×8200;

5000 iteration) . 84
6.15 Prediction errors for execution times in Figure 6.13 and Figure 6.14 . 85
6.16 The configuration of the simulated run for experiment “XY” 85
6.17 The tracing configuration for the net of the heat flow with load bal-

ancing example . 87
6.18 The average computation times of iterations and row counts in the

heat flow example with load balancing 87
6.19 The average computation times of iterations in the heat flow example

without load balancing. 88
6.20 The configuration of the simulated run from Section 6.4.2 88
6.21 The average computation times and row counts in the example with

load balancing where process 4 is slowed down 89
6.22 The configuration of workers for state-space analysis. 93
6.23 The report of the state-space analysis for the net in Figure 6.22 . . . 94

7.1 Building a program or a library in Kaira 100

List of Listings

2.1 A simple MPI program . 6
3.1 An empty template for a sequential code in a transition 35
3.2 An empty template for an init-code of a place where t is the type of

the place . 35
3.3 Example of binding a simple type . 37
4.1 The head-code for example Workers 43
4.2 The head-code for the GMP variant of Workers example 44
4.3 Head-code for the example of heat flow with load balancing 50
4.4 The code inside transition distribute in the matrix multiplication ex-

ample . 53
6.1 A simple linear model of communication 80
6.2 The function used in configurations of the time and clock substitu-

tions for the experiment with load balancing of heat flow 89
7.1 The example code generated for checking the correctness of an ex-

pression . 105

xix

xx LIST OF LISTINGS

Chapter 1

Introduction

Parallel computing, or the simultaneous use of multiple processing units, reduces
the computational time for solving many scientific and engineering problems. Nowa-
days, parallel computers are more available and more people can use and develop
software for them. However, implementing efficient cooperation among computing
units brings many challenges, including synchronization, data placement, and com-
munication. Experimenting with parallel algorithms is also more complicated, as
more time may be needed to develop a working prototype. But the complexity lies
also in activities that are used during the implementation, such as debugging, per-
formance analysis, or verification; these activities that are referred to as supportive
activities in this thesis. Even an experienced programmer of sequential applications
may spend some time learning how to use tools like parallel debuggers or paral-
lel profilers. They are usually more complicated in comparison to their sequential
counterparts.

An important aspect of a parallel computer is its memory model. The two basic
memory models are shared memory and distributed memory. In the former, all
computing units may access a global (shared) memory. In the latter, each computing
node has its own private memory and they communicate with each other through
some kind of network.

The overall topic of this thesis is the reduction of complexity of the development
of parallel applications for distributed memory systems in the area of scientific and
engineering computations. This thesis proposes a unifying prototyping framework
for creating, debugging, performance analyzing, and verifying parallel applications.
It proposes an environment in which a user can implement and experiment with his
or her ideas in a short time; create a real running program; and verify its perfor-
mance, scalability, and correctness.

There are many approaches aimed at simplifying the parallel programming: au-
tomatic paralleling compilers, programming languages with special constructs, or
different paradigms to express parallelism. From the perspective of these tools, the

1

2 CHAPTER 1. INTRODUCTION

proposed approach is on a lower level of abstraction. The goal is to provide an
environment for simple experimentation with various algorithms; for this reason,
enabling the user to have good control over the results is important. At the same
time, it is also important to maintain a program in a form that is easy to modify;
therefore, some low-level parts of the implementation are hidden and auto-generated.

One important aspect of the proposed approach is that it also provides a platform
that integrates supportive activities. Tools exist for many different varieties of these
supportive activities; they are mostly on a higher level of maturity and provide more
functions in their areas of interest in comparison to the implementation of the tool
proposed in this work. These tools, while being very diverse, usually focus only on
a single area. In the framework introduced with this work, all of the activities are
presented in one way. Once the user knows the basics, all these features may be
easily used without learning a completely new tool for each supportive activity. A
second important aspect of the proposed approach is the interoperability among all
the activities.

Let us consider the following scenario: We are developing an implementation
of a load-balancing algorithm and want to inspect how this application behaves
during real runs. But we also want to verify the performance and the correctness in
general; hence, we want to observe a simulated run of the application on a virtual
computer with some very special performance characteristics to verify corner cases
of the algorithm. A natural wish is to able to compare and analyze all these data
together. If an anomaly is discovered in these analyses, we would want to see the
situation in a debugger and observe the program’s run in step-by-step detail.

The user usually needs at least three tools to accomplish goals in this scenario.
Also notable is that it can be hard to reuse results from one tool in another tool if
the used tools do not understand each other. In particular, getting the developed
application under control of a debugger into an exact state obtained from analysis
of another tool can be hard. In the proposed approach, this scenario is achievable
and all activities are presented in a unified way.

The contributions of this thesis can be summarized as follows: It introduces
the syntax and semantics of the visual language for describing parallel aspects and
communication in applications for distributed memory systems. The semantics of
the language is formalized and the language is used with various problems. These
examples show that sizes of diagrams describing the visual programs remain reason-
ably small for many practical parallel applications. The performance of resulting
applications is close to manually created C++ applications. The language allows
easy modifications of programs and also (together with the visual simulator) imme-
diate visual feedback about the behavior of the developed program. The proposed
model is also designed in a way that unifies and simplifies many supportive tasks
that occur during development.

3

The proposed ideas are implemented in Kaira1. It is an open source project
released under GNU General Public License2. The author of the thesis is the original
author, the leader of the team developing Kaira, and also its main programmer.

The content of this thesis is organized in the following way: In Section 2, the
state of the art is discussed. In Chapter 3, Kaira is introduced; Chapter 4 provides
examples of programs developed in Kaira. The formal semantics of Kaira is given
in Chapter 5. Chapter 6 describes features of Kaira together with demonstration
through examples. In Chapter 7, the basic internal structure of Kaira is introduced.
The thesis concludes with Chapter 8. In all chapters, it is assumed that the reader
is familiar with C++ and basic principles of parallel programming. The formal
semantics given in Chapter 5 may be too technical for some readers; it can be
skipped, and most of Chapter 6 should remain understandable.

1http://verif.cs.vsb.cz/kaira/
2http://www.gnu.org/licenses/gpl.html

http://verif.cs.vsb.cz/kaira/
http://www.gnu.org/licenses/gpl.html

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

This chapter presents an overview of tools and technologies used in the area of pro-
gramming applications for distributed memory systems. Some of these tools will
be compared with Kaira in Section 3.5. This chapter starts by introducing Mes-
sage Passing Interface (MPI). It has become a de facto standard Application Pro-
gramming Interface (API) for computations on distributed memory systems. The
following text describes the state of the art of programming, debugging, analyzing
performance, predicting performance, and verifying applications that use MPI. Some
other tools related to programming of distributed memory systems are introduced
in Section 2.2. Next, some works in the area of visual programming and Petri nets
are mentioned because visual programming plays an important role in Kaira and
Petri nets were the original source of inspiration when Kaira was designed.

2.1 Message Passing Interface
MPI[9] is a specification of a portable message-passing system designed to work
on a wide variety of parallel computers. It is a specification of a library that offers
message-passing related functions for C and Fortran. There are several implemen-
tations of MPI, for example OpenMPI1, MPICH2, and LAM3. MPI is standard-
ized by MPI Forum4; it is an open group of all interested parties (computer vendors,
authors of implementations, researchers, etc.). The MPI standard is available for
free.

Roughly speaking, MPI is an interface for sending and receiving messages be-
tween processes. Listing 2.1 demonstrates a basic usage of MPI. When this program
is started, several processes start to simultaneously perform the main function in

1http://www.open-mpi.org/
2http://www.mcs.anl.gov/research/projects/mpich2/
3http://www.lam-mpi.org/
4http://www.mpi-forum.org/

5

http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.lam-mpi.org/
http://www.mpi-forum.org/

6 CHAPTER 2. STATE OF THE ART

Listing 2.1: A simple MPI program
include <mpi.h>
int main(int argc , char ** argv) {

MPI_Init (&argc , &argv);
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if(myrank == 0){

int data [10];
fill_data_with_something (data);
// send 10 bytes to process 1 with tag 1
MPI_Send(data, 10, MPI_BYTE, 1, 1, MPI_COMM_WORLD)

}
if(myrank == 1){

int data [10];
// receive 10 bytes from anyone with any tag
MPI_Recv(data, MPI_BYTE, 10,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COM_WORLD)
do_something (data);

}
MPI_Finalize ();
return 0;

}

independent memory spaces. The only way to communicate between processes is
through sending messages via MPI interface.

In this example, it is assumed that the program is started with at least two
processes. Each process at the beginning determines its rank. The rank is the
identification number of the process; ranks are numbered from zero. The first process
(process 0) fills the memory for a message and sends the message to process 1.
Process 1 waits for any message and then processes the received message. MPI
provides not only MPI_Send and MPI_Recv, but a variety of functions in areas related
to message passing, including: nonblocking operations (it allows communication and
computations to overlap); collective communication (more processes are involved to
efficiently perform operations like broadcast or scatter/gather).

The brief history of MPI (more details in [10]):

• 1992 – The preliminary draft of MPI was proposed as the first step to cre-
ate a portable message passing library specification that adopts features from
existing, but vendor-specific solutions. MPI Forum was founded.

• 1993 – The draft of MPI-1 was presented.

2.1. MESSAGE PASSING INTERFACE 7

• 1994 – MPI-1 was released.

• 1995 – MPI-1.1 corrected some minor errors. The work on MPI-2 started; the
main topics were: parallel I/O, dynamic processes, and extensions to collective
operations.

• 1997 – MPI-2 was published.

• 2008 – MPI-1 and MPI-2 were consolidated into a single document as MPI-2.1.

• 2009 – MPI-2.2 was published. It solved some scalability issues and added
some missing functionalities.

• 2012 – MPI-3 was published. Major new functionalities: non-blocking collec-
tives, sparse collectives, new one-sided communication.

2.1.1 Debugging
Finding bugs is a common activity during the implementation of an application;
therefore debuggers are vital supportive tools. These tools allow inspection of the
behavior of an application while tracking down a bug. The main task of a classic
interactive debugger is to show the inner state of the application and to allow con-
trol of the application’s flow. Besides interactive approaches, automatic debuggers
also exist that monitor a run of the application and detect misuse of resources with-
out any user intervention. An overview of some debugging techniques in the MPI
environment is presented in [11, 12]. Documentations of MPI implementations are
another useful source of information5.

The most direct way of debugging an MPI application is to use standard tools for
sequential programming, because an MPI application runs on each computing node
like a sequential program. Tools like GDB6 (an interactive debugger) or Valgrind7

(an automatic debugger) can be named as examples. This approach is sufficient to
find many types of bugs, but the major disadvantage is that instances of the tool
are completely separated for each MPI process. It is not easy to work with and
understand more simultaneously running instances of these debuggers.

To overcome this issue, there are specialized debuggers. They provide the same
functionality like ordinary debuggers (showing stack traces, placing breakpoints,
adding memory watches), but they allow debugging of a distributed application as
a single piece. The user can debug an MPI application in the standard way even if

5http://www.open-mpi.org/faq/?category=debugging
6http://www.gnu.org/software/gdb/
7http://valgrind.org/

http://www.open-mpi.org/faq/?category=debugging
http://www.gnu.org/software/gdb/
http://valgrind.org/

8 CHAPTER 2. STATE OF THE ART

the application runs on several independent computers. Distributed Debugging
Tool8 or TotalView9 are a couple of the most well-known tools in this category.

Besides these tools, there are also non-interactive tools like MPE10 or Padb11.
MPE provides additional features over MPI, including the display of traces of MPI
calls or real-time animations of communication. Padb helps with gathering stack
traces and job monitoring.

There are also automatic debugging tools that are specialized for use with MPI:
Marmot [13], MPI-CHECK [14], or Umpire [15]. They monitor a running ap-
plication and detect issues like incorrect use of MPI calls, reaching a deadlock, or
mismatched collective operations.

2.1.2 Performance analysis
The fundamental goal of parallel computing is to provide computation power for
problems that are not solvable on a single computer in a reasonable time. Therefore,
performance analysis plays a key role in the development of parallel applications.
The primary question answered by such analysis is: Where is a bottleneck of the
program, and why is it the bottleneck? The analysis should reveal to the programmer
what needs to be improved to obtain better application performance. The term
“performance analysis” will be used for the rest of the thesis for analyses of real
runs of applications on real computers. It is the most common way of measuring
performance. The other kinds of analyses will be covered in the next section.

Tools for performance analyses can be categorized into two groups by the method
of gathering results: instrumentation and statistical tools. The results from both
types of tools are usually provided as overall characteristics of a run, e.g. compu-
tation times of program’s parts or communication costs. Some more sophisticated
tools can also point to suspicious places of a program’s run.

As with debugging, sequential tools can be used to analyze performance of MPI
applications. However, the use of sequential tools brings similar problems; namely,
measurements are performed separately for each MPI process. Tools Gprof12 [16]
and Callgrind13 [17] can be named as examples of sequential instrumentation
tools. The instrumentation means adding an extra measuring code into the mea-
sured application. These tools instrument an application with the assistance of the
compiler (Gprof) or directly through its machine code (Callgrind). The afore-
mentioned tools provide statistical summaries (profiles) of the application’s run in
the form of call times and frequencies for each function. The approach of generating

8http://www.allinea.com/products/ddt/
9http://www.roguewave.com/

10http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/
11http://padb.pittman.org.uk/
12http://sourceware.org/binutils/docs/gprof/
13http://valgrind.org/docs/manual/cl-manual.html

http://www.allinea.com/products/ddt/
http://www.roguewave.com/
http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/
http://padb.pittman.org.uk/
http://sourceware.org/binutils/docs/gprof/
http://valgrind.org/docs/manual/cl-manual.html

2.1. MESSAGE PASSING INTERFACE 9

profiles can be extended into the environment of MPI. It is implemented by Pg-
prof14 or mpiP15. These tools are prepared to work in the distributed environment;
hence, they analyze the application as one piece, not as separate MPI processes.
Moreover these tools understand MPI; they provide statistics of MPI calls and com-
munication.

The profile is not always as useful for parallel applications as it is for sequential
applications because of communications costs, waiting times, synchronization, and
so forth. Therefore many analytical tools for parallel programs record a trace of
an application’s run where important events are stored with time stamps. The
trace allows more precise reconstruction and analysis of an application’s behavior.
Scalasca [18, 19] and TAU [20] can be named as examples of tracing tools. The
drawback of this approach is the introduction of greater overhead in comparison
with gathering a profile. Moreover, a trace grows with the length of a program’s
run and its size can be a major issue. For viewing traces, there are specialized tools
for trace visualizations: Vampir [21], Paraver [22], Pajé [23], or Jumpshot16.

In the case of the statistical approach, a tool does not operate during the whole
run of an application. It probes the application in regular time intervals. This ap-
proach is much less intrusive than the instrumentation approach. On the other hand,
the results are less accurate and only a profile can be obtained. HPCToolkit17 [24]
can be named as a tool using this approach.

The performance analysis techniques are reviewed in broader detail in [25].

2.1.3 Performance prediction
The performance analysis in the previous section allows us to inspect performance of
already implemented programs on existing computers. The performance prediction
is used when at least one of these components is missing or not fully operational,
or if a generic description of an algorithm’s performance is needed. The prediction
helps to answer questions like: How will an algorithm scale before its actual im-
plementation? Is it worth it to implement some optimizations? Or, how will an
application behave on a platform that is not yet available?

There are two major approaches to performance prediction. The analytical ap-
proach (for example [26]) consists of a handmade formal analysis of an algorithm.
The result is often given as a formula describing how the computational time de-
pends on the characteristics of a given computer. The analytical approach is out
of the scope of this thesis and the more automatic approach will be considered –
predictions by simulations. Tools offering simulations fall into two categories: online

14http://www.pgroup.com/products/pgprof.htm
15http://mpip.sourceforge.net/
16http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/
17http://hpctoolkit.org/

http://www.pgroup.com/products/pgprof.htm
http://mpip.sourceforge.net/
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/
http://hpctoolkit.org/

10 CHAPTER 2. STATE OF THE ART

simulators and offline simulators.
An online simulator directly executes the application and mimics the behavior

of the target platform. It is implemented in tools BigSim [27] and SimGrid [28].
Because of the direct execution, the major challenge is to reduce the demands on
the CPU and memory. These tools allow skipping of some computations and can
simulate delays that would be caused by executing the computations. It works only
for an application with a data-independent behavior, because some parts of the data
are not really computed. Many practical applications satisfy this condition and this
approach can provide good predictions for them in a short time.

Another important aspect is the complexity of the network simulation. The
most precise method for network simulation is a packet-level simulation (MPI-
NetSim [29]) but it can be very resource-consuming. The other way, used in most
simulators, is to use a simple analytical model, for example SimGrid or BigNetSim
(the network simulator for BigSim). Results of a simulation are often provided in
the form of a trace; therefore, existing tools for displaying traces can be used.

Offline simulators ([30, 31, 32]) use a trace of an application’s run as the input
instead of the application itself. The tracelog is replayed in conditions of the simu-
lated platform to obtain predictions. The structure of communication is replayed as
was recorded in the trace; computing and waiting times are modified according to
the target platform. This way provides predictions while using fewer computations
than online simulators, but the problems occur for applications where the structure
of the communication is not fixed. In such cases, because of the different order of
message arrivals, the program can get to different states and send different mes-
sages than recorded. The reader can find more detailed surveys about performance
prediction tools in [33, 34].

2.1.4 Verification
The formal software verification is the process of proving the correctness of a software
system with respect to its specification. All possible behaviors of an application are
considered, allowing the exclusion of some kinds of bugs. This can be contrasted
with software testing, in which the presence of a bug can be shown, but the converse
cannot be proven.

It is well known that even the halting problem for sequential programs is unde-
cidable and many decidable verification problems involve exponential blow-ups or
even worse complexities. Therefore there are many limitations to the questions that
can be answered in practice. In the case of a verification of an MPI application,
the typical questions are the presence of a deadlock or the existence of a run that
violates some assertions. These questions are answered with assumptions that input
is fixed and all runs are finite.

One option for the verification of MPI applications is MPI-Spin [35], which is

2.2. HIGH-LEVEL TOOLS 11

built upon the well-known verification framework Spin [36]. Spin verifies models
created in the special programming language. Even this language is based on C;
MPI applications cannot be verified directly and the user has to create a model of
the application.

To overcome difficulties connected with creating and maintaining a model, tool
ISP [37] operates directly on the MPI application. But working directly on C++
codes brings new issues, because it is nontrivial to fully describe a state of the
application. Hence ISP (in contrast to Spin) offers only basic analyses.

Both tools are based on the state-space analysis, i.e. a systematic exhaustive
exploration of all execution paths that a system might take in order to verify de-
sired properties. Because the state-space grows exponentially, there are state spaces
reduction techniques exploiting symmetries in state spaces that are introduced by
independent behaviors of parallel processes. Both mentioned tools involve partial-
order reduction techniques [38]. For example, it allows ISP to search just a single
representative path to exclude a deadlock for an application that uses only MPI_Send
and MPI_Recv with explicit ranks (i.e. no receive with MPI_ANY_SOURCE).

The community around formal verification methods for MPI applications is much
smaller than communities developing other supportive tools. The reasons for the
low level of use of formal verification in MPI (and proposals for how to change this)
are discussed in [39].

2.2 High-level tools
In the previous section, we have assumed development of applications in C++ (or
Fortran) that directly use MPI. But MPI itself is a quite low-level interface from
the view of application programmers. Sometimes it is called the “assembler” for
distributed memory computations [40].

The simplest way to obtain a higher-level MPI programming environment is to
use a higher-level language. The standard of MPI defines API only for C and For-
tran, but there are MPI libraries for every major programming language. These
libraries work like a bridge that makes C functions accessible from an implemen-
tation of MPI to the given language. The following tools can be considered as
possible candidates of high-level environments for developing applications that use
MPI: Python18 – a high-level programming language with existing libraries for
many areas. Octave19 – a high-level language for numerical computations. Oc-
tave will be discussed more in Section 6.6.2. R20 – a tool for statistical computing
and graphics.

18http://www.python.org/ (MPI for Python http://mpi4py.scipy.org/)
19http://www.gnu.org/software/octave/
20http://www.r-project.org/ (MPI for R: http://www.stats.uwo.ca/faculty/yu/Rmpi/)

http://www.python.org/
http://mpi4py.scipy.org/
http://www.gnu.org/software/octave/
http://www.r-project.org/
http://www.stats.uwo.ca/faculty/yu/Rmpi/

12 CHAPTER 2. STATE OF THE ART

Each of these tools provides a good high-level prototyping environment where the
user does not have to solve many low-level issues. On the other hand, this approach
has two basic issues: the performance of applications written in these high-level
languages is not comparable with C or Fortran for many problems. The second
issue lies in supportive tools. Almost all tools named in the previous sections are not
easily applicable to this kind of usage, and even basic debugging can be nontrivial.

A different approach would be to use a domain-specific library that uses MPI
as its back end. For example, there are PETSc [41] or Trilinos [42] in the area
of problems modeled by partial differential equations. When a user wants to use
standard algorithms from this area, these libraries provide tuned algorithms without
a need of touching MPI interface. These tuned algorithms are often the best choice
when the application can be composed of standard components and it is clear how
to implement it. These libraries, however usually do not serve well as generic exper-
imentation and prototyping tools. It can also be difficult to interpret results from
generic supportive MPI tools; the user possibilities of debugging and performance
analyses therefore strongly depend on the library.

Leaving the paradigm of message passing is another option for obtaining a higher-
level approach. MapReduce [43] is one potential option. It is a simple concept
of data processing that can be seen as some kind of MPI collective operations with
user-defined operations. The paper [44] compares MapReduce with MPI as follows:

“In general, MapReduce is suitable for non-iterative algorithms where
nodes require little data exchange to proceed (non-iterative and indepen-
dent); MPI is appropriate for iterative algorithms where nodes require
data exchange to proceed (iterative and dependent).”

This paradigm was popularized by Google; they state that 80% of their data pro-
cessing is done by MapReduce [45]. Besides Google’s implementation, other im-
plementations have emerged, for example Hadoop21.

Another approach is stream processing [46]. The computation can be seen as a set
of components acyclically connected via unidirectional “streams”. Each component
reads from its input streams and puts data to its output streams – there is no other
way of communication. The user describes the computation by components and
their connection; the management of components, streams, and their mapping to
hardware is left on the tool.

Programming languages based on Partitioned Global Address Space (UPC [47],
Chapel [48]) provide another group of tools. These languages primarily address
the problem of combining the shared memory and the distributed memory model.
They usually introduce high-level constructions to the programming language and
they are able to generate applications that use various communication libraries and

21http://hadoop.apache.org/

http://hadoop.apache.org/

2.3. VISUAL PARALLEL PROGRAMMING 13

one of them is also MPI. The languages then can also be seen as part of a high-level
approach for creating MPI applications.

2.3 Visual parallel programming
Visual programming is another high-level programming approach. In 1990’s, there
were many tools that combined visual programming with parallel programming. In
the paper [49], twelve such tools are listed. They were mainly based on message
passing library PVM, one of the predecessors of MPI. The differences between PVM
and MPI are summarized in [10].

To the best knowledge of the author, these tools have not been developed in
recent years, and the tools themselves are no longer available or run on hardware or
operating systems that are no longer available.

As two representatives, tools GRADE [50] and CODE [51, 52] will be briefly
described. They are designed as stand-alone development environments. GRADE
and CODE are both systems where a user can create a visual model that describes
the behavior of a developed application. Such a model could be combined with
sequential codes written in C.

Two types of diagrams exist in GRADE. The first diagram describes communi-
cation between processes; the second one describes an internal (sequential) behavior
of a process in the form of flow-charts enriched by message passing constructs. The
tool offered an integrated development environment for developing, executing, and
monitoring developed applications.

The semantics of CODE is different; it is based on creating computations units
that are executed when some data arrives to its input channels. CODE’s semantics
shares some basic aspects as Petri nets (Petri nets are defined in the next section).
Computing units in CODE are described in a textual form, and a visual language
is used for connecting units together. It appears as if the visual language was not
designed to catch a state of a program’s parallel execution; therefore CODE did not
support visual simulations of modeled programs.

Some of these tools were not only programming tools but also supported some
supportive activities, such as debugging [53] or performance analysis features [54].

2.4 Petri nets
Kaira is heavily inspired by Colored Petri nets (CPNs); therefore Petri nets [55]
are introduced here as a related work. A Petri net (PN) is a mathematical modeling
tool for distributed systems. A basic form of Petri nets is a Place/Transition Petri
net (PTN).

14 CHAPTER 2. STATE OF THE ART

init

compute1

compute2

write

compute1

init

compute2

write

compute1

init

compute2

write

init fired

compute1 fired

Figure 2.1: An example of Place/Transition Petri net together with states after
firing two transitions

A PTN consists of places, transitions, and arcs. Figure 2.1 shows a graphical
notation of a PTN and two steps of its execution. Places are denoted as circles,
transitions as boxes. Arcs can run from a place to a transition (input arc) or from
a transition to a place (output arc). Arcs never run between two places or two
transitions. If we fix a transition then input (output) places are places connected
with the transition by input (output) arcs.

Places can be seen as memory spaces and transitions as actions. Tokens (in
PTN) are anonymous entities stored in places. A state of a PTN (called marking)
is caught by a number of tokens in each place. Tokens are usually depicted as small
black circles in places. An evolution of a net is a process of removing and adding
tokens from/into places. Manipulations with tokens are realized through transitions.

2.4. PETRI NETS 15

When a transition is fired then it consumes tokens from input places and it produces
tokens in output places. A single token is consumed per each input arc and a single
token is created per each output arc. A transition can be fired only if there are
enough tokens in its input places. An initial distribution of tokens in places is called
the initial marking.

Figure 2.1 contains a model of a simple situation where a computation is split
into two separated parts (compute1, compute2) and when they are both finished
then results are written at once.

Formally PTN = (P, T, I, O, m0) where P is a finite set of places, T is a finite
set of transitions, P ∩ T = ∅, I : T × P → N defines a multiplicity of input arcs,
and O : T ×P → N defines a multiplicity of output arcs where N = {0, 1, 2, . . . }. A
marking is a mapping P → N; m0 : P → N is initial marking.

A transition t is enabled in a marking m if ∀p ∈ P : m(p) ≥ I(t, p). If a transition
t is enabled in m, then it can be fired and the system gets to a new state m′ such
that ∀p ∈ P : m′(p) = m(p)− I(t, p) + O(t, p).

PTNs are a useful formalism in theoretical research. As a modeling language,
however, they are too low-level for use with practical problems because models
become too large. To solve this problem, different extensions known as high-level
Petri nets were developed. Colored Petri Nets, one type of high-level Petri nets, are
formally defined in [56]. The idea behind CPNs is not to consider tokens only as
anonymous “black dots”, but rather to consider each token in a CPN as carrying
a value. Therefore in CPNs, the content of a place is not just a number of tokens
but it is a multiset of values. There are also more complex conditions when a
transition is enabled and which tokens are consumed/produced when a transition is
fired. One of the most well-known tools based on CPNs is CPN Tools[57]. It is a
general-purpose modeling tool where models can be created and analyzed.

CPNs are not the only high-level Petri net formalism. Reference nets can be
named as another example; this formalism is implemented in the tool Renew [58].
It is a modeling tool with a tight integration of Petri nets and Java.

16 CHAPTER 2. STATE OF THE ART

Chapter 3

Kaira

This chapter introduces Kaira; the basic principles and ideas are presented together
with an informal description of the visual language and semantics. Kaira was
already reported in [1, 2, 3, 4, 5, 6, 7, 8]. The content of this chapter starts with
the description of design goals and key features in Section 3.1. The next sections
cover a simple example (Section 3.2), syntax and semantics of programs in Kaira
(Section 3.3), and the history of Kaira (Section 3.4). The chapter ends with the
comparison of existing tools in Section 3.5.

3.1 Design goals and decisions
The main motivation of the presented tool is to simplify and make more accessible
parallel programming of distributed memory applications in the area of scientific
and engineering computations. The four design goals of Kaira are the following:

1. Prototyping – The user is able to create a working version of a developed
application fast and in a form that allows experimenting, easy modifications,
and performance evaluations.

2. Unification – All activities during the development are controlled and pre-
sented in the same conceptual frame. Results from different analyses are easily
comparable and reusable.

3. Real applications – The primary output is a real application that can be exe-
cuted on a real parallel computer. The performance of the resulting application
must be as close as possible to a manually created solution.

4. Integration – Existing sequential codes are easily reusable in the developed
program. The integration should also work in the other way, i.e. the tool is
able to create parallel libraries that can be called in any sequential application.

17

18 CHAPTER 3. KAIRA

To achieve these goals, the tool is designed as a complete integrated develop-
ment environment (IDE), where an application can be designed and analyzed. For
practical reasons, C++ and MPI were chosen as target platforms. Both are natural
choices, C++ as a general purpose programming language widely used in the area
of scientific and engineering computations and MPI as a portable wide-spread com-
munication layer. But in comparison to a classic development of MPI applications,
the user does not have direct access to MPI in Kaira. Parallel aspects and com-
munication in a developed application are expressed in an abstract way with the
following two features:

• Semantics of Kaira is based on a simple abstract computation model with
natural parallelisms. It should provide a mental model for thinking about
parallel algorithms without dealing with unimportant technical details. On
the other hand, the intention is to keep the model quite low-level with a
simple connection to MPI, to preserve the user’s control over the developed
algorithm. The layer between the model and MPI is also thin to achieve the
performance goal of resulting applications.

• Visual programming is used as the way of creating and manipulating with pro-
grams. Visualizations are often used in the area of parallel programming, but
in most cases, they are used as a way of presenting results of analyses. In
Kaira, the visualization is one of the integral parts of the whole development
process. The intention is to use the visual representation not only for program-
ming but also as a unifying element through different tasks, as will be shown in
Chapter 6. A visual program is used to show an inner state of a running par-
allel application directly in a visual representation drawn by its programmer
and provides a platform for configuring analyses and displaying their results.
On the other hand, visual programming in Kaira is not intended for creating
complete applications, but only for expressing parallel aspects and communi-
cation, i.e. designing parts that are not present in a sequential application.
The sequential parts are written directly in C++ in the textual way.

The abstract computation model in Kaira is based on CPNs. They provide a
natural way of describing distributed computations and also a natural visual repre-
sentation, including display of a distributed state of the computation. Implementa-
tion of model visualization in Kaira is heavily inspired by CPN Tools. Because
of the specific needs of Kaira, CPNs semantics was extended and modified to be
more suitable for parallel programming with MPI. In short, the most distinctive
element is the usage of queues to store tokens instead of multisets.

The features offered by Kaira can be summarized as follows:

• Creating and editing visual programs. A screenshot of Kaira during program
editing is shown in Figure 3.1.

3.1. DESIGN GOALS AND DECISIONS 19

Figure 3.1: The editor with a visual model in Kaira

• Inserting and editing C++ codes in a visual model.

• Translating visual models into C++ MPI programs and libraries.

• Showing and controlling a developed program in the visual debugger.

• Configuring and generating a tracing version of the application that records
its own run. A record obtained in this fashion can be loaded back into Kaira
for further processing including visual replay.

• Providing functionality for the performance prediction through online simula-
tions.

• Providing functionality for the verification through state-space analysis.

• Exporting results of analyses; they can be loaded into the visual debugger or
prepared for the usage with external tools (e.g. R).

20 CHAPTER 3. KAIRA

3.2 “Hello world” example

This section demonstrates the development of a simple application in Kaira. The
goal is to present basic ideas and principles in Kaira. More details and a more
precise description are provided in the next section. This section uses a very simple
example; advanced examples can be found in Chapter 4.

Let us consider Figure 3.2, which shows a visual program in Kaira. The visual
programs are called nets. This net contains three places (circles) and a single transi-
tion (box). Places represent memory spaces where data are stored in queues. Places
a and c store values of type int and place b has type std::string. Values stored
in places are called tokens. The initial content of a place is written in the upper
right corner, e.g. place a starts with tokens 1, 2, and 3 and place c is empty. The
transition represents the behavior of the program. It takes tokens from the input
places (a and b in the example) and puts tokens into output places (place c in the
example).

When the program is started in the simulator (visual debugger) then the user
will see Figure 3.3.A. The simulator shows the situation immediately after net ini-
tialization. Tokens are depicted in the green box, suffix @0 informs about the process
where tokens are placed. They are all on process 0, because in this simple example,
only a single process is used. The transition is highlighted by the green rectangle; it
means that the transition is enabled (there are enough tokens in the input places).
Because it is enabled, it may be fired.

In a generated program, enabled transitions are automatically fired, but in the
simulator the program is paused and waits for a user action. When the user clicks
on the transition then it is fired. In this example, the first token from each input
place is consumed and values of variables are set according to these tokens. When
the execution of the transition is finished then a new token is produced in the
output place. There are two variables: x and str. During this particular transition
execution, the value of x is 1 and the value of str is "Hello".

The resulting state is shown in Figure 3.3.B. The transition is still enabled (and
therefore highlighted) because there are still enough tokens. Figure 3.3.C shows the
resulting state after firing the transition again. In this last state, the transition is
not enabled anymore. It needs a token in all input places and place b is empty.

Technically, it is possible to describe a complete algorithm in this way, but the
visual language is primarily designed to describe communication and data flows.
Classic textual C++ codes should be used to describe sequential parts of the appli-
cation. They are inserted into transitions as depicted in Figure 3.4. Kaira opens
an editor with a template that cannot be changed and the user can fill any C++
code as a body of the function. The variable var makes access to variables around
the transition. Every time the transition is fired, this code is executed. If the code
is written as in the figure, we obtain a program that prints on the standard output:

3.3. PROGRAMMING IN KAIRA 21

Figure 3.2: Example “Hello world”

1 Hello
2 World

So far, the example has described a behavior of a single process. When a program
is run on more processes, an independent copy of the net called net-instance is
created for each process. Transitions always consume tokens only from their own
net-instance, but they can create tokens in net-instances of other processes. It is the
only way of communication between net-instances. An output arc creates a token
locally (i.e. in the same process) as default, but it can be changed by symbol @.
For example, transition divide in Figure 4.1 sends a token to a process defined by
variable worker.

3.3 Programming in Kaira
In the previous section, creating programs in Kaira was showed in a very simplified
way. This section explains programming in a way that the reader should be able to
create any common program. Only some technical details and some corner cases of
semantics are omitted. The semantics is fully described in Chapter 5. The technical
details of API are given in User Guide1.

A program in Kaira consists of a visual program (net), sequential codes embed-
ded into the net and global configurations. This text starts with the most important
part, the visual language for describing nets. The goal of the visual language is
to describe data-flows and communication in the developed program. It consists of
four main elements: Places, Transitions, Arcs, and Init areas. Graphical elements
drawn in the surrounding figures are usually presented in their default sizes, but
each element can be resized. The overview of visual elements is depicted in Fig-
ure 3.5. Some attributes of an element are depicted as text around the element’s

1http://verif.cs.vsb.cz/kaira/docs/userguide.html

http://verif.cs.vsb.cz/kaira/docs/userguide.html

22 CHAPTER 3. KAIRA

Transition fired

Transition fired

A)

B)

C)

Figure 3.3: Three steps of “Hello world” simulation

3.3. PROGRAMMING IN KAIRA 23

Figure 3.4: Inserting a C++ code into a transition

Transition
Transition with

a sequential
C++ code

Resized
transition

Place
Place with

a C++ init-code
Resized

place

Guard

Priority

Name

Init-expr

Name

Type

Figure 3.5: Visualizations of transitions and places

main visual representation. They can be freely moved by the user in the editor. In
the following text, default positions of attributes are described and the convention
is to keep their relative position, even though they can be slightly moved to achieve
a clearer diagram.

Some attributes of an element contain C++ expressions. Each expression should
not have any side effect and a returned value should depend only on the values of
its free variables. The user cannot make any assumption about when and how
many times any one of the expressions is evaluated. In each expression, the special
variable ctx can be used. It holds an instance of ca::Context, this class is described
in 3.3.8. The instance provides basic information about the current process rank
and the total number of processes. Namespace ca contains functions and classes
provided by Kaira.

24 CHAPTER 3. KAIRA

3.3.1 Places
Places serve as memory spaces for the program and they can be seen as queues
of tokens. Tokens are usually manipulated by First-In-First-Out policy, but some
other ways are also allowed. Each place has the following properties:

• Name – An arbitrary string for describing the place with no actual meaning.
It is depicted as a text in the center of the place’s circle.

• Type – An arbitrary C++ type that determines what values can be stored
in the place. This attribute is placed at the bottom-right side of the place.
Standard types like int or std::vector can be used without any additional
action. In the case of user defined types, several special functions have to be
defined, this topic is covered in Section 3.3.10.

• Init-expression – An expression that is used for the place initialization. It
puts tokens into the place at the beginning of the program run. It may be
empty (i.e. no initialization by init-expression) or have one of the following
two forms:

– A C++ expression of type std::vector<t> where t is the type of the
place. For example, it is used in place ready in Figure 4.1 (The function
ca::range returns std::vector<int>)

– A list of C++ expressions of the place’s type. It has to start with char-
acter [and end with]. C++ expressions have to be separated by
semicolons. Example: when the type of a place is double, expression
[1.0; 1.5; 2.8] may be used to initialize the place by three values. It
is used for example in place counter in Figure 4.1.

• Init-code – A C++ code that allows a generic place initialization. A place
containing an init-code is depicted with the double border. For example, place
Local data in Figure 4.3 contains an init-code. More about init-codes will be
said in Section 3.3.8.

3.3.2 Transitions
Transitions define the behavior of the program; the program evolves by firing them.
A transition takes tokens from its input places, executes a computation and then
puts new tokens into its output places. These token manipulations are defined by
arcs connected with the transition.

For the following definitions, let us fix a transition. There are two types of arcs:
input arc (from a place to the transition) and output arc (from the transition to a
place). Input (output) places are places that are connected with the transition by

3.3. PROGRAMMING IN KAIRA 25

input (output) arcs. Arcs are described in the next three sections. Here follows a
description of the transition properties independent of them.

• Name – An arbitrary string for describing the transition with no actual mean-
ing. It is depicted as the text in the center of the transition.

• Guard – A boolean C++ expression that may contain input variables (vari-
ables that occur on input arcs). The guard is evaluated as a part of the test
if the transition is enabled after fixing values of the input variables; it will be
explained in Section 3.3.4. If the resulting value is not true then the transition
is not enabled. If the guard expression is empty then it is assumed that the
guard is always true. The guard is depicted at the top of the transition. A
guard can be seen over transition divide in Figure 4.1.

• Priority – An integer value that specifies the priority of the transition. When
a transition is enabled then all transitions with lower priorities in the same
process cannot be fired. If the priority is unspecified then priority 0 is assumed.
If there are more enabled transitions with the same priority in the same process
simultaneously, no fairness guarantees are provided. The priority value is
depicted as a small number in the right part of the transition’s rectangle. The
example can be seen in transition Send result in Figure 4.5.

• Fire-code – A C++ code that is processed each time the transition is fired.
More about fire-codes is explained in Section 3.3.8. The transition with a
fire-code is depicted with the double border.

3.3.3 The syntax of expressions on arcs
Input arcs and output arcs have different semantics, but both types have associated
expressions with the same syntax. An arc expression consists of subexpressions
called inscriptions. Inscriptions are separated by semicolons and each arc expression
has at least one inscription. The scheme of the inscription syntax is the following:

[configuration] main-expression@target

• Configuration consists of configuration items separated by commas. Each con-
figuration item has the form keyword or keyword(x) where x is a C++ ex-
pression. If there is no configuration item, square brackets can be omitted.

• Main-expression is a C++ expression. The actual meaning depends on the
type of arc and configuration items. Generally speaking, it defines value(s) of
token(s) that are taken from / put into the arc’s place.

26 CHAPTER 3. KAIRA

• Target is a C++ expression defining the process(es) where created tokens are
sent. It can be used only on output arcs. If the target is not defined then @
has to be omitted.

Here are four examples of valid arc expressions below this paragraph, each per
line. The second and the fourth example are composed of more inscriptions:

x + 1
10; 30; 40@x*2
[bulk] results
[if(x>2), multicast] x1@where; x2

A set of inscription variables is the set of variables that occur in any C++
expression of a given inscription. A set of arc variables is a union of inscription
variables of a given arc.

3.3.4 Input arcs
Input arcs define inputs of the transition. The transition is enabled if there are
“right” tokens in its input places. What tokens are expected depend on the transi-
tion’s input arcs and the guard expression. When a transition is enabled it can be
fired. When the transition is fired, tokens are removed from input places according
to input arcs and new tokens are produced into output places according to output
arcs. For input arcs, the basic syntax rules are the following:

• There is at most one input arc between each place and the transition (but
there can be more inscriptions on an input arc).

• Inscriptions of an input arc cannot contain a target.

First, inscriptions with empty configurations will be considered. For such in-
scriptions, the following two general rules apply:

• When the transition is tested for whether it is enabled, each inscription se-
lects a first token from the arc’s place, not taken by previous inscriptions.
Inscriptions are evaluated from the left. The transition is enabled only if the
main-expression of each inscription “matches” the selected token.

• When the transition is fired, each inscription removes the selected token from
the place.

3.3. PROGRAMMING IN KAIRA 27

The examples that will be referred in the following text are from Figure 3.6. The
most common input arc is the arc with a single inscription containing no configura-
tion part and its main-expression is a variable. In this case, the transition is enabled
only if there is at least one token in the arc’s place. Because a variable is used, the
inscription matches any token, hence it takes the first one (example 1).

Variables are always related to a particular transition. Therefore types of vari-
ables are unique across all expressions connected with the transition (guard expres-
sions, input and output arcs expressions). But variables for different transitions are
completely separated sets, hence two transitions may have a variable of the same
name but with different types. Variables also exist only during checking if the tran-
sition is enabled and when the transition is fired; therefore they carry no values
between each transition execution.

If a variable has already assigned value from another inscription then the token
has to have the same value as the variable (example 2). If the main-expression is not
a variable then the inscription matches the selected token only if the token value
is equal to the value obtained by evaluating the main-expression (example 3). If
there are n inscriptions on an arc then n first tokens are checked and taken when
the transition is fired (example 4).

This behavior of an inscription can be modified by following configurations items.
Examples are in Figure 3.7.

• bulk – When an inscription contains bulk then it has to be the only inscription
on the arc and its main-expression has to be a variable. An arc with such an
inscription is called a bulk arc. The bulk arc itself does not make any condition
when the transition is enabled, but when it is fired then it takes all tokens from
the place. The list of taken tokens is set to the variable in the main-expression.
The type of the variable is ca::TokenList<t> where t is the type of the place.
Class ca::TokenList serves as a container for tokens. The API is described
in User Guide. The configuration item bulk cannot be combined with filter
and from. A usage of a bulk arc is demonstrated in example 5.

• filter(x) – The expression x has to be a boolean C++ expression. The
inscription ignores tokens that do not satisfy the condition defined by x (ex-
ample 6). It means that the inscription selects a first token that satisfies the
condition and that is not selected by any previous inscription. An inscrip-
tion without filter can be seen as an inscription with filter(true). This
configuration item cannot be combined with bulk.

• if(x) – The expression x has to be a boolean C++ expression. If if(x) is
in the inscription configuration, then x is evaluated before any effect caused
by this inscription is taken. If the result is false, then the inscription is
completely ignored otherwise the inscription is processed normally.

28 CHAPTER 3. KAIRA

1)

2)

3)

4)

The transition is enabled if there is at least one token in
place a. When it is fired then it takes the first token from the
place and sets its value to variable x.

The transition is enabled if the first tokens in both places
have the same value. When it is fired then it takes these first
tokens and sets the value of tokens to variable x.

The transition is enabled if both places are nonempty and
the first token in place b is ten times bigger than the first
token in place a. When it is fired then it takes these first
tokens and sets the value of the first token from place a to
variable x.

The transition is enabled if there are at least three tokens in
the place such that the second token equals to 17 and the
third token is greater by one than the first token.

Figure 3.6: Basic examples of input arcs

3.3. PROGRAMMING IN KAIRA 29

• guard(x) – The expression x has to be a boolean C++ expression. It defines
an additional guard condition for the transition. In comparison to a transi-
tion’s guard expression, variable size (type int) in x may be used. It contains
the number of tokens in the place. Other properties are the same as for the
transition’s guard, it is evaluated in the same time and the transition is not
enabled if the result is not true. The difference between guard and filter is
shown in example 7.

• svar(x) – The expression x has to be a variable. It declares int variable x
that stores the source of the token. The source is the rank of the process where
the token has been created. The usage is demonstrated in example 8. In the
case of a bulk arc, x has type std::vector<int> and the variable contains
sources for all tokens that were in the place.

• from(x) – The expression x has to be an integer C++ expression. It is an
abbreviation for [svar(α), filter(α==x)] where α is a fresh variable; in
other words, the inscription considers only tokens from process x. It cannot
be combined with bulk.

• sort_by_source – This configuration item has to be used together with bulk.
Tokens taken from the place are sorted by their sources.

Let us note that during checking whether a transition is enabled, expressions
in guard and if are evaluated at most once. But a filter’s expression may be
evaluated more than once (in the worst case, it is evaluated for each token in the
place).

The next rule may look slightly complicated, but it only forces a natural condi-
tion to allow a direct derivation of types and an efficient implementation of token
matching. For practical examples, it is no problem to satisfy this condition; even the
user is not aware of it. Let us fixed a transition. An input variable is the variable that
occurs in any expression on any input arc of the transition; except special variable
ctx. For each input variable v, there has to be a variable defining inscription (VDI).
VDI is an inscription on an input arc of the transition, where the main-expression is
directly v or v is used in svar. VDI for a variable v determines a type of v. When v
occurs in the main-expression of VDI, then the type of v is the type of arc’s place.
When v is used in svar then the type is int (or std::vector<int> in the case of
a bulk arc). If there are more VDIs for v, then all VDIs have to derive the same
type, otherwise an error is reported. Moreover there cannot be cyclic dependency
between VDIs. It is formalized in Chapter 5, but the idea is shown in examples 9
and 10 in Figure 3.8 that contain two invalid cases.

30 CHAPTER 3. KAIRA

The transition is always enabled even if the place is
empty. Therefore in real examples, there is always
another input arc when a bulk arc is used. When the
transition is fired, then all tokens are removed from
the place and set to variable x as a list of tokens.

The transition is enabled if there is at least one token
bigger than five in the place. If the transition is fired
then the first such token is taken and the value is set to
variable x.

5)

6)

7)

8)

The same as the previous example, but the first token
that passed through the filter (i.e. bigger than five) has
to also be less than ten to enable the transition. Only
the first token that passes through the filter is checked
by the guard. If the guard fails, no other tokens are
checked and the transition is definitely not enabled.
For example, if tokens in place a are [3, 6, 12] then the
transition is enabled, if tokens are [3, 12, 6] then the
transition is not enabled.

The same as example 1 in the previous figure, but
when the transition is fired, then besides setting up
the value of x, also the value of integer variable f is set
to the rank of the process that created the taken
token.

Figure 3.7: Examples of input arcs with configuration items

3.3. PROGRAMMING IN KAIRA 31

This net is invalid because there is no VDI for variable x. This net
can be principally replaced by example 3.

This net is invalid because there is a cyclic dependency between
VDIs for variables x and y.

9)

10)

Figure 3.8: Examples of invalid configuration of input arcs

3.3.5 Output arcs

When the transition is fired, then output arcs define which tokens are created and
where they are created. In comparison with input arcs, there can be more arcs be-
tween a transition and a place and targets in inscriptions are allowed. The examples
used in this section are depicted in Figure 3.9. Let us start again with the case of
inscriptions without configuration items. In this case, the main-expression of the
inscription is evaluated and the obtained value is used to create a new token. If the
target of the inscription is not specified, the token is created in the same net-instance
where the transition was fired. Otherwise the new token is sent to the net-instance
in the process specified by the target (example 11). For each pair of processes a and
b, tokens sent from a to b are always received in the order in which they were sent.
Receives are performed automatically between firing transitions.

The default behavior of output inscriptions can be changed by the following
configurations:

• bulk – The inscription produces an arbitrary number of tokens. The main-
expression must have type ca::TokenList<t> where t is the type of the place.
It produces a new token from each element of the token list (example 12).
There are no restrictions like in the case of bulk input arcs; therefore the
main-expression does not have to be only a variable and there can be more
than one inscription on the arc.

32 CHAPTER 3. KAIRA

• multicast – The target of the inscription must have type std::vector<int>
and token(s) created by this inscription are sent to all processes defined by the
target expression (example 13).

• if(x) – This configuration item works in the same way as for input arcs. The
expression x has to be a boolean expression. If x is evaluated to false, then
the inscription is ignored.

• seq(x) – x has to be a constant integer. If seq is not defined then seq(0)
is assumed. This configuration controls the order in which inscriptions on all
output arcs are evaluated; an inscription with a lower number is evaluated be-
fore an expression with a higher number. If two inscriptions have the same seq
number then bulk inscriptions are prioritized. If none of these rules are able to
be used to determine the order, then Kaira evaluates output inscriptions in
the order in which they are written on arcs from left to right and inscriptions
on different arcs are evaluated in an unspecified order. The configuration item
seq is used only in cases where sending tokens in specific order to different
places is important.

All input variables can be used in expressions on output arcs. New variables
can also be introduced, but VDI must be present among output inscriptions if the
variable was not used on input arcs. VDI for output arcs is an inscription where
the variable is used as the main-expression or the target. However, as with input
inscriptions, in practice this presents no actual restriction.

3.3.6 Net-instances
When the application is executed on n processes then n independent copies of the
program are created; they are called net-instances. When an MPI version of the
program is generated then a net-instance exists for each MPI process. The number
of processes is fixed at the beginning of the execution of the program and cannot
be changed. The current version of Kaira does not support a dynamic creation of
processes.

From the user’s view, the behavior of the application can be described as re-
peated searching of enabled transitions and firing them. Each process works only
with transitions and places in the assigned net-instance. Between transition execu-
tions, each process tries to receive tokens that were sent to it. Sends of tokens are
performed immediately at the end of the transition execution that creates non-local
tokens (output arcs containing symbol @). All sends and receives are processed by
MPI non-blocking calls. Resources used for sends are automatically freed when the
send is completed.

There is an experimental feature in Kaira, a hybrid mode where more threads
operate over a single net-instance. In other words, there can be more threads for

3.3. PROGRAMMING IN KAIRA 33

11)

12)

13)

When the transition is fired, it takes the first token from place
a, puts a new token of the same value into place b in the same
process where transition is executed, and sends token into
place c in process 2.

When the transition is fired, it takes all tokens from place a
and puts them into place b at once.

When the transition is fired, it takes the first token from place
a and sends the value to place b in processes 3,4,5,6. Function
ca::range(x,y) returns a vector of integers in a range [x, y).

Figure 3.9: Examples of output arcs

34 CHAPTER 3. KAIRA

each MPI process and more enabled transitions in one process can be processed at
once. This feature is implemented and works, but it is not optimized and not fully
supported in all parts of Kaira. Accordingly, this thesis does not consider this
features; it is always assumed that only one thread operates in each MPI process.
The hybrid mode is mentioned again in Section 8.1.3 as a potential subject for future
work.

3.3.7 Init-areas
At the beginning of a program run, places are initialized by init-expressions and
init-codes. They are evaluated only in process 0 by default; places in other pro-
cesses remain empty. This behavior can be changed by init-areas. An init-area is
depicted as a rectangle with a blue background with a single attribute in the top-
left corner. The attribute has one of the following forms: C++ expression of type
std::vector<int> or int expressions separated by semicolons and surrounded by
square brackets. It is analogous to syntax of init-expressions. The expression in
the attribute is evaluated at the beginning of a program’s run and it determines
processes where the places inside the area are initialized (i.e. where init-expressions
and init-codes are evaluated). Places that stay outside of all init-areas are initialized
only for process 0. The example of an init-area can be seen in Figure 4.3.

3.3.8 Sequential codes
The integration of the visual language with C++ codes has been almost fully intro-
duced in previous sections. C++ expressions can be freely used on arcs, transition
guards, and place-initializing codes. As was shown in Section 3.2, a C++ code can
be placed into a transition. In this case, Kaira generates a template in the form
showed in Listing 3.1. This code is then executed every time the transition is fired.
In comparison to expressions used on arcs, it is ensured that this code is executed
exactly once per each transition execution. It is executed after removal of tokens
from input places and before the evaluation of inscriptions on output arcs. There-
fore, when this code changes the value of a variable, it will have an effect on newly
created tokens.

The second parameter var enables access to variables used on arcs of the tran-
sition. The structure Vars is generated separately for each transition. The first
parameter enables access to an instance of the class ca::Context; it provides the
following methods:

• int process_id() – returns the rank of the current process.

• int process_count() – returns a total number of processes.

3.3. PROGRAMMING IN KAIRA 35

Listing 3.1: An empty template for a sequential code in a transition
struct Vars {

// ... Variables on the arcs of the transition
};

void transition_fn (ca:: Context &ctx , Vars &var)
{

}

• void quit() – terminates the whole program.

A similar template is used for editing an init-code of a place (Listing 3.2). This
code is called at the beginning of the program execution to initialize the place.

Listing 3.2: An empty template for an init-code of a place where t is the type of the
place
void place_fn (ca:: Context &ctx , ca:: TokenList <t> &place)
{

}

3.3.9 Global configurations
The global configurations of a net are composed of:

• Parameters – Constant values that are initialized at the beginning of a pro-
gram run. In the case of a generated MPI program, they can be set through
command line arguments. In the program, values of parameters can be ac-
cessed via static members of class param. The example can be seen in the
guard of transition divide in Figure 4.1.

• Head-code – A C++ code that is inserted at the beginning of the generated
source code, it usually contains #include directives with header files of used
libraries or declarations of used types.

• Build options – A list of external C++ source code files and flags for the C++
complier and linker; that is, information necessary to build an executable form
of the program.

36 CHAPTER 3. KAIRA

• Configurations of tracing, simulated runs, and verifications – These configura-
tions are not necessary to build a resulting program, but they are important
for supportive analyses. They are usually depicted as labels in the net. They
are described in more detail in sections of Chapter 6. Examples can be seen
in Figures 6.5, 6.16, and 6.22.

3.3.10 Integration of C++ types
As was already said, any C++ type can be used as the type of a place. Standard
C++ types like int or std::string can be used without any additional action; the
full list of such supported types are listed in User guide2. In the case of other types,
the user has to define the following three functions:

• token_name – The function returns a textual representation of tokens of the
given type. This representation is used during visual simulations.

• pack – The function serializes a token.

• unpack – The function deserializes a token.

If tokens of the given type are not sent between net-instances, then the last two
functions are not necessary to implement. The example of binding a user-defined
type is given in Listing 3.3.

3.4 History
Project Kaira was initiated by the author of this thesis. The tool was first concep-
tualized in 2008 during the author’s master’s studies. In 2010, the idea was revived
as part of the grant proposal “Modeling and verification of parallel systems” (GAČR
P202/11/0340) led by professor Petr Jančar, the advisor of the author. The grant
was accepted and the development of Kaira was supported by it from 2011.

In the end of summer 2010, the first working prototype was finished and presented
to several people, one of these was Marek Běhálek, who joined to the project. At
the beginning of 2011, version 0.1 was finished and the first paper was published [1].
From the perspective of this thesis, version 0.1 was designed as a more high-level
tool and mapping to MPI processes was more indirect. In that time, Ondřej Meca
and Martin Šurkovský joined the project. The next version (0.2) was released few
months later and made the semantics of Kaira even more abstract. After finishing
this version, we realized that the proposed abstraction was not well-supported by
practical examples and it was hard to translate nets into efficient MPI programs.

2http://verif.cs.vsb.cz/kaira/docs/userguide.html#Types

http://verif.cs.vsb.cz/kaira/docs/userguide.html#Types

3.4. HISTORY 37

Listing 3.3: Example of binding a simple type
struct SimpleType {

std :: string name;
double x;

};

namespace ca {

std :: string token_name (const SimpleType &v) {
std :: stringstream s;
s << "Name=" << v.name << " x=" << v.x;
return s.str ();

}

void pack(ca:: Packer &packer , const SimpleType &v) {
pack(packer , v.name);
pack(packer , v.x);

}

template <> SimpleType unpack (ca:: Unpacker & unpacker) {
SimpleType v;
v.name = unpack <std :: string >(unpacker);
v.x = unpack <double >(unpacker);
return v;

}

}

38 CHAPTER 3. KAIRA

Table 3.1: Contributions to the source code of Kaira 1.0 based on statistics from
Git repository.

Name Commits (%) Added lines Removed lines
Stanislav Böhm 861 (76.40%) 75671 52771

Martin Šurkovský 174 (15.44%) 13611 7196
Ondřej Meca 78 (6.92%) 4003 2035

Ondřej Garncarz 4 (0.35%) 295 67
Marek Běhálek 3 (0.27%) 267 70

Lukáš Tomaszek 2 (0.18%) 293 4
Martin Kozubek 1 (0.09%) 16 1

These reasons led to rethinking of some of the basic ideas of the project, and many
things were simplified. Kaira was largely rewritten in version 0.3. Additionally, the
back end of Kaira originally written in Haskell was rewritten into Python. Ver-
sion 0.3 was released in the end of 2011. From 2012, the project was also supported
by IT4Innovations Center of Excellence (project CZ.1.05/1.1.00/02.0070). Versions
0.4 (summer 2012) and 0.5 (beginning of 2013) represent further evolutionary steps
from version 0.3. Features including tracing, the state-space analysis, and integra-
tion with Octave were introduced. The papers [2, 3, 4, 5, 6, 7] were based on this
generation of Kaira.

Version 0.6 (May 2013) brought many new changes. The most visible one reflects
the decision to focus on C++. The domain-specific language used for expressions in
the visual language was removed and C++ is directly used from this version (C++
codes in transitions are used from version 0.1). The paper [8] is based on version
0.6. Parallel with the completion of this thesis, version 1.0 was released in November
2013 as a continuation of 0.6 where all features were finished in the form as they are
presented in this thesis.

In addition to the work performed by the four members of the core team, some
minor features were also implemented by Ondřej Garncarz, Martin Kozubek, and
Lukáš Tomaszek. A rough overview about contributions to the source code is pro-
vided by statistics from the version control system showed in Table 3.1.

3.5 Comparison with selected tools
A natural next step is to compare the development of applications in Kaira and
classic programming in C++ with MPI. Everything that can be done with Kaira
can be also achieved by the direct use of C++ and MPI. The opposite direction does
not hold. The current version of Kaira does not use collective communication,
i.e. all communication is realized through point-to-point sends. This problem is

3.5. COMPARISON WITH SELECTED TOOLS 39

discussed in Section 6.6.3. Another limitation is that programs translated from
nets introduces an overhead in comparison to manually written programs. But it
will be shown in Section 6.1.1 that the introduced overhead is minimal because the
semantics of Kaira can be efficiently translated into MPI programs. On the other
hand, Kaira offers an environment where a working application can be rapidly
implemented in the form where the communication structure can be easily modified
and the behavior of the application can be instantly observed.

The concept of Kaira is close to visual parallel programming tools from Sec-
tion 2.3. These tools had the same goal as Kaira, providing a developing envi-
ronment for message passing applications. However, as was mentioned earlier these
tools are no longer developed. Unfortunately, the author did not find any general
explanation concerning the termination of development of all these tools, even as
some of the original authors of the tools were contacted. We believe that the broader
scope of Kaira makes adoption of our tool by practitioners more likely. As far as
the author knows, the aforementioned tools did not support any performance pre-
dictions or verifications. Integration with other tools was not the major goal of
these tools; none of these tools were able to generate libraries. Parallel computer
have become more available in the time between the development of the discontin-
ued tools and of Kaira; for this reason, more non-experts have the opportunity to
create programs for them. Tools that simplify the creation of these programs have
therefore more opportunities to be used.

The usage of queues connects Kaira with stream programming. Kaira is a
more low-level tool than stream programming environments; Kaira uses simple
explicit mapping computations to MPI processes, in contrast to the sophisticated
algorithms for scheduling and mapping of computations in stream environments.
The approach that Kaira offers is less automatic and gives the user more control
of resulting programs. It is important to allow experimentation with different kinds
of algorithms; this is related to our first design goal.

When comparing Kaira and high-level languages like Python or Octave with
their MPI libraries, Kaira offers the performance of C++ and the unified environ-
ment for supporting activities. But in some sense, Kaira may be considered not
as an alternative to these high-level languages, but rather as a complement. An
integration of Kaira with Octave will be demonstrated in Section 6.6.2.

As was already said, CPN Tools was a great inspiration when Kaira was
designed and the visualization of models used in Kaira is mostly based on the
visualization from CPN Tools. The fundamental differences that distinguish these
two tools emerge from their different main goals. CPN Tools is a generic modeling
tool, hence a large collection of problems that exceeds the scope of Kaira can be
modeled and analyzed. But it would be difficult to use CPN Tools as a developing
environment. It cannot create a stand-alone application. Furthermore where Kaira
uses C++, CPN Tools uses Standard ML [59], hence an integration with many

40 CHAPTER 3. KAIRA

existing libraries would be more complicated.
Chapter 2 has shown many tools for various supportive activities that can be used

during development of an application that uses MPI. They are generic tools that can
usually be used with any program. The supportive infrastructure in Kaira works
only for programs developed in it. Tools mentioned in Chapter 2 are usually more
mature and optimized in comparison to our implementation. But they are usually
single-purpose tools with different terms, configurations, and ways of displaying
results. In Kaira, all activities are roofed by the semantics of Kaira and their
usage is unified under a single concept through the visual language. Chapter 6
presents each feature separately together with comparisons to some of these other
tools.

Chapter 4

Examples

This chapter contains six examples of programs developed in Kaira. The examples
are inspired by patters that commonly appear in parallel computations. All examples
are presented with nets and important pieces of textual parts of programs. The full
source codes of all examples including all variants can be found at the homepage of
Kaira (Example 4.6) or in the distribution package (all other examples).

4.1 Example: Workers
The first example solves a classic problem. A master node (process 0) divides jobs to
working nodes (other processes). When a working node finishes an assigned job then
it asks the master node for a new job. This process is repeated until the computation
is not over. Figure 4.1 contains a net solving this problem. In this example, a job is
an interval of numbers that can be easily changed to any other structure. The net
has two parameters: LIMIT and SIZE. The master node assigns intervals from the
range {0, . . . , LIMIT− 1} and SIZE defines the size of intervals assigned to workers.
For the sake of simplicity, it is assumed that SIZE divides LIMIT. The job is a simple
structure defined in the head-code, the code is listed in Listing 4.1.

The place ready holds ranks of idling workers; it is initialized by the ranks of
all workers. Function ca::range(x,y) returns a vector of integers in the range
{x, . . . , y − 1}. Place counter keeps a start of a next assigned interval. Transition
divide takes a value from place counter (variable start) and a rank of an idling
process (variable worker) and it sends a new interval to the worker. The value in
counter is increased to assign a different interval in the next step.

Transition compute performs the computation on an assigned interval. In this
implementation, it just naïvely searches prime numbers in the interval. When an
execution of a job is finished, results and a token with the worker’s rank are sent
back to process 0. Transition write result takes all results and writes them on the
standard output. It has to wait until the token in counter reaches LIMIT and all

41

42 CHAPTER 4. EXAMPLES

Figure 4.1: The net of the workers example

workers are ready, hence the absence of pending computations.
In the default configuration, process 0 only divides jobs and is not involved

in their processing. It can be easily changed by modifying the init-expression for
place ready to ca::range(0, ctx.process_count()) and setting a larger priority
to divide. This change causes process 0 to also assign jobs to itself. In this case,
it should be noted that when process 0 is executing transition compute, transition
divide cannot be fired and other processes have to wait for new jobs. This effect can
be minimized by another simple modification. Process 0 will assign itself smaller
intervals and therefore it can check if divide is enabled more often.

4.1.1 Usage of GMP
To demonstrate how to use an external library in a program created in Kaira, let
us assume that we need to work with arbitrary large numbers in example Workers.
GMP1 is an open source library for arbitrary precision arithmetic. Among other
features, it provides class mpz_class for arbitrary precision integers.

Only a few modifications are necessary in example Workers to use this library.
Because class mpz_class is an external type (Section 3.3.10), the user needs to define
several functions. The code is shown in Listing 4.2. It allows us to obtain a version
that works with arbitrary large integers by replacing int to mpz_class in the net
and C++ codes where jobs are involved. Namely, the types of places counter and
results and members of struct Job have to be changed together with some minor
alterations of codes in transitions compute and write result.

1http://gmplib.org/

http://gmplib.org/

4.1. EXAMPLE: WORKERS 43

Listing 4.1: The head-code for example Workers
struct Job {

Job(int start , int end) : start(start), end(end) {}
int start;
int end;

};

namespace ca {
std :: string token_name (const Job &job) {

std :: stringstream s;
s << "Job [" << job.start << "," << job.end << ")";
return s.str ();

}

void pack(Packer &packer , const Job &job) {
/* direct_pack serializes trivially copyable types */
direct_pack (packer , job);

}

template <> Job unpack (Unpacker & unpacker) {
/* deserializes trivially copyable types */
return direct_unpack <Job >(unpacker);

}
}

44 CHAPTER 4. EXAMPLES

Listing 4.2: The head-code for the GMP variant of Workers example

include <gmpxx.h>

struct Job {
Job(const mpz_class &start , const mpz_class &end)

: start(start), end(end) {}
mpz_class start;
mpz_class end;

};

namespace ca {

std :: string token_name (const mpz_class &obj) {
return obj. get_str (10);

}

void pack(Packer &packer , const mpz_class &obj) {
... serialization of mpz_class ...

}

template <> mpz_class unpack (Unpacker & unpacker) {
... deserialization of mpz_class ...

}

std :: string token_name (const Job &job) {
std :: stringstream s;
s << "Job start=" << job.start. get_str (10)

<< " end=" << job.end. get_str (10);
return s.str ();

}

void pack(Packer &packer , const Job &job) {
pack(packer , job.start);
pack(packer , job.end);

}

template <> Job unpack (Unpacker & unpacker) {
mpz_class start = unpack <mpz_class >(unpacker);
mpz_class end = unpack <mpz_class >(unpacker);
return Job(start , end);

}

}

4.2. EXAMPLE: HEAT FLOW 45

4.2 Example: Heat flow
The example in this section solves a simple heat flow problem on a surface of a
cylinder. The borders of its lateral area have a fixed temperature and one fixed point
in the area is heated. The goal is to compute a distribution of temperatures on the
lateral area. In the presented solution, the surface is divided into discrete points in
a grid as it is depicted in Figure 4.2. Temperatures are computed by an iterative
method; a new temperature of a point is computed as an average temperature of its
surrounding four points.

This approach can be easily parallelized by splitting the grid into parts; each
part is assigned to one process. In this example, we assume that the grid is split by
vertical cuts. No communication is needed to compute new temperatures of inner
points of the assigned area. To compute temperatures in the top and bottom row,
the process needs to know rows directly above and below this area. Therefore each
process exchanges its border rows with neighbors in each iteration.

The implementation in Kaira is depicted in Figure 4.3. Transition Compute
executes a single iteration of the algorithm. It takes its own assigned part of the grid
(from place Local data) and two rows, one from the neighbor above (place Up row)
and one from below (place Down row). The transition computes new temperatures
and sends top and bottom rows to neighbors. Function to_down is a simple function
defined in the head-code as:
int to_down (ca:: Context &ctx) {

return (ctx. process_id () + 1) % ctx. process_count ()
}

Function to_up is defined analogously. When the desired number of iterations is
reached (parameter LIMIT) then results are sent to process 0. When all parts arrive,
process 0 assembles the complete grid and writes it into a file.

The class DoubleMatrix is a simple implementation of a grid where two values
are remembered for each point at the same time (an original value and a newly
computed value) and these values can be switched efficiently.

4.2.1 Rectangle variant
In heat flow example, communication is symmetric for all processes. Now we will
assume a rectangular 2D area, where points on all four edges have fixed tempera-
tures. In this case, symmetry of communication does not hold. The top and bottom
part of the grid are not connected, and therefore the first and the last process do
not need exchanges of rows.

The net solving this problem is depicted in Figure 4.4. The asymmetry is ex-
pressed by conditional arcs (keyword if in inscription configurations). Functions
is_first and is_last are simple functions defined in the head-code; they simply

46 CHAPTER 4. EXAMPLES

Parallelization:Heat flow problem:

Exchanges of rows
in each iteration

Fi
xe

d
 t

em
p

er
at

u
re

s

Figure 4.2: Computing a heat distribution on a cylinder

Figure 4.3: The net of the heat flow example

4.3. EXAMPLE: HEAT FLOW & LOAD BALANCING 47

Figure 4.4: The net for rectangle variant of the heat flow example

check the process rank. The first (last) process does not expect a token in place
Up row (Down row) and does not send the token into place Down row (Up row).
The other processes communicate with two neighbors as in the original variant. The
C++ code in transition Compute is slightly modified to set fixed temperatures in the
top (bottom) row in the first (last) process. Additionally, the token is not initialized
for the first (last) process in place Up row (Down row).

4.3 Example: Heat flow & load balancing
The following example is based on the heat flow example. The basic idea remains the
same: a parallel computation of a temperature distribution by an iterative method.
But in this variant, load balancing of the computation is implemented. Rows of the
grid are not distributed to processes statically; rather, the distribution is changed
in time according current process performances. This example implements a decen-
tralized variant of load balancing, i.e. no central arbiter is involved. Every process
balances itself only in cooperation with its neighbors. Each process periodically
compares its own performance with that of its neighbors, and if an imbalance is
detected then some rows are transferred to a faster neighbor.

Figure 4.5 shows the implementation of the algorithm in Kaira and Listing 4.3
contains declarations of used data types. Besides parameters used in the original
heat flow example, a new parameter LB_PERIOD has been added. It determines how
often (in the number of iterations) balancing is performed. When balancing occurs,
Compute does not send border rows but sends its own performance information to
its neighbors; that is, the time spent in the computing phase and the number of
rows in its own part of the grid. The transition Balance determines how many
rows are needed to exchange for balancing computational times. The formula is

48 CHAPTER 4. EXAMPLES

Figure 4.5: The net for the heat flow with load balancing example

4.4. EXAMPLE: MATRIX MULTIPLICATION 49

based on solving the equation: lm−∆
sm

= ln+∆
sn

, where ∆ is the number of rows that
should be sent from the process to the neighbor process, lm (ln) is the number of
own (neighbor’s) rows, and sm (sn) is own (neighbor’s) performance – a number of
rows computed per second. If ⌊∆⌋ > 0 then Balance sends rows to the neighbor.
In each process, place countToReceive indicates how many neighbors will send their
rows to this process. This value is monitored because it is important not to resume
the computation in a process until balancing with both neighbors is resolved; other-
wise, the process would work with an invalid part of a grid and send wrong border
rows. Transition Merge adds received rows into the local part of the grid. Transi-
tion EndOfLB finishes the balancing, it can be fired when all local balancing row
exchanges are processed (i.e. countToReceive contains zero). The transition resets
variable lb_counter and sends border rows to its neighbors; therefore the normal
computation is resumed.

The rest of the program runs almost like in the original heat flow example. Each
process has to just remember its own current position in the grid to heat the fixed
point, and for the final assembling of the complete grid at the end. The clock symbol
in the left side of transition Compute means that the transition gains access to a
clock. It is used to measure how much time was spend on computations in transition
Compute. This clock is explained later in Section 6.4.

4.4 Example: Matrix multiplication
In this section, the matrix multiplication problem is solved; parallelization is achieved
by a simple Cannon’s algorithm [60]. In this problem we are assuming that processes
are arranged into a square r × r and each process can be uniquely addressed by a
pair (i, j) ∈ {1, . . . , r}2. Let A and B be input matrices and AB is computed. For
the sake of simplicity, it is assumed that A and B are square matrices and r divides
dimensions of A and B. In the algorithm, matrices A and B are partitioned into
r × r sub-blocks. Let ai,j, bi,j, ci,j be local variables of process (i, j). The algorithm
proceeds as follows. At the beginning, each process (i, j) obtains a block i, j of
both input matrices. A sub-block of A (B) is saved into ai,j (bi,j) and ci,j is set
to a zero matrix. The algorithm now works in r iterations. In each iteration, each
process (i, j) computes ci,j = ci,j +ai,jbi,j and then the value of ai,j is sent to process
(i + 1 mod r, j) as a new value of ai+1 mod r,j and bi,j is sent to (i, j + 1 mod r) as
a new content for bi,j+1 mod r. The communication scheme is depicted in Figure 4.6
for the case r = 4. When a process receives new values of ai,j and bi,j, then a new
iteration starts. At the end of the algorithm, the result is obtained by composing
blocks ci,j.

The net solving this problem is depicted in Figure 4.7. All examples except this
one are created as stand-alone programs; this example serves to demonstrate the
creation of libraries. Libraries will be covered in Section 6.6 in more detail. This net

50 CHAPTER 4. EXAMPLES

Listing 4.3: Head-code for the example of heat flow with load balancing
struct PerformanceInfo {

long time; /* Duration of computations in
the last balancing period (ms) */

int rows; /* Number of rows processed in
the last balancing period */

};

typedef std :: vector <double > Row;
typedef std :: vector <Row > Rows;

struct State {
State(int size_x , int size_y , int position) :

matrix (size_x , size_y),
position (position),
counter (0),
lb_counter (0),
time_sum (0) {}

DoubleMatrix matrix ;
int position ; /* The position of the local grid part */
int counter ; /* The counter of iterations */
int lb_counter ; /* Number of iterations

from last load balancing */
int time_sum ; /* Time spent in the computational phase

from last load balancing */
};

struct Results {
Results (int position , const DoubleMatrix & matrix)
: position (position), matrix (matrix) {}

int position ;
DoubleMatrix matrix ;

};

4.5. EXAMPLE: SIEVE 51

Communication

Process

Figure 4.6: The communication scheme of Cannon’s algorithm

represents a function with two inputs (m1 and m2) and one output (output). When
the function is called then values provided as the input are placed into input places.
The normal initialization of these places is ignored. When the net is terminated,
the resulting value of the function call is taken from the output place.

In this example, Octave’s C++ API is used. Integration with Octave is cov-
ered in Section 6.6.2. This API provides class Matrix as a data type that represents
a dense matrix. Kaira offers basic integration with Octave out of box; therefore
explicit definitions of functions token_name, pack, and unpack for this class are not
needed.

Places named input serve to store the input. The transition distribute sends
blocks of both matrices to processes. The code in the transition is shown in List-
ing 4.4. When a process receives both initially assigned blocks, transition prepare
is fired. It prepares a resulting matrix of the appropriate size into place result. Af-
ter this step, transition compute is repeatedly fired once per iteration. The C++
code inside the transition is simple: var.result += var.m1 * var.m2;. The rest
of the net serves to gather the results and put them into place output from which
the resulting value is taken when the computation is terminated. Transition com-
pose output assembles the final matrix; it takes one of the input matrix to reuse its
memory.

4.5 Example: Sieve
This example contains a parallel implementation of Sieve of Eratosthenes, a well-
known algorithm for finding prime numbers up to a given limit. The net solving this
problem is shown in Figure 4.8. Class Segment represents a bit array that contains
marks (prime/composite number) for a range of numbers. Each process holds its

52 CHAPTER 4. EXAMPLES

Figure 4.7: The net for the example of matrix multiplication

4.5. EXAMPLE: SIEVE 53

Listing 4.4: The code inside transition distribute in the matrix multiplication exam-
ple
struct Vars {

Matrix &m1;
Matrix &m2;
Matrix &out1;
Matrix &out2;
int &step;

};

void transition_fn (ca:: Context &ctx , Vars &var)
{

// It is assumed that process_count is a square number
int n = sqrt(ctx. process_count ());
// Size of block
int rs = var.m1.rows () / n;
int cs = var.m1.cols () / n;
// Position of block
int r = (var.step / n) * rs;
int c = (var.step % n) * cs;
// Take sublocks from matrices m1 and m2
var.out1 = var.m1. extract_n (r, c, rs , cs);
var.out2 = var.m2. extract_n (r, c, rs , cs);

}

54 CHAPTER 4. EXAMPLES

Figure 4.8: The net for the sieve example

own instance of Segment in place Segment. The process that has a token in place
number finds prime numbers in own segment. When a prime number is generated,
it is written on the standard output and the process puts it to own place prime and
sends it to all processes with a bigger rank. Transition Mark composites takes the
prime number and marks all its multiples as composites in the range of the process’s
segment. Places number and next number control how far the computation is and
if the prime number is generated or composites are marked. When the process
generating prime numbers reaches the end of its own interval, then the control is
passed to the next process. When the processed number reaches the square root of
the target number, then prime numbers are just written and not propagated to other
processes. The control is passed from one process to another until the segments are
searched.

4.6 Example: Ant colony optimization
The example in this section implements a variant of ant colony optimization (ACO)
[61]. ACO is a nature-inspired meta-heuristic algorithm with widespread use. It is
a successful tool with practical applications in the areas such as optimizations and
scheduling. This example uses ACO to obtain a solution for Traveling Salesman
Problem (TSP) [62]. The ACO is used in the island variant, i.e. ants are separated
into colonies – one per each process. Each colony evolves independently on the
others. When a colony finds a better solution than the previous best-known, it
sends this information to others.

The implementation in Kaira is shown in Figure 4.9. A colony is stored in the
place in the top-left corner. The transition Compute takes a colony and computes

4.6. EXAMPLE: ANT COLONY OPTIMIZATION 55

Figure 4.9: The net for the ant colony optimization example

a new generation of ants. In each iteration, every process saves the best solution to
place Best trail. When this solution is better than the previous one, it is distributed
to others through place Ant distribution. Transition Compute takes all tokens in
this place; if it is nonempty then it embodies new ants into the colony assigned to
the process. If it is empty or not, the transition also computes a new generation of
ants. When the last generation is computed, Send results takes the best solution in
the process and sends it to process 0, where the overall best solution is chosen.

56 CHAPTER 4. EXAMPLES

Chapter 5

Formal semantics

This part provides the formal semantics of Kaira. In other words, the behavior of
programs created in Kaira is described in a rigorous way. The user does not need
formal semantics for everyday programming, and many commonly used systems do
not provide any formal description; MPI is also one of them. But formal semantics
generally allows deeper reasoning about the system, and in this work it allows us to
provide an exact description of analyses, especially in the case of verification.

This section starts with basic definitions followed by the definition of basic tran-
sition system (BTS) (Section 5.2). It will serve as an underlying formalism for
Kaira program (KP) (Section 5.3). KP is a straightforward formalization of the
visual language as was introduced in Chapter 3. BTS is inspired by Variable Tran-
sition System from [63]. It can be seen as an abstraction of Coloured Petri nets,
where tokens are stored in lists instead of multisets. The behavior of a KP for a
specific number of processes is given by the translation of KP into BTS described
in Section 5.4.

5.1 Basic definitions
The set of natural numbers is denoted as N = {0, 1, . . . } and N+ = N∖{0}. If n ∈ N
then [n] = {1, 2, . . . , n}. If A is a set then |A| denotes the cardinality of A and A∗

denotes the set of all finite sequences of elements of A. An element of A∗ can be
written as ⟨a1, a2, . . . , an⟩ where ∀i ∈ [n] : ai ∈ A. The empty sequence is denoted
as ⟨⟩. The functions for working with sequences are defined as follows: Let u, v ∈ A∗

and u = ⟨a1, a2, . . . , an⟩, v = ⟨b1, b2, . . . , bm⟩ then |u| = n, a ∈ u⇔ ∃i ∈ [n] : ai = a,
u · v = ⟨a1, a2, . . . , an, b1, b2, . . . , bm⟩. If i ∈ [n] then at(u, i) = ai. The function
remove : A∗× 2N → A∗ removes elements from a sequence at given indices, formally
remove(u, {i1, i2, . . . , ik}) =

⟨a1, a2, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . an−1, an⟩

57

58 CHAPTER 5. FORMAL SEMANTICS

(without loss of generality it is assumed that xi are sorted in ascending order). The
set of all sequences of elements of A where each element is used exactly once is
denoted as sq(A) = {u ∈ A∗ | (∀a ∈ A : a ∈ u)∧ |u| = |A|}. A domain of a function
f is denoted as dom(f). The empty mapping is denoted as ∅, i.e. dom(∅) = ∅.

In contrast to the previous informal description of semantics, no particular pro-
gramming language is considered. Only basic properties and sets related to a pro-
gramming language are defined in order to obtain a more abstract definition and also
to overcome the difficulties of dealing with the full semantics of C++. The reader
may safely imagine C++ or a similar language behind the following definitions.
The approach of describing semantics independently on any particular language is
inspired by the definition of CPNs in [56].

Let Exprs be a set of all expressions of a programming language, Vars be a set of
all variables (Vars ⊂ Exprs), and V be a set of all possible values. The type system
of the used programming language is ignored in the rest of this chapter, because
the semantics is given independently on it. Expanding the formalism to include a
type system is possible and straightforward when needed, but does involve technical
work that is not necessary for understanding the executional semantics of programs
in Kaira.

Let B = Vars → V be the set of all bindings. The partial function eval :
Exprs × B → V evaluates a given expression under a given binding. The function
var : Exprs→ 2Vars returns free variables in a given expression.

For technical reasons, the following is assumed:

ctx ∈ Vars,N ⊂ V and {true, false, •,□} ⊂ V

where true and false are standard boolean values, • will be used as a unit value
and □ means a default value (if we consider a type system, there will be more such
values for each type. In the context of C++, values created by default constructors
are meant). We also assume that V is closed under “sequentization”; hence ⟨⟩ ∈ V
and if a1, . . . , an ∈ V then ⟨a1, . . . , an⟩ ∈ V .

5.2 Basic transition system
A basic transition system (BTS) is a tuple B = (P, T, Take, Put, PR, PG, m0), where
P is a finite set of places, T is a finite set of transitions and T ∩ P ̸= ∅. Functions
Take and Put define the behavior of transitions. Take : T × (P → V∗) → (P →
2N) ∪ {⊥} where ⊥ is a special symbol that is used in the meaning “not enabled”.
Put : T × (P → V∗) → (P → V∗). PR : T → N assigns priorities to transitions,
PG ⊆ T×T is an equivalence relation (reflexive, symmetric, transitive) decomposing
transitions into priority groups. A marking represents a state of the system, it is a
mapping P → V∗; m0 is the initial marking. A transition t is enabled in a marking

5.3. KAIRA PROGRAM 59

m (denoted as m
t−→) if

Take(t, m) ̸= ⊥ and ∀t′ ∈ T : (t, t′) ∈ PG ∧ PR(t) < PR(t′) =⇒ Take(t′, m) = ⊥

The behavior of BTS is defined by a set of relations (t−→)t∈T such that ∀t ∈
T : t−→⊆ (P → V∗)2 and (m, m′) ∈ t−→ iff t is enabled in m and ∀p ∈ P holds:

m′(p) = remove(m(p), Take(t, m)(p)) · Put(t, m)(p)

Let→= {(m, m′) | ∃t ∈ T : (m, m′) ∈ t−→} and let→∗ be the reflexive and transitive
closure of →. Instead of writing (m, m′) ∈ t−→, (m, m′) ∈→, (m, m′) ∈→∗, the
notations m

t−→ m′, m → m′, m →∗ m′ will be used. The notation m
t−→ m′ is

read as “t is fired in m and system ends in marking m′”.

5.3 Kaira program
A Kaira program (KP) is a tuple K = (P, T, A, E, G, PR, C, I, R) where P is a finite
set of places, T is a finite set of transitions and T ∩ P ̸= ∅, A ⊆ (P × T) ∪ (T × P)
is a set of arcs, G : T → Exprs assigns guard expressions to transitions, PR : T → N
assigns priorities to transitions, C : T → (B → B × {running, quit}) represents
a sequential computation in a transition (fire-code), i.e. it assigns a function to
a transition that takes binding and returns new binding and an indication if the
program continues or if it was stopped (i.e. ctx.quit() was called). If a transition
t has no fire-code than C(t) = λx.(x, running)). Mapping I : P → Exprs assigns
initial expressions such that eval(I(p),∅) is a sequence for each p ∈ P . The set
R ⊆ Exprs × 2P defines init-areas and has to satisfy ∀(e, X) ∈ R : eval(e,∅) ∈ N∗.
Mapping E : A→ Ins∗ assigns expressions on arcs, where Ins is a set of all inscriptions
as defined in Section 3.3.3. The function expr : Ins → Exprs returns the main-
expression of a given inscription, target : Ins → Exprs ∪ {⊥} returns the target,
symbol ⊥ is a special fresh symbol such that ⊥ ̸∈ Exprs and it is used in the case
that the target is not defined. For all (p, t) ∈ A ∩ (P × T) : target(E(p, t)) =
⊥. The predicates bulk(ι) and multicast(ι) where ι ∈ Ins are true iff ι contains a
keyword of the same name in configuration items. Functions filter , guard, if return
expressions in configuration items filter,guard,if; if a given inscription does not
contain a configuration item of that name then the corresponding function returns
expression true. The function svar : Ins → Vars ∪ {⊥} returns an expression from
a configuration item svar or ⊥ if the configuration item is not used. Function
seq : Ins → N returns an integer from configuration item seq or 0 when seq is
not used. Let vars(ι) def= var(expr(ι))∪ var(filter(ι))∪ var(if (ι))∪ svar(ι) \ {⊥} and
dvars(ι) def=(expr(ι) ∪ svar(ι)) ∩ Vars.

60 CHAPTER 5. FORMAL SEMANTICS

A sequence a is a well-ordered input for t ∈ T if

a = ⟨(p1, x1), (p2, x2), . . . , (pn, xn)⟩ ∈ sq(A′)

where A′ = {(p, x) | ∃(p, t) ∈ A ∧ x ∈ [|E((p, t))|]} such that ∀i ∈ [|a|] : (∀j ∈
{i + 1, . . . , |a|} : pi = pj =⇒ xi < xj) ∧ (∀v ∈ vars(at(E(pi, t), xi)),∃j ∈ [i] : v ∈
dvars(at(E(pj, t), xj))).

For each KP, there has to be a function InputInscriptions : T → (P × N)∗

such that for each t ∈ T : InputInscriptions(t) is a well-ordered input for t. There
may exist more valid well-ordered input sequences for a transition, but later in
Proposition 1, it will be shown that the semantics is independent for a particular
choice.

In the same sense, function OutputInscriptions has to exist. It assigns a sequence
of output inscriptions to a transition. Formally

OutputInscriptions(t) = {(p1, x1), . . . , (pn, xn)} ∈ sq(A′)

where A′ = {(p, x) | ∃(t, p) ∈ A∧x ∈ [|E((t, p))|]} and ∀i ∈ [|OutputInscriptions(t)|] :
(∀j ∈ {i, . . . , |OutputInscriptions(t)|} : seq(at(E(pi, t), xi)) ≤ seq(at(E(pj, t), xj)) ∧
(pi = pj =⇒ xi < xj)).

For technical reasons we also assume that the name of each place can be expressed
in our programming language, i.e. we assume that P ⊂ V .

5.4 Instantiation of Kaira program

For the rest of this section, a Kaira program K = (P, T, A, E, G, PR, C, I, R) and
an integer n ∈ N+ is fixed. Now, we define a BTS that will represent a run of K on
n processes. An n-instantiation of K is

BK
n = (P ′, T ′, Take′, Put′, PR′, PG ′, m′

0)

such that

P ′ = {pi | p ∈ P ; i ∈ [n]} ∪ {pj→i | i, j ∈ [n]} ∪ {τi | i ∈ [n]} ∪ {prun}

where pi are places from KP instantiated for each process i; pj→i represents a
unidirectional communication channel from process j to process i; τi stores what a
process i is doing; and prun is a global flag if the program is still running.

T ′ = {ti,x | t ∈ T, i ∈ [n], x ∈ {+,−}}∪{ri,j,+ | i, j ∈ [n], x ∈ {+,−}}∪{ri,− | i ∈ [n]}

First the behavior of ti,+ (t ∈ T, i ∈ [n]) will be defined. Let m be a marking for
the rest of this section. The meaning of ti,+ is “A transition t is started in a process i”.

5.4. INSTANTIATION OF KAIRA PROGRAM 61

Take′(ti,+, m) = k where (k, b) = FindBinding(t, i, m). The function FindBinding
is defined in Algorithm 5.1. Put(ti,+, m) = λp.if p = τi then ⟨(t, b)⟩ else ⟨⟩, where
(k, b) = FindBinding(t, i, m).

The meaning of ti,− (t ∈ T, i ∈ [n]) is “Transition t has been finished in process i”.
Take(ti,−, m) = λp.(if p = τi,+∨p = prun then {1} else ∅) if ∃b ∈ B : m(τi) = ⟨(t, b)⟩
and m(prun) = ⟨•⟩ otherwise Take(ti,−, m) = ⊥. Put(ti,−, m) = PutTokens(t, i, m)
where function PutTokens is defined in Algorithm 5.3.

The meaning of ri,j,+ (i, j ∈ [n]) is “Process i starts to receive tokens from
process j”. If m(τi) = ⟨•⟩ and |m(pj→i)| > 0 then Take(ri,j,+, m) = λp.(if p = τi ∨
p = pj→i then {1} else ∅) otherwise Take(ri,j,+, m) = ⊥. Put(ri,j,+, m) = λp.if p =
τi then ⟨m(pj→i)⟩ else ⟨⟩.

The meaning of ri,− (i, j ∈ [n]) is “Process i has finished receiving”. If ∃x ∈ P ×
(V × N)∗ : m(τi) = ⟨x⟩ then Take(ri,−, m) = λp.if p = τi then {1} else ∅ otherwise
Take(ri,−, m) = ⊥. Put(ri,−, m) = λp.if p = p′ then k else ⟨⟩ where ⟨(p, k)⟩ = m(τi)
and (p′, _) = x.

The initial marking of BTS is defined as:

m′
0(p) =

eval(I(p′),∅) if p = p′

i ∧ ∃(e, X) ∈ R : p′ ∈ X ∧ i ∈ eval(e,∅)
⟨•⟩ if (p = τi ∧ i ∈ [n]) ∨ p = prun

⟨⟩ otherwise
Priorities are assigned as follows. Let t1, t2 ∈ T ′ then (t1, t2) ∈ PG ′ iff

t1 = t2 ∨ (t1 = t′
i,+ ∧ t2 = t′′

i′,+ ∧ i = i′)

and PR′(t′) = PR(t) if t′ = ti,+ otherwise PR′(t′) = 0.
The following proposition says that the semantics is independent on a particu-

lar evaluation order of input inscriptions. Hence we do not need an equivalent of
configuration item seq for input inscriptions.

Proposition 1. Assume that there are InputInscriptions′ and InputInscriptions′′,
both assigning well-ordered input sequences, and there are FindBinding′ that uses
InputInscriptions′ and FindBinding′′ that uses InputInscriptions′′. For all t ∈ T, i ∈
[n], m ∈ P → V∗, it holds that FindBinding′(t, i, m) = FindBinding′′(t, i, m).

Proof. Assume that for some t ∈ T :

InputInscriptions′(t) = ⟨a1, . . . , am⟩

InputInscriptions′′(t) = ⟨a1, . . . , af−1, ag, af+1, . . . , ag−1, af , ag+1, . . . , am⟩

where 1 ≤ f < g ≤ m, af ̸= ag and (pi, xi) = ai. In other words, both functions
return almost the same sequence; only two elements (af and ag) are swapped. From
the definition of well-ordered input sequence follows that pf ̸= pg and ∀i ∈ {f +
1, . . . , g − 1} : pf ̸= pi ∧ pg ̸= pi. Therefore k′

pi
= k′′

pi
for i ∈ {f + 1, . . . , g − 1}

62 CHAPTER 5. FORMAL SEMANTICS

has the same content before processing ai element in the “for cycle” where k′
p (k′′

p)
is variable kp from function FindBinding′ (FindBinding′′). Moreover k′

pf
before

iteration f has the same value as k′′
pg

before processing iteration g (and it also holds
in the case when f and g are exchanged). Function AddVarsAndCheck ensures that
in both cases binding b is always created with same values; otherwise, both cases
of FindBinding will return (⊥,⊥). Therefore FindBinding′ = FindBinding′′ for the
case if two elements are swapped in well-ordered input sequences.

It remains to be shown that if a and a′ are well-ordered input sequences for
t ∈ T then a can be rearranged to a′ by series of swapping two elements and all
such created sequences are also well-ordered for t. Assume a and a′ such that they
cannot be rearranged and a = ⟨a1, . . . , am⟩ and a′ = ⟨a′

1, . . . , a′
m⟩. Let f = min{i ∈

[m] | ai ̸= a′
i}. There has to be g, g′ ∈ [f + 1, m] such that ag = a′

f and a′′
g = af .

It is easy to see that a can be rearranged to a′ by swapping two elements through
intermediate sequences

⟨a1, . . . , af , ag, af+1, . . . , ag−1, ag+1, . . . , am⟩

⟨a1, . . . , ag, af , af+1, . . . , ag−1, ag+1, . . . , am⟩

⟨a1, . . . , a′
f , a′

g′ , a′
f+1, . . . , a′

g′−1, a′
g′+1, . . . , a′

m⟩

and all these sequences are well-ordered for t.

5.4.1 Run of a program
The behavior of a program in Kaira described by K = (P, T, A, E, G, PR, C, I, R)
on n processes is defined by the behavior of BK

n = (P ′, T ′, Take′, Put′, PR′, PG ′, m′
0),

i.e as n-instantiation of K. A run of the program is as a sequence

⟨m0, t1, m1, t2, . . . , mz−1, tz, mz⟩

such that m0 = m′
0, ∀t ∈ T ′ : mz : ̸ t−→, and for all i ∈ [z] holds: ti ∈ T ′, mi−1

ti−→ mi.

5.4. INSTANTIATION OF KAIRA PROGRAM 63

Algorithm 5.1 The Definition of function FindBinding. Internal functions defined
in Algorithm 5.2.

function FindBinding(t, i, m)
if m(τi) ̸= ⟨•⟩ ∨m(prun) ̸= ⟨•⟩ then

return (⊥,⊥) ▷ Thread is not ready
end if
b← {(ctx, (i, n))}
kp ← ∅ for all p ∈ P ′

kτi
← {1} ▷ Take token from τi

for (p, x) in InputInscriptions(t) do
ι← at(E(p, t), x) ▷ Take inscription
if eval(if (ι), b) ̸= true then ▷ Check if item

b← AddV ars(b, ι, (□, i))
continue

end if
if bulk(ι) then
⟨(v1, s1), . . . , (vk, sk)⟩ = m(p)
b← AddVarsAndCheck(b, ι, (⟨v1, . . . , vk⟩, ⟨s1, . . . , sk⟩))
kp ← [|m(p)|]

else
f ← filter(ι)
α← {j ∈ [|m(p)|] \ kp | eval(f, AddVars(b, ι, at(m(p), j)) = true}
if α = ∅ then ▷ No token passed through filter

return (⊥,⊥)
end if
b← AddVarsAndCheck(b, ι, at(m(p), min α))
kp ← kp ∪ {min α} ▷ Works only with the first token from α

end if
if b = ⊥ then

return (⊥,⊥) ▷ A collision in assigning variables
end if
if eval(guard(ι), b ∪ {(size, |m(p)|)}) ̸= true then

return (⊥,⊥) ▷ The guard of the inscription failed
end if

end for
if eval(G(t), b) ̸= true then

return (⊥,⊥) ▷ The guard of the transition failed
end if
return (λp.kp, b)

end function

64 CHAPTER 5. FORMAL SEMANTICS

Algorithm 5.2 The definitions of functions AddVars and AddVarsAndCheck
function AddVars(b, ι, (value, source))

if expr(ι) ∈ Vars ∧ expr(ι) ̸∈ dom(b) then
b← b ∪ {(expr(ι), value)}

end if
if svar(ι) ̸= ⊥ ∧ svar(ι) ̸∈ dom(b) then

b← b ∪ {(svar(ι), source)}
end if
return b

end function
function AddVarsAndCheck(b, ι, (value, source))

b← AddVars(b, ι, (value, source))
if eval(expr(ι), b) = value ∧ (svar(ι) ̸= ⊥ ∨ eval(svar(ι), b) = source) then

return b
end if
return ⊥

end function

5.4. INSTANTIATION OF KAIRA PROGRAM 65

Algorithm 5.3 The definition of function PutTokens
function PutTokens(t, i, m)

(t, b)← at(m(τi), 1)
(b′, r)← C(p)(b) ▷ Call the C++ code in the transition
kp ← ⟨⟩ for all p ∈ P ′

if r = running then
kprun

← ⟨•⟩ ▷ Return • to prun; the application is still running
end if
kτi
← ⟨•⟩

for (p, x) in OutputInscriptions(t) do
ι← at(E(t, p), x)
if eval(if (ι), b′) ̸= true then

continue
end if
if bulk(ι) then
⟨v1, v2, . . . , vz⟩ = eval(expr(ι), b′)
k = ⟨(v1, i), . . . , (vz, i)⟩

else
k = ⟨(eval(expr(ι), b′), i)⟩

end if
if target(ι) = ⊥ ∨ eval(target(ι), b′) = i then

kp ← kp · k
else

t = eval(target(ι), b′)
if multicast(ι) then

for x in t do
kpi→x

= kpi→x
· ⟨(p, k)⟩

end for
else

kpi→t
= kpi→t

· ⟨(p, k)⟩
end if

end if
end for
return λp.kp

end function

66 CHAPTER 5. FORMAL SEMANTICS

Chapter 6

Features of Kaira

This chapter presents features available to the programmer in Kaira. The chapter
begins by building a program from a net and evaluating its performance in com-
parison to a manually created C++ program. This is followed by a description
of features for supporting activities that are introduced together with demonstra-
tions on the examples from Chapter 4. The chapter ends by building libraries and
integrating Kaira with Octave.

Any usage of Kaira features is preceded by creation of a visual program. Kaira
offers an editor that allows the creation, editing, and removal of transitions, places,
arcs, and init-areas. All elements can be freely moved and resized. The method
of editing the visual program does not deviate from any common diagram editor.
The screenshot of the editor was already shown in Figure 3.1. The diagram editor
integrates a source code editor; it provides basic features like syntax highlighting or
jumping to a specific line where an error is detected, but more advanced features
like auto-completion are missing in the current version. The code editor was shown
in Figure 3.4.

To formalize some of the presented features, let us fix for the rest of this chapter
a Kaira program K = (P, T, A, E, G, PR, C, I, R), a number of processes n ∈ N+,
and BK

n = (P ′, T ′, Take′, Put′, PR′, PG ′, m′
0).

6.1 Generating applications
The basic feature of Kaira as a development environment is to produce executable
applications. The resulting applications can be generated in three modes: MPI,
threading, and the sequential mode. The first one is the main mode. As the name
suggests, it produces an application that uses MPI as its communication back end.
The other two modes are designated to utilize external supportive tools that work
not well or not at all in the distributed environment of MPI. Both modes emulate
the behavior of MPI. The threading mode emulates the MPI layer by Pthreads

67

68 CHAPTER 6. FEATURES OF KAIRA

instead of stand-alone processes. In the sequential mode, the application is executed
sequentially, so that even tools that is designed for sequential applications can be
used.

This feature allows easy use of tools like Gdb or Valgrind to debug sequential
parts of the application. Kaira is focused on debugging and analyzing parallelism
and communication, and it is assumed that these existing tools are used to analyze
sequential codes in transitions. Any Kaira application can be generated in all
three modes without changing the net. The process of generation is fully automatic;
details are described in Chapter 7.

6.1.1 Performance of applications
The goal of this section is show that the abstract model used in Kaira can be
effectively translated into applications while introducing only a small overhead. The
reason is to allow creation of applications directly usable as productive versions. But
even if Kaira is used “only” as a tool for experiments, it is important to achieve
good performance with a small overhead because of the precision of analyses.

All measurements described in this thesis were executed on the following two
computers:

• Anselm – A cluster where each node is composed of: two Intel Sandy Bridge
E5-2665, 8-core, 2.4GHz processors; 64 GB of physical memory1. Only a
single core in each node was used in experiments to observe the behavior in
the distributed-memory environment. The use of Anselm was carried under
IT4Innovations Center of Excellence (project CZ.1.05/1.1.00/02.0070).

• Hubert – 8 processors AMD Opteron/2500 (total 32 cores), shared memory
128 GB. This computer is owned by the Institute of Geonics2 and was used
with the kind permission of Ondřej Jakl.

In the following text, the implementation of the heat flow example (Section 4.2)
is compared with a manual implementation of the same problem. Both implementa-
tions share the same computation code. It is about 380 LOC (lines of code without
comments). The manually implemented solution contains about 100 LOC not shared
with the solution in Kaira. The following experiments were executed in the two
settings:

• Grid size 2600× 8200 and 5000 iterations.

• Grid size 2600× 2600 and 3000 iterations.
1http://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview
2http://www.ugn.cas.cz/

http://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview
http://www.ugn.cas.cz/

6.2. SIMULATOR 69

All experiments were performed without writing results to a file to exclude effects of
I/O operations. Measured times of computations for each experiment are depicted
in Figures 6.1 and 6.2. Data used to plot these charts are presented in Appendix A.
As the data show for this example, the overall scalability of the application and
absolute times follow the trend of the manually created solution.

6.2 Simulator
The simulator is an integral part of Kaira. It executes the application in a sim-
ulated environment with an arbitrary number of processes in a form that is fully
controllable by the user. The inner state and the control of the application is pre-
sented through the visualization of the net.

One purpose of the simulator is to serve as a debugging tool that allows to
observe the application as a single piece with the possibility to go step by step
through a run of the application. The simulator is also tightly connected with
prototyping. It provides an immediate feedback of the application behavior through
the visualization of the application’s inner state, without any additional debugging
infrastructure. Therefore, it may be used from very early stages of the development
with an incomplete application. For example, it can be used to see what data are
sent to another process even no actual implementation of the receiving part exists.

Figure 6.3 depicts how a running application is shown to the user. The two types
of information are depicted:

1. Tokens in place (The state of the memory)

2. Packets transported between nodes (The state of the communication environ-
ment)

It completely describes a distributed state of the application. The user can
control the behavior of the application by the two basic actions:

1. Start an enabled transition

2. Start receiving a packet

These two actions provide a complete well-formed control of non-determinism
caused by parallel execution. This high-level control produces a smaller number of
observable states than a classic debugger that operates on lines of a source code. In
spite of this, all possible computational paths remain reachable, because states that
are not captured by Kaira are states induced by inner sequential computations.
Moreover, all such sequential codes (mostly codes in transitions) can be tested or
debugged separately or a sequential application can be generated and debugged by
a classic debugger.

70 CHAPTER 6. FEATURES OF KAIRA

0 10 20 30 40

0
50

10
0

15
0

Processes

E
xe

cu
tio

n
tim

e
(s

)

●

●

●

●

●
●

● ●
● ● ●

● Kaira
Manual implementation

0 10 20 30 40

0
10

20
30

Processes

E
xe

cu
tio

n
tim

e
(s

)

●

●

●

●
●

● ● ● ● ● ●

● Kaira
Manual implementation

Figure 6.1: Execution times of the heat flow example on Anselm in configurations
2600× 8200 (top) and 2600× 2600 (bottom)

6.2. SIMULATOR 71

0 5 10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0

Processes

E
xe

cu
tio

n
tim

e
(s

)

●

●

●

●

●
● ● ● ●

● Kaira
Manual implementation

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Processes

E
xe

cu
tio

n
tim

e
(s

)

●

●

●

●
● ● ● ● ●

● Kaira
Manual implementation

Figure 6.2: Execution times of the heat flow example on Hubert in configurations
2600× 8200 (top) and 2600× 2600 (bottom)

72 CHAPTER 6. FEATURES OF KAIRA

Tokens

Packets

Running transitions

Figure 6.3: The simulator during an execution of the heat flow example.

Displaying only important states with respect to the global application behavior
and hiding sequential behavior produces a smaller number of observable states. It
allows a more simplistic view of the program. This aspect makes possible to store
all states showed during a simulation with a reasonable memory consumption, and
the user may browse in the history of the execution. Control through two high-
level actions allows easy manipulation with a run of the application. The simulator
allows to get the application into any state and the user can observe consequences.
Moreover it allows to store a control sequence – a sequence of these two actions.
Figure 6.4 shows a screenshot of the control sequence viewer. Such a sequence can
be loaded into the simulator and gets the program into a desired state. Because
recorded actions describe the behavior in a high-level way, control sequences remain
relevant even if some selected changes are made to the program. For example,
the user can add a debugging code into a transition and rerun the program with
the same control sequence to obtain more information about a problematic run.
Control sequences can be created by saving a run in the simulator; they also can be
extracted from traces (Section 6.3) or obtained as a result of the state-space analysis
(Section 6.5).

The simulator infrastructure also offers a feature often provided by debuggers –
dynamic connecting into a running application. In the case of Kaira, the current
state of the program is translated into terms of the net after the connection. There-
fore the user can observe and control the inner state of the application exactly as
in the simulator. When the connection is closed, the application continues in the
normal run. The current implementation has still some restrictions. It can be used
only for applications generated in the thread or sequential modes; the MPI back end

6.2. SIMULATOR 73

Fire transition divide in process 0

Receive packet in process 1
from process 0

Figure 6.4: A screenshot of the control sequence viewer with a sequence from the
workers example

is not yet supported.
Many Petri Nets tools contain a similar type of a visual view with similar control

over the models; it is often called token game3. Almost all of the tools just display
a simple abstract computation of Place/Transition Petri nets. Only a few of them
work with a full-featured programming language, for example the tools CPN Tools
and Renew can be named. But in comparison to Kaira, they use more high-level
languages.

To formalize this section, let i and j range over [n], t over T , p over P where
n, T, P are defined at the beginning of this chapter. Because the behavior of K on
n processes is described by BK

n , hence the state of the application is described as a
marking of BK

n . A memory state is described by tokens in places pi ∈ P ′ and packets
in the network environment are tokens of places pi→j. The two actions offered to
the user are firing ti,+ ∈ T ′ (a transition t in a process i is started) and ri,j,+ ∈ T ′

(a process i receives packet from a process j). Transitions ti,− and ri,− are fired
automatically when it is possible4, because when a process k ∈ [n] starts executing
a transition or receives a packet, no other transition can change places controlled by
the process k and hence there is no reason to wait with finishing the activity. The
control sequence of K is defined as a sequence ⟨a1, a2, . . . , am⟩ ∈ T ′∗.

3Petri Net Tool Database http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
db.html contains the list of 84 tools with “Token Game Animation” to date 08/20/2013.

4In fact, the simulator has a mode where ti,− is controlled by the user. It is designed to observe
effects of more threads when the hybrid run (mentioned in Section 3.3.6) is enabled, but as was
noted earlier, this feature is not considered in this thesis. Moreover it needs a slightly extended
definition of n-instantiation to catch more threads.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

74 CHAPTER 6. FEATURES OF KAIRA

6.3 Tracing

Performance analytical features in Kaira are based on tracing generated applica-
tions. The tool allows the application to be generated in the form that records its
run into tracelogs. When the run is finished, the tracelog can be loaded back into
Kaira and used for visual replay or for generating various charts and statistical
summaries.

Generally speaking, tracing of applications consists of three basic areas: measure-
ment specifications, instrumentations, and presentations of results. A specification of
a measurement is highly dependent on the purpose of the measurement, specifically
on whether an overview of the application’s run is required or just a specific issue is
pursued. It also depends on whether tracing is used for a performance analysis or for
reconstructing the run for debugging purposes. But in all cases it is crucial to store
only the necessary information. Tracing creates an overhead that may deform the
run and may have an impact on event timings. Furthermore, the sizes of tracelogs
may become a significant factor when too many events are stored. These are the
main reasons that measurement specifications play important roles.

Specifications in common tracing tools are usually implemented by specifying a
filter or by a manual instrumentation. The manual instrumentation means manually
placed tracing calls into the source code. It allows the tracing of a program on an
arbitrary granularity level and storage of arbitrary values. However, maintaining
this instrumentation can be laborious. Filters are used when the tool traces function
calls. In a common program, tracing all functions would cause tracelogs of enormous
sizes, therefore the user has to set up a list of what to exclude from the tracelog. The
assembly of such a list usually requires some experience and knowledge concerning
what can safely be excluded. In Kaira, the user specifies what is measured in
terms of places and transitions. It is implemented as placing labels in a visual
model (Figure 6.5). The user may enable tracing for each place and transition
individually. An arbitrary function can additionally be specified for each place to
store more information about tokens. This approach provides the user with a simple
and an easily understandable way of control what to measure. Furthermore, the
approach makes obvious the information that will be gained or lost after enabling
or disabling each setting.

The second task is the instrumentation, i.e. putting the measuring code inside the
application. Kaira can automatically place the measuring codes while translating a
net into C++ sources. Parallel and communication parts are generated by Kaira;
therefore the tool knows the location of the interesting places to put measuring
codes according to the specification, and the measuring codes are automatically
generated with the rest of the application. For these reasons, Kaira does not
use any instrumentation techniques like an instrumentation with the assistance of a
compiler or an instrumentation of machine codes. The approach used herein permits

6.3. TRACING 75

a tracing version of the application to be obtained in a way that does not depend
on a compiler or a computer architecture. From a different point of view, it could
be said that Kaira automatically generates a kind of manual instrumentation.

The third task is the presentation of results. Because of specific needs, Kaira
does not use any existing trace format and provides its own visualization facilities,
but data from the tracelog can be exported for post-processing in some external
tools. Additionally, tracelogs can be presented to the user in the form of a visual
replay. The run recorded in the tracelog is shown in the same way as in the sim-
ulator from the previous section; that is, as the net with tokens in places, running
transitions, and packets on the way (Figure 6.6). The user can jump to any state in
the recorded application run and examine the effects of fired transitions and stored
tokens.

For any state observed in the replay, a control sequence can be exported. Such
a control sequence brings the simulator into the state from the replay. In other
words, it allows combination of the debugger and the profiler as is mentioned in the
scenario given in the Introduction. In the case of use of other existing tools, getting
a debugger exactly into a state caught by a trace is usually a hard task.

Kaira provides statistical summaries and standard charts like common trace
visualizers (the example in Figure 6.7). But additionally, some information is pre-
sented using the terms of the abstract model. Some examples of this include the
utilization of transitions, transition execution times (Figure 6.8), the numbers of
tokens in places, and so forth. Besides the visualization, the gathered data can be
also exported to subsequent processing. It is demonstrated later in Section 6.3.2.

Formally a tracelog can be seen as a control sequence enriched by time-stamps,
i.e. tracelog is a sequence ⟨(s1, t1), (s1, t1), . . . , (sm, tm)⟩ ∈ (N × T ′)∗ where si < sj

for i, j ∈ [m], i < j. The number si is a discrete time-step for an action ti.

6.3.1 Tracing of heat flow
This example serves as a demonstration of basic tracing facilities. For this purpose,
the net from Section 4.2 is used. Tracing was performed in three settings as follows:

• A – All transitions are traced.

• B – All transitions and token_name for all places except Up row and Down
row are traced. This configuration is shown in Figure 6.5. (In the used imple-
mentation, the token_name for type DoubleMatrix returns just a short string
with the name of the class, not values of the matrix).

• C – All transitions and token_name for all places are traced. Moreover, the
average temperature in the grid in place Local data is also traced for each
process.

76 CHAPTER 6. FEATURES OF KAIRA

Figure 6.5: The heat flow example with the tracing configuration for variant B

The first variant serves to obtain a general overview of the application’s performance
with a minimal overhead. Variant B provides a picture of data flows in the appli-
cation. In this variant two places are not traced, because of token_name function
for std::vector returns all elements. It would produce unnecessarily big data for
this goal. There are more options for how to solve it; token_name function can be
changed to return something smaller, a different function could be traced, or trac-
ing of this place can be switched off. Tracing other functions is shown in the next
examples, so the last and the simplest one is used here.

The overhead introduced by variants A and B is negligible and the run is fully
comparable with the original run. Even variant A traces only the basic information
about executing transitions; charts shown a utilization of each process (Figure 6.7) or
a histogram of transition execution times (Figure 6.8) can be obtained. Variant B
also provides the visual replay (Figure 6.6) and statistics related to tokens. The
computation times for all three variants are shown in Figure 6.9.

6.3.2 Tracing of ACO
This section shows how the user can perform a simple measurement and export
traced data. Example ACO (Section 4.6) is used in this section, file eil51.tsp from
TSPLIB5 was chosen as the instance for the TSP problem.

Let us assume that we want to observe the fitness value in time during a com-
putation and compare it with the scenario in which communication is disabled.
The communication between colonies can be simply disabled by removing the arc
with expression [bulk, multicast] send@workers. The measurement is enabled
by attaching a simple function returning a fitness value of an ant in place Best
trail (Figure 6.10). When a token arrives at this place, its value is stored into the

5http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

6.3. TRACING 77

The event number
Time control Time of the event

Transition fired
Packet Running transitionsTokens

Figure 6.6: A replay of a tracelog obtained by tracing the heat flow example with
the tracing configuration of variant B

Figure 6.7: A magnified part of a chart showing a process utilization obtained from
a tracelog

78 CHAPTER 6. FEATURES OF KAIRA

Figure 6.8: The histogram of transition execution times for each process

0 10 20 30 40

0
10

0
20

0
30

0
40

0

Processes

T
im

e
(s

)

●

●

●
●

● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ●

●

●

Run without tracing
Variant A
Variant B
Variant C

Figure 6.9: Execution times for tracing of the heat flow example in variants A, B,
C from Section 6.3.1

6.4. PERFORMANCE PREDICTION 79

Figure 6.10: The tracing configuration for the example from Section 6.3.2

tracelog. Figure 6.11 shows how a table can be exported from the tracelog. The
resulting table can be saved as simple plain text data and reused in an external tool.
In this case, tool R is used to post-process data and obtain the charts in Figure 6.12.
As expected, the convergence of the fitness value is almost the same when processes
communicate, and it differs in the non-communicating version.

As the last two demonstrations show, Kaira offers an infrastructure where the
user can easily set up an experiment, perform measuring, and obtain the resulting
data while still working in terms of the model where the application is created.

6.4 Performance prediction
The performance prediction in Kaira is implemented as online simulations, i.e. a
full computation of the program is performed in a simulated environment. The
communication layer is simulated through an analytical model. In Kaira there is
not a fixed number of models, but the user may specify any model as a C++ function
in a similar way as C++ sequential codes are edited in transitions or places. This
function is called for each packet and returns a time needed to transfer the packet.
The basic information like the size of the packet and the rank of the sender and the
receiver is passed to this function. A simple linear model is shown in Listing 6.1.
Additionally, casr::Context (the subclass of ca::Context) makes the access to
information about the value of the global clock and the current workload of the
network between each pair of processes. Therefore more sophisticated models can
be defined; models that reflect an overall situation in the network or models with
dynamic changes of the bandwidth in time.

The model of communication is not the only configurable setting. In Kaira,
execution times of each transition and size of data transfered through each arc can
be arbitrary modified. It is designed to answering questions like “what will be
the overall effect when a code in a transition is optimized and is 20% faster than
before the optimization”, but it can be also used for reducing a computation time of
predictions. The former is demonstrated in Section 6.4.2, the latter in Section 6.4.1.

80 CHAPTER 6. FEATURES OF KAIRA

Load a tracelog &
select the export plugin

Select data to export Select columns to export

The resulting table

Figure 6.11: The process of exporting data from a tracelog

Listing 6.1: A simple linear model of communication
ca:: IntTime packet_time (casr :: Context &ctx ,

int source_id , int target_id , size_t size)
{

const ca:: IntTime latency = 5847; // [ns]
double bandwidth = 1.98059; // [byte/ns]
return latency + size / bandwidth ;

}

6.4. PERFORMANCE PREDICTION 81

0 5 10 15

60
0

80
0

10
00

12
00

14
00

Time [s]

B
es

t f
itn

es
s

va
lu

e

process 0
process 1
process 2
process 3
process 4
process 5
process 6
process 7
process 8
process 9
process 10
process 11
process 12
process 13
process 14
process 15

0 5 10 15

60
0

80
0

10
00

12
00

14
00

16
00

Time [s]

B
es

t f
itn

es
s

va
lu

e

process 0
process 1
process 2
process 3
process 4
process 5
process 6
process 7
process 8
process 9
process 10
process 11
process 12
process 13
process 14
process 15

Figure 6.12: The fitness value of the token in place Best trail in time. The top chart
is for the original net, the bottom chart is for the variant without communication.

82 CHAPTER 6. FEATURES OF KAIRA

The configuration of this feature is specified in the same way as for tracing, i.e.
as labels placed into the net (examples in Figures 6.16 and 6.20). In the case of a
transition, the expression in the label specifies how the running time is modified.
The transition is computed as usual, but the program in the simulator behaves as
if the computational time of the transition is the time obtained from the expression
in the label. In the expression, an instance of casr::Context is accessible through
the variable ctx and variable transitionTime provides the access to the original
computation time. For example, if the expression in the label of a transition is
transitionTime / 2, then the simulated program behaves like the program where
this transition is two times faster. Additionally, any variable from expressions on
input arcs of the transition can be used in the label, hence the simulated computa-
tional times may depend on computed data.

The configuration for arcs works in a similar way by modifying the sizes of tokens
produced by an arc. This value is used when a token is transferred through the
network; the receiver obtains the data as they are sent, but the network simulation
considers modified sizes of packets. The variable size can be used in the label and
it enables access to the original size of the data.

Kaira additionally offers a special clock. It runs like an ordinary clock in a nor-
mal run and can be arbitrarily modified in a simulation in the same way as running
times of transitions. A transition using this clock is depicted with a small clock
symbol on the left side. The clock provides methods tic() and toc() where toc()
returns the time elapsed from the last call of tic(). In the simulated run, the user
may provide an expression that is called after with each toc() and modifies returned
time. This feature is used in the experiment with load balancing in Section 6.4.2.

The simulated program produces a tracelog where the simulated run is recorded.
It uses the same infrastructure as was described in the previous section, including
the way in which a measurement is specified and the results are post-processed. It
provides richer possibilities for tracing than do existing prediction tools, they can
usually just switch tracing on or off. Standard tracing tools cannot be used with
simulators, because of the simulated network environment and the time control.

6.4.1 Performance prediction of the heat flow example
In this section, performance prediction will be demonstrated using the heat flow
example from Section 4.2 and its manual implementation used in Section 6.1.1. The
goal is to predict running times of this example on Anselm in settings: 2600× 8200,
5000 iterations while using only a single core of Anselm. The running times of the
application are predicted by Kaira and SimGrid.

The prediction in Kaira was executed with a linear model of the network;
parameters were obtained by a simple measurement of transport times between
two nodes. SimGrid was configured according the computer specification and the

6.4. PERFORMANCE PREDICTION 83

latency of the network was configured to the same value as in the case of Kaira. The
results are shown in Figure 6.13 and Figure 6.15. The former shows predicted times
and the latter shows logarithmic errors as defined in [64] (Errlog = | log t − log p|
where t is the real time of the execution and p is the predicted time). As results
show, Kaira gives a worse prediction in absolute numbers than specialized tool
SimGrid. But the overall trend of the program behavior with an increasing number
of processors is reflected also in the case of Kaira prediction.

To reduce the computing times of predictions in this particular example, it is
possible to exploit the fact that the structure of communication is independent on
computed data. A smaller instance of the problem can be computed, but the com-
puting times and sizes of transferred data are appropriately resized. The prediction
named as XY was obtained by computing an instance with a smaller grid; both
dimensions of the grid are divided by two. The computation time of transitions
Compute and Heat flow linearly depends on the size of the grid; therefore each pro-
cess obtains a four times smaller part of the grid. Thus the computing times for the
transition are multiplied by four, to simulate the original time. The configuration is
shown in Figure 6.16. The size of exchanged rows depends on the width of the grid,
hence it is only halved and the factor two is used on edges that transfer rows, to
simulate the original size. In this sense, predictions X and Y are also configured. In
prediction X, the number of columns is halved; in Y the number of rows is halved.
In the case of SimGrid only the global power of nodes was multiplied by four (XY)
or two (X and Y), because SimGrid does not allow the more precise adjustments
that are possible with Kaira.

The results are shown in Figures 6.14 and 6.15. The predictions obtained by
reducing the size of the grid still show the overall trend but times to obtain the pre-
dictions were reduced proportionally to the size of the grid. Hence XY prediction
needs about a quarter of the original time; X and Y need a half of the origin time.
The main goal of this example is to demonstrate configuration options for perfor-
mance prediction in Kaira. The user can simply skip a part of the computation
and configure the simulation in a way that the original run is simulated.

6.4.2 The experiment with load balancing
In this experiment, the same infrastructure as in the previous section is used. But
now, the goal is not to predict some real times of computations but test the correct-
ness of the load balancing algorithm presented in Section 4.3. For the demonstration,
the following configuration has been chosen: 2600× 2600 with 5000 iterations, with
load balancing performed every 100 iterations.

Let us start with observing the normal run of the program by the tracing infras-
tructure. The settings of tracing are shown in Figure 6.17. Two values are traced:
the number of rows is monitored by function rows_count in place Local state and the

84 CHAPTER 6. FEATURES OF KAIRA

0 10 20 30 40

0
50

10
0

15
0

Processes

T
im

e
(s

)

●

●

●

●
●

●
● ● ● ● ●

●

●

●

●

●
●

● ●
● ● ●

●

●

Kaira − real run
Manual implementation − real run
Kaira − prediction
SimGrid − prediction

Figure 6.13: Prediction of execution times for the heat flow problem (2600× 8200;
5000 iteration)

0 10 20 30 40

0
50

10
0

15
0

Processes

T
im

e
(s

)

●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

●
●

● ●
● ● ●

●

●

Kaira − real run
Manual implementation − real run
Kaira − prediction X
SimGrid − prediction X
Kaira − prediction Y
SimGrid − prediction Y
Kaira − prediction XY
SimGrid − prediction XY

Figure 6.14: Prediction of execution times for the heat flow problem (2600× 8200;
5000 iteration)

6.4. PERFORMANCE PREDICTION 85

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Processes

Lo
ga

rit
hm

ic
 e

rr
or

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

Kaira prediction
Simgrid prediction
Kaira prediction X
SimGrid prediction X
Kaira prediction Y
SimGrid prediction Y
Kaira prediction XY
SimGrid prediction XY

Figure 6.15: Prediction errors for execution times in Figure 6.13 and Figure 6.14

Figure 6.16: The configuration of the simulated run for experiment “XY”

86 CHAPTER 6. FEATURES OF KAIRA

average time of the computation is recorded through a new extra place connected
to transition Balance. Data can be exported from the tracelog in the same way as
in Section 4.6. The results from Anselm are shown in Figure 6.18. The load bal-
ancing is actively involved, because the spreading non-zero values through the grid
cause a slow down of processes. Figure 6.19 shows the average computation times
of a single iteration when load balancing is disabled. The results indicate that load
balancing works in the expected way; slower processes are disposing rows and the
average times for a single iteration are more balanced than without load balancing.

The process described above only allows us to see the behavior that is repro-
ducible on our currently available hardware. The prediction environment can be
used to observe the behavior of the algorithm under more extreme conditions. Let
us assume, that we want to see the behavior when a process suddenly becomes much
slower and then slowly returns to its original speed. More precisely, after seven sec-
onds of computing, process 4 becomes twelve times slower for another seven seconds
and then it uniformly returns back to the original speed for another ten seconds.

The settings in Figure 6.20 and function experiment_time shown in Listing 6.2
are used to perform this experiment. The function changes the computation time
of process 4 in the desired way. Besides changing the transition execution time, the
clock that is used by the load balancing algorithm has to be also modified. In this
example, the clock is started at the beginning of a transition execution and stopped
at the end of the computation; therefore the measured time almost exactly matches
the full time of the transition execution. Hence the same function can be safely used
for both settings. The result of the experiment is shown in Figure 6.21. After seven
seconds of computations, process 4 suddenly slows down, but it is balanced in three
seconds by disposing almost all rows to neighbors. When the execution time returns
to normal, the rows are gradually returned back.

This demonstration shows that the user can test developed programs in various
situations just by changing a simple C++ expression and easily obtain results due
to the tracing framework.

6.5 Verification
The verification in Kaira is based on constructing and exhaustively exploring the
state space of a verified program. Therefore analyses are not performed on a par-
ticular run but all possible program behaviors are considered. By analyzing the
state space, the tool provides the following analyses: The detection of deadlocks
and cyclic computations, checking uniqueness of results and uniqueness of charac-
teristic vectors of computation paths. The deadlock and cyclic computations are
classic problems. Violating uniqueness of both kinds does not necessary indicate a
bug in a program. But for many computational programs this property holds and
its violation indicates an error. All analyses will be more precisely described below.

6.5. VERIFICATION 87

Figure 6.17: The tracing configuration for the net of the heat flow with load bal-
ancing example. The full picture of the net is in Figure 4.5.

0 5 10 15 20 25 30

0.
00

15
0.

00
25

0.
00

35
0.

00
45

Time [s]

A
vg

. t
im

e
[s

]

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

● ● ● ●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
● ● ●

● ●

● ●

●

●
●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

● ●

●

●

●

●
●

● ●

●
●

●

●
●

●
●

●

● ●

●
●

●
●

● ● ● ●

● ●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
● ●

●

●

●

● ●

● ●
●

● ● ● ● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●

●

●

● ● ●

●

●
●

●
●

●
● ●

● ●

● ●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ● ●

●
●

●

●
● ●

● ● ●

30
0

40
0

50
0

60
0

ro

w
s

rows

process 0
process 1
process 2
process 3
process 4
process 5

●

●

●

●

●

●

Avg. time

process 0
process 1
process 2
process 3
process 4
process 5

Figure 6.18: The average computation times of iterations and row counts in the
heat flow example with load balancing (6 processes; 2600× 2600; 6000 iterations)

88 CHAPTER 6. FEATURES OF KAIRA

0 5 10 15 20 25 30

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Time [s]

A
vg

. t
im

e
[s

]

process 0
process 1
process 2
process 3
process 4
process 5

Figure 6.19: The average computation times of iterations in the heat flow example
without load balancing (6 processes; 2600× 2600; 6000 iterations).

Figure 6.20: The configuration of the simulated run from Section 6.4.2. The full
picture of the net is in Figure 4.5.

6.5. VERIFICATION 89

0 5 10 15 20 25 30 35

0.
00

5
0.

01
0

0.
01

5

Time [s]

A
vg

. t
im

e
[s

]

●

● ●
●

●
● ●

●
● ●

●

●
●

●
● ●

● ●
●

●

●
●

●
●

●

● ●
● ● ● ● ● ●

●
●

●
●

● ● ●
●

● ● ●
●

●
● ●

● ●
●

● ● ●
●

● ● ●
●

●

● ●
● ● ● ● ● ●

●
● ●

●
●

●
● ● ●

●
● ●

● ●

●

●
●

● ● ●
●

●
● ●

●
● ●

● ●
●

● ● ● ●
●

● ●

●
●

●
● ● ●

● ●
● ● ● ●

●

●
●

● ●
●

● ● ● ●
●

●
●

● ● ●
●

●
●

●

● ● ●
●

● ●

●

●

●
● ●

●

●
●

●
● ● ●

●
●

●
● ● ● ●

● ● ●
●

●
●

● ●
●

● ●
● ● ● ●●

●
●

● ● ●
● ● ●

●
●

●

●
● ●

● ●

●
●

● ●

●
●

●
●

●

● ●

● ●

●
● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

●●
● ● ● ● ●

●
● ●

●
●

●
● ●

●

●

●

●
●

●

● ● ●
●

● ●
● ●

●

● ●

●

● ●
●

●

●

●
●

●

● ●

● ● ● ● ● ●
● ●

●
●

●
●

●

● ●
● ●● ● ● ● ●

●
● ● ●

●

●

●
●

●
●

● ●
●

●
●

●
●

●

●

●
●

● ● ●
● ●

●

●
●

●

●

●

●
●

●
●

● ● ●
● ● ●

●

●
●

● ● ● ● ● ●
● ● ● 10

0
20

0
30

0
40

0
50

0
60

0
70

0

ro

w
s

rows

process 0
process 1
process 2
process 3
process 4
process 5

●

●

●

●

●

●

Avg. time

process 0
process 1
process 2
process 3
process 4
process 5

Figure 6.21: The average computation times of iterations and row counts in the heat
flow example with load balancing (6 processes; 2600× 2600; 6000 iterations) in the
experiment where process 4 is slowed down

Listing 6.2: The function used in configurations of the time and clock substitutions
for the experiment with load balancing of heat flow
ca:: IntTime experiment_time (casr :: Context &ctx ,

ca:: IntTime time)
{

if (ctx. process_id () == 4) {
if (ctx.time () > 7e9 && ctx.time () < 14e9) {

return time * 12;
}
if (ctx.time () >= 14e9 && ctx.time () < 24e9) {

return (time * (24 e9 - ctx.time ()) * 12.0) / 10e9;
}

}
return time;

}

90 CHAPTER 6. FEATURES OF KAIRA

The verification in Kaira has the following limitations to make it feasible. The
program is verified for a fixed input and it is assumed that each computation reaches
only a finite number of states. These limitations are fundamental because they
follows from the limits of what is decidable in the verification of generic programs.
Kaira also verifies only programs where the effect of each transition depends only
on its input variables, the current process rank and the number of running processes.
In practice, it means that a verified application cannot use random numbers or time
measurements. The workers, heat flow, sieve, and matrix multiplication examples
satisfy this condition and can be verified, but ACO (random numbers) and heat flow
with load balancing (time measurements) not.

Because all behaviors of the application are explored, the memory and CPU time
demands may grow more than exponentially. For this reason, only small instances
of a program can be verified. But many bugs that occur in practice, like race
conditions, may be often observed even on very small instances. With these type of
bugs, the problem is not usually the size of the instance but the rarity of the error
behavior among runs that does not expose the error. But the rarity is not a problem
in the state-space analysis because all behaviors are examined.

The current implementation of verification in Kaira serves mainly as a proof
of the concept and does not contain any advance method for reducing the state
space, so in the current version, Kaira cannot compete with tools like ISP in the
size of instances that can be verified. But verification in Kaira benefits from more
abstract description of programs and the rest of the Kaira framework. ISP offers
a deadlock detection; when it is detected, then the sequence of MPI calls that goes
to the deadlock is shown as a graph. In the case of Kaira, results are provided
in the form of control sequences. Hence the result of the analysis can be loaded
into the visual debugger and the user can observe step by step the behavior of the
application.

Formally let state space be a set SP = {m | m′
0 →∗ m} and the set of end states

be ES = {s ∈ SP | ¬∃s′ ∈ SP : s → s′}. In these and the following definitions, we
are again considering K, n,BK

n defined in the beginning of this chapter.
Now the description of analyses follows:

Deadlock In this analysis, a situation where the application cannot progress but
quit was not called is detected. The application contains a deadlock if there is a
state m ∈ ES such that m(prun) ̸= ⟨⟩.

Cyclic computation In this analysis, it is checked if a computation cannot arrive
again to the same state, this would cause a potential endless computation. It can
be formalized as follows: the application contains a cyclic computation if there are
states s, s′ ∈ SP such that s ̸= s′, s→∗ s′ and s′ →∗ s.

6.5. VERIFICATION 91

Uniqueness of final markings This analysis is based on the fact that a large
number of computational programs should return the unique result independently
on a used computation path. In Kaira, the user can specify a set F ⊆ P . It is a
set of places that are checked in each state from ES . In other words, the cardinality
of the set X = {(m(pi))(p,i)∈F ×[n] | m ∈ ES} is checked. If |X| > 1 then there are
more outcomes of the application with respect to F . It is up to the user to choose
correct F , but is usually a simple task to choose places that should have a unique
result in the end.

Uniqueness of the characteristic vector This analysis is based on the obser-
vation that for many computational applications hold that an application executes
the same set of actions in all its executions, only the order of actions differs. In
workers example, a fixed number of jobs is assigned. Therefore transition divide has
the same number of executions in all possible runs when an input is fixed. Moreover,
for all runs each interval is assigned exactly once, therefore transition Compute is
executed for each job exactly once. In this analysis, the user specifies the following
mapping cfg : T → X where X = {n, c, b, p, bp}. Elements of X are symbols with
the following meaning:

• cfg(t) = n – The transition t is ignored in the analysis.

• cfg(t) = c – Occurrences of t in computation paths are counted.

• cfg(t) = p – Occurrences of t for each process in computation paths are
counted.

• cfg(t) = b – Occurrences of variable bindings of t are counted.

• cfg(t) = bp – Occurrences of variable bindings of t for each process are
counted.

Let CS = {⟨t1, t2, . . . , tz⟩ ∈ T ′∗ | ∃m0, . . . , mz : m0
t1−→ m1

t2−→ . . .
tz−→ mz ∧

m0 = m′
0 ∧mz ∈ ES} is a set of computation sequences. Let a characteristic vector

of u = ⟨t′
1, t′

2, . . . , t′
z⟩ ∈ CS with respect to cfg denoted as Chcfg(u) be (Ch′

cfg(u, t))t∈T

where

Ch′
cfg(u, t) =

0 if cfg(t) = n
|{j ∈ [z] | ∃i ∈ [n] : t′

j = ti,+}| if cfg(t) = c
(|{j ∈ [z] | t′

j = ti,+}|)i∈[n] if cfg(t) = p
(|{j ∈ [z] | ∃i ∈ [n] : t′

j = ti,+ ∧ b = bt,i,mj−1}|)b∈B if cfg(t) = b
(|{j ∈ [z] | t′

j = ti,+ ∧ b = bt,i,mj−1}|)(i,b)∈[n]×B if cfg(t) = bp
where (_, bt,i,m) = FindBinding(t, i, m). Checking of the uniqueness of characteristic
vectors is checking if |{Chcfg(u) | u ∈ CS}| = 1.

92 CHAPTER 6. FEATURES OF KAIRA

6.5.1 Verification of the workers example
Let us demonstrate verification features on the workers example (Section 4.1). The
configuration of the verification is again done through labels; for the example used
here this is shown in Figure 6.22. The deadlock and cycle detections do not need any
settings therefore all configurations are for the uniqueness analyses. For checking of
uniqueness of final markings, the new place Final was added and transition write
results puts sorted prime numbers there. This place is explored in the analysis of
the final marking uniqueness (i.e. F = {final}). The setting for the uniqueness of
the characteristic vector is configured as

cfg(compute) = b; cfg(divide) = cfg(write results) = p

This configuration naturally follows from the way how the program works.
Transition Divide is fired for a fixed number of times, and is fired only at process

0. Configuration bp cannot be used because different runs can assign jobs to different
processes. Write results is fired only once for process 0. But prime numbers in
variable results can be ordered in many ways; therefore the binding cannot be
checked. Each job (interval) is computed exactly once, hence each interval also
occurs in variable job of transition Compute exactly once, but in different processes
for different runs, therefore option b is used and not bp.

To demonstrate the error detection, an intentional bug was introduced by re-
moving the arc with inscription [guard(size == ctx.process_count() - 1)]
between place ready and transition write results. Figure 6.22 shows the variant in
which the arc is already removed. The modified program may return the correct re-
sult like the original one, but may also write results prematurely without waiting to
all workers. When analyses are run, the error is detected by both uniqueness analy-
ses. The execution of the program where the error occurs has a different result than
the correct run, hence there are two different markings of the place Final. Analysis
of characteristic vectors discovers the problem because Compute is fired fewer times
when the error occurs. The report with results is shown in Figure 6.23. From this
report, two minimal control sequences that prove non-uniqueness can be exported.
One shows a correct run; the second one shows premature writing of results.

All these analyses are implemented by simple graph-searching algorithms over
the graph of the state space. The main problem is the construction of this graph. As
was already said, many optimizations are still missing in the Kaira implementation;
therefore sizes of instances are very limited now. The following instances of workers
can be verified on a computer with 8GB RAM: about ten thousand of the assigned
intervals for two processes (1 master, 1 worker), about eleven intervals for three
processes, and eight intervals for four processes. Similar analysis for Heat flow is
able to verify about thousands of iterations of the algorithm for two processes, about
200 iterations for three processes, and two iterations for four processes.

6.6. LIBRARIES 93

Figure 6.22: The configuration of workers for the state-space analysis. The arc
between ready and write result is intentionally removed to introduce an error.

To conclude this section, Kaira offers the verification infrastructure with anal-
yses that are more than detecting deadlocks or assertion violations. These analyses
can be explained in terms of the used model without many technicalities, they are
easily configurable and the results are provided in the form of control sequences,
i.e. the states that show the problem can be directly loaded into a debugger. The
implementation is still young and there are many potential places where the imple-
mentation can be improved to manage much bigger instances than the presented
ones. The author believes that the proposed approach can be one way to make for-
mal verification techniques a natural part of the development of MPI applications.

6.6 Libraries

This section covers generating libraries. The main goal of this feature is to provide a
simple way of introducing parallel computations into existing sequential applications.
Kaira is able to generate a C++ library with functions that run internally in
parallel and that can be called from any sequential C++ code. It allows to parallelize
only computationally demanding parts without changing the rest of the application.

The first part of this section covers C++ libraries. This feature is further used
to create Octave modules, serving as a demonstration of a use of a high-level tool
together with Kaira.

94 CHAPTER 6. FEATURES OF KAIRA

Figure 6.23: The report of the state-space analysis for the net in Figure 6.22

6.6.1 C++ libraries
So far, a program in Kaira was described by a single net. In the case of a library,
there can be one or more nets; each net represents a single function in the resulting
library. The syntax of the visual language is extended to express inputs and outputs
of a function. A place can be marked as an input (output) interface by input (output)
marks. The example is shown in Figure 4.7. The net has two input marks m1 and
m2 and a single output mark output. The C++ function generated from this net
has the following declaration:

void matmult(const Matrix &m1, const Matrix &m2, Matrix &output);

Types of arguments are taken from the places with input/output marks and
matmult is the name of the net. Functions in the library created in this way can
be called in any sequential C++ application. The code of an application that uses
the library will be referred to as the main code in the following text. When a
function from the library is called, then the run of the main code is blocked and the
computation described by the net is performed. When the computation is finished
(i.e. a transition calls ctx.quit()), then the run of the main code is resumed.

Libraries can be generated in two modes: the direct usage of MPI and RPC
(Remote Procedure Call) mode. In the former, the main code runs only at process 0
and all other processes wait until the parallel function is not called. The generated
library contains initialization function calib_init. The user is obligated to call this

6.6. LIBRARIES 95

function as the first function in the main code. It makes all necessary initialization
and makes sure that the main code runs only in process 0 and other processes wait.

In RPC mode, Kaira creates both the server and the client side. The client part
is a light C++ library that is used in the main code; it sends all calls to the server
where actual computations are performed. The sequential code of the application
and the MPI part run as completely independent applications and they can run on
different computers.

The complete feature set of Kaira presented in this whole chapter is available
for libraries; therefore functions in a generated library can be traced, verified, etc.
The simulator is also available in a mode in which the main code runs normally, but
control is overtaken by the simulator when a generated function is called. After that,
the user can control the application in the same way as for stand-alone applications.

One net can be used to build a stand-alone program or a library function. When
it is built as a library, then init-expressions and init-codes of places with input marks
are ignored. When the net is built as a stand-alone program, then input and output
marks are ignored and initializing codes are evaluated normally. It allows the user
to simply create a function from a program by adding interface marks or to create
a simple test program from a net that originally described a function.

6.6.2 Integration with Octave
Octave is described according its own webpage6 as:

“GNU Octave is a high-level interpreted language, primarily intended
for numerical computations. It provides capabilities for the numerical
solution of linear and nonlinear problems, and for performing other nu-
merical experiments. It also provides extensive graphics capabilities for
data visualization and manipulation. Octave is normally used through
its interactive command line interface, but it can also be used to write
non-interactive programs. The Octave language is quite similar to Mat-
lab so that most programs are easily portable.”

Octave was chosen as a proof of the concept of combining Kaira with a high-
level tool. Such a connection can improve the prototyping capabilities of both tools
in the area of MPI applications. For Octave, there already exists package open-
mpi_ext that provides bindings of basic MPI functions. But Octave itself is not
very suitable for working with distributed memory applications; therefore, it could
be very hard to debug an application or perform other supportive activities. Generic
tools for C/C++ applications can be also hard to use, because they usually do not
count with such use; starting such an application correctly or understanding results

6http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/

96 CHAPTER 6. FEATURES OF KAIRA

could be a problem without knowledge of the internal C++ implementation of Oc-
tave. With Kaira, the user gains the complete infrastructure presented in this
thesis. Including the possibility to create a library in the RPC mode; therefore,
Octave may run on a local computer and demanding parts are sent to a cluster.

Kaira automatically creates all necessary codes to connect Octave and the
C++ library; therefore parallel codes generated by Kaira can be directly called
from Octave. With basic types (int, std::string, etc.) or Octave’s C++ types
(like Matrix in the example from Section 4.4), no additional action has to be taken.
To transfer other C++ types between a net and Octave, conversion functions have
to be written; this is done in a similar way as for the definition of packing and
unpacking functions for a type.

Let us assume that the matrix multiplication example from Section 4.4 is gener-
ated as an Octave library named kaira-mult. Then the following code can be used
in Octave:

source kaira-mult.m # Load library
A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16;];
B = [10 20 30 40; 50 60 70 80; 90 10 11 12; 13 14 15 16];
C = matmult(A, B); # Call function

6.6.3 Drawbacks
In this section, the main issues of Kaira are summarized. They can be divided into
two categories, issues of the current implementation and ones that fundamentally
follow from the used approach. The former category includes the absence of col-
lective communication in Kaira. MPI contains a set of functions that implements
communication in which more nodes are involved in the same time. It allows efficient
implementation of operations like a broadcast or scatter-gather over all processes.
The current implementation of Kaira does not use collective communication in
generated codes; all operations are implemented through the point-to-point commu-
nication. Therefore applications that heavily use collective communication can be
implemented in a more efficient way by a direct usage of MPI than in Kaira. The
implementation of collective communication into Kaira is proposed as the first task
for future works (Section 8.1.1).

The second flaw is connected with the performance of some analyses. We are
focused on the ability to generate applications running with a minimal overhead
when they are simulated or traced. On the other hand, some post-process analyzing
codes are not optimized in the current version. In the case of tracing, it works well
for the scale of problems demonstrated in this thesis, but Kaira is not suitable now
to analyze or display a tracelog obtained by a longer computation with hundreds of
processes. Also sizes of instances for verification is limited, as was said in Section 6.5.

6.6. LIBRARIES 97

The second group of issues (the fundamental issues) mostly stem from the de-
cision to use visual programming in Kaira. Many tools used by programmers like
version control systems or documentation generators assume that source codes are
provided in a form of plain text files. Therefore the usage of such tools may bring
issues; for example, merging changes made in a single net. These problems gen-
erally occurs in visual programming and solving them is out of the scope of this
thesis. Specialized tools that understand a particular system is usually used instead
of generic ones. But such specialized tools does not exists yet for Kaira.

These problems are common not only for visual programming tools, but also
for other tools that do not store source codes of developed applications as plain
text files; Smalltalk implementations can be named as an example. On the other
hand, Kaira is focused on applications developed by individuals or small teams;
therefore problems with these external tools are usually not critical.

98 CHAPTER 6. FEATURES OF KAIRA

Chapter 7

Implementation

This section describes the internal structure of Kaira. At the beginning the archi-
tecture of Kaira is introduced. The next section covers the behavior of generated
applications. At the end of this chapter, the way to obtain error messages from a
C++ compiler is described.

7.1 Architecture
The Kaira consists of three main parts:

• Gui – The most visible part from the user’s perspective. It allows editing of
nets and source codes, control of simulations, and showing of analyses results.
All screenshots of Kaira in this thesis are screenshots of this component.

• PTP (Project-To-Program) – It is the compiler that translates nets into a
C++ code. It is a main part of Kaira.

• Libraries – Kaira consists of six C++ libraries that are linked together with
resulting programs:

– Cailie is the base library that is always linked with a generated program.
– CaVerif is linked if a state-space analysis is performed.
– CaSimrun is linked if a performance prediction is performed.
– CaOctave is linked if the Octave integration is used.
– CaClient and CaServer are used if a RPC library is built.

Figure 7.1 shows the process of building an executable application, a library, or
an RPC server/client. A project file contains nets, user-defined sequential source
codes, and global configurations. When the project is built, the first step is to

99

100 CHAPTER 7. IMPLEMENTATION

.proj

Project file

libcailie.a

PTP

.xml

Exported
project

.cpp

Source codes

.h makefile

Build file

0101

1101
0101

Stand-alone
MPI application

mpic++/g++

make

0101

1101

0101

Server

.a

Client
library

Gui

libserver.a

libclient.a

.a

Library

.cpp

Other project files and libraries

.h .a only in RPC mode

OR OR

Figure 7.1: Building a program or a library in Kaira

7.2. GENERATED PROGRAMS 101

generate an internal description of the project for PTP by Gui. Gui just simply
preprocesses net descriptions. From this description, PTP generates C++ source
files and a makefile. After that, make builds a stand-alone application, a library,
or an RPC server-client pair depending on the setting.

Gui and PTP are implemented in Python. Gui moreover uses GTK+1 as
the library for the graphical user interface, Matplotlib2 for drawing charts and
GtkSourceView3 for the text-editing widget with syntax highlighting. Library
CaVerif internally uses sparsehash4 and mhash5.

7.2 Generated programs
The topic of this section is internal parts of generated programs. The behavior
of a generated application is quite simple. Originally, most of the implementation
was created as a prototype, and the plan was to replace the prototype with a more
sophisticated code in the future. But the analysis of the performance showed that
it works well for real examples and we focused on other topics. The only problem
that was solved in a larger scale is avoiding unnecessary data copying. It is covered
later in this section.

A program generated from a net is managed by a simple scheduler whose imple-
mentation can be described as the pseudo-code in Algorithm 7.4. Each MPI process
has its own instance of the scheduler that manages only transitions and places that
belong to the net-instance assigned to the process. The main task of the scheduler
is to fire transitions. It picks a transition from set ready with a highest priority, i.e.
a potentially enabled transition. The function fire_transition tries to fire it and
returns true if the transition was fired. If false is returned, then the transition was
not enabled and the scheduler removes the transition from set ready. The transition
is returned into this set only if at least one of its input places is changed, i.e. another
transition puts there a token or a token is received from the network. This function-
ality is implemented in fire_transition and receiving functions. Every iteration,
the scheduler tries to receive MPI messages and finish MPI sends. All messages are
sent by non-blocking MPI calls, hence active sends are periodically checked if they
are finished and resources can be freed.

Function fire_transition executes a specific code for each transition that de-
pends on transition’s arcs, the guard expression and the assigned C++ code. If C++
code in transition calls ctx.quit() then quit is set to true. Assume example 11 in

1http://www.gtk.org/
2http://matplotlib.org/
3https://projects.gnome.org/gtksourceview/
4http://code.google.com/p/sparsehash/
5http://mhash.sourceforge.net/

http://www.gtk.org/
http://matplotlib.org/
https://projects.gnome.org/gtksourceview/
http://code.google.com/p/sparsehash/
http://mhash.sourceforge.net/

102 CHAPTER 7. IMPLEMENTATION

Algorithm 7.4 The pseudo-code of the main cycle in a generated application
quit← false
ready ← all transitions in the net
while ¬quit do

try_receive_mpi_messages() ▷ Can modify set ready
try_finish_sends()
if ready = ∅ then

wait_for_mpi_message() ▷ Can modify set ready
end if
t← a transition with the highest priority from ready
if ¬fire_transition(t) then ▷ Can modify set ready or flag quit

ready ← ready \ {t}
end if

end while

Algorithm 7.5 The pseudo-code generated for the transition from example 11 in
Figure 3.9

if place a is empty then
return false

end if
t← the first token in a
remove the first token from a
send t.value to place c in process 2
put t into b
return true

7.3. ERROR MESSAGES 103

Figure 3.9, then the code like in Algorithm 7.5 is generated for the transition in the
net.

The execution of this simple scheduler introduces a minimal overhead. The only
real performance issue is the cost of token manipulations. Moving tokens of types
like int has a negligible overhead, but it would be a significant overhead when a
large matrix would be copied in a case where a token is just moved from one place
to another. By a simple analysis it can be detected when a token can be moved
from one place to another, as in the case of Algorithm 7.5. Places are implemented
as double-linked lists of tokens, where a token is directly a node in the linked list
containing the value and pointers to the previous and the next node (token) in the
list. A token can be directly moved between an input and output place when there is
an input inscription and an output inscription with the same main-expression that is
a variable and both inscriptions are not bulk. It covers most of the cases where this
optimization can be used. There are also some small tweaks in pairing input/output
inscriptions (e.g. preferring inscriptions without if keyword), but they are rarely
used.

The described scheduler is used when the final stand-alone application is gener-
ated. When the user starts a visual debugger, then PTP generates the application
where the scheduler is replaced by a controller that listens commands from Gui via
a TCP/IP connection. The same infrastructure is used for dynamic connecting into
running applications (the feature mentioned in Section 6.2). In the case of simu-
lated runs for performance predictions, the scheduler fires transitions sequentially
and maintains a virtual global clock to compute the effects of delays and modified
transition execution times. In the case of the state-space analysis, the scheduler
explores all possible behaviors and constructs the state-space graph.

7.3 Error messages

Showing correct and precise error messages is a crucial feature to make a practical
tool. If a tool gives no or misleading error messages, then it quickly becomes very
frustrating and time consuming to use.

In Kaira, it is important to ensure good error messages for expressions used in
nets. Originally, a simple domain-specific language was used for these expressions
(up to version 0.5). Hence, syntax and type checking were quite easy. But it became
more complicated when general C++ expressions started to be used. C++ is a
complex programming language; the draft of the latest standard [65] has more than
1300 pages. It is not possible to create and maintain our own front-end of a C++
compiler in our small group. Therefore it is necessary to reuse an existing C++
compiler. There are several libraries that provide analysis of C++ codes; one of the

104 CHAPTER 7. IMPLEMENTATION

most advanced is libclang6. But these tools are usually designed for usages like
automatic code completing in programming editors; therefore they are prepared to
work with complete source code files, and checking a single expression under certain
conditions is problematic.

Given this background, the author has developed a different and surprisingly
simple idea. It consists of two parts. The first part is the implementation of the
parser that accepts a very simple superset of C++ syntax. Basically it only checks if
the expression roughly “looks like” a C++ expression; that is, it checks some trivial
errors, mainly that all parentheses, string literals, and comments are correctly closed.
When an expression is accepted by this simple parser, the second step is to create
a specially crafted C++ code where each line may contain at most one more error
than the previous line. When such a code is compiled by a C++ compiler and it
returns some errors, the smaller error line is taken to determine the actual error.
Because the simple parser has already checked issues like unclosed parenthesis or
comments, the error cannot be detected on a later line than it really occurs.

This approach can be demonstrated on the following example. Assume that
we need to check expression f(a.x + 10) where variable a has type MyStruct and
the expression has to return type MyType. First, the simple parser checks that the
expression looks “ok”. The code generated in the next step is shown in Listing 7.1;
it does not contain intentionally any indentation. If an error occurs at line 1 then
MyStruct is not defined; if the first error occurs at line 2 then MyType is not defined.
If the first error occurs at line 4 then the expression is invalid. For example, f
does not exist, takes different argument(s), or MyStruct does not have attribute a.
It is possible to decompose the expression and determine the error more precisely
by the same method. But in this case, an error message from the C++ compiler
can be directly taken and presented to the user. Compilers return errors in the
format “filename:linenumber:error message”, hence the prefix can be cut off
and the error message for the expression obtained, including information about the
column if it is provided. If the first error occurs in line 7 then the type returned by
the expression is wrong. This error has to be checked separately because the error
message obtained from the compiler may refer to the returning type of the crafted
function and it would make no sense to the user. But if any error does not occur
earlier, it is the only possible error on this line, hence the error is known and an
error message can be provided.

Such crafted codes can be created for all expressions that need checking and all
these codes can be put in a single file, allowing a single run of the compiler to check
all expressions. This technique works across compilers; the quality of error messages
evolves together with C++ compilers; it should also work for future standards of
C++; the only thing that has to be maintained is a very simple parser.

6http://clang.llvm.org/doxygen/group__CINDEX.html

http://clang.llvm.org/doxygen/group__CINDEX.html

7.3. ERROR MESSAGES 105

Listing 7.1: The example code generated for checking the correctness of an expression
1 void __test1 (MyStruct & __arg1) {}
2 void __test2 (MyType & __arg1) {}
3 void __test3 (MyStruct &a) {
4 f(a.x + 10);
5 }
6 MyType __test4 (MyStruct &a) {
7 return f(a.x + 10);
8 }

106 CHAPTER 7. IMPLEMENTATION

Chapter 8

Conclusions

This dissertation thesis defines and demonstrates ideas related to an abstract pro-
gramming environment for the development of parallel applications in the area of
distributed memory. Through this work, it was shown that various problems can be
expressed in the proposed abstract model in a way that provides a simplifying and
unifying background for rapid development and various supportive activities. The
most important findings from this work can be summarized as follows:

• The user creates a model of communication and parallel aspects in the visual
way. It was demonstrated that the diagrams of various parallel algorithms
stay small. The structure of the program can be easily modified and the user
can experiment with the developed program.

• Semantics of the computation model was formally defined.

• A thin layer between model and MPI allows generation of effective C++ pro-
grams from the visual language. The generated programs have a comparable
performance to manually created C++ applications. This approach also allows
use of existing tools for MPI applications together with programs generated
by Kaira.

• Developed programs can be run in the visual debugger where their inner state
can be observed and controlled. This allow us to observe the behavior of the
developed program from its very early stages. The debugger is controlled in a
simple well-formed way. It allows to work with sequences of high-level events
that can get the program into required states. These sequences can be created
by the simulator or can be obtained as a result of analyses. Therefore, when a
state of a developed application is obtained from any analysis, the application
can be put into this state at any time and debugged by our debugger.

• Tracing of programs is possible in a way that allows the configuration and
presentation of results through abstract terms of the model. Collected data

107

108 CHAPTER 8. CONCLUSIONS

can be simply exported for further post-processing and the traced run can be
replayed in the same visual way as for the visual debugger.

• The proposed tool offers predictions of application behaviors through online
simulations with an analytical model of the network. The used model allows
simple configuration of the predictions and observation of the results. During
predictions, the complete tracing infrastructure is available. It can be used to
check various “what if . . . ” scenarios.

• The approach used allows implementation of the state-space analysis of the
developed program together with easily configurable analyses. The presented
approach of implementing formal methods as a natural component of the de-
velopment environment can increase the utilization of this important part of
computer science among MPI users.

• It was shown that the presented model can serve also for development of par-
allel libraries usable in any sequential C++ applications. This infrastructure
is also used for combining Kaira and Octave to obtain a domain-specific
prototyping environment for developing parallel applications.

All ideas in this thesis and their implementation are presented with the hope
that they will serve well as a useful and practical tool for programmers of parallel
applications. As always, there is space for improvements and new ideas. The author
plans and hopes that after finishing this thesis, he will have the opportunity to
continue working on Kaira and to expand the tool in many different ways. Possible
avenues for future development are outlined in the next chapter.

8.1 Ideas for future work
Work on Kaira does not end with the completion of this thesis. There are still
many ways in which Kaira can be improved. This section contains three directions
that the author has identified as the most interesting ideas that should also have a
practical impact on the use of Kaira.

8.1.1 Collective communication
As was noted in Section 6.6.3, Kaira in the current version is not able to utilize col-
lective communication. Making this important part of MPI accessible increases the
number of problems that can be solved by Kaira. The solution has to include two
parts. The first part is to enrich the programming language by this construct. The
plan is to introduce a new transition with a special semantics that will capture a col-
lective behavior. The second part is to update analytical parts of Kaira. Collective

8.1. IDEAS FOR FUTURE WORK 109

communication has a more complex behavior that depends on an implementation of
MPI. To offer performance analyses and predictions, it will be necessary to create
a tighter connection between Kaira and an existing implementation of MPI or to
use a more sophisticated simulator.

8.1.2 Advanced libraries
Kaira generates libraries where each net represents a function that blocks sequential
computation until the function does not finish its computation. It is limiting for
some usages and it can also cause an issue in which the same data are repeatedly
transferred between the main program and computing nodes for each call. It can
be provisionally solved by saving data into files, but it is not a very elegant way.
For these reasons, there is a space to introduce more advanced libraries in which
generated functions can run concurrently together with the main code. Moreover
the main program will be able to dynamically influence the parallel parts, like fill
new data, and take partial results.

The preliminary ideas are based on special transitions that are not fired by the
scheduler but for each such transition a function in the library will be generated.
Calling this function in the program will cause firing this transition. Hence, se-
mantics of Kaira will be used to introduce a simple and well-formed control of
distributed applications.

8.1.3 Hybrid computation
Kaira was originally designed as the tool for distributed memory computations.
On the other hand, these days many parallel systems are composed of multi-core
shared memory nodes; from a global perspective the system has distributed memory
but inside each node, a shared-memory parallel computation can be performed. To
fully utilize such a computer, systems like MPI and OpenMP1 are used together.
Because these technologies were not designed for such usage, using them in combi-
nation brings new issues [66]. PGAS programming languages already mentioned in
Section 2.2, were designed to simplify the programming of such systems.

Between versions 0.3 and 0.6 of Kaira, we tried to address issues related to
combining shared memory and distributed memory programming. The result is that
with Kaira it is possible to run applications in the mode where the behavior can be
roughly described as follows: if there are more enabled transitions in a process, then
they are performed simultaneously by threads. This feature still remains in version
1.0, but it is considered to be experimental; it is not optimized and some analyses
do not support this mode. The work on this aspect was suspended, because the

1“The OpenMP API supports multi-platform shared-memory parallel programming in C/C++
and Fortran.” – http://openmp.org

http://openmp.org

110 CHAPTER 8. CONCLUSIONS

proposed semantics was not sufficiently supported by practical examples and some
implementation problems surfaced.

The author still believes that the potential exists for the use of Kaira in the
design of applications where shared memory and distributed memory approaches
are combined. However, as it stands now more thinking is needed on the topic.
One way is to extend the current approach. The runtime will use transparently
more threads to execute more enabled transitions but without visible effects, hence
the overall result will be the same as a run with a single thread. It solves some
problems of the current implementation and makes it also compatible with a large
part of the current implementation. On the other hand, the user will lose some
control over the application, which is counter to the idea of a general prototyping
tool. Another direction is to change the visual language and introduce some shared
memory constructs. But it is not clear what constructions should be proposed to
achieve sufficiently universal, efficiently implementable semantics with good support
by practical examples.

8.1.4 Use of Kaira in education
Although it is not the main objective, Kaira could naturally be used to teach the
message-passing paradigm. A student can reuse knowledge of sequential program-
ming in C++ and communication constructs can be explained on examples with
immediate feedback available through the visual simulator. Kaira can also serve
for a quick demonstration of supportive activities used in programming without the
need to explain many technical details. The main obstacle for using the tool in this
way is the lack of documentation that introduces the message-passing paradigm and
parallel programming through the use of Kaira. The existing documentation is
focused on the reader that is already familiar with these topics.

Závěr

Tato disertační práce definovala a demonstrovala vývojové prostředí pro vývoj para-
lelních aplikací v prostředí systémů s distribuovanou pamětí. Práce je založena na
abstraktním výpočetním modelu v kombinaci s vizuálním jazykem určeným pro
prototypování a implementaci programů ve zmíněné oblasti. Dále tento model slouží
jako sjednocující základ pro rychlý vývoj aplikací a další podpůrné aktivity, které
se objevují v průběhu vývoje. Základní aspekty prezentovaného nástroje mohou být
shrnuty následovně:

• Uživatel vytváří model komunikace a paralelních částí ve vizuálním jazyce.
Práce demonstruje, že takto vytvořené diagramy mají relativně malou veli-
kost a zůstávají přehledné i v případě řešení praktických problémů. Vizuální
jazyk usnadňuje změnu programu a uživatel může jednoduše experimentovat
s vyvíjenými programy.

• Sémantika výpočetního modelu je plně formalizována.

• Tenká vrstva mezi modelem a MPI umožňuje generovat efektivní C++ apli-
kace z vizuálního jazyka. Generované programy mají srovnatelný výkon s ma-
nuálně vytvořenými C++ programy. Tento přístup také zpřístupňuje využití
mnoha existujících nástrojů pro analýzu programů vygenerovaných nástrojem
Kaira.

• Vygenerované programy lze spustit ve vizuálním debuggeru, ve kterém je
možné zobrazit a řídit jejich vnitřní stav. Tímto způsobem může uživatel po-
zorovat chování aplikace od raných fází vývoje. Debugger je ovládán pomocí
dvou vysokoúrovňových operací, což nabízí jeho řízení pomocí sekvencí pří-
kazů, které umožňují směřovat program do požadovaného stavu. Tyto sekvence
mohou být vytvořeny simulátorem nebo získány jako výsledek analýz.

• Tracování programů je poskytováno ve formě, která využívá abstraktní model
ke konfiguraci a prezentaci výsledků. Takto získaná data mohou být jednoduše
exportována a dále zpracovávána nebo může být zaznamenaný běh zobrazen
stejným způsobem jako v případě vizuálního debuggeru.

111

112 CHAPTER 8. CONCLUSIONS

• Kaira poskytuje možnost online simulací s analytickým modelem sítě. Skrze
vizuální model může být simulátor konfigurován pro specifické nastavení ex-
perimentů. Zároveň je k dispozici kompletní tracovací infrastruktura.

• Navržený model umožnil jednoduchou implementaci verifikace pomocí analýzy
stavového prostoru.

• Bylo demonstrováno použití nástroje Kaira pro generování paralelních C++
knihoven. Tato infrastruktura byla dále využita při propojení Kairy s Octave.

Další vývoj
Dokončením této práce není vývoj nástroje Kaira ukončen, je zde stále mnoho ob-
lastí, ve kterých může být rozšiřován. Tři hlavní směry vývoje jsou: implementace
kolektivní komunikace, rozšířených knihoven a hybridního módu. Kolektivní komu-
nikace je důležitá součást MPI, která není v současné verzi Kairy využita. Přidání
této funkcionality umožní uživateli vytvářet efektivní implementace širšího spektra
programů.

Generování rozšířených knihoven má za cíl souběžné zpracování hlavního kódu
spolu s knihovními voláními, do kterých může hlavní kód dynamicky zasahovat.
Hlavním cílem je odstranit nutnost znovu rozesílat data při každém volání knihovní
funkce. Implementace této vlastnosti může být založena na rozšíření vizuálního ja-
zyka o speciální přechody, které nejsou prováděny plánovačem, ale které lze ovládat
ze sekvenčního kódu.

Hybridní mód je zde myšlen ve smyslu plného využití systémů, ve kterých je
kombinována sdílená a distribuovaná paměť. Velké množství paralelních počítačů je
dnes vytvořeno jako cluster s multiprocesorovými uzly se sdílenou pamětí. Autor
práce věří, že navržený výpočetní model bude možné rozšířit o prvky, které zpří-
stupní vývoj aplikací i v této oblasti.

Author’s publications

Publications related to the thesis
• Böhm, S., Běhálek, M.: Generating parallel applications from models based

on Petri nets. Advances in Electrical and Electronic Engineering 10 (1) (2012)
[SCOPUS]

• Meca, O., Böhm, S., Běhálek, M., Šurkovský, M.: Prototyping framework for
parallel numerical computations. In Proceedings of: The 10th International
Conference on Parallel Processing and Applied Mathematics (PPAM) (2013)

• Böhm, S., Běhálek, M., Meca, O., Šurkovský, M.: Visual programming of mpi
applications: Debugging and performance analysis. In Proceedings of: The
4th Workshop on Advances in Programming Language (WAPL) (2013)

• Böhm, S., Běhálek, M., Meca, O.: Kaira: Generating parallel libraries and
their usage with octave. In Proceedings of: Languages and Compilers for Par-
allel Computing (LCPC). Volume 7760 of Lecture Notes in Computer Science.
Springer (2013). 268–269

• Böhm, S., Běhálek, M.: Usage of Petri nets for high performance comput-
ing. In Proceedings of: 1st ACM SIGPLAN workshop on Functional high-
performance computing. (FHPC), New York, NY, USA, ACM (2012). 37–48
[SCOPUS]

• Böhm, S., Běhálek, M., Garncarz, O.: Developing parallel applications using
Kaira. In Proceedings of: Digital Information Processing and Communica-
tions. Volume 188 of Communications in Computer and Information Science.,
Springer (2011). 237–251 [WoS]

• Běhálek, M., Böhm, S., Krömer, P., Šurkovský, M., Meca, O.: Paralleliza-
tion of ant colony optimization algorithm using Kaira. In Proceedings of:
11th International Conference on Intelligent Systems Design and Applications
(ISDA), Cordoba, Spain (2011). 510-515 [SCOPUS]

113

114 CHAPTER 8. CONCLUSIONS

• Böhm, S., Běhálek, M.: Kaira: Modelling and generation tool based on Petri
nets for parallel applications. In Proceedings of: UkSim 13th International
Conference on Computer Modelling and Simulation (2011). 403–408 [SCO-
PUS]

Publications related to one-counter automata
• Böhm, S., Göller S., Jančar, P.: Equivalence and regularity for real-time

one-counter automata. Journal of Computer and System Sciences (JCSS),
Elsevier, http://dx.doi.org/10.1016/j.jcss.2013.11.003 [IF 1.000]

• Böhm, S., Göller S., Jančar, P.: Equivalence of deterministic one-counter
automata is NL-complete. In Proceedings of: 45th ACM Symposium on the
Theory of Computing (STOC), Palo Alto, CA, USA, June 1-4 (2013). 131–140
[SCOPUS]

• Böhm, S., Göller S.: Language equivalence of deterministic real-time one-
counter automata is NL-complete. In Proceedings of: 36th International
Symposium on Mathematical Foundations of Computer Science (MFCS), Lec-
ture Notes in Computer Science, Springer (2011). 194–205 [WoS]

• Böhm, S., Göller S., Jančar, P.: Bisimilarity of one-counter processes is
PSPACE-complete. In Proceedings of: 21st international conference on Con-
currency theory (CONCUR), Lecture Notes in Computer Science 6269, Springer
(2010). 177–191 [WoS]

Bibliography

[1] Böhm, S., Běhálek, M.: Kaira: Modelling and generation tool based on Petri
nets for parallel applications. In: UkSim 13th International Conference on
Computer Modelling and Simulation. (2011) 403 –408

[2] Böhm, S., Běhálek, M., Garncarz, O.: Developing parallel applications using
Kaira. In: Digital Information Processing and Communications. Volume 188 of
Communications in Computer and Information Science., Springer (2011) 237–
251

[3] Běhálek, M., Böhm, S., Krömer, P., Šurkovský, M., Meca, O.: Parallelization
of ant colony optimization algorithm using Kaira. In: 11th International Con-
ference on Intelligent Systems Design and Applications (ISDA 2011), Cordoba,
Spain (2011)

[4] Böhm, S., Běhálek, M.: Generating parallel applications from models based on
Petri nets. Advances in Electrical and Electronic Engineering 10(1) (2012)

[5] Böhm, S., Běhálek, M.: Usage of Petri nets for high performance comput-
ing. In: Proceedings of the 1st ACM SIGPLAN workshop on Functional high-
performance computing. FHPC ’12, New York, NY, USA, ACM (2012) 37–48

[6] Böhm, S., Běhálek, M., Meca, O.: Kaira: Generating parallel libraries and
their usage with octave. In: Languages and Compilers for Parallel Computing
(LCPC). Volume 7760 of Lecture Notes in Computer Science. Springer (2013)
268–269

[7] Meca, O., Böhm, S., Běhálek, M., Šurkovský, M.: Prototyping framework for
parallel numerical computations. In: The 10th International Conference on
Parallel Processing and Applied Mathematics (PPAM). (2013)

[8] Böhm, S., Běhálek, M., Meca, O., Šurkovský, M.: Visual programming of mpi
applications: Debugging and performance analysis. In: The 4th Workshop on
Advances in Programming Language (WAPL). (2013)

115

116 BIBLIOGRAPHY

[9] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The
Complete Reference, Volume 1: The MPI Core. 2nd. (revised) edn. MIT Press,
Cambridge, MA, USA (1998)

[10] Hempel, R., Walker, D.W.: The emergence of the mpi message passing standard
for parallel computing. Comput. Stand. Interfaces 21(1) (1999) 51–62

[11] Squyres, J.M.: Mpi debugging – can you hear me now? ClusterWorld Magazine,
MPI Mechanic Column 2(12) (2004) 32–35

[12] Squyres, J.M.: Debugging in parallel (in parallel). ClusterWorld Magazine,
MPI Mechanic Column 3(1) (2005) 34–37

[13] Krammer, B., Bidmon, K., Müller, M., Resch, M.: Marmot: An {MPI} analysis
and checking tool. In G.R. Joubert, W.E. Nagel, F.P., Walter, W., eds.: Parallel
Computing Software Technology, Algorithms, Architectures and Applications.
Volume 13 of Advances in Parallel Computing. North-Holland (2004) 493 – 500

[14] Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: Mpi-
check: a tool for checking fortran 90 mpi programs. Concurrency - Practice
and Experience 15(2) (2003) 93–100

[15] Vetter, J.S., de Supinski, B.R.: Dynamic software testing of mpi applica-
tions with Umpire. In: Proceedings of the 2000 ACM/IEEE conference on Su-
percomputing (CDROM). Supercomputing ’00, Washington, DC, USA, IEEE
Computer Society (2000)

[16] Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution
profiler. SIGPLAN Not. 17(6) (1982) 120–126

[17] Weidendorfer, J.: Sequential performance analysis with callgrind and
kcachegrind. In: Parallel Tools Workshop. (2008) 93–113

[18] Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool architecture
for diagnosing wait states in massively parallel applications. Parallel Comput.
35(7) (2009) 375–388

[19] Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.:
The Scalasca performance toolset architecture. Concurrency and Computation:
Practice and Experience 22(6) (2010) 702–719

[20] Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2) (2006) 287–311

BIBLIOGRAPHY 117

[21] Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H.,
Müller, M., Nagel, W.: The Vampir performance analysis tool-set. In Resch,
M., Keller, R., Himmler, V., Krammer, B., Schulz, A., eds.: Tools for High
Performance Computing. Springer Berlin Heidelberg (2008) 139–155

[22] Pillet, V., Pillet, V., Labarta, J., Cortes, T., Cortes, T., Girona, S., Girona, S.,
Computadors, D.D.D.: Paraver: A tool to visualize and analyze parallel code.
Technical report, In WoTUG-18 (1995)

[23] J. Chassin de Kergommeauxa, B. Steinb, P.B.: Pajé, an interactive visualization
tool for tuning multi-threaded parallel applications. Parallel Comput. 26(10)
(2000) 1253–1274

[24] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-
Crummey, J., Tallent, N.R.: Hpctoolkit: tools for performance analysis of
optimized parallel programs http://hpctoolkit.org. Concurr. Comput. : Pract.
Exper. 22(6) (2010) 685–701

[25] Bordner, J.: MPI performance tools. http://lca.ucsd.edu/projects/
phys244/raw-attachment/wiki/LectureNotes/bordner-perf.pdf (2012)

[26] Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings,
M.: Predictive performance and scalability modeling of a large-scale applica-
tion. In: SC. (2001) 37

[27] Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based
performance prediction for large parallel machines. Int. J. Parallel Program.
33(2) (2005) 183–207

[28] Casanova, H., Legrand, A., Quinson, M.: Simgrid: A generic framework for
large-scale distributed experiments. In: Proceedings of the Tenth International
Conference on Computer Modeling and Simulation. UKSIM ’08, Washington,
DC, USA, IEEE Computer Society (2008) 126–131

[29] Penoff, B., Wagner, A., Tüxen, M., Rüngeler, I.: MPI-NetSim: A network
simulation module for MPI. In: Proc. of the 15th International Conference on
Parallel and Distributed Systems. (2009)

[30] Tikir, M., Laurenzano, M., Carrington, L., Snavely, A.: Psins: An open source
event tracer and execution simulator for mpi applications. In Sips, H., Epema,
D., Lin, H.X., eds.: Euro-Par 2009 Parallel Processing. Volume 5704 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2009) 135–148

http://lca.ucsd.edu/projects/phys244/raw-attachment/wiki/LectureNotes/bordner-perf.pdf
http://lca.ucsd.edu/projects/phys244/raw-attachment/wiki/LectureNotes/bordner-perf.pdf

118 BIBLIOGRAPHY

[31] Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of parallel
applications on large-scale parallel machines using a single node. SIGPLAN
Not. 45(5) (2010) 305–314

[32] Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality
between distant performance phenomena in large-scale mpi applications. In:
Parallel, Distributed and Network-based Processing, 2009 17th Euromicro In-
ternational Conference on. (2009) 78–84

[33] Allan, R., Science, Britain), T.F.C.G.: Survey of HPC Performance Modelling
and Prediction Tools. Technical report (Science and Technology Facilities Coun-
cil (Great Britain))). Science and Technology Facilities Council (2010)

[34] Pllana, S., Brandic, I., Benkner, S.: Performance modeling and prediction of
parallel and distributed computing systems: A survey of the state of the art.
In: CISIS. (2007) 279–284

[35] Siegel, S., Avrunin, G.: Verification of halting properties for mpi programs
using nonblocking operations. In Cappello, F., Herault, T., Dongarra, J., eds.:
Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Volume 4757 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2007) 326–334

[36] Holzmann, G.: Spin model checker, the: primer and reference manual. First
edn. Addison-Wesley Professional (2003)

[37] Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: Isp: a tool for
model checking mpi programs. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming. PPoPP ’08,
New York, NY, USA, ACM (2008) 285–286

[38] Godefroid, P.: Partial-order methods for the verification of concurrent systems
- an approach to the state-explosion problem (1995)

[39] Gopalakrishnan, G.L., Kirby, R.M.: Top ten ways to make formal methods for
hpc practical. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research. FoSER ’10, New York, NY, USA, ACM (2010) 137–142

[40] Träf, J.L.: History and development of the MPI standard. slides (2013)

[41] Balay, S., Brown, J., , Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik,
D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users man-
ual. Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory
(2013)

BIBLIOGRAPHY 119

[42] Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R.,
Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro,
R., Willenbring, J., Williams, A.: An Overview of Trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories (2003)

[43] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clus-
ters. Commun. ACM 51(1) (2008) 107–113

[44] Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.: Parallel spectral cluster-
ing in distributed systems. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 33(3) (2011) 568–586

[45] Zhao, J., Pjesivac-Grbovic, J.: Mapreduce: The programming model and prac-
tice (2009) Tutorial.

[46] Stephens, R.: A survey of stream processing. Acta Informatica 34(7) (1997)
491–541

[47] Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.:
Introduction to UPC and Language Specification. CCS-TR-99-157 (1999)

[48] Inc, C.: Chapel Language Specification. (2011)

[49] Browne, J.C., Dongarra, J., Hyder, S.I., Moore, K., Newton, P.: Visual
programming and parallel computing. Technical report, Knoxville, TN, USA
(1994)

[50] Kacsuk, P., Cunha, J.C., Dózsa, G., Lourenço, J.a., Fadgyas, T., Antão, T.:
A graphical development and debugging environment for parallel programs.
Parallel Comput. 22(13) (1997) 1747–1770

[51] Newton, P., Khedekar, S.Y.: (CODE 2.0 User and Reference Manual) http:
//www.cs.utexas.edu/~code/download/docs/CODE_2.0_Manual.ps.

[52] Newton, P., Browne, J.C.: The code 2.0 graphical parallel programming lan-
guage. In: Proceedings of the 6th international conference on Supercomputing.
ICS ’92, New York, NY, USA, ACM (1992) 167–177

[53] Hyder, S., Werth, J., Browne, J.: A unified model for concurrent debugging. In:
Parallel Processing, 1993. ICPP 1993. International Conference on. Volume 2.
(1993) 58–67

[54] Kacsuk, P.: Performance visualization in the grade parallel programming en-
vironment. In: High Performance Computing in the Asia-Pacific Region, 2000.
Proceedings. The Fourth International Conference/Exhibition on. Volume 1.
(2000) 446–450 vol.1

http://www.cs.utexas.edu/~code/download/docs/CODE_2.0_Manual.ps
http://www.cs.utexas.edu/~code/download/docs/CODE_2.0_Manual.ps

120 BIBLIOGRAPHY

[55] Reisig, W., Rozenberg, G., eds.: Lectures on Petri Nets I: Basic Models, Ad-
vances in Petri Nets, the volumes are based on the Advanced Course on Petri
Nets, held in Dagstuhl, September 1996. In Reisig, W., Rozenberg, G., eds.:
Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer (1998)

[56] Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation
of Concurrent Systems. Springer (2009)

[57] Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.
Transf. 9(3) (2007) 213–254

[58] Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for petri
nets: Renew. In Cortadella, J., Reisig, W., eds.: ICATPN. Volume 3099 of
Lecture Notes in Computer Science., Springer (2004) 484–493

[59] Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT
Press, Cambridge, MA, USA (1997)

[60] Cannon, L.E.: A cellular computer to implement the kalman filter algorithm.
PhD thesis, Bozeman, MT, USA (1969) AAI7010025.

[61] Dorigo, M., Stutzle, T.: The ant colony optimization metaheuristic: Algo-
rithms, applications, and advances. In: Handbook of Metaheuristics. Volume 57
of International Series in Operations Research; Management Science. Springer
New York (2003) 250–285

[62] Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony op-
timization for the traveling salesman problem. In: Proceedings of the 5th
International Conference on Ant Colony Optimization and Swarm Intelligence.
ANTS’06, Berlin, Heidelberg, Springer-Verlag (2006) 224–234

[63] Valmari, A.: Stubborn sets for reduced state space generation. In Rozenberg,
G., ed.: Advances in Petri Nets 1990. Volume 483 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (1991) 491–515

[64] Velho, P., Legrand, A.: Accuracy study and improvement of network simula-
tion in the simgrid framework. In: Proceedings of the 2nd International Con-
ference on Simulation Tools and Techniques. Simutools ’09, ICST, Brussels,
Belgium, Belgium, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering) (2009) 13:1–13:10

[65] Working draft, standard for programming language C++. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf (2012)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf

BIBLIOGRAPHY 121

[66] Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel program-
ming on clusters of multi-core smp nodes. Parallel, Distributed, and Network-
Based Processing, Euromicro Conference on 0 (2009) 427–436

122 BIBLIOGRAPHY

Appendix A

Performance measurements

Execution times of the heaf flow example on Anselm (2600× 8200, 5000 iterations)
Kaira Manual implementation Difference

Processes Mean SD Mean SD Absolute Relative
2 145.66 0.04 151.40 0.42 -5.75 -0.04
4 90.66 3.22 89.07 0.41 1.60 0.02
8 57.08 1.07 55.68 0.69 1.39 0.03
12 41.85 0.31 41.20 0.42 0.66 0.02
16 32.96 0.13 32.07 0.17 0.88 0.03
20 28.71 0.17 27.65 0.03 1.06 0.04
24 24.93 0.04 24.85 0.08 0.09 0.00
28 25.09 0.20 22.16 0.07 2.93 0.13
32 22.01 0.18 20.69 0.08 1.32 0.06
36 20.92 0.17 22.34 0.59 -1.42 -0.06
40 19.31 0.14 19.36 0.18 -0.05 0.00

Execution times of the heat flow example on Anselm (2600× 2600, 3000 iterations)
Kaira Manual implementation Difference

Processes Mean SD Mean SD Absolute Relative
2 36.20 0.14 35.64 0.19 0.56 0.02
4 19.75 0.18 19.73 0.20 0.03 0.00
8 10.83 0.02 10.61 0.06 0.21 0.02
12 8.21 0.02 7.75 0.02 0.46 0.06
16 6.78 0.02 6.31 0.01 0.48 0.08
20 5.92 0.01 7.13 1.46 -1.21 -0.17
24 5.31 0.01 4.87 0.01 0.44 0.09
28 4.91 0.02 4.63 0.05 0.28 0.06
32 4.68 0.02 4.64 0.09 0.04 0.01
36 4.67 0.19 4.26 0.12 0.40 0.09
40 4.26 0.12 3.88 0.09 0.38 0.10

123

124 APPENDIX A. PERFORMANCE MEASUREMENTS

Execution times of the heat flow example on Hubert (2600× 8200, 5000 iterations)
Kaira Manual implementation Difference

Processes Mean SD Mean SD Absolute Relative
2 536.55 0.04 554.65 0.42 -18.10 -0.03
4 334.67 3.22 312.36 0.41 22.31 0.07
8 186.57 1.07 185.19 0.69 1.38 0.01
12 153.78 0.31 152.31 0.42 1.47 0.01
16 129.52 0.13 128.09 0.17 1.43 0.01
20 119.65 0.17 118.38 0.03 1.27 0.01
24 115.60 0.04 114.28 0.08 1.33 0.01
28 112.73 0.20 111.44 0.07 1.29 0.01
32 116.41 0.18 115.17 0.08 1.24 0.01

Execution times of the heat flow example on Hubert (2600× 2600, 3000 iterations)
Kaira Manual implementation Difference

Processes Mean SD Mean SD Absolute Relative
2 110.73 0.04 103.76 0.42 6.98 0.07
4 62.91 3.22 61.93 0.41 0.98 0.02
8 36.07 1.07 35.47 0.69 0.60 0.02
12 29.09 0.31 28.41 0.42 0.68 0.02
16 25.40 0.13 24.90 0.17 0.50 0.02
20 23.76 0.17 23.20 0.03 0.56 0.02
24 23.26 0.04 22.74 0.08 0.52 0.02
28 22.58 0.20 22.10 0.07 0.48 0.02
32 23.33 0.18 22.97 0.08 0.36 0.02

	Introduction
	State of the art
	Message Passing Interface
	Debugging
	Performance analysis
	Performance prediction
	Verification

	High-level tools
	Visual parallel programming
	Petri nets

	Kaira
	Design goals and decisions
	``Hello world'' example
	Programming in Kaira
	Places
	Transitions
	The syntax of expressions on arcs
	Input arcs
	Output arcs
	Net-instances
	Init-areas
	Sequential codes
	Global configurations
	Integration of C++ types

	History
	Comparison with selected tools

	Examples
	Example: Workers
	Usage of GMP

	Example: Heat flow
	Rectangle variant

	Example: Heat flow & load balancing
	Example: Matrix multiplication
	Example: Sieve
	Example: Ant colony optimization

	Formal semantics
	Basic definitions
	Basic transition system
	Kaira program
	Instantiation of Kaira program
	Run of a program

	Features of Kaira
	Generating applications
	Performance of applications

	Simulator
	Tracing
	Tracing of heat flow
	Tracing of ACO

	Performance prediction
	Performance prediction of the heat flow example
	The experiment with load balancing

	Verification
	Verification of the workers example

	Libraries
	C++ libraries
	Integration with Octave
	Drawbacks

	Implementation
	Architecture
	Generated programs
	Error messages

	Conclusions
	Ideas for future work
	Collective communication
	Advanced libraries
	Hybrid computation
	Use of Kaira in education

	Záver
	Author's publications
	Bibliography
	Performance measurements

