
Università degli Studi di Padova
Dipartimento di Ingegneria dell ’Informazione
Master Degree in Computer Engineering

a.y. /

An Integer Programming approach to
Bayesian Network Structure Learning

Alberto Franzin

Advisor:
Prof. Silvana Badaloni

Co-advisor:
Dr. Francesco Sambo

April th, 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Padua@thesis

https://core.ac.uk/display/20328662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

In this thesis we study the problem of learning a Bayesian
Network structure from data using an Integer Programming
approach. BayesianNetworks are ProbabilisticGraphicalMod-
els that represent causality relationships among variables, in
the form of a Directed Acyclic Graph (DAG). One of the
open problems regarding Bayesian Networks is how to infer
the DAG of the network from a dataset. We study the exist-
ing approaches, an in particular some recent works that for-
mulate the problem as an Integer Programming (IP) model.
By discussing some weaknesses of the existing approaches, we
propose an alternative model and a different solution, based on
a statistical sparsification of the search space. We discuss our
model from a theoretical point of view, and evaluate it against
other IP-based software packages. Results show how our ap-
proach can lead to promising results, especially for large net-
works.

Contents

List of Figures · v

List of Tables · vii

 Introduction · 

 eoretical foundations · 
. General graph theory · 
. Probability theory · 

.. Hypothesis testing · 
.. Information theory · 

. Bayesian Networks · 
.. Definition · 
.. BNs and conditional independence · · · · · · · · · 
.. Properties · 

. Mixed-Integer Linear Programming · · · · · · · · · · · · · · 
.. eoretical introduction · · · · · · · · · · · · · · · · · · 
.. Techniques for solving MILPs · · · · · · · · · · · · · 
.. Software for solving MILPs · · · · · · · · · · · · · · · 

 Bayesian Network Structure Learning · · · · · · · · · · · · · · · · · 
. Scoring metrics · 

.. General properties · 
.. Bayesian scoring functions · · · · · · · · · · · · · · · · 
.. Information theoretic scoring functions · · · · · 

. Independence tests · 
. Algorithms · 

.. Dynamic Programming · · · · · · · · · · · · · · · · · · 
.. Greedy · 

iii

iv CONTENTS

.. Max-min hill-climbing · · · · · · · · · · · · · · · · · · · 
.. Branch-and-bound · 
.. Local learning · 
.. Structure learning as IP problem · · · · · · · · · · · 
.. Hybrid methods and other approaches · · · · · · 

. Comments · 
.. On the significance of the results · · · · · · · · · · · 

 Alternative Integer Programming formulation · · · · · · · · · · 
. Reducing the search space · 
. From sets of nodes to edges · 
. A family of skeleton-based cuts · · · · · · · · · · · · · · · · · · · 

.. Finding violated cuts · 
. Notes on the model · 

.. Relations with other problems · · · · · · · · · · · · · 
. A cutting-plane algorithm · 

.. Computational costs and considerations · · · · · 
.. Finding cycles · 

. Solving the model efficiently · 
.. Partial linear relaxation · · · · · · · · · · · · · · · · · · · 
.. Computational techniques · · · · · · · · · · · · · · · · 

 Experimental results · 
. Preliminary considerations · 
. Test description · 
. Results · 

.. Successful tests · 
.. Score of the networks · 
.. Structural Hamming Distance · · · · · · · · · · · · · 
.. Time performances · 
.. Memory allocation · 

. Comments · 

 Conclusions · 
. Future directions · 

Bibliography · 

List of Figures

. Flows on influence in a BN · 
. Example of equivalence classes for a simple graph · · · · · · 
. A polytope in R2 · 
. Comparison of MIP solvers with respect to SCIP · · · · · · · 

. Parent set lattice for  variables · 
. Orientation rules for patterns · 

. Cycles over same set of edges · 
. Steps of (k, l)-BFS · 
. Degenerate case for (k, l)-BFS · 
. Geometric effect of callbacks · 

. Failure for HEPAR2_100 · 
. Score results · 
. SHD results · 
. Preprocessing time results · 
. Edge orientation time results · 
. Overall time results · 
. Memory results · 
. Evolution of ALARM_10000 · 

v

List of Tables

. Summary of flow of influence in BNs · · · · · · · · · · · · · · · · · 

. Summary of structure learning algorithms and strategies · 

. In-degree of the instances · 
. Summary of successful results · 
. Summary of score results · 
. Summary of SHD results · 
. Summary of time results · 
. Summary of memory results · 

vii

Introduction 

Probabilistic Graphical Models (PGMs) are a powerful way of repre-
senting relationships of conditional dependence among a set of vari-
ables. Variables are associated to nodes in a graph, and edges between
nodes denote the relations of conditional dependence. Because of the
succint yet intuitive representation, the power of the framework, and
the variety of applications, PGMs have been used to address a large
set of problems, from coding theory to biology, from computer vision
to diagnostic, via classification, language processing, and much more.

Graphical Models can be divided in two categories: Markov Net-
works, if the graph is undirected and possibly cyclic, and Bayesian
Networks, when the graph is directed and acyclic. Markov andBayesian
Networks share many common properties, with some differences, in
particular those concerning the representable dependencies that the
other model cannot encode.

A thorough introduction on Probabilistic Graphical Models can
be found in Koller and Friedman [].

Several problems concerning PGMs are, however, still open. One
among those open questions is how to build a Bayesian Network from
a set of data: in its general form, the problem has been proven to be
NP-complete []. is problem has been studied extensively, and is
still an active field of research. Because of the hardness of this task,
there is still no easy way of learning a graphical model from a dataset.
Many exact and approximate methods have been proposed, but up to



. I

now there is no algorithms which can build an optimal network for
big enough problems, or even a sufficiently decent one for large size
instances.

In this thesis, we study the problem of learning a Bayesian Net-
work fromdata usingmixed-integer programming techniques. Specif-
ically, we address the issue of discovering a plausible Bayesian Net-
work structure by modeling the problem as an integer program. We
study some recent integer programming approaches that have been
proposed in the literature ([, , ] and related works), and move
from some observations to them in order to provide a more robust ap-
proach. e common approach to the problem is based on scoring the
candidate components of the network according to the dataset. ose
components are the possible configurations of parent nodes for the
nodes in the graph; the score is instead computed according to the
given data. e selected components have to contribute to the maxi-
mum score possible for the overall collection while forming an acyclic
graph. e two main issues of this formulation are the exponential
growth of the number of candidates with respect to the number of
variables observed, and the difficulty entailed by the request of acycli-
clity of the resulting network.

Among the proposals for mitigating these hurdles, one commonly
adopted technique is to assume a bounded number of parents for each
node. Clearly this bound, while maintaining under control the con-
putational resources needed to perform the full evaluation, in general
may discard configurations that belong to the optimal solution. More
importantly, this sparsification is done blindly, in a way that com-
pletely ignores the real structure of the observed data. We discuss
more deeply the implications of this pathway, and choose instead to
follow a different approach, namely applying an early statistical test
in order to discover an underlying undirected graph, following a path
developed in []. We therefore aim to reduce the number of can-
didates to evaluate in a more sensible manner, selecting the candidate
sets to be discarded by looking at the data. e task therefore becomes
to find an edge orientation of the newfound undirected graph that
is consistent with the initial requirements of maximizing the overall
score of the final network and avoiding directed cycles.

We propose an integer programming formulation for the problem
formulated this way, relating the candidate parent sets to the edge ori-
entation they entail. We subsequently evaluate this approach against



some preexistent methods. It has to be said that, while our model is
complete, the way we choose to solve it also yields a loss of informa-
tion that may prevent the optimal solution to be found; however, we
show that it is a more reasonable strategy than its alternative when the
size of the network grows up to some dozens of nodes, in particular
when there is enough data to perform valid statistical inferences.

is thesis is divided as follows: in the second chapter, Bayesian
Networks are defined as mathematical objects, along with their the-
oretical foundations, then a brief introduction to integer program-
ming is given. In the third chapter, we review the state-of-the-art
approaches for learning Bayesian Networks. In the fourth chapter we
present our contribution to the problem. In the fifth chapter we show
the experimental results we have obtained, and finally we expose our
conclusions and some possible directions for new research along this
path.



eoretical foundations 

In this chapter we introduce the theoretical basis of Bayesian Net-
works. In order to provide a sufficient framework for the discussion,
we first briefly present the two areas Bayesian Networks lies within,
namely graph theory and probability theory. en, we provide some
background on mixed-integer linear programming, as its tools are
used in the main contributions of this thesis.

. General graph theory
Graph theory is a branch of mathematics well studied and widely used
in many areas of theoretical and applied sciences. Its concepts, defi-
nitions, and properties can be found in plenty of books and textbooks,
see for example Bondy and Murty [], Bollobás [], West [].
Here we report some concepts used thoughout the rest of this work,
in order to provide a shared vocabulary for the reader.

A graph G = (V, E) is a pair of sets, namely the set of nodes
V, and the set of edges E ⊆ V × V connecting two nodes. When
two nodes can be directly connected via more than one edge, such a
graph is called a multigraph; when multigraphs are possible, graphs
with no multiple edges are called simple graph in order to distinguish
them. In the remainder of this work, multigraphs are not considered,
so we will use the term graph to indicate only simple ones, since there



. T 

is no risk of confusion. A graph is an undirected graph if ∀e ∈ E,
e = (u, v) = (v, u), that is, every edge can be traversed both ways.
When, instead, every edge (u, v) in E allows to go from node u to
node v but not viceversa, we call it a directed graph; u is the tail of the
edge, while v is its head . To avoid confusion, we will use the notation
(u, v) to indicate undirected edges, and (u → v) to denote directed
edges, or arcs. A graph including both directed and undirected edges
is called a partially directed graph. A graph G obtained by removing
some nodes or edges from another graph H is called a subgraph of H.

Two nodes connected by an edge are said to be adjacent. A se-
quence of nodes [u1, u2, . . . , un] is called an undirected path from u1
to un. If all the nodes are different, the path is called simple path. If
u1 = un, such a path is called an undirected cycle; if u1 = un is the
only repeatedly visited node the cycle is a simple cycle. If the sequence
of edges connecting the nodes in the given order is composed of di-
rected edges, the previous concepts exist as well, assuming the names
of, respectively, directed path and directed cycle. From here onwards,
the terms path and cycle will denote only simple paths and simple cy-
cles, both directed and undirected. A graph without cycles is called
an acyclic graph. An acyclic graph G is also called a forest; if G is con-
nected, it is a tree. A node u1, or a set of nodes U1, is connected to
a node u2 ̸= u1, or to a set of nodes U2 such that U1 ∩U2 = ∅,
if there is a path linking them. In directed graphs, or in undirected
graphs whenever a directionality notion arises (e.g. a traversal), a node
u can be defined as a parent for another node v if an edge going from
u to v exists in the graph; conversely, in the same context v is a child
node of u. If every couple of nodes in a graph G are connected via
some path, also G is a connected graph.

A graph where E = V × V is said to be complete. e oppo-
site, that is a graph where E = ∅ is an empty graph. A graph with
a number of edges close to the maximum possible number is called
a dense graph, while a graph with only “few” edges is called a sparse
graph. Such notions are vague, as the category which a graph falls
in usually depends on the context; many times, a graph is sparse if
|E| ∈ O(|V|)orO(log |V|), while a dense graph has O(|V|2) edges.
e number of edges insisting on a node v is the degree of v, and we
denote it with deg(v). e highest degree among all of the nodes in
a graph G also determines the degree of graph G. We will use δ(v) to
indicate the set of edges insisting on a node v. For the set of incoming



.. Probability theory

and outgoing edges of v, we will write δ−(v) and δ+(v), respectively;
in case of undirected graphs, those two sets coincide. δ(v) is called
a cut for node v, because removing its nodes render v disconnected
from the rest of the graph. e same notion extends to sets of nodes.

A graph is a planar graph if it can be drawn on an euclidean plane
without overlapping edges. An eulerian path is a path that traverses
once and only once every edge in the graph. An eulerian path that
returns back to the starting node is an eulerian cycle. A hamiltonian
path is, instead, a path that traverses all of the nodes in the graph. If
it returns to the starting node, it is called a hamiltonian cycle. A clique is
a maximal connected subcycle, that is, it forms a complete subgraph,
and there are no other nodes in the graph that can be added to the
clique while maintaining the completeness property.

A flag is an induced subgraph representing a path that contains
both directed and undirected edges: for example, if i, j, k ∈ V, the
sequence ((i → j), (j, k)) is a flag. A chain graph G is a graph
that admints both directed and undirected edges whose nodes can
be sorted in a chain: that is, there is a sequence of sets of nodes
C1, . . . , Cm, m ≥ 1 such that, for every directed edge (a → b),
a ∈ Ci, b ∈ Cj, i < j. Alternatively, a chain graph is a graph with no
directed cycles. One immediate consequence is that both DAGs and
undirected graphs are chain graphs; we define them as chain graphs
without flags.

. Probability theory
Probability theory is the branch of mathematics studying events un-
der conditions of uncertainty or randomness. Again, we introduce
some basic concepts employed in the remainder of this work. Specif-
ically, here we deal only with discrete distributions. Formore compre-
hensive references on theory and applications, one may refer to Ross
[], Bishop and Nasrabadi [], among many books and textbooks.

In its discrete declination, probability theory is the subject of count-
ing possibilities for an event to occur. e probability of an event
may be defined as the ratio between favourable cases for the event
to happen, and the number of possible cases. Let Ω be a count-
able set, called the sample space: we define the probability of an event
ω ∈ Ω to happen as a function f (ω) : Ω 7→ R[0,1], such that



. T 

∑ω∈Ω f (ω) = 1. An event E is a subset of Ω; the probability of
E is defined as P(E) = ∑ω∈E f (ω). e following properties hold:
P(∅) = 0, P(Ω) = 1, and if E ⊆ F then P(E) ≤ P(F).

We can define the following operations over the sample space.
e union of events is defined as the probability that at least one of
them occurs; it corresponds to the or logical operator. e intersection
of events, corresponding to the logical operator and is instead defined
as the probability that all of the events considered happen; the prob-
ability of two events E, F to happen simultaneously is called joint
probability, and is written P(E ∩ F). e complementary event of an
event E if the event EC = Ω \ E; from the previous definitions, it
follows that P(EC) = 1− P(E). e expected value E[·] or mean µ
for a set of events X is defined as

E[X] = ∑
x∈X

x · p(x), (.)

and the variance σ2 is computed as E[(X− µ)2].
Two events E, F are independent events if P(E, F) = P(E)P(F),

that is, if their intersection is the empty set. Conversely, the two
events E, F are not independent if the occurrence of E influences the
probability of F, and viceversa. We write F | E to indicate that event
F depends on event E. e posterior probability P(F | E) is therefore
the probability that F happens, knowing that E has happened. If
P(F | E) = P(F), and P(E | F) = P(E), E and F are conditionally
independent.

e Bayes theorem states that

P(E | F) = P(F | E)
P(E)
P(F)

, (.)

meaning that the posterior probability of E conditioned on F can be
computed by knowing the probability of F given E and the two prior
probabiities of events E and F.

Any event that depends on chance can be modeled as a random
variable, a variable that can take one value from a set of possible ones
with some probability. Of course, the sum of all the probabilities of
the values of A must sum to 1. e probability of each value a that
A can assume is measured by the probability density function pA(a);
the probabilities of a set of values a1, . . . , ak for A is instead measured



.. Probability theory

by the probability distribution function FA(ak) = P(aj : j ≤ k). e
complete set of possible assignments over the spece of events is called
the probability distribution. e operations defined over events remain
valid also for random variables.

Some probability distributions occur in many applications, and
are therefore well known: among them, we mention the Normal dis-
tribution or Gaussian distribution, after C.F. Gauss:

p(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(.)

for a random variable with mean µ and variance σ2; a random variable
X obeying this distribution is usually written as X ∼ N . Another
distribution we’ll mention in this thesis is the Dirichlet distribution,
from J. Dirichlet, defined for a sequence X1, . . . , Xk > 0, k ≥ 2,
such that X1 + · · ·+ Xk < 1 with parameters α1, . . . , αk:

p(x1, . . . , xk) = c ·
k

∏
i=1

xαi−1
i , (.)

where c is a normalization factor. e last distribution we describe
here is the χ2 distribution with degree of freedom k, which models
the distribution of the sum of a series of independent Normal random
variables X1, . . . , Xk as

Q =
k

∑
i=1

x2
i . (.)

.. Hypothesis testing
When studying events, one of the key issues is to determine whether
an event E has occurred just by chance, or, instead, there is some
other event F that have caused it. is is the problem of inferring
the statistical significance of E. We say that en event E is significant
if is not likely that it has happened by chance alone; in other words,
E is significant if the probability that it has occurred by chance alone
is “low”. is “low” is quantified in a threshold called the α value,
which is the value of the probability for which we choose to consider
E to be determined by chance alone or not.



. T 

In statistics, the assertion “event E is unrelated with respect to
event F” is called the null hypothesis for E and F, and is generally de-
noted as H0. Establishing whether H0 is true or false is the subject
of statistical hypothesis testing. is null hypothesis can be accepted
(that is, E really depends only by chance) or rejected (E is instead re-
lated to F). e rejection if H0, of course, requires some evidence to
be shown. is evaluation is accomplished by performing statistical
tests over the data, such as the χ2 test, whose outcome is called the
p-value, and corresponds to the probability of wrongly reject the null
hypothesis, that is, to declare two events independent when, in reality,
they are related. e p-value is then compared against the α thresh-
old: if the p-value is less that α then the measured events are likely
to be related, and the null hypothesis is rejected. Conversely, if the
p-value is above the threshold α, then the null hypothesis is accepted,
since there is no evidence that the relation among the two events is
any stronger than pure chance. Wrongly rejecting H0 is called type I
error, or false positive, while by accepting a false null hypothesis one
incurs in the type II error, or false negative.

Statistical hypothesis testing can be performed usingmethods such
as the χ2 test

χ2 = ∑
x,y,z

(Nxyz − Exyz)2

Exyz
(.)

or the G2 test
G2 = 2 ∑

x,y,z
Nx,y,z ln

Nx,y,z

Ex,y,z
(.)

for random variables X, Y, Z taking values respectively x, y, z, and
Exyz = NxzNxz/Nz, whose asymptotic distribution is a χ2 random
variable. If F is the cumulative distribution function of the χ2 random
variable and F(D) is its evaluation over a dataset D, the p-value is
computed as 1− F(D), and compared against the threshold α.

.. Information theory
Information theory is the science that studies the quantification of in-
formation. It was born in the mid of the past century with the seminal
work of Shannon [], who exploited the limits of the communication
of a signal over a noisy channel. Information theoretical concepts oc-



.. Probability theory

cur in countless areas and applications of modern science. e reader
may refer to Cover and omas [] for a deeper introduction.

e basic idea of information theory is that information that oc-
curs more frequently should be represented in amore succint way than
infrequent information. e key concept is the entropy H of a set of
signals X, defined as

H(X) = EX(I(x)) = − ∑
x∈X

p(x) log(p(x)),

where I(x) = log(1/p(x)) = − log(p(x)) is the self-information
of x ∈ X, and EX(·) the expectation function. Signals may be mod-
eled as random variables, and therefore we can apply the functions
previously defined. e joint entropy of two signals X, Y is computed
as the entropy of the two paired signals:

H(X, Y) = EX,Y(− log(p(x, y))) = − ∑
x∈X

p(x, y) log(p(x, y)).

e conditional entropy of X given another random variable Y is de-
fined as

H(X | Y) = EY(H(X | y)) = − ∑
x∈X,y∈Y

p(x, y) log
p(x, y)
p(y)

= H(X, Y)− H(Y).

Mutual information between two signals X and Y is

I(X; Y) = − ∑
x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X)− H(X | Y) = H(X) + H(Y)− H(X, Y),

and it provides a measure of the amount of information about X that
can be obtained by observing Y. Finally, the Kullback-Leibler diver-
gence measures the difference between two distributions p(X) and
q(X) for a signal X:

DKL(p(X)∥q(X)) = ∑
x∈X

p(x) log
p(x)
q(x)

. (.)

Another important concept is theKolmogorov complexity, themea-
sure of the shortest length of the description for a given string. It is
undecidable, but it can be approximated using other techniques, such
as lossless compression algorithms.



. T 

. Bayesian Networks
We have so far provided the theoretical groundwork for developing
the theory of Bayesian Networks; now we can define them, show how
they work, and list some of their properties. A good starting point
for the study of Bayesian Networks is Koller and Friedman []. We
limit ourselves to the discrete case; however, a large portion of what
follows also holds for the continuous case. We also almost completely
skip any tractation of Markov Networks, the other large subfamily
of Probabilistic Graphical Models. e reader may refer to [] to
deepen these subjects.

.. Definition
A BayesianNetwork is a probabilistic graphical model encoding causal
relationships among entities via a directed acycic graph; BayesianNet-
works (in what follows, sometimes BNs or networks for short) have
been proposed in Pearl []. Each node of the DAG is associated to
an entity represented as a random variable, while the directed edges
among the nodes encode a probabilistic causal relationship among the
corresponding variables.

We begin to introduce the notation that we will use in the re-
mainder of this thesis, in cases when no confusion may arise. Let
DAGS(V) be the the set of possible directed acyclic graphs definable
over a set of nodes V. A network B ∈ DAGS(V) is a directed acyclic
graph G = (V, E), where the set V of nodes represents a set of ran-
dom variables X = {X1, . . . , Xn}, with n = |V|, each Xi assuming a
value taken from at most ri possibilities. e terms variable, node and
feature are synonyms in our context, although we will try to use each
term in its more appropriate context, respectively probabilistic inter-
pretation, graphical interpretation, and databases. e set of parent
nodes for a node v ∈ V will be denoted as sv. A network can be
represented by the set S = {s1, . . . , sn} of parent nodes of the vari-
ables, since this information contains all of the relationship among
the variables.

e BN B for a dataset D is the network entailing the probability
distribution that generated the data in D. Clearly, D has n features,
that is, every feature tracked in the data has a corresponding variable
Xi in the graph. We indicate the length |D| of the database, that is,



.. Bayesian Networks

the number of items in it, with N; Nijk is the number of items in
D where variable Xi takes its k-th value xik among ri possible ones,
and the variables in si take their j-th configuration wij, among qi =

∏Xj∈si
rj possible configurations. Nij = ∏ri

k=1 Nijk is the number of
instances in D there the variables in si take their j-th configuration;
Nik = ∏

qi
j=1 Nijk is instead the number of instances in D where Xi

assumes its k-th possible value.
Each node i representing random variable Xi holds the condi-

tional probability distribution P(Xi | si). e probability of each
configuration is computed as

θijk = P(Xi = xik | si = wij). (.)

e whole network thus represents a valid joint distribution satisfying
the chain rule

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi | si). (.)

We say that P(X1, . . . , Xn) factorizes over G, and that G is an inde-
pendence map (or I-map) for P(X1, . . . , Xn). If P(X1, . . . , Xn) factor-
izes over G, then G is an I-map for P(X1, . . . , Xn); the viceversa does
not always hold, since there may be independencies in P(X1, . . . , Xn)
that are not represented in G. We formally write I(G) ⊆ I(P) for
this, where I(P) = {(X, Y | Z) : P ⊨ (X ⊥⊥ Y | Z)} is the set
of conditional independences that hold in P = P(X1, . . . , Xn), and
I(G) is the set of d-separations in G. If I(P) = I(G) than we have
a perfect map.

us, a Bayesian Network B is fully defined by a triple (X, G, Θ),
where X is the set of features B is built over, the directed acyclic graph
G = (V, E) is the structure of the network and the set of probability
distributions Θ = {θijk} contains the parameters of the network. e
skeleton of a network is the graph obtained by removing the direction-
ality from its edges, that is, the graph encoding only the connections
among the nodes, without the causality notion.

Such a formulation is minimal, and can be extended if needed.
For example, a Bayesian Network may have one or more latent nodes
or hidden nodes, nodes in the graph that have no correspondent ran-
dom variable or feature in the database, but allow to better encode the



. T 

..D. I.

G

.

S

.

L
(a)

..D. I.

G

.

S

.

L
(b)

..D. I.

G

.

S

.

L
(c)

F .: example of flows of influence in a Bayesian Network.
Examples taken from https://class.coursera.org/pgm-003/.

independencies discovered in the database, corresponding to variables
that have not been observed or measured. Bayesian Networks can also
model evolving structures, for example along time sequences: in this
case we have a Dynamic Bayesian Network (DBN). A DBN consists
in a sequence of networks, each modeling a system in a different mo-
ment; nodes in networks of time ti can have parents not only in the
network of the same time slice, but also in the networks of the previ-
ous time slices tj, j < i.

.. BNs and conditional independence
A Bayesian Network B over a set of random variables X and a DAG
G represents the conditional independences among the variables in
X, and the set of those conditional independences forms the I-map
I(P). erefore, a BN is a proper choice for analyzing the flows of
probabilistic influence in G, that is, how each node can or cannot
influence the other nodes in the graph. We introduce the explanation
with the aid of the graphs pictured in figure ..

e graph in figure . is a network modeling a simplified college
graduation process: node D represents the difficulty of the course, I
the intelligence of the student, G the final grade obtained by the stu-
dent in the exam, S the mark of the student in the SAT test, and L
is the event indicating that the teacher of the course provides a pre-
sentation letter for the student. Clearly, the difficulty of the exam
and the intelligence of the student are intrinsic characteristics that
do not depend on any other factor (at least in this toy example), and



https://class.coursera.org/pgm-003/

.. Bayesian Networks

therefore are evidence variables (we do know them); the result on the
SAT test depends only on the abilities of the student, while the grade
of the exam depends both on the student’s capability and the course
difficulty. Finally, a teacher is clearly more willing to provide a pre-
sentation letter to students who perform well in her course.

In figure .a a causal reasoning pattern is represented: the lower
the difficulty of the course, the higher the probability of getting a good
grade, while ignoring the other factors involved (green arrow); at the
same time, the more clever the student, the higher her probability of
succeeding in the course (red arrow). Clearly, a high grade raises the
probability of getting a cover letter from the teacher. erefore, we
see how D and I are both causes of G and subsequently L.

Figure .b shows instead the dual process, namely the eviden-
tial reasoning pattern. Here we observe the effects, and try to infer its
causes. Being the SAT a standard test, a good score for it is a sign
of a good student; a presentation letter suggests that the student per-
formed well on the teacher’s course; a good grade on a course may
indicate that the student is clever (red arrow), but also that the course
may be easy (green arrow). We say that S is an evidence for I, and L
and subsequently G are evidence for both I and D.

Finally, .c shows an example of intercausal reasoning pattern,
also known as explaining away: if we observe some phenomenon with
multiple possible causes, and already know that one of those possible
causes happened, it reduces the probability of the remaining possible
causes (some say that it explains them away), since already one event
that can explain our observed phenomenon exists. In our toy network,
for example, if a student has obtained a good grade in the exam, and
we know that the course is difficult (and therefore the probability of
obtaining a good score in it is low), we can infer that very likely the
student is clever. Conversely, if a student has obtained a good grade,
but it is a quite common event, we cannot deduce very much about

In this example it may arise some confusion from the fact that difficulty and
intelligence are contrasting factors for obtaining a high grade in the course; however,
these are qualitatives considerations that are not represented in the network, and can
be avoided by just using more general names for the parameters: for example, we
can just compile the conditional probability table by assigning a higher probability
to, say, the triple (g1, d1, i2) with respect to the triple (g2, d2, i1). is way, we
have abstracted the network from its real counterpart (the examination process),
and have therefore eliminated every source of confusion.



. T 

the abilities of the student, as we already know the course is easy.
Expanding our example, if a student has a good mark on the SAT
test and a low grade in the exam, likely the course is difficult.

We sum up the possible flows of conditional independence be-
tween two random variables X and Y, possibly whenever a third vari-
able W is introduced; this works also for sets of variables. We suppose
that no observation are made on the network. First of all, in a struc-
ture X → Y, we have seen how both X can influence Y and Y can
influence X, because of the two reasoning patterns that arise in this
situation. Also in case of X → W → Y, X can influence Y (in fact,
this is the chain rule), but also Y can influence X. If X ← W → Y,
that is, both X and Y are children of W, X can influence Y via W and
viceversa. Instead, in the opposite structure X → W ← Y, called
v-structure, where W is a child of X and Y, X cannot influence Y,
and viceversa.

Now we suppose to observe some variable Z ̸= X, Y, and repeat
our analysis of the possible structures. If W ̸= Z (or a set of nodes
W ̸⊆ Z), the flows of probabilistic influence are the same. Instead, if
also W is observed, the situation is reversed: while the flows of influ-
ence along paths from X to Y remain, the observation of a variable W
in the path from X to Y blocks the flow of influence along the path;
the same happens if W is a parent of both X and Y (note that there
may be other paths between X and Y; however, we cannot say noth-
ing about them, we only know that one path is blocked). Conversely,
in a v-structure where X and Y are parents of W, the observation of
W enables the flow of probabilistic inference among X and Y. Table
. sums up the possibilities.

A path from X1 to Xn is called an active trail given Z if for any
v-structure Xi−1 → Xi ← Xi+1, Xi or one of its descendants is in
Z, and no other Xj along the path is in Z. If in G there is no active
trail between X1 and Xn given Z, then we say that X1 and Xn are
d-separated in G given Z (we also write d-sepG(X, Y | Z), short for
directly separated). Any node is d-separated from its non-descendants
given its parents. If the parent nodes of Xi are linked by an edge,
they are sometimes called spouses; conversely, if they are not directly
connected, they form an immorality.



.. Bayesian Networks

Table .: summary of flow of influence along a path between X and
Y: when can X influence Y given evidence about Z?

W /∈ Z W ∈ Z

X → Y ✓ ✓
X ← Y ✓ ✓
X →W → Y ✓
X ←W ← Y ✓
X ←W → Y ✓
X →W ← Y ✓

.. Properties

Two networks B1, B2 are equivalent if they encode the same set of
conditional independences — that is, every joint probability defined
by B1 is also encoded by B2, and viceversa.

Two BNs are Markov equivalent if they define the same structure;
alternatively, they share the same set of adjacencies and immoralities.
Subsequently, a Markov Equivalence Class is a set of networks that
are Markov equivalent. e essential graph of a Markov Equivalence
ClassM is a graph that admits both directed and undirected edges:
if a directed edge (i → j) is present in all of the graphs ofM while
no graph inM contains (j→ i), then the essential graph forM also
contains (i→ j); otherwise, if both (i→ j) and (j→ i) are present
inM, then the essential graph forM contains the undirected edge
(i, j). e essential graph is therefore a chain graph without flags.
In figure .c it is shown a simple example of essential graph for a
network with three nodes, obtained from the two Markov equivalent
networks .a and .b.

e inclusion neighbourhood (see Chickering []) is defined as fol-
lows: given G ∈ DAGS(V), let I(G) be the collection of conditional
independences entailed by G. Let G, H be elements of DAGS(V)
such that I(H) ⊂ I(G) (note that I(H) ̸= I(G)), and there is no
F ∈ DAGS(V) such that I(H) ⊂ I(F) ⊂ I(G): then G, H are
inclusion neighbours.



. T 

..A. B.

C
(a)

..A. B.

C
(b)

..A. B.

C
(c)

F .: Example of equivalence classes for a simple graph: graph
(c) is the essential graph for graphs (a), (b).

. Mixed-Integer Linear Programming
An optimization problem is a problem where the desired outcome is
the one that maximizes a certain function, called objective function,
with respect to a set of constraints. For example, the Travelling Sales-
man Problem is an optimization problem where the quest is for the
lowest-cost Hamiltonian cycle, modelled as the problem of an agent
who has to visit a set of places and get back to the starting point,
by the shortest path, without passing two times for a city (except for
the starting point). Linear programming (LP) is a method for solving
optimization problems in the form of a model composed by a linear
objective function, and linear constraints. Linear programming lies
in the P complexity class, since there are algorithms for it that run
in polynomial time (Khachiyan [], Karmarkar []). When the
variables are requested to be integer, the problem is called an integer
linear programming (ILP, or IP) problem. When the integrality is re-
quested only on a subset of variables, it is said to be a mixed-integer
linear programming (MILP, or MIP) problem.

Optimization problems with integer variables are ubiquitous in
many fields, such as scheduling and planning in industry, or protein
folding in biology, or many problems in graph theory. Unfortunately,
integer programming is also a NP-complete problem: the special case
of only binary variables is one of the Karp’s  NP-complete prob-
lems (Karp []). erefore we have scarce hope of finding an effi-
cient algorithm to solve it. However, due to the importance of such
problems, many algorithms, techniques, and software have been de-
veloped to tackle this problems in both exact and approximate way.
In this section we briefly introduce the theory of integer linear pro-
gramming, its geometrical interpretation, and some techniques used
to solve it. en, an overview of the available software is given, with



.. Mixed-Integer Linear Programming

the presentation of some novel techniques called matheuristics.
For deeper and more complete references, several textbooks and

works are available, e.g. Nemhauser and Wolsey [], Schrijver [],
or Applegate, Bixby, Chvatal, and Cook [] for a thorough introduc-
tion on theory applied on a practical problem.

.. eoretical introduction
An integer linear programming problem is a problem in the form

minimize cTx (.)
subject to Ax ≤ b (.)

x ∈ X, (.)
X ⊆ Zn, (.)

where x is the vector of variables in the set of admissible solutions
X, and c is the cost vector. e function . cTx : X → R is the
objective function, while equations .–. are the constraints. X
is the set of the feasible solutions; if no x ∈ X satisfies the constraints
(X = ∅) the problem is infeasible; whenever, instead, the objective
function has no global minimum for values in X, the problem is un-
bounded.

Such a formulation for the problem is called the canonical form.
If . is, instead, in the form Ax = b, the problem is said to be in
standard form. e two formulation are equivalent, but the number of
variables involved may vary. When, as in this case, the problem is to
find the solution with the lowest cost, the problem is a minimization
problem. Analoguously, a problem whose objective function has to be
maximized with respect to the constraints is a maximization problem.
It is possible to define an equivalent maximization problem for ev-
ery minimization problem, and viceversa: such property is called the
duality in linear programming.

Problems without the integrality constraint . become linear
programming problems.

... Geometric interpretation

e set of constraints .–. defines a convex polytope℘ in a space
of a number of dimensions as high as the number of variables involved



. T 

in the problem, that is, an intersection of hyperplanes and affine half-
spaces for which the convexity property holds: for every x, y in ℘,
℘ also contains all the points z = λx + (1− λ)x, ∀λ ∈ (0, 1) (all
the convex combinations of x, y, excluding x and y). Moreover, ℘ is
bounded, that is, there is a value M such that ∥x∥ ≤ M ∀ x ∈ ℘. Ev-
ery point in ℘ that cannot be defined as a convex combination of an-
other two points ot the same polytope, is a vertex for ℘ (Minkowski-
Weyl theorem).

Solving an LP problem is equivalent to evaluate the points of the
polytope defined by the constraints imposed, in order to find the ver-
tex (or one among the vertices) that minimizes (or maximizes, for
maximization problems) the objective function. One fundamental
consequence of the Minkowski-Weyl theorem is that we can restrict
our quest to the vertices of the polytope, since no internal point can
have lower (respectively: higher) objective value. e integrality con-
straint . requests the vertices of ℘ to have only integer coordinates.

.. Techniques for solvingMILPs
... Exact search

Due to the importance of the problem, and its difficulty, several strate-
gies have been developed in order to solve linear problems, see Gen-
ova and Guliashki [] for a survey. One possible idea is to move
through the vertices of the polytope defined by the model, going from
a candidate solution to another candidate solution with a better objec-
tive value. Probably the most important of such methods is the sim-
plex algorithm (Dantzig []). Simplex algorithm has an exponential
worst-case running time, but it works quite well in practice; in fact,
it has been proved (Spielman and Teng []) that it has a quadratic
running time on the average case. Simplex is easily implemented in
the so-called tableau form, a table where the first row defines the ob-
jective function, and all the other rows specify the constraints; each
variable is assigned to a column of the tableau. A similar approach is
exploited in subgradient methods and coordinate descent algorithms,
where the objective function moves along the coordinates of the poly-
tope in order to find a local minimum. ese methods, such as for
example Lagrangian multipliers (see for example Hiriart-Urruty and
Lemaréchal []), usually perform well in the first steps but, when get



.. Mixed-Integer Linear Programming

..

F .: a polytope in R2: white points are the interior points of
the polytope defined by the IP problem, while black points are points
outside the polytope. e black perimeter is defined by the constraints
over the LP relaxation. e red point is the optimal point, and the
red line is the objective function, with its direction. In light blue, a
cutting plane, and the section of the polytope it removes.

close to the optimum, end up moving around it; furthermore, their
performances are very dependent on parameter tuning.

Another idea is to remove suboptimal vertices from the polytope:
this is the cutting planes method (Gomory []). A cutting plane is
just a new constraint added to the model, defining an hyperplane
that intersects the polytope and narrows the search space. e risk
of adding cutting planes is to prune also the optimal vertex, or to
end up having mutually inconsistent constraints, so that the problem
becomes infeasible. Furthermore, often there are a few constraints
that shape the polytope, while all the rest of them are just redundant:
finding such “good” constraints is crucial in the running time for the
instance. However, being careful, cutting planes are a very powerful
way of solving optimization problems: many cuts have been proposed



. T 

in the literature, like for example Gomory cuts ([]) and Gomory-
Chvátal cuts (Chvátal []). e problem of finding cutting planes is
called separation problem.

When looking at the problem from its combinatorial point of
view, several algorithmic paradigms are available, for different prob-
lem structures. If a problem is easily decomposable in smaller sub-
problems, one can use dynamic programming (Bellman [], Leiser-
son, Rivest, Stein, and Cormen []). If the problem is a matroid,
that is, its structure is composed of mutually independent sets, greedy
algorithms can be used ([]). Such approaches may lead to polyno-
mial time algorithms. In other cases, when the matrix of constraints
does not have some special structure and therefore we have to ex-
plore all the combinatorial space, the method of choice is perhaps the
branch-and-bound , that constructs a tree from all the possible choices
for each variable, and traverses it in depth-first order (Land and Doig
[]). Every node corresponds to a subproblem of the problem in
the parent node, where a choice has been made, and there is there-
fore one less degree of freedom. e key advantage of this method
is that, whenever after a choice we discover that such assignment is
not optimal, the node of that choice, and all of its subtree, can be
pruned, because the optimal solution will surely be somewhere else.
Branch-and-bound is an implicit enumeration method, because, in
the worst case, we have to check all the possible combinations of
variables. Several authors used this method in late ’s in order to
solve TSP instances; Land and Doig [] showed how it applied to
other problems too. e name is instead credited to Little, Murty,
Sweeney, and Karel [].

Branch-and-bound is a general paradigm that can be used in as-
sociation with other methods: at every node, we can for example try
to solve the corresponding subproblem with another algorithm, or
even the simplex method. When, at every node, cutting planes are
inserted, we call this the branch-and-cut method (name was given by
Padberg and Rinaldi [], but first implementation appeared in Hong
[]).

... Approximate search

When an exact search in the combinatorial space is infeasible due
to the size of the instances, one can choose to settle for a sufficiently



.. Mixed-Integer Linear Programming

good solution, instead of the optimal one. Approximation algorithms
are algorithms that try to guarantee a bound on the gap between the
solution computed and the optimal one. Another large branch of
non-exact methods is the family of heuristic algorithms, that is, algo-
rithms aimed to quickly solve a problem, often without regard for the
quality of the solution. Heuristics may be based on theoretical re-
sults, practical observations, or “rules of thumb” based on experience.
Heuristics can be viewed, from a geometric perspective, as a local
search in a restricted neighbourhood of a candidate solution. A popu-
lar class of heuristic algorithms is the class ofmetaheuristics, heuristics
based on some metaphore (refer to Gendreau and Potvin [] for a re-
view, or Russell, Norvig, Canny, Malik, and Edwards []). Among
them, we mention tabu search (Glover, Laguna, et al. []), hill climb-
ing ([]), simulated annealing (Kirkpatrick, Jr., and Vecchi []), ,
and biologically-inspired algorithms such as ant-colony optimization
(Dorigo and Di Caro []), particle swarm optimization (Kennedy
and Eberhart []) and genetic algorithms (Smith []). e main
advantage of such methods lies in the their computational complex-
ity, generally lower than complexity of exact algorithms. eir main
drawback is, on the contrary, the inability of guaranteeing a worst-
case bound on both the quality of the solution and the time needed to
find it. To partially overcome the issues generated by the restriction
of the search space and broaden the spectrum of candidate solutions,
in many applications local search is run multiple times, from different
starting position. Many approximation algorithms are also based on
some restarting notion, often using randomization.

As we have already mentioned, when the problem is too difficult
to solve with the given constraints, it is common practice to relaxate
it, in order to solve an easier version of the problem Nemhauser and
Wolsey []. Several methods are known to relaxate a problem. A
common way of relaxate an IP is, as mentioned before, to remove the
integrality constraints on some variables, or on all of them, obtaining,
respectively, a MIP or a LP: this practice is known as linear relaxation.
Another common approach is the relaxation by elimination, which re-
moves some constraints to ease the search for a solution. e surrogate
relaxation substitutes a set of constraints with a linear combination of
them, in order to “weigh” them differently. Lagrangean relaxation re-
moves a set of constraints, accounting for them in amodified objective
function. Relaxations provide upper or lower bound on the value of



. T 

the optimal solution, but have to be handled carefully, since defining
a relaxated problem basically means to define a different problem, so
that optimal solutions for a relaxated problem may even be infeasible
for the original problem. e geometric interpretation of a relaxation
is an expansion of the original polytope into a bigger one, since the re-
moval of some constraints results in the removal of some hyperplanes
shaping the candidate solution space.

Relaxations are extremely useful not only for getting an approx-
imate answer per se, but also for solving exactly huge instances that
would otherwise be computationally infeasible. A common approach
is to relaxate a problem removing constraints, solve it as usual, and
then validate that solution also with the removed constraints, inject-
ing them into the model as cutting planes. is method is also called
row generation, because of its effect on the simplex algorithm in tableau
form; a dual relaxation, the column generation, starts with a reduced
set of variables, iteratively solving and adding variables as needed, un-
til the optimum is found, or some stopping criteria are met. Refer to
Nemhauser and Wolsey [] for a more comprehensive tractation on
the subject.

.. Software for solvingMILPs
Problems in the form of integer programming can be solved using
appropriate software, named MIP solvers. MIP solvers take in input
a model and compute the optimal solution, together with its value.
Many of these software exist nowadays, both commercial and free.
Among the former group, the top products on the market are IBM
ILOGCPLEX™,Xpress™,Gurobi™; as for the latter,COIN-OR

and GLPK are among the most widespread choices.
MIP solvers are built to solve mixed-integer linear programming

problems. erefore they can solve every optimization problem, pro-
vided it is inMIP form. ese solvers essentially implement a branch-
and-cut strategy: at every node they apply a portfolio of heuristics and

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.fico.com/en/Products/DMTools/Pages/

FICO-Xpress-Optimization-Suite.aspx
http://www.gurobi.com/
http://www.coin-or.org/
http://www.gnu.org/software/glpk/



http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx
http://www.gurobi.com/
http://www.coin-or.org/
http://www.gnu.org/software/glpk/

.. Mixed-Integer Linear Programming

general-purpose cuts, and try to solve the problem; then, if the prob-
lem has not been solved after such processing, the solver chooses a
variable and branches on it. In addition to this, solvers usually im-
plement many of the techniques listed in section .., and carry the
result of years of parameter-tuning in order to accomodate the major-
ity of the customers out of the box. Futhermore, commercial solvers
also implement proprietary solutions, such as the infamous CPLEX
dynamic search, an algorithm to determine how to develop and tra-
verse the branching tree.

Solvers provide several methods and libraries to embed them in
other software, from the simple creation of a model, to callbacks that
intervene in various occasions during the execution of the solver, for
example when a feasible solution is found. Commercial software,
however, may disable some of their functionalities in this case, in or-
der to prevent the users to reconstruct their proprietary mechanisms
from the behaviour of the solver when manipulated in a certain way.
erefore, the developer who wants to interact in such close way with
the solver has to be careful in which actions he or she undertakes.
Nonetheless, new algorithms based on this possibility have been pro-
posed, and we describe them in section ....

Another widespread non-commercial software is the framework
SCIP (Achterberg [], Berthold et al. []) from the ZIB institute in
Berlin, that implements a branch-and-cut and a variety of solvers,
heuristics, cuts, letting the user the choice of which parts to use,
how, and when. SCIP is not open source, but it provides an inter-
face to its internal methods, so that programming with SCIP essen-
tially amounts to configure it enabling a series of parameters. In fig-
ure . we report a chart comparing the geometric mean of the time
needed by some commercial and non-commercial solvers with respect
to SCIP, as of January . We note how the industrial solutions
perform drastically better then their free counterparts, as a conse-
quence of the efforts put in the race for the best product of the mar-
ket.

http://scip.zib.de/scip.shtml



http://scip.zib.de/scip.shtml

. T 

F .: comparison of MIP solvers with respect to SCIP (source:
http://scip.zib.de/scip.shtml)

... Solvers as heuristics for binary problems

Over the years, industries in the optimization business branch have
built increasingly powerful pieces of software that can be used to solve
an enourmous variety of problems, in less and less time. Such solvers
are extremely optimized yet general in their purpose, and constantly
better year after year, so that the state-of-art solvers of today are much
better than the state-of-art solvers of the past year, thanks to both
new theoretical solutions and new tweaks and tuning. us, in recent
years it has sprung the idea of using them in a “black-box” fashion to
quickly obtain good solutions for big problems, instead of waiting for
an optimal solution that can take a long time to find or to certify. is
concept of embedding a MIP solver as a step of another algorithm has
been given the name ofmatheuristics, a portmanteau for heuristics based
onmathematical programming that also resembles themore widespread
term metaheuristic (see Maniezzo, Stützle, and Voß []).

From an algorithmic point of view, matheuristics essentially per-
form a local search in the geometric neighbourhood of an initial so-
lution, just like more traditional heuristics such as biologically in-
spired metaheuristics, or tabu search. Initial solution that can be
provided by the user, or computed by the MIP solver itself, starting
from a linear programming model that can be conveniently relaxated
if needed. erefore, it is possible to get back a solution from scratch,
or to have a starting solution refined. Matheuristics are designed to
obtain a quick, good enough solution; as a local search paradigm,
matheuristics suffer from the drawbacks of their more traditional sib-
lings, mainly being stuck in local optima, and impredictable, erratic
behaviour (Lodi []).



http://scip.zib.de/scip.shtml

.. Mixed-Integer Linear Programming

Algorithm .: M  .
Data: problem
Result: approximate solution for the problem

 create the (relaxated) model for the problem;
 if starting solution is provided then
 pass it to the solver;
 end
 while stopping criteria not met do
 solve problem using a MIP solver;
 if some constraints are violated then
 add them to the model;
 else
 stop;
 end
 end
 return solution;

From a practical point of view, matheuristics have been proved
very convenient to use, since they can be applied to virtually every
problem, and have themerit of using some extremely performing soft-
ware as a subroutine, instead of coming up with an efficient algorithm
that of course needs to be coded and tuned correctly and efficiently.
Many times, implementing amatheuristic reduces to code the steps in
algorithm .. Moreover, since solvers already have many heuristics
in them, it is possible to have lower and upper bounds on the value of
the solution, and therefore a measure, perhaps rough, of the quality
of the solution we are going to get back. Stopping criteria can be, for
example, a time limit, or the quality of the solution.

Anyway, such methods may even fail to find a feasible solution, so
that one has to go back to other ad-hoc heuristics.

Among thematheuristics that have been proposed in the last years,
we mention the hard fixing of variables (Bixby, Fenelon, Gu, Roth-
berg, and Wunderling []), a method that fixes some of the variables
before solving the problem, that after such preprocessing will be eas-
ier, since assigning a value to a variable means to lower the degrees
of freedom. is is a method also called diving, because its effect in
terms of branching tree is to “jump down” into lower levels, just solv-



. T 

ing one subtree while ignoring all of the remaining possible ones. A
conceptually similar idea is proposed by Fischetti and Lodi [] with
Local Branching, that iteratively explores limited subtrees, partition-
ing the solution space into narrower areas using constraints. Proxim-
ity Search is a novel matheuristic introduced in Fischetti and Monaci
[], that limits the search in the neighbourhood of a given feasi-
ble solution x̃. is is basically achieved introducing a cutoff value θ,
adding a cutoff constraint cTx ≤ cTx̃− θ whose purpose is to “drive”
the objective function through the search space, and replacing the
original objective function cTx with the proximity objective function
∆(x, x̃). When a feasible solution for the modified problem has been
found, the distance function is recentered on this newfound solution,
and the search is repeated on the redefined search space. Such proce-
dure is iterated until stopping criteria are met.

CPLEX implements an approach called RINS+Polishing, based
on the Relaxation Induced Neighborhood Search proposed in Danna,
Rothberg, and Le Pape [] and the polishing approach of Rothberg
[]. Given an incumbent solution x̃ and the optimal solution of
the LP relaxation at the root node x∗, RINS looks for the variables
that “agree” in both solutions: such variable values (either 0 or 1) will
likely be the optimal ones. en, the algorithms tries to “link ” the
two solutions, moving from a solution to the other one; this is the path
relinking fromGlover, Laguna, andMartí []. When a good feasible
solution is found, the polishing step “refines” the solution, exploring
the neighbourhood to check whether there are better solutions near
the one found. When the polishing is launched on a set of feasible
solutions, this approach takes the name of MIP-and-refine.

e aforementioned approaches are targeted to binarymixed-integer
LPs, but can be applied to general MILPs for example by encoding
non-binary variables in binary form, see e.g. Rossi, Petrie, and Dhar
[], Dechter and Pearl []. Deeper and more complete surveys of
matheuristics can be found in Maniezzo, Stützle, and Voß [], Fis-
chetti, Lodi, and Salvagnin [], Fischetti and Lodi [], Lodi [].
However, due to the usefulness and versatility of MIP solvers, not
to mention their increasing power, many other approaches have been
proposed, and new ones are expected to be proposed.



Bayesian Network Structure Learning


One of the key problems when dealing with Bayesian Networks is
how to discover the original network from a given database, or at least
the most probable network given the observed data. is issue can be
divided in two parts: first, to discover the structure of the network,
the graph that connects the variables, then estimate the parameters of
the network. We will focus on the first part of the task, the Structure
Learning problem.

e problem of learning the exact structure of a Bayesian Net-
work from a a set of data is known to be NP-hard (Chickering []).
Moreover, even learning an approximate structure is NP-hard, and so
remains also when constraints on themaximum number of parents are
added, besides the trivial case of a maximum of one parent per node,
the problem becoming to find the optimal tree (Chickering, Hecker-
man, and Meek [], Dasgupta []). e main difficulty lies in the
acyclicity constraint, which imposes dependency among the parent
sets for the nodes.

Several approaches have been proposed in the literature both for
exact and approximate search, usually based on scoring the candidate
solutions. Indepedence tests have been also proposed (see Spirtes,
Glymour, and Scheines []) as an alternative to score-based meth-
ods, but, in general, real world problems do not satisfy the assump-



. B N S L

..{}.

{A}

.

{B}

.

{C}

.

{D}

.

{AB}

.

{AC}

.

{AD}

.

{BC}

.

{CD}

.

{BD}

.

{ABC}

.

{ABD}

.

{ACD}

.

{BCD}

.

{ABCD}

F .: parent set lattice for  variables.

tions of independence assumed by this approach, so few algorithms
aim to learn independence constraints from data. A notable exception
is the Max-min Hill-climbing presented in section .., and some
derived works. Different approaches also result in different formal
definitions of the problem, thus yielding different insights on it.

In this chapter we will present some of the most popular methods
for learning a network from data; before this, however, a review of
score metrics is given, because they provide the measure of the quality
of the solutions, which is what guides the algorithms through the
search space.

. Scoring metrics
Because of the vast majority of learning methods are based on some
scoring functions, in this section we review the most used scores pro-
posed in literature. Scoring functions measure how likely each con-
figuration parents-children (sv → v) is. is is a heavy task, because
the number of candidate parent sets for each node is exponential; the
candidate parent sets can be represented as a lattice as the one in figure
., where each set of variables is formed by the union of its subsets.



.. Scoring metrics

A scoring function is a function ScoreD(sv → v) 7→ R whose
outcome is a measure related to the probability of the substructure
(sv → v) to be in the network, according to the dataset D.

e problem of learning a Bayesian Network using a score-based
approach, can be defined as the optimization problem of discovering
the network that maximizes the overall score for the network, for-
mally

maximize Score(G) (.)
s.t. G ∈ DAGS(V) (.)

where V are the nodes corresponding to the variables X1, . . . , Xn
measured in the dataset, and DAGS(V) is the space of DAGs over
V.

.. General properties
When it comes to choose the score for an algorithm, we would like for
it to have some properties, to ensure they respect the aforementioned
definitions and properties of Bayesian Networks.

A scoring criterion is decomposable if the score of a DAG is the
sum of local scores of subsets consisting in a node and its parents.

A scoring criterion is score equivalent if two Markov equivalent
DAGs have the same score.

We also would like for the score to be consistent, that is, if the
database D comes from m independent and identically distributes
samples, as m grows, it holds that: (a) if node p ∈ A, p /∈ B,
Score(A | D) > Score(B | D), and (b) p ∈ A, B, A has fewer
parameters than B, Score(A | D) > Score(B | D).

Another interesting property is the local consistency of score, mean-
ing that, if A id a DAG, and B results from adding the arc (u → v)
to A, as the size of database m grows, the score of B is greater than the
score of A if the insertion (u → v) rules out an independence con-
straints that does not hold in D, and is lower if such insertion does
not rule out any independence constraint that does not hold in D. In
practice, only adding useful edges increases the score, while adding
useless complexity lowers the score.

Consistency of score entails a superset pruning property, that al-
lows us to discard a candidate parent set V′ ⊃ V if



. B N S L

.. Bayesian scoring functions
Bayesian scorings are a family of scoring functions that aim to max-
imize the posterior probability distribution from a prior probability
distribution of the possible networks definable over a graph G, con-
ditioned on the dataset D. A higher likelihood function denotes a
structure more tailored to the data, and therefore more likely to be
somewhat correct.

is family of scores is based on the Bayesian Dirichlet score (BD,
Heckerman, Geiger, and Chickering []), based on some assump-
tions:

multinomial sample for each node in the network, its parameters de-
pend only on the state of its parents;

parameter independence parameters in each variable in the structure
are independent from parameters in other variables (global p.i.);
moreover, parameters associated to each state of the variable,
are independent from each other (local p.i.);

parameter modularity for each node, the densities of its parameters
depend only on the node and its parents;

Dirichlet distribution node parameters haveDirichlet distribution; for-
mally, let BS be a network structure with non-zero probability
given the data, and let Bh

S the hypothesis that the dataset D is
generated by an unknown network structure BS; then, there are
exponents N′ijk that depend on Bh

S and the current state of in-

formation ξ satisfying ρ(Θij|Bh
S, ξ) = c ·∏k θ

N′ijk−1
ijk , where c

is a normalization constant;

complete data the database has no missing data, or missing data have
been imputed.

Such set of properties form a sufficient condition to represent a user’s
prior knowledge, enabling the user to compute the probability of new
cases given the data, the structure, and the current state of informa-
tion, for every database and structure. From this set of assumptions,
the authors define the posterior probability of the network given the



.. Scoring metrics

data:

P(G | D) = P(G)×
|V|

∏
i=1

qi

∏
j=1

(
Γ(N′ij)

Γ(Nij + N′ij)
×

ri

∏
k=1

Γ(Nijk + N′ijk)

Γ(N′ijk)

)
,

(.)
where Nijk are counter variables, N′ijk are the hyperparameters, Γ(·) is
theGamma function Γ(x + 1) = x!, and P(G) is the prior probability
for graph G. Since P(G) is, generally, the same for all the possible
DAGs, it is just a rescaling factor, and can be omitted. Due to com-
putational considerations, the BD score is the logarithm of formula
.:

BD(G | D) = log(P(G))
|V|

∑
i=1

qi

∑
j=1

(
log

Γ(N′ij)

Γ(Nij + N′ij)
+

ri

∑
k=1

log
Γ(Nijk + N′ijk)

Γ(N′ijk)

)
.

(.)

In practice, the BD score is infeasible, since it needs to specify all
the hyperparameters. One possible solution is to set all the hyperpa-
rameters to 1, thus falling into the case of the K score (Cooper and
Herskovits []):

K(G | D) = log(P(G))
|V|

∑
i=1

qi

∑
j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri

∑
k=1

log(Nijk!)
)

.

(.)
However, under the following further assumptions, two derived

scores can be defined.

likelihood equivalence any two equivalent (given the data) network
structures, share the same parameter distribution;

structure possibility every complete network structure has non-zero
probability, given the data.



. B N S L

Assumptions – imply:

P(G | D) = P(G)×
|V|

∏
i=1

qi

∏
j=1

(
Γ(N′ij)

Γ(Nij + N′ij)
×

ri

∏
k=1

Γ(Nijk + N′ijk)

Γ(N′ijk)

)
,

(.)
where N′ijk is given by N′ × P(Xi = ik, sXi = wjk | G), for N′

being the equivalent sample size representing the strength of the user
belief in the prior distribution. Again, in practice it is computed in
logarithmic form, and called the Bayesian Dirichlet equivalent score
(BDe, Heckerman, Geiger, and Chickering []):

BDe(G | D) = log(P(G))
|V|

∑
i=1

qi

∑
j=1

(
log

Γ(N′ij)

Γ(Nij + N′ij)
+

ri

∑
k=1

log
Γ(Nijk + N′ijk)

Γ(N′ijk)

)
,

(.)

N′ × P(Xi = ik, sXi = wjk | G). Also for BDe, defining all of the
hyperparameters may not be easy. A special case is the score proposed
in an earlier work by Buntine [], called the BayesianDirichlet equiv-
alent uniform (BDeu) score, who assumes the joint distribution of the
states to be uniform: P(Xi = ik, sXi = wjk | G) = 1

riqi
. erefore,

we can write

BDeu(G | D) = log(P(G))
|V|

∑
i=1

qi

∑
j=1

(
log

Γ(N′ij/qi)

Γ(Nij + N′ij/qi)
+

ri

∑
k=1

log
Γ(Nijk + N′ijk/riqi)

Γ(N′ijk/riqi)

)
.

(.)

.. Information theoretic scoring functions
e general idea behind such approach is that a Bayesian Network
for some dataset can be thought as the generator of a code that can be
used to compress the data. We can subsequently apply the concepts of
information theory such as entropy and mutual information, as well
as Shannon limit, in order to characterize the scoring methods for



.. Scoring metrics

Bayesian Networks. e lenght of describing the data D according to
an hypothesis H can be thought as

L(D | H) + L(H), (.)

that is the length of the description of the data when coded using the
hypothesis, plus the length of the description H itself. In our case, the
hypothesis H is instead a DAG G that “fills in” the database according
to the probability distributions and set of conditional independences
it represents.

A first scoring method is the log-likelihood score, computed as

LL(G | D) =
|V|

∑
i=1

qi

∑
j=1

ri

∑
k=1

Nijk log
Nijk

Nij
. (.)

Comparing it to the general structure given in formula ., it mea-
sures only the first length, while ignoring the complexity of the hy-
pothesis. us, the log-likelihood has some important limitations:
it rewards complex structures, and it does not represents the condi-
tional independences of the network. In learning theoric terms this
leads to the overfitting issue, the risk of tailoring the solution to the
training data, resulting in a wrong model that fails to perform cor-
rectly over arbitrary data. In order to reward simpler hypothesis, new
scoring measures have been proposed, by adding a complexity penalty
to the log-likelihood of the hypothesis. Such penalty is, basically, the
difference between the following methods.

e Akaike Information Criterion (AIC, Akaike []), the Bayesian
Information Criterion (BIC, Schwarz []), and the Minimum De-
scriptionLength (MDL,Rissanen []) are three similar scoringmeth-
ods (in fact, BIC coincides with MDL). ey adopt a formalization
of the Ockham’s razor, which asserts that, among a set of admissible
hypothesis for some phenomenon, the easiest one is the more likely
to be the correct one. Formally, such methods have the form

Score(G | D) = LL(G | D)− f (|D|)|B| (.)

where

|B| =
|V|

∑
i=1

(ri − 1)qi (.)



. B N S L

is the network complexity that depends on the number of variables,
their number of possible states, and the number of possible configu-
rations of their parents, and the penalization function

f (|D|) =
{

1 for BIC/MDL
1
2 log(|D|) for AIC.

(.)

e introduced complexity penalty provides a very useful property
to limit the search space: optimal parent sets have few nodes; this is in
fact where the Ockham’s razor shows up. Using these scores, the size
for candidate parent set can be limited to O(log |V|) nodes. More
precisely, this bound is log |V| for AIC/BIC (de Campos and Ji []),
and log 2|V|

log |V| for MDL (Tian []). e superset pruning property
also holds.

Another information theoretic based scoring criterion is the Mu-
tual Information Tests (MIT, De Campos []). MIT measures the
mutual information (see section ..) between a variable v and a can-
didate parent set sv for it; of course, the candidate parent set which
maximizes the score is the one to be selected. Formally,

MIT(G | D) =
|V|

∑
v=1,
sv ̸=∅

(
2 · |D| · I(v; sv)−

|sv|

∑
j=1

χα,lij

)
, (.)

where the innermost summation is a penalization term taking into
account both network complexity and its reliability, being related to
the Pearson χ2 test of independence.

A more recent scoring function is theNormalizedMaximumLike-
lihood (NML, Silander, Roos, Kontkanen, andMyllymäki []), which
exploits the information theoretic interpretation of the MDL score:
it aims to select the hypothesis with the smallest description that can
generate, hence explain, the data. e most “natural” approach would
be the Kolmogorov complexity, which is undecidable; therefore, a pe-
nalization term is added to the usual log-likelihood, trying to address
some of the limitations of a simple penalty based on computing the
complexity of a network. First, as parameters of the network are prob-
abilities distributions, if some of these probabilities are 0, they do not
need to be considered; secondly, if the same probability distribution,
or the same probability values, occur multiple times in the network,



.. Independence tests

some pattern can be exploited to achieve a better compression. e
solution is based on the idea of universal coding, choosing the best
coding (the code with lowest length) for the data, before observing the
data, that corresponds to finding the hypothesis for the data with the
highest likelihood. In general, there is no such code, and so we have
to design a code to compress the data in a way that we expect to be as
closest as possible to the desired one. e corresponding hypothesis
is called the best-fitting hypothesis; we can evaluate the performance of
a set of hypothesisH for a distribution Ĥ by computing the regret of
Ĥ relative to H for data D as

− log(P(D | Ĥ))− min
H∈H

(− log(P(D | H))), (.)

which can be rewritten as

− log(P(D | Ĥ)) + log(P(D | HH(D))) (.)

for the hypothesis HH(D) ∈ H that minimizes the second term; the
worst-case regret for all of the hypothesis over the data of the same
size |D| is given by the maximum possible regret . over the data
for a given size |D|. e universal distribution HH(|D|) relative toH
is the hypothesis Ĥ that gives the minimum worst-case regret over all
the distributions on the data of size |D|. Such universal distribution
is also called the normalized maximum likelihood distribution.

. Independence tests
As already said, the alternative to scoring-based methods for learn-
ing networks is to perform independence tests among the variables
(see .). e purpose of these tests is to conjecture an independence
hypothesis among a set of variables, and determine whether the hy-
pothesis has to be accepted or rejected. Such default hypothesis is
called the null hypothesis; independence tests aim to collect sufficient
confidence in order to reject it, or, instead, to affirm that our data
just happens to have values resembling “something different” just by
random chance.



. B N S L

. Algorithms
A plethora of algorithms have been proposed to solve the problem
of learning the strcture of a Bayesian Network from data, following
many different strategies and ideas. Many of them are designed to
solve the problem in an exact manner; however, due to the computa-
tional issues already examinated, they are often imposed some limita-
tion, in order to trade optimality with time performances. e most
common relaxation of this kind is to impose a limitation on the num-
ber of maximum parents allowable for each node; others include to
look for a slightly different network, easier to compute, to assume
a known ordering of the nodes, or to terminate the algorithm at a
certain point, for example after a given amount of time. Another ap-
proach is to run a local search from a starting point, being it a feasible
DAG, a DAG that violates some constraints, or an undirected graph.
Also, a way to speed up the computation is to subsample the dataset
from which the network is generated.

For the current state-of-art, optimal reconstruction is possible for
networks with no more that – nodes; approximate solutions can
instead be computed for much larger networks, depending on the
degradation over the quality of the solution we can tolerate. Usu-
ally the algorithms assume complete data. If the starting dataset has
missing data, in order to employ one of the strategies we’re presenting
here one has to guess the missing items.

An algorithm that, given an infinite amount of data, is theoreti-
cally able to reconstruct the optimal network, is called a sound algo-
rithm. e soundness property replaces the correctness notion in the
stochastic domain, since the correctness of the outcome depends on
the input.

In case we accept a premature termination we may be interested
in a so called anytime algorithm, an algorithm that in any moment has
a feasible solution, even if suboptimal, to return if asked to.

In the rest of this chapter, we briefly introduce some among the
most popular or the most recent works proposed in the literature.

.. Dynamic Programming
Dynamic programming (see ...) is an algorithmic paradigm that
has been applied by several authors to the problem of structure learn-



.. Algorithms

ing. ese approaches rely on the decomposability property of scoring
functions such as BD, AIC, BIC, in order to build up a table contain-
ing all of the possible combinations of subnetworks. is approach
clearly leads to exponentially big tables, and therefore to exponential
time algorithm, but the since they explore all of the possible combi-
nations, they ensure to discover the optimal network.

Koivisto and Sood [] propose an algorithm to evaluate the pos-
terior probability of any edge (or every given subnetwork) in O(n32n),
based on computing the posterior marginal edge probability. Later,
Koivisto [] lowers this complexity down to O(n2n) by simultane-
ously computing the posterior probability for every edge.

Independently, about at the same time an analoguous solution
has been proposed by Ott, Imoto, and Miyano [], who apply this
method to the discovery of gene networks.

Silander and Myllymäki [] note that every DAG must have at
least one leaf, a node without children. ey call these nodes sinks of
the network. Starting from this simple observation, they develop an
algorithm that looks for an ordering of the variables in the DAG: in
an ordering ord = (v1, v2, . . . , vn), there may be an arc (vi → vj)
only if i < j. A Bayesian Network is consistent with some variable
ordering ord if, for every node i, its parent set si is made of nodes that
precede i in ord, or, formally, si ⊆

∪i−1
j=1{ordj}, where ordj is the j-th

variable in order ord. e algorithm is conceptually very simple: first,
all the possible scores for each couple (node, candidate parent set) are
computed. From this, the best parent sets and the best ordering are
computed; combining these informations, it is possible to reconstruct
the exact network.

Another dynamic programming approach, published in the same
time of the previous work, is OO of Singh and Moore []. It
is based on the same idea of finding leaves developed in Silander and
Myllymäki [], but providing a theorem in order to avoid unneces-
sary computations.

.. Greedy
Greedy algorithms (see ...) have also been proposed. ey start
from an initial solution (which may be with or without edges) and
iteratively apply one among a set of operations, looking for the choice



. B N S L

that (locally) maximizes the score improve. e set of possible op-
erations consists of edge insertion, edge removal, and edge reversal
(switching the directionality).

Meek [] introduces theGreedy Equivalence Search (GES) greedy
algorithm based on a conjecture regarding the transformations be-
tween DAGs in the same equivalence class. Informally, the Meek
conjecture can be stated as follows.

Proposition .. For any two DAGs G, H, if H is an independence
map for G, there is a finite sequence of edge operations (addition, removal,
reversal) such that after every operation H is still an independence map for
G, and, after all the operations, H = G.

Assuming this conjecture was true, Meek proposed a two-step
greedy algorithm, in which, given an equivalence class with no de-
pendencies, first the dependencies are imposed by edge addition until
a local maximum is found (according to some scoring criterion), and
then edges that can be removed in all the DAGs in the equivalence
class are deleted.

Conjecture .. has been later proved to be true (Chickering and
Meek [], Chickering [, ]). e authors have been able to limit
the search space for the edges, thus improving the performances of
GES.

.. Max-min hill-climbing
Tsamardinos, Brown, and Aliferis [] provide a double step algo-
rithm, calledMax-min hill-climbing, orMMHC for short, which first
executes a statistical conditional independence test in order to find a
reduced set of candidate parent sets, and then applies a greedy hill-
climbing step to look for a (possibly locally) optimal solution. It is a
particular case of the algorithm from Friedman, Nachman, and Peér
[], the first structure learning algorithm to be successfully applied
to instances with hundreds of nodes. Authors classify their algorithm
as a hybrid method between scoring-based methods and approached
based on statistical independence tests.

e “max-min” step, based on the Max-min parent-children, or
MMPC, is an heuristic that looks for a set of candidate parent set
for each node in the graph. It aims to find an undirected graph rep-
resenting the skeleton of the original DAG by looking for subsets of



.. Algorithms

variables Z conditionally separating pairs of variables X, Y. Such test
is denoted as T(X, Y | Z), and is the G2 test (see section .).

MMPC works as follows. Let PCG
v be the set of parents and chil-

dren for node v in a Bayesian network G over a probability distribu-
tion P; if G′ is a Bayesian Network over P that is Markov-equivalent
with respect to G, it holds that PCG

v = PCG′
v , and we can write only

PCv. us, the set of parents and children of a node is the same for all
the Markov-equivalent Bayesian Networks over the same probability
distribution P. MMPC performs the conditional independence test
T(X, Y | Z) in a subroutine called MA. e logarithm of the
so obtained p-value is called the association between variables.

e Max-min heuristic, for every variable X, iteratively constructs
a set of variables with high association with X (the CPC set), choos-
ing at each iteration the variable Y with the largest association, until
such association falls under a minimum value. As this may include
false positives, variables that are not mutually included in respective
CPCs are pruned. e significance of this test depends on the size
of the database; since this also impacts the computational time in an
opposite manner, a later work of Tsamardinos and Borboudakis []
suggests to apply permutation tests in order to have significative tests
also with limited datasets. e set of CPCs found by the Max-min
heuristic form the skeleton of the Bayesian Network.

e hill-climbing algorithm is then applied to the skeleton in or-
der to reconstruct the directionality of edges. is algorithm performs
a local search, by applying the three possible operations over DAGs
(edge insertion, edge removal, edge reversal) and greedily choosing
the operation that increases the score the most until no improvement
is found, relying on a tabu list to avoid cycles. e search space for
edges is limited to the ones allowed by the CPCs found in the Max-
min step.

Authors claim how their algorithms can address some common
issues of network learning strategies, namely, the (un)soundness of
learning, that is, reconstructed network does not represent the real
distribution, and issues related to the enforcement of a maximum car-
dinality for candidate parent sets for the variables.

.. Branch-and-bound
De Campos, Zeng, and Ji [] introduce an exact, anytime approach



. B N S L

based on constraints (already developed in sections .., ..), sub-
sequently improved in de Campos and Ji []. Such approach re-
laxates the problem by removing the acyclicity constraints, and then
looks for the solution with a branch-and-bound strategy. e algo-
rithmmaintains a priority queue of candidate solutions ordered by de-
creasing scores, a “cache” for local scores, a matrix specifying whether
arc is allowed, mandated or forbidden, an upper bound and a lower
bound on the optimal score, and some control parameters. Having
removed the acyclicity constraint, candidate solutions in the queue
are (initially) likely to contain cycles.

e cache of local scores can be pruned by applying the constraints
on the bounds. Control parameters are used to choose whether a
graph to be analyzed should be taken from the top of the priority
queue, or from the bottom. A graph taken from the top of the queue
is possibly the optimalDAG, or it is used to enhance the upper bound;
a graph taken from the bottom of the queue is used to raise the lower
bound. If the graph processed has a score that is worse than the op-
timal score that the search has found so far, it can be discarded (the
bounding step). If the graph is taken from the top of the queue, is a
DAG, and has a better score than the current best solution, than it is
the optimum, and the algorithm can stop. If the graph is taken from
the top and has a directed cycle, such cycle is broken and new disjoint
graphs are created (the branching step), provided the scores of these
new graphs do no fall outside the bounds.

With such reiterated removal and inserting of graphs in the queue,
elements from top tend to be high-scoring graphs with cycles, ele-
ments from bottom tend instead to be simpler DAGs.

Branch-and-bound with constraints is reported to work well also
with a higher number of variables; tests reported by the authors in-
clude cases up to a hundred of nodes. Comparisons with other meth-
ods show amixed behaviour: in some instances the branch-and-bound
is competitive with respect to dynamic programming and other ap-
proaches, in other cases it is significantly slower, while with other in-
stances it is able to obtain a relatively small gap between the bounds,
while other approaches fail due to memory constraints.

Another structure learning algorithm of this kind is the one pro-
posed by Malone, Yuan, Hansen, and Bridges [], who implement
a breadth-first branch-and-bound (BFBnB) that makes explicit use of
external memory, in order to avoid the failures due to lack of RAM



.. Algorithms

for larger instances. Authors use the MDL scoring function (see sec-
tion ..). In contrast with the “traditional” b&b, which performs
a depth-first search if not driven otherwise, BFBnB analyzes the lat-
tice of candidate parent sets layer by layer, in order to limit the needs
for RAM; scores are stored on external memory, with a delayed re-
moval strategy in case of duplicate scores. is slows down a little the
algorithm, but ensures that the computational resources needed re-
main relatively low, and the execution does not fail, provided enough
hard-drive space.

e bounding step is governed by an heuristic function

f (A) = g(A) + h(A) (.)

where A ⊆ V is a node of the lattice representing a subset of variables,
g(A) is the sum of costs of edges of the best path from start node to
node A, and

h(A) = ∑
v∈V\A

BestMDL(v, V \ {v}) (.)

is an heuristic estimation that provides a lower bound on the cost of
the path from A to the goal node.

.. Local learning
Niinimaki and Parviainen [] introduce an algorithm, called SLL for
Score-based Local Learning, that looks for the optimal Markov Blanket
for each node. SLL can be divided in three steps: the first two steps
reconstruct the optimal neighbourhood of each node and the optimal
set of spouses for each node, respectively, by constructing and evalu-
ating optimal networks for iteratively increasing subsets of nodes. e
third step is the reconstruction of the optimal network, as adjacencies
and immoralities are enough information for the task.

e authors use the algorithm of Silander andMyllymäki for find-
ing the optimal DAGs when computing the neighbourhood and the
spouses when |V| ≤ 20, and GES for greater networks. e au-
thors show how SLL, ran with the usual limitation of a maximum
size for the neighbourhood, produces networks with lower error with
respect to other approaches. On the other hand, the time complexity



. B N S L

is O(|V|42|V|), and is clearly dominated by the optimal network re-
construction in the first two steps. Authors report that SLL is slower
than competitor algorithms.

.. Structure learning as IP problem
As mentioned previously in this chapter, learning the structure of a
Bayesian Network G from data D corresponds to finding the opti-
mal parent set ŝ that maximizes Score(G; D) = ∑v Score(v, sv),
assuming the score is decomposable (as are commonly used scores as
BDeu and BIC — see section .); under this condition, the final
score Score(G; D) is made of the sum of local scores Score(v, sv)
of the selected parent sets sv. Being this an optimization problem,
it makes sense to treat the problem as an Integer Programming (IP)
problem. Two different approaches have been proposed in literature,
one based on a LP relaxation (Jaakkola, Sontag, Globerson, andMeila
[], Cussens [, , ], Bartlett and Cussens []), and the other
based on a binary vector called characteristic imset that looks for the
Markov Equivalence classes of the DAG. Refer to section . for a
brief introduction to Integer Programming.

In order to use these approaches, the log-marginal likelihoodmust
be in linear form. For every candidate parent set, one of the possi-
ble approaches is to create variables indicating whether that parent
set should be inserted in the DAG or not. Following the notation
adopted by Jaakkola and Cussens, for every node v and candidate
parent set sv for v, we declare a binary variable I(sv → v). Such
variable will be set to 1 if sv is an optimal parent set for v, otherwise
it will be 0. If Score(s, sv) is the local score associated to {sv, v},
then the objective function will be

∑
v,sv

Score(v, sv)I(sv → v). (.)

All of the I(sv → v) variables must compose a consistent set of par-
ent sets, without any cicle. ere is therefore the need to inject into
the model some acyclicity constraints in order to maintain the DAG
status for the graph.

e second approach, used by Hemmecke, Lindner, and Studený
[], is to find the Markov Equivalence classes of DAGs. Such ap-
proach relies on the notion of characteristic imset, a binary vector in-



.. Algorithms

dicating whether a subset C of nodes can be partitioned in {v, sv},
where the nodes in sv form the parent set of v. is latter approach
relies on the property that two DAGs have the same characteristic
imset if and only if they are Markov-equivalent.

Clearly, these approaches rely on an exponential number of vari-
ables, and on an exponential number of acyclicity constraints. How-
ever, it is easily observed that not all of the acyclicity constraints are
really needed: for example, all of the ones that use an edge not in the
Markov equivalence class, or the ones that have an edge not contained
in any non-pruned candidate parent set.

In the following sections, we review the state-of-art approaches
to the problem based on integer programming deeper that the other
algorithms, since they form the base of the main original contribution
of this thesis.

... Tight LP relaxation and cutting planes

A research path is the one stemming from the PhD thesis of Son-
tag [] in which a LP relaxation is adopted. Such relaxation is
tight, meaning that the optimal solution for the primal is also the op-
timal solution for the dual. is framework have been described in
Sontag and Jaakkola [], Sontag, Meltzer, Globerson, Weiss, and
Jaakkola [], Jaakkola, Sontag, Globerson, and Meila []. A sim-
ilar approach is the one followed by Cussens [, , ], Bartlett and
Cussens [], Cussens, Bartlett, Jones, and Sheehan [].

For convenience, we will refer to the two approaches as “Sontag
approach” and “Cussens approach”, respectively, in what follows.

e key for the relaxation is to remove acyclicity constraints from
the initial formulation of the LP problem, adding them as cutting
planes when needed. Both choose the BDeu score. We use, in the
following discussion, the simpler notation adopted by Cussens, as will
be the same notation used in chapter .

Sontag approach eSontag approach defines a family of constraints
called cluster constraints that impose that, for every subset C ⊆ V of
nodes of the graph G, there must be at least one node whose parent
set either completely lies outside C, or is the empty set.



. B N S L

Formally, the cluster constraints can be defined as follows: for
every set of nodes C ⊂ V,

∑
v∈C

∑
sv :sv∩C=∅

I(sv → v) ≥ 1. (.)

is means that for every subset C of nodes, at least one of them must
either be a source for the DAG, or have its parents outside C.

Clearly, there is an exponential number of such cluster constrants.
e solution to this problem is to remove them, solve the linear re-
laxation of the problem, and look for violated constraints. Cluster
constraints can be defined also for the linear relaxation, though in
this form they do not suffice to shape the original polytope []. e
approach proposed is summarized in three steps:

. to perform a coordinate descent to solve the dual problem

min
n

∑
i=1

max
si∈Pa(i)

[c(si) + ∑
C:i∈C

λC IC(si)]−∑
C

λC (.)

s.t. λC ≥ 0, ∀C ⊆ V (.)

with a new dual non-negative variable λC for each cluster C;

. decode a DAG from the current set of λC, and evaluate its
score: if it is the same of the objective function of the dual prob-
lem, then the problem is solved;

. if the problem is instead not solved, choose one constraint to
insert into the model, and repeat the steps.

e algorithm iterates until the problem is solved, or the constraints
added become too many. In this case, a branch-and-bound is per-
formed, solving each subproblem as the main problem.

Cussens approach Cussens and Bartlett proceed in a way based on
the approach outlined in section ..., but tackle the problemwith a
more traditional branch-and-cut: they consider the relaxated problem
obtained by removing a more general version of the cluster constraints
. from the model, and solve it, adding the most effective cluster
contraints as cutting planes when needed, obtaining a solution x∗. If
x∗ does not violate any cluster constraint and is integer-valued, than



.. Algorithms

the problem is solved; otherwise, a variable with a non-integer value
in x∗ is chosen to be branched on, creating two new subproblems.

Cluster constraints are redefined in knapsack form:

∑
v∈C

∑
sv :sv∩C=∅

I(sv → v) ≤ |C| − 1 where C ⊆ V. (.)

Furthermore, this family of constraints can be generalized: for every
C ⊆ V, for every k such that 1 ≤ k ≤ |C|

∑
v∈C

∑
sv :|sv∩C|<k

I(sv → v) ≤ |C| − k. (.)

e choice of which constraints to add at every branching step is done
by solving a new subproblem, looking for the constraints that may
yield the better “coverage”.

Since starting from a “good” point helps consistently the search
for the optimal solution, the authors also propose a greedy heuristic
for finding a good, albeit suboptimal, Bayesian Network, based on
the observation (Silander and Myllymäki []) that in a DAG there
must be at least one childless node, called sink, for which it is possible
to find the optimal parents without worrying of creating a cycle.

Cussens and Bartlett provide the GOBNILP package, a SCIP-
based implementation of the ideas developed through their papers.

e real bottleneck lies in the precomputation of the scores for
candidate parent sets, because of the exponential nature (in the num-
ber of nodes) of the search space. To overcome this issue, the precom-
putation is limited to candidate parent sets of bounded size (usually
 or even  nodes, for larger instances). However, one can easily note
that the scoring function has a sort of “bitonic” trend when varying
the number of parents, therefore we can prune some of the candidate
parent sets. In particular, if W, W ′ are candidate parent sets for v such
that W ⊂ W ′, c(W) > c(W ′), then we already know that W ′ (and
all of its supersets) will not appear in the optimal DAG as parents of
node v.

As Cussens implicitly admits, requiring a bounded in-degree for
the nodes prevents the optimal solution for the problem to be, in gen-
eral, equal to the “real” Bayesian Network we want to learn. More-
over, there is no guarantee on the quality of the optimal solution, or

http://www.cs.york.ac.uk/aig/sw/gobnilp/



http://www.cs.york.ac.uk/aig/sw/gobnilp/

. B N S L

even a measure of the score gap between the optimal and the real
networks.

... Markov Equivalence Classes via characteristic imset

Another approach comes from the PhD thesis of Lindner [], who
uses the notions of standard imset and characteristic imset introduced by
Studený [], Studený, Hemmecke, and Lindner [] to represent
the essential graph (section ..) of Markov Equivalence classes of
Bayesian Networks. is approach has been subsequently studied in
Studený and Vomlel [, ], Studený, Vomlel, and Hemmecke
[], Hemmecke, Lindner, and Studený [], Studený and Haws
[], Studený [, ].

An imset is a binary vector indexed by sets of variables. LetP(V) =
{A : A ⊆ V} be the powerset of V. An imset δA is a vector in
{0, 1}|P(V)|, A ⊆ V such that δA(A) = 1, and δA(B) = 0 for all
the B ⊆ V, B ̸= A. In other words, an imset for a particular subset
is a flag vector whose only non-zero component is the one indexed by
the chosen subset.

Let G be a DAG, and V its set of nodes; the standard imset for G
in R|P(V)| is

uG = δV − δ∅ + ∑
v∈V
{δsv − δ{v}∪sv}. (.)

Every standard imset can have at most 2 · |V| non-zero elements,
therefore it can be stored in a polynomial amount of space, despite its
exponential size.

A characteristic imset cG for a DAG G with node set V is a vector
in Z|P∗(V)|, where P∗(V) = {A ⊆ V : |A| ≥ 2}, computed as

cG(A) = 1− ∑
B:A⊆B⊆V

uG(B) ∀A ⊆ V, |A| ≥ 2, (.)

where uG(B) is the standard imset computed in ..
Imsets are related to scoring criteria via the following property

([, ]). Let G be a DAG over V, P(V) the powerset of V,
Score(·) a decomposable scoring function, uG a standard imset for
G. en, let DATA(V, d) a collection of databases of length d over
V, and D ∈ DATA(V, d) a database. It is possible to define a unique



.. Algorithms

mapping t : D 7→ tD ∈ RP(V) such that the resulting vector tD
contains the scores associated to the relative index of the standard
imset. en, the score of the overall network G computed over a
dataset D is

Score(G, D) = tD(V)− tD(∅)−
|uG|

∑
i=1

tD(i)uG(i). (.)

Alternatively, we can compute the score for G, D using a revised
data vector computed by combining scores contained in tD and the
characteristic imset. e final transformation has the same form.

Both the standard and the characteristic imsets suffice to define a
polytope, enabling the retrieval of the optimal vertex viamathematical
programming tools such as the simplex method.

Characteristic imsets hold some remarkable properties related to
graphical models. As said, cG(A) ∈ {0, 1} ∀A ⊆ V, |A| ≥ 2.
Let G be a DAG with characteristic imset cG, and A ⊆ V a set of
nodes: cG(A) = 1 iff ∃ v ∈ A s.t. A \ {v} ⊆ PaG(v). Two graphs
G, H with characteristic imsets cG, cH respectively are equivalent iff
cG = cH. As a consequence, if a, b, c are three distinct nodes of G, a, b
are adjacent if and only if cG({a, b}) = 1, and a→ c← b is an im-
morality in G if and only if cG({a, b, c}) = 1∩ cG({a, b}) = 0; also,
the two last conditions imply cG({a, c}) = 1 and cG({b, c}) = 1.
is is sufficient to reconstruct an essential graph from a characteris-
tic imset (see for example Studený and Vomlel []). en, we can
apply a theorem from Meek [] that shows how to reconstruct the
directionality of undirected edges of the essential graph, according to
the rules provided in figure ..

Another result directly following by the former properties states
that the characteristic imset cG of a graph G over V can be uniquely
determined by subsets of V of cardinality  and . us, characteris-
tic imsets for graphical models have length polynomial in (|V|3). For
forests, complexity is polynomial in (|V|2).

.. Hybrid methods and other approaches
Hybrid methods are approaches that employ both conditional inde-
pendence tests and scoring functions. Independence tests are used in



. B N S L

.......
⇒

...

(a)

.......
⇒

...

(b)

........
⇒

....

(c)

........
⇒

....

(d)

F .: orientation rules for patterns (from []).

order to limit the search space, to which subsequently apply scoring
methods in a more effective manner.

An example of hybrid method is the one proposed in Venco [],
Badaloni, Sambo, and Venco []. eir method, called CBB forCon-
strained branch-and-bound , takes advantage of the chance of injecting
prior knowledge into the branch-and-bound of deCampos and Ji []
(section ..), by means of the edge constraint matrix; such matrix is
compiled by running the Max-min heuristic of Tsamardinos, Brown,
and Aliferis [] (section ..) and forbidding all of the edges that
are not allowed by the resultant CPCs. In order to minimize the risk
of letting out edges that are in reality present, that is, in order to re-
cover possible false negatives issues from the Max-min step, the hill
climbing step is also performed after the branch-and-bound, to ex-
plore the neighbourhood of the solution for a better DAG.

Another one is HPC (for Hybrid HPC) of Gasse, Aussem, and
Elghazel []. In similar guise of MMHC (section ..), it is based
on a subroutine called HPC, for Hybrid Parents and Children, to
retrieve the skeleton of the Bayesian Network; HPC mixes incre-
mental and divide-and-conquer constraint-based approaches. en,
HPC explores the possible DAGS over the skeleton with the same
hill climbing strategy of MMHC.

Hybrid methods, since are designed to exploit the good sides of
various ideas, are reported to overcome the single-method algorithms
they stem from.

Alternative approaches compriseAntColonyOptimization (DeCam-



.. Comments

pos, Fernandez-Luna, Gámez, and Puerta []), Genetic algorithms
and Simulated Annealing de Campos and Huete [].

. Comments
Several different approaches have been reviewed, some other have
been left out, many others are expected to be proposed, especially hy-
brid ones. In table . there is a summary. We can see some common
points, some differences, the strength and the weaknesses for them;
here we discuss the most important ones.

Exact discovery is the process of learning the network that yields
the better representation for the causality relationships present in the
dataset. e meaning of “better representation of the causality in the
dataset” is explained in section ... Exact discovery, however, en-
tails heavy computational costs in order to process all the search space
of the structures to analyze (usually, candidate parent sets), and are
therefore limited to relatively small networks (– nodes). Meth-
ods that explore a subset of the search space can achieve some im-
provements, but of course there is no guarantee about that. ere-
fore, given the size of the instance, the time and the computational re-
sources available, onemay prefer to use an approximate method. Such
approximate methods, however, do not have any theoretical guaran-
tee on the quality of the results, or the time needed to converge to a
feasible solution. For this reason we may want to choose an anytime
algorithm, in order to always have a feasible solution in hand.

When exploring the search space, despite some useful properties
that can help us in avoiding some unfruitful areas, we necessarily have
to cope with its combinatorial explosion. To cope with instances with
more than  nodes, we have to find some strategy, even if subopti-
mal. Two ideas have been used for this purpose: limiting the max-
imum cardinality for parent sets, or retrieve an intermediate struc-
ture that allows us to maintain the conditional dependency relations
among variables. Overcoming this issue is one of the keys to improve
strategies of network learning.

Let k be, in this discussion, the maximum cardinality allowed for
candidate parent sets. Such a limitation is often imposed by the au-
thors due to the exorbitant computational costs of the problem: k
will limit the size of the search space of candidate parent sets to be no



. B N S L

Table .: summary of structure learning algorithms and strategies.
Authors are the proposers of first implementation for each method,
if further improvements have been later proposed.

Authors Strategy
Koivisto, Sood Dynamic programming for

posterior edge probability
Ott, Imoto, Miyano Dynamic programming for

posterior edge probability
Silander, Myllymäky DP based on variable ordering
Singh, Moore DP based on variable ordering
Meek Greedy edge operation selec-

tion
Tsamardinos, Brown, Aliferis Heuristic for skeleton discove-

ry + hill climbing heuristic for
edge directionality retrieval

De Campos, Zeng, Ji B&B with relaxation over
acyclicity constraints

Malone, Yuan, Hansen, Brid-
ges

Breadth-first B&B

Niinimaki, Parviainen Reconstruction from optimal
neighbourhood

Venco, Sambo, Badaloni B&B over skeleton
Gasse, Aussem, Elghazel Hill climbing over skeleton
Jaakkola, Sontag, Globerson,
Meila

Linear Programming

Cussens Linear Programming
Lindner, Hemmecke, Studený Linear Programming
De Campos, Fernandez-Luna,
Gámez, Puerta

Ant Colony Optimization

De Campos, Huete Genetic alorithm
De Campos, Huete Simulated Annealing



.. Comments

more than ∑k
i=0 (

n−1
i). Low values of k will therefore provide a limit

over the time needed to explore this search space, an operation that
many times (for many algorithms) has to be done exhaustively. High
values for k, that is, values well beyond the maximum in-degree of a
“real” network, will result in an unnecessary work done over areas of
the search space that represent no realistic candidate parent sets, that
are parent sets that entail dependence assumptions that are not really
present in the generating distribution, with the risk of overfitting the
network to the sampled data.

Bounding k is therefore an easy way to address these issues. How-
ever, k is obviously another parameter that needs to be tuned, clearly
not a comfortable task, in general. A low value of k will lead to a net-
work that will be, in general, “too simple” with respect to the original
distribution of the data. A high value for k, instead, brings unneces-
sary work also over the tuning step.

Furthermore, a value of k imposed over candidate parent sets for
all the nodes in the graph provides an “unrealistic” general limita-
tion, in the sense that more interconnected subsets share the same
constraints of sparser areas of the network; no local properties are
exploited. As Tsamardinos, Brown, and Aliferis [] point out, a
node with some parents missing due to the k-bound introduces an
error that propagates through the subnetwork downside the node. It
has to be said that this also happens when starting the reconstruction
from a wrong skeleton.

Finding a k that yields a fair tradeoff between correctness and
computational time would be good. Limiting the search space in a
different way, possibly locally, is even more desired.

e other widely adopted idea is to reconstruct a structure that
allows us to retrieve the optimal DAG from it. Such structure may
be a DAG to use as starting point for a local search; more often, it
is an undirected graph, or a partially directed one. Many algorithms
start their search by looking for the skeleton of the optimal DAG,
and then choose some more or less clever method in order to assign
a directionality to the edges of the skeleton. is strategy allows to
limit the search for candidate parent sets for a node v to the set of
nodes directly connected to v in the skeleton, which can be a sub-
stantially lower number of possibilities to test. On the other hand,
if the pruning step leaves out one real parent, the optimal network is
clearly impossible to discover. Furthermore, the skeleton discovery



. B N S L

step is another subroutine that needs to be tuned: a tighter pruning
will yield a narrower search space, with a higher risk of losing the
global optimum, while a looser evaluation allows a broader set of al-
ternatives, entailing at the same time more time needed.

Newer algorithms tend to follow this approach, instead of blindly
impose an unique limit over all of the nodes in the network. It has to
be said that we do not escape the need of repeatedly scan the whole
database, as this complexity is only moved to the skeleton reconstruc-
tion step. However, it seems a more reasonable one than its alterna-
tive.

.. On the significance of the results
By “significance of the results” we mean how much we can trust the
reconstructed network: while the distance from a known test network
can be measured, if we are discovering a new one we have no safety
net. e significance is affected by several intertwined factors; we
review some of them (in no particular order). First of all, the adop-
tion of an exact algorithm or an approximate one, whose impact has
already been discussed.

e second factor, as anticipated above, is the choice of the scor-
ing criterion, if one is employed, or the conditional independence tests
parameters. Conditional independence heavily rely on the tuning of
their parameters, for example the threshold α we use to evaluate a con-
ditional independence hypothesis against the null hypothesis to com-
pute the p-value. As for the scoring criterion, we have already seen
how information theoretic-based methods can help avoiding evaluat-
ing candidate parent sets, according to the Ockham’s razor. However,
such philosophic concept has to be considered just a “rule of thumb”,
or we could say an heuristic, in computer science terms. While in-
troducing complexity penalty is a sensible idea, how to choose this
penalty seems an arbitrary decision, though the early pruning prop-
erty that derives is useful. Several studies have been published in dif-
ferent years, with constrasting results: Yang and Chang [], Car-
valho [], Kasza and Solomon [], Liu, Malone, and Yuan [].
So, the problem of what scoring function to use is far from solved.

Finally, the third factor is the quantity and the quality of the data
we are learning from. Given “wrong” data, we may have exact net-
works that perform worse that approximate ones. Obviously, we need



.. Comments

the data to be unbiased, or, no matter how good our algorithm is,
or how much time we let it run, the reconstructed network will be
a wrong network. Few items in the database will result in low at-
tendibility of the reconstructed network, yielding also the risk of
falling into a biased distribution. Missing data, and especially biased
missing data, will also jeopardize the reconstruction task. Conversely,
the size of the dataset is directly correlated with the resulting compu-
tational cost of the learning, so, even if we had one, we often cannot
afford to use an entire huge database, and we have to subsample it
while keeping the error under control.

Apart from common sense, also remember the soundness property we look
for in the algorithms, that holds for a quantity of data tending to be infinite.



Alternative Integer Programming
formulation 

Pros and cons of the approaches proposed in the literature have been
reviewed in the previous chapters. We move from those considera-
tions to develop an approach that can overcome at least some of those
issues. We have described the scoring-based structure learning prob-
lem as an optimization problem, and have noted how few recent ap-
proaches explicitly encode the problem following one of the “natural”
ways to address such kind of problems, namely linear programming.
We have discussed the choice of the authors of those approaches of
imposing an upper limitation over the candidate parent set size; there-
fore, this is our starting point for the search of a better performing
algorithm. We also noticed how a recent trend in structure learn-
ing algorithms is to look for the advantages of both scoring methods
and independence-based approaches, yielding to hybrid solutions; in-
spired by them, the idea we develop in this chapter consists in ap-
plying integer linear programming techniques over a reduced search
space, in order to address the previously observed limitations of exist-
ing approaches.



. A I P 

. Reducing the search space
First of all, the main liability of the existing approaches based on in-
teger programming can be addressed by previously recovering an “in-
termediate” structure, such as a CPDAG or a Markov Network, as
we have seen in algorithms such as those presented in sections ..,
... We choose to address the issue of limiting the search space by
recovering the skeleton of the network as first step, using the MMPC
algorithm.

Some quick calculations can justify this choice. A network with
 nodes and a fixed maximum cardinality for candidate parent sets
of  yields 20 · ∑3

i=0 (
19
i) = 23200 indicator variables I(W → v)

for parent sets. If the maximum allowed CPC cardinality is raised
to four, the number of such variables goes up to 100720, the vast
majority of which is useless, as this number includes candidate parent
sets formed by nodes from different areas of the network, and that
would be discarded by a “semantic” analysis of the network.

Conversely, by knowing the skeleton of the network we can limit
our analysis to ∑

degSkel(v)
i=0 (degSkel(v)

i) for every node v of the network,
where degSkel(v) is the degree of node v in the skeleton; and further-
more, all of these variables are variables that aren’t trivially prone to be
discarded. e actual number depends on the instance, and may still
be relevant for highly connected networks as the number of variables
to examinate is 2degSkel(v) for each node v, but for sparser networks
it may reduce to a handful of variables, not to mention that the re-
constructed network will in general adhere to the real one much more
than the one found by the competitor approaches.

e skeleton discovery step has however some possible downsides.
First of all, this operation takes an amount of time that depends on
various factors, such as the number of observed variables, the number
of parameters of the variables, the connectivity of the network and the
number of instances in the dataset, and it can become a bottleneck for
the whole structure learning problem. All of those factors also impact
the quality of the returned skeleton; for example, a small dataset will
likely lead to a wrong skeleton. is step, therefore, can introduce an
error that cannot be corrected in the following passages, leading to a
wrong Bayesian Network. e MMPC algorithm we are going to use
cannot evaluate or even recognize this error, and therefore it cannot



.. From sets of nodes to edges

provide any guarantee about the correctness of its results.
In the remainder of this work, we will not address the problem

of improving the MMPC step, or the development of an alternative
algorithm. We will instead focus on a new modelization of the prob-
lem, based on the skeleton of the network.

. From sets of nodes to edges
Our approach is to combine the reconstructed skeleton of the net-
work with the integer linear programming approach as exploited in
chapter ... Of course, this just means to assign a consistent set of
directionalities to the edges of the skeleton, in the same guise of the
MMHC algorithm.

e first step is tomake the edges to appear explicitly in themodel,
to clarify their contribution to the final score of the network. Recall
the objective function implicitly used by Jaakkola, Sontag, Globerson,
and Meila [], Bartlett and Cussens [], Hemmecke, Lindner, and
Studený []:

max ∑
v,sv

Score(v, sv)I(sv → v) (.)

where the v are the nodes, the sv the candidate parent sets, Score · is
the outcome of the score function and the I(sv → v) are the indicator
variables for groups of edges. We introduce a set of similarly defined
indicator variables I(u→ v) for edges, such that

I(u→ v) =

{
1 if edge (u→ v) is in the final DAG
0 otherwise.

(.)

Note that there can be at most |V|(|V| − 1) of such variables, all
of the possibly defined oriented edges in a graph of |V| nodes. In
practice, we expect them to be much less than this number. We can
make the indicator variables for edges to appear explicitly in themodel
by noting that:

• if the parent set sv for node v is composed by, for example, three
nodes sv = {x, y, z}, than the indicator variable for (sv → v)
corresponds to three indicator variables I(x → v), I(y → v),
I(z→ v) all being set to 1; their product (logical and) will also
be 1;



. A I P 

• at the same time, let s′v = {a, x, y, z} be a candidate parent set
to be discarded: while indicator variables I(x→ v), I(y→ v),
I(z → v) will be set to 1 in an optimal solution, we also want
I(a→ v) = 0, since node a is not in the optimal parent set for
node v; then, the product will be nulled by the “extra” variable;

• finally, consider the subset of the optimal parent set s′′v = {x, y}:
being composed by two nodes whose corresponding indicator
variables (towards v) will be set to 1, then also the term Score(v, s′′v)I(s′′v →
v) will be included in the cost of the objective function; and
while this does not compromises the optimality of the solution
computed, since the same set of directed edges will be selected,
its cost will be higher than the true optimal one.

e first two observations allow us to replace

I(sv → v) = ∏
w∈sv

I(w→ v) (.)

for all the nodes v, candidate parent sets sv for v. Such product will
be 1 only if the all the nodes in sv really belong to the optimal parent
set for v. e third observation, instead, suggests to discard subsets of
the optimal parent set. However, if the previous substitution can be
trivially done without any risk, this one needs a little more attention:
we do not know in advance which is the optimal parent set, so we do
not know whether a set of nodes is an optimal parent set, a superset
of the optimum, or a subset of it. Recall that we are orienting the
undirected edges of the skeleton; so, the set of nodes connected to
node v form its CPC (Candidate Parent-and-Children, see section
..). We want only one subset of nodes sv ⊆ CPC(v) to be se-
lected, and the other ones to be discarded; that is, only one product
to be 1, and the other ones to be brought to 0 by the variables for
the edges linking v to his children. is can be achieved by adding a
“reversed” indicator variable for edges from v to his children, and can
be simply done by taking 1− I(w→ v) into the product for w /∈ sv,
for all the subsets sv ⊆ CPC(v). So, the previous substitution .
can be replaced by

I(sv → v) = ∏
w∈sv

I(w→ v) ∏
w∈CPC(v)\sv

(1− I(w→ v)). (.)

e second term zeroes all of the contribution other than the one for
the optimal choice: let CPC(v) = {w1, . . . , wk} be the candidate



.. From sets of nodes to edges

parent-and-children from the MMPC algorithm, and sv a subset of
it; then

• if sv = {w1, . . . , wj}, 1 ≤ j ≤ k, is the optimal parent set,
then the indicator variables for the edges coming from the op-
timal parent set (those we want to be 1) will be in positive form,
while the variables we want to be zero will be in the second
product in reversed form, thus also contributing as s in the
overall product. is also works if the optimal parent set is the
empty set (node v is a source for the network);

• if s′v is a subset of the optimal parent set, there will be at least
one exceeding variable in the second product, namely the vari-
ables corresponding to the edges from the nodes in sv \ s′v to v;
such variables will therefore be brought to zero, and will nullify
the overall product;

• if s′′v is instead a superset of the optimal parent set sv, there will
be at least one exceeding variable in the first product, namely
the variables all the variables corresponding to the edges from
the nodes in s′′v \ sv to v; those variables will contribute with a
zero in directed form;

• the last case is the case where a subset s′′′v of CPC(v) both con-
tains some children of v and misses some parents of v; the effect
is the combination of the second and the third cases.

erefore, by all of the previous considerations, we could rewrite
the objective function as

max ∑
v,sv

Score(v, sv)

∏
w∈sv

I(w→ v) ∏
w∈CPC(v)\sv

(1− I(w→ v))

 .

(.)
Unfortunately, such objective function is nonlinear. erefore, we
have to manipulate it in order to make it linear. First of all, we step
back to the original objective function ., and insert equations .
in the model as constraints, one for each subset of variables. Such
bounding constraints are nonlinear but can be easily converted in a set
of linear constraints using a generalized techniques for linearizing a
product of binary variables using additional constraints and an ad-
ditional variable for each product. In our case, however, there is no



. A I P 

need for such additional variables, since their role is played by the in-
dicator variables for subsets. e product a · b of two binary variables
a, b ∈ [0, 1] can be defined with a new variable z, and the following
set of constraints:

z ≤ a ⇒ z− a ≤ 0 (.)
z ≤ b ⇒ z− b ≤ 0 (.)
z ≥ a + b− 1 ⇒ z− a− b ≥ −1. (.)

Constraints . and . ensure z to be 0 if at least one of the product
factors is 0, and therefore we shall call them lower-bound constraints
for the product variables in this context; inequality ., instead, in-
duces z = 1 if all of the factors are 1, and we call it an upper-bound
constraint. Furthermore, this set of constraints will be satisfied only
all of a, b, z have the same value (0 or 1); the truth table for a, b, z is
the proof of correctness. Because of the form these constraints will
assume when inserted in a LP solver, we will often prefer to write all
the variables in the left-hand-side of the inequalities, and the constant
terms in the right-hand-side.

e case of a product with three binary variables a, b, c is treated
equivalently:

z− a ≤ 0
z− b ≤ 0
z− c ≤ 0
z− a− b− c ≥ −2.

Using our variables, if sv = {x, y, z} is a candidate parent set for
v, we have

I(sv → v)− I(x → v) ≤ 0
I(sv → v)− I(y→ v) ≤ 0
I(sv → v)− I(z→ v) ≤ 0
I(sv → v)− I(x → v)− I(y→ v)− I(z→ v) ≥ −2.

Every set of edges sv induces no new variables in our case, since
we already needed to define indicator variables I(sv → v), and |sv|
new constraints. In our case, we have both variables in directed and



.. From sets of nodes to edges

complemented form, but this adds very little complexity to the prob-
lem: for example, we could simply create one new variable for each
variable in complemented form. is solution would add asmany new
variables and constraints as the number of variables in complemented
form. Otherwise, we can just iteratively build up the new bag of con-
straints by adding, for each factor, a new lower-bound constraint, a
variable in the upper-bound constraint, and its contribution to the
constant term in the right-hand-side of the upper-bound constraint.

Furthermore, the number of inequalities to be added to the model
for candidate parent sets of cardinality greater ≥ 3 can be further
reduced down to two, by noting that the lower-bound constraints can
be summed into one of the form

k · z− a− b− · · · ≤ 0, (.)

where k is the number of factors in the product. Again, a simple truth
table, being a, b, . . . , z binary variables, ensures the correctness of this
derivation.

It remains one little issue to solve: as the scores of candidate par-
ent sets are computed as the logarithm of a probability, their value
is negative. e overall value of the objective function is therefore
maximized if no candidate parent set is chosen, clearly a solution we
cannot accept. We therefore need to reintroduce the convexity con-
straints

∑
sv∈CPC(v)

I(sv → v) = 1 ∀ v ∈ V, (.)

in order to impose that one (and only one) candidate parent set for
each node is selected in the optimal solution (remember that the empty
parent set is also present in the CPC).

is way, we have explicitly related each set of candidate parent
sets to its edges, at the cost of an increment of the number of con-
straints of 2× |CPCs(v)| for every node v. In theory, theremay be an
exponential number of these bounding constraints. In practice, their
number depends on the sensitivity of the parameters in the MMPC
step, or any other algorithm we use to build up the skeleton, and we
expect them to be not too many.

We have also to impose that no undirected edge of the skeleton
can be inserted in the DAG with both directions enabled. Equiva-
lently, every undirected edge in the skeleton must be assigned a direc-



. A I P 

tionality edge. is is translated with a set of directionality constraints
of the type

I(u→ v) + I(v→ u) = 1 ∀ (u, v) in the skeleton. (.)

Clearly, there are at most |V|(|V| − 1)/2 of such constraints, but
very likely in an efficient implementation they would be much less
than the theoretical maximum number, since, as before, the purpose
of the skeleton reconstruction is to effectively prune the edge search
space.

However, the problem is not wholly defined. So far, the model
composed by objective function . and constraints .–., . does
not prevent directed cycles in any feasible solution. We can reintro-
duce the cluster constraints . from section ..., or their more
general form ., and have a complete model for the directional-
ity reconstruction problem. Another possible idea is to avoid clus-
ter constraints and exploit two elementary facts: the skeleton already
contains all of the possible cycles we can end up with, and such cycles
must have one very simple property, when assigned a directionality to
their edges, in order to form a DAG.

. A family of skeleton-based cuts
Under this model, we can adopt an alternative family of cuts with re-
spect to the previous works, whose purpose is to help the process of
assigning a consistent directionality to the edges in the skeleton. e
purpose of these cuts is to eliminate solutions that contain directed
cycles; however, they work also for undirected cycles, so that we can
add them when evaluating the skeleton. We define them for the di-
rected case; as for undirected cycles, it only suffices to treat them as
two different directed cycles defined over the same sequende of nodes.

Recall that we have introduced indicator variables I(u → v) for
the edges: then, a directed cycle of length k will be denoted as a se-
quence of k edge indicator variables I(v1 → v2), I(v1 → v2), . . . , I(vk →
v1). In order to break it, we can adopt common acyclicity constraints
in the form of knapsack constraints

I(v1 → v2) + I(v1 → v2) + · · ·+ I(vk → v1) ≤ k− 1. (.)



.. Notes on the model

ese constraints are not new, as are popular in other graph prob-
lems such as the TSP (see for example Applegate et al. []). eir
advantage with respect to the cluster constraints of Jaakkola et al. []
lies in their immediate detection and insertion, requiring to consider
only the edge indicator variables, and not on the parent set indica-
tor variables. e separation problem is therefore much easier, being
restricted to a depth search in a graph.

.. Finding violated cuts
By solving the model, we obtain the parent sets for the nodes, and
the adjacency matrix of the graph, that we suffice to check in order to
check if the returned graph is indeed a DAG. Exploiting the fact that
a DAG, and every of its sub-DAGs, must have at least a sink node,
we iteratively shrink the matrix, removing the rows and columns of
the sink nodes. If the graph is acyclic, we will eventually eliminate
all of the matrix; conversely, the nodes forming a directed cycle will
prevent us to empty the matrix, and we need to identidy these nodes
and the edges between them.

e literature about finding cycles in directed graphs is not as rich
as it is for undirected graphs; we adopt a simple heuristic that finds
at least one cycle, even if we are not guaranteed to detect all of them.
Starting from a node v, we try to return to it with a depth-first search.
If we cannot reach again v from itself, then the node is not part of any
cycle. Otherwise, we track the sequence of edges traversed, to impose
a knapsack constraint .. We repeat this quest starting from every
node of the graph. Since this naive approach will find a cycle many
times (precisely, a number of times equal to the number of nodes it is
composed of), as we have found a cycle, we temporarily remove one
of its edges from the graph; this prevents to find the same cycle again,
but also may prevent to detect other different cycles that traverse the
same edge, hence the heuristic behaviour.

. Notes on the model
We have provided a model that fully defines the structure learning
problem as an integer linear programming problem. We have for-
mulated it in terms of looking for the best edge orientatation over a



. A I P 

skeleton, but it is almost valid for an edge orientation step defined
over any undirected structure, even a complete graph. We only need
to enable the possibility of discarding an edge if the solution does not
require it: therefore, we redefine directionality constraints . in

I(u→ v) + I(v→ u) ≤ 1 ∀ (u, v). (.)

is also serves as a correction to the skeleton discovery step, allowing
the solver to discard edges incorrectly selected by the MMPC step, or
by any other algorithm we choose for the first phase. It is therefore
advisable to use this version of directionality constraints, instead of
the former one.

e idea behind this relaxation is to allow more freedom to the LP
solver, hoping this can provide quick improvements for the objective
function by selecting only the edges that really improve the global
score. is solution has also the advantage of rewarding simpler net-
works, partially addressing that issue that motivates the penalty term
in information-theoretic scoring methods.

We have defined our model essentially by extending the model
used by Jaakkola, Sontag, Globerson, and Meila [], Bartlett and
Cussens [], embedding the adjacency matrix in a framework that
considers only candidate parent sets. erefore, all of the theory de-
veloped by them is valid also in our model. At the same time, from
our model we have formulated a solution process that aims at discov-
ering the same network the MMHC algorithm looks for: the hill-
climbing orientation is just one of the possible approaches to solve a
linear model. We have therefore formulated a general model for the
structure learning optimization problem, that bridges several meth-
ods previously proposed in literature.

e linear programming formulation also provides a clear repre-
sentation of prior knowledge. Any notion we already have can be
injected into the model simply by introducing an appropriate con-
straint: for example, for mandatory or forbidden edges we suffice to
set the relative variable to  or , for sources or sinks of the network
we just need to impose or deny CPC variables, an ordering of the
nodes is representable by denying the edges and CPCs that violate it,
and so on.



.. Notes on the model

.. Relations with other problems

Other authors (Koivisto and Sood [], Larranaga, Kuijpers, Murga,
and Yurramendi []) have previously noted how the structure learn-
ing task resembles the Traveling Salesman Problem []; Sahai, Klus,
and Dellnitz [] have suggested a procedure to order the nodes in
a Bayesian Network by transforming it into a TSP instance. As the
TSP is surely one of the most studied problems in computer science,
combinatorics and optimization, it would be interesting to find some
corroboration to this intuition. Trivially, we can say that, being them
two NP-complete problems, we can surely transform one into the
other. We add some further considerations, in order to understand
how to accomplish this.

First of all, the acyclicity constraints . are exactly the same
acyclicity constraints that can be defined for the Asymmetric TSP;
however, the subtour elimination constraints for the Symmetric TSP
have the same form. Furthermore, the cluster constraints . by
Jaakkola et al. [] resemble the TSP acyclicity constraints in flow
form, where the edges are thought as a network, and some flow has
to go from some node to all of the other nodes, exiting any cluster of
nodes smaller than the whole graph.

We argue that the model for the BN structure learning problem
can be translated into a model for the Generalized Traveling Sales-
man Problem (Srivastava, Kumar, Garg, and Sen [], Laporte and
Nobert []), where the nodes are partitioned into clusters and each
cluster has to be traversed one and only time. A GTSP instance can
be transformed into a TSP instance (Noon and Bean [], Fischetti,
González, and Toth []).

One of the possible ILP formulations for the GTSP over an undi-
rected graph G = (V, E) with n nodes partitioned into m clusters is
the following []:

min ∑
e∈E

cexe (.)

e GTSP also has a more general formulation, where each cluster can be
traversed multiple times, with the constraint . being≥ 1. e version of GTSP
we employ is sometimes referred to as EGTSP.



. A I P 

subject to

∑
e∈δ(v)

xe =2yv ∀ v ∈ V (.)

∑
v∈Ch

yv =1 for h = 1, . . . , m (.)

∑
e∈δ(S)

xe ≥2(yi + yj − 1) ∀ S ⊂ V, 2 ≤ |S| ≤ n− 2,

for some i ∈ S, j ∈ V \ S (.)
xe, yi ∈ {0, 1} ∀ e ∈ E, v ∈ V (.)

where ce is the cost of the edges e ∈ E, the xe are binary indicator
variables for the edges, being them set to 1 if the edge is selected in
the optimal solution and 0 otherwise. e variables yv are indicator
variables for the edges (in flow fashion) respectively leaving and enter-
ing each node; constraints . and . ensure that for each cluster
S strictly smaller than V there is at least one exiting edge. e in-
equality family . are the subtour elimination constraints. Finally,
all the indicator variables are binary.

We move from this observation: the nodes in the GTSP instance
are partitioned into clusters, and only one node for every cluster can
be selected, just like only one candidate parent set can be selected
for every node of the DAG. e GTSP solution must obey to some
constraints, whose form is not too different from the form of the clus-
ter constraints proposed by Jaakkola, also in their equivalent knapsack
formulation as proposed byCussens; furthermore, also the constraints
. defined over the set of edge indicator variables are a family of ba-
sic subtour elimination constraints for a TSP problem. is suggests
to relate the candidate parent sets for the nodes in the DAG to the
nodes in the GTSP instance: the optimal tour for the latter will be
composed by the nodes corresponding to the candidate parent sets
selected to form the optimal DAG. e convexity constraints .
correspond to . and ensure that only one node in each cluster is
selected in the tour.

e main discrepancy is the fact that the scores in a BNSL in-
stance are defined over the nodes of the DAG, while a GTSP instance
evaluates the cost of the edges to be selected. In the GTSP, however,
the choice of the edges is related to the choice of the nodes to be
connected: different sets of edges imply different sets of nodes. e



.. Notes on the model

different objective function direction, once the different evaluation
target is settled, is not an issue, as the objective function of GTSP is
(related to) the dual of the one for BNSL. A proposal for the trans-
formation is the following: since we have to maximize the sum of
negative scores defined over sets of nodes, we assign to each edge of
the GTSP instance a cost computed as the sum of the scores of the
nodes they insist to. en, by considering the opposite of this cost we
have transformed the problem into a minimization problem over the
cost of edges.

We investigate now the connection among the acyclicity constraints
in BNSL and GTSP. Let’s consider a complete model for the struc-
ture learning of aDAGover a graph G = (V, E)with n = |V| nodes,
without any preprocessing, therefore including all of the n × 2n−1

candidate parent set indicator variables (as mentioned earlier, the n2

edge indicator variables can be omitted from this discussion), each
with its score, and all of the acyclicity constraints in it. In order to
translate one instance into another, we have to show that the con-
straints . suffice to define the acyclicity constraints also in a GTSP
instance H = (W, F) with m = |W| nodes partitioned into n clus-
ters of 2n−1 nodes. Constraints . state the following: for every a
subset C ⊂ V, there must be at least one node v ∈ C whose parent
set either lies in V \C or is the empty set (v is a source for the DAG).
In other words, among the candidate parent sets svC for nodes v ∈ C,
at least one must be formed of nodes not included in C. If we assign
a candidate parent set sv for the nodes in V to every node w ∈ W,
it means that in a set of nodes D ⊂ W selected according to some
rules, at least one node w′ ∈ D must be selected in the optimal tour.
ose rules are just the acyclicity constraints.

So far, the conversion is straightforward. However, with this
transformation, the resulting GTSP instance may have an optimal
solution that corresponds to a non-feasible instance of the BNSL
instance. We may consider, at this point, an hybrid model to be
solved with a cutting plane strategy, initially converted into GTSP
and solved until the optimum; then the solution is checked against
the acyclicity constraints for BNSL, the violated ones are added into
the model, and such a procedure iterates until a valid solution for
BNSL has been found.

We have proposed a pathway to follow to link the problem we
are studying in this thesis to a more studied one. However, we have



. A I P 

stopped halfway, and have failed in providing a full, polynomial-time
reduction among them, having found no proof of correctness for our
transformation, but only some intuitions. We still hope to have pro-
vided some support to the intuitions of Koivisto and Sood, and Lar-
ranaga et al., and to the TSP-based approach of Sahai, Klus and Dell-
nitz.

. A cutting-plane algorithm
e number of variables and constraints and their computational re-
quests are factors that have an impact over the performances of a
solver. Of course, the more constraints we add, the more compu-
tation is requested in order to validate the solutions, the more time it
will take to discover and certify an optimal solution. is considera-
tion is the one that leads to the cutting-plane algorithm (see section
..). Since, in practice, only a fraction among all of the constraints
are sufficient to shape a polytope, we obviously want to discover which
are these constraints, and insert only them.

We can start from a relaxated model, without the acycliclicy con-
straints so that, in general, a solution to the relaxated problem may
contain directed cycles. en, with a cutting plane algorithm, we
evaluate the solution, detect the directed cycles, and inject into the
model the cuts that deny such cycles. Pseudocode is given in algo-
rithm .. e question becomes: are there any constraints whose
effect include other constraints, that we can therefore avoid to in-
clude?

A possible solution to this problem is to insert the largest cycles
first; such cycles are “outer” cycles, possibly chordal, but, likely, none
of its edges will be a chord for other cycles. Its chords may then be
oriented with some local method (e.g. the Meek rules). Moreover,
since in general an edge may be part of more than one cycle, orienting
an edge has a cascade effect over multiple cycles, allowing us to prop-
agate the directionality over larger sub-DAGs; this may done with
some custom subroutine, or by let up to the solver. Observe the ex-
ample in figure .: we see that for a cycle connecting a set of nodes
in the skeleton, there may be some chords connecting non-adjacent

ough a LP solver will solve the instance until the optimal solution is found,
unless instructed otherwise.



.. A cutting-plane algorithm

.........

(a)

.........

(b)

.........

(c)

.........

(d)

F .: a set of edges forming cycles for the given set of nodes.
In (a) it is the subgraph obtained in the skeleton, that contains the
three cycles (b), (c), (d).

nodes in the cycle. In the example, we would have  acyclicity con-
straints inserted in the model. However, we may insert only the con-
straint for cycle (b), and the orientation of the chords will follow (in
a custom algorithm, we may adopt for example the Meek rules).

.. Computational costs and considerations
As the problem of structure learning is NP-Hard, we have to carefully
consider the computational issues in order to understand how the new
formulation behaves according to the size of the instances. We con-
sider only the directionality reconstruction, since the MMPC step is
left untouched. In the following analysis, we compute the theoretical
worst-case complexity for each element of the model. In practice, we
expect the MMPC step to heavily trim the search space, in order to
have an overall complexity parameterized in deg(G) instead of |V|.

e objective function . is defined for every possible subset of
nodes, therefore there are O(2|V|−1) candidate parent sets for each
node. Note that this complexity is not far from the O(|V|2|V|) of
dynamic programming algorithms. We have already discussed how to
adopt a lower number of variables, but the upper bound is, of course,
exponential.

Also the constraints . are defined for every candidate parent set,
so their number is exponential. For each of them, we need to add to
the model two upper- and lower-bound constraints .–..



. A I P 

Algorithm .: C    -
  DAG   .
Data: Database D
Result: Optimal DAG for D

 Skel = MMPC(D);
 c = set of scores for candidate parent sets over Skel;
 P = LP model over Skel, c;
 Pr = relaxation of P , w/o source/sink constraints;
 x̂ = solution of Pr;
 if Pr is unbounded or infeasible then
 stop;
 end
 C = set of violated source/sink constraint in x̂;

 while C ̸= ∅ do
 c∗ = most effective cut ∈ C ;
 add c∗ to Pr;
 x̄ = solution of Pr;
 if Pr is infeasible then
 stop;
 else
 x̂ = x̄;
 C = set of acyclicity constraint violated in x̂;
 end
 end
 return x∗ = x̂;

ere is one directionality constraint . per undirected edge,
therefore we need to insert O(|V|2) of them.

ere is also one acyclicity constraint . for every directed cycle
in the graph, therefore we need two constraints for every undirected
cycle. is is the major pitfall: to its consequences and possible (par-
tial) solutions the section .. is dedicated.



.. A cutting-plane algorithm

.. Finding cycles
e number of possible cycles in an undirected graph with n nodes is
(Johnson []):

n

∑
i=1

(
n

n− i + 1

)
(n− i)!,

clearly an intractable quantity for even small instances. However,
while we need to define acyclicity constraints for every cycle in the
skeleton in order to give a complete formulation of the problem, we
have already discussed how we can remove them and add only some
of them as cutting planes; we have also argued that if we add cuts
for some cycles, its chords and adjacent cycles may get oriented by a
cascading effect as well.

Anyway, the computational bottleneck has justmoved to the prob-
lem of finding “large” cycles. Unless P=NP, there is no way of do-
ing such task exactly and efficiently, as it is a modified version of the
 problem of finding a Hamiltonian circuit in a graph, both
directed and undirected (Karp []). us, we have to settle for “suf-
ficiently good” cycles, and trust in some cascading effect. In fact, as
often occurs in practice, we prefer to quickly find some decent cy-
cles, instead of spending too much time for computing the best cy-
cles, since the effect on the subsequent iterations of the cutting plane
algorithm may be negligible.

One idea is to find the chordless cycles of the graph, and add them
as cutting planes. Since all the directionalities of edges in adjacent
cycles must eventually agree, this approach is guaranteed to cover all
the possible cycles in the graph.

Another possible idea is to look for longer cycles. We propose a
simple heuristic to collect cycles up to a certain length l in an undi-
rected graph, to use as subroutine in the cutting plane algorithm. is
heuristic is nothing more than a simple modification of a breadth
first search. To detect if a graph has cycles, one can start from any
node, move to adjacent nodes using a depth search, and stop when
a previously visited vertex is encountered. If this stop happens after
say m steps, the cycle detected would be of length at most 2 · m, or
2 ·m− 1 if the doubly-visited node has been joined for the first time
in the current round or in one of the previous iterations, respectively.
As the depth-first search may not return any cycle if stopped after
some predetermined number of steps, and given that we are inter-



. A I P 

ested in quickly collect some cycles, we prefer to use a breadth-first
search. erefore, if we want to collect cycles of length at most l, we
can allow the search to run for ⌈l/2⌉ iterations. To ensure the al-
gorithm really looks for broad cycles, and not a small chordless one,
we have to overwrite the previous node information after the cycle
has been detected. Note that this may trigger some degenerate be-
haviour, for example when a node being evaluated is part of a clique
with more than three nodes (see for example figure .). e last cy-
cle to be found can be returned to algorithm . as a candidate for
a new cut. We can also choose to return the k longest cycles discov-
ered in this way by keeping a queue of length k, in which storing the
latest longest cycles found (we are not interested in short subcycles,
and our heuristic will not even recognize them). Such procedure is
also trivially parallelizable, by starting from different vertices; having
the skeleton, we could even carefully choose the starting nodes. Note
that while initially such heuristic will be called over the skeleton, in
successive iterations we would have a partially directed graph in hand;
no modifications are however needed in our discussion, since it would
just limit the search space.

Pseudocode for this heuristic is given in algorithm ., under the
name of (k, l)-BFS, short for “breadth-first search that returns up
to k longest cycles of maximum length l”. Of course the “longest”
attribute is just a local property among the discovered cycles, not the
longest cycles in the whole graph. Some details have been left in
general form, such as the queue management (e.g. removal of (k +
1)-th oldest cycle) and the cycle identification (following backward
the prev information while avoiding infinite loops over cliques), as
are considered given subroutines.

Some improvements could be added, for example ensuring that
no cycle is returned more than once, but since this has no effect over
the correctness of the final result, we do not consider them.

In our approach, the (k, l)-BFS algorithm can be used only on
the skeleton, since every edge will be oriented after the first iteration
of the solver. When the graph becomes directed, we have to find an-
other way to solve the separation problem. Note that we cannot use
Tarjan’s algorithm for strongly connected components in a directed
graph (Tarjan []), as the final graph in general has no such com-
ponents. We have already mentioned how we can try to find a path
that, from every node, returns to the same node. at search will be



.. A cutting-plane algorithm

Algorithm .: (k, l)-BFS
Data: G = (V, E), node v, parameters k, l
Result: set of maximum k cycles in G of length up to l

 f rontier = [v];
 max_iters = ⌈l/2⌉;
 curr_iter = 1;
 labels = [1, . . . , |V|];
 prev = [0, . . . , 0];
 Q = queue of length k;
 while curr_iter < max_iters and f rontier is not empty do
 new_ f rontier = [];
 while f rontier is not empty do
 next = extract first element from f rontier;
 for i ∈ neighbourhood(next) do
 if labels[i] == labels[next] then
 // already visited node: insert cycle in Q;
 c = identify cycle;
 insert c into Q;
 else
 // no cycle: continue search on this path;
 labels[i] = labels[next];
 prev[i] = next;
 insert i in new_ f rontier;
 end
 end
 end
 f rontier = new_ f rontier;
 curr_iter = curr_iter + 1;
 end
 return Q;



. A I P 

.........

(a)

.........

(b)
.................

(c)
.....................

(d)

F .: a four-iterations run of the (k, l)-BFS heuristic: black
nodes are the vertices already visited, white nodes are the vertices yet
to be visited, and red nodes are the vertices visited from two or paths,
indicating that a cycle has been found. In (c) and (d) we see the cycles
found (in red). Note that in the original graph there are cycles that
are not found by the heuristic.

......

F .: degenerate case for (k, l)-BFS to take into account for:
starting from the red node, at every iteration each node overwrites
the prev information, ending in an infinite loop.



.. Solving the model efficiently

our separation procedure.

. Solving the model efficiently
A first relaxation by removing acyclicity constraints has already been
exploited, andwe have also provided a cutting plane algorithm to solve
the problem this way. However, the performance of the algorithm
are still highly dependent on a series of factors, among which the
most relevant one is the degree of the nodes in the skeleton, that is
the primary responsible for the number of variables, and therefore
constraints, in the framework. In order to solve the model efficiently,
we need to develop further considerations.

First of all, the pruning strategy devised by De Campos and Ji
([]) finds a large number of candidate parent set that can be ex-
cluded from the search space without further consideration. is is
also very appropriate to our approach of already pruning the search
space by first finding the skeleton.

.. Partial linear relaxation
A node which is connected to k other nodes in the skeleton yields
up to 2k candidate parent sets. In mid-to-large network, a highly
connected node, acting as “hub” for the skeleton, is likely to burden
the model with thousands of parent set indicator variables I(sv → v)
and thousands of constraints relating them to edge indicator variables
I(u → v); the number of edge indicator variables remains instead
much lower, as there are two variables I(u→ v) for every undirected
edge in the skeleton. A model with thousands of integer variables is
likely to take a lot of time and computational resources to be solved;
we can instead solve its linear relaxation and observe the result. We
restrict the continuous relaxation to the candidate parent set indicator
variables, that should be the vast majority; the edge indicator variables
are a limited number, and likely many of them are already ruled out
by the MMPC step.

Recalling figure . we analyze what happens with this relaxation.
e outcome will be a valid DAG, because the acyclicity constraints
are imposed over the edge indicator variables, that are integer. How-
ever, the final DAG will also very likely be suboptimal, because its



. A I P 

computed cost, is (at least partially) composed of fractional contribu-
tions. is is due to the fact that, having linearized the constraints
., we have lost the zero-product property entailed by the edge vari-
ables set to zero. e objective function is therefore driven towards
a vertex of the relaxated polytope, which will not, in general, corre-
spond to a point of the integral polytope. e score computed for
the linear solution is an upper bound for the real optimal score of the
integral solution.

We need therefore to round the fractional variables of the LP so-
lution in order to provide a final integral solution. is is a compu-
tationally hard step, since we are enforcing the integrality property,
which takes responsibility for placing the 0-1 integer linear program-
ming problem in the NP class.e problem is, of course, that each
variable entails a strong dependence over the other variables.

e LP solution will, in general, divide the parent set indicator
variables in three categories: a small number of variables already set to
one, a larger number of variables already set to zero, and the remain-
ing variables being fractional. e edge indicator variables, alongwith
the wink/source variables defined when ruling out cycles, will instead
already be integer, as we have not relaxated them. We can select at
least three different methods for rounding the fractional variables; we
outline them in the following sections, and explain their characteris-
tics. Clearly, the computational time needed varies according to the
quality of the final solution we are going to return..

... Getting CPC variables from the DAG

e first strategy we can choose is to ignore the parent set indicator
variables and note that the edge indicator variables already compose
a valid DAG. We can therefore reconstruct the parent sets, and com-
pute the total score. is recomputed score will be a lower bound
of the optimal integral solution, as it is a valid DAG, otherwise it
would have been ruled out by some cutting plane, but we cannot, at
this point, state its optimality (in fact, in general it won’t be the case).
Of course, we have ignored the CPC variables of the LP solution, but
their connection with this DAG-based solution is easily seen: this so-
lution will contain the candidate parent set variables that were already
chosen in the LP solution, otherwise a different, better, fractional or



.. Solving the model efficiently

integer configuration would have been selected, with a different set of
edges imposed in the DAG.

... Iterated exhaustive rounding

en, another idea we can try is to impose the integrality condition
over the fractional variables of the LP solution, and solve again the
model. What will happen is that the score will be lower than the pre-
vious one, as we have enforced a more constrained configuration, but
the solution, in general, will also contain other fractional variables.
e set of edge indicator variables may be the same than the set at
the previous step, or may vary. We then compose the CPC variable
set from the DAG, as before. is procedure can be iterated until no
more fractional variables are present in the linear solution, yielding a
complete evaluation of the search space.

Preliminary experimental evaluations show that while the cost
computed with the linear relaxation always decreases towards the real
optimal cost, the recomputed network at some generic iteration may
have a cost that is worse than a previously found DAG. is yields
worse results along with unnecessary computation, and we want to
avoid it. e solution we can adopt is to simulate a tabu list (see
Glover, Laguna, et al. []) by adding a constraint that denies that
worse solution. We have two possibilities: to forbid the combina-
tion of the CPC indicator variables, or to forbid the combination of
edge indicator variables. We prefer the second hypothesis, as a more
powerful cut of integer solutions, while the first possibility is just a
fractional cut, much less effective in practice. Formally, the cut we
add is

∑
(u→v)∈EDAG

I(u→ v) < |EDAG|, (.)

meaning that the sum of edge indicator variables for the selected edges
in the DAG (EDAG) must be lower than the number of edges in the
DAG; that is, the successively computed DAG will contain at least
a different edge. If we restrict the candidate parent sets variables in-
volved to be integer, this constraint also implies the constraint over
the parent set indicator variables, because, as at least one edge is sub-
ject to change, then at least one candidate parent set is going to be
ruled out. Every improving solution gets stored as incumbent. We
can keep the size of the tabu list, the tabu tenure, as infinite, meaning



. A I P 

that we never remove this last constraint from the model. is also
maintains an anytime condition for the algorithm, that is, at each mo-
ment the algorithm can return the best network discovered up to that
moment.

At each iteration the problem will also be more difficult than the
problems in the previous iterations, thanks to the higher number of
variables required to be integer, and the higher number of constraints
that will be added if the LP solver finds other cycles. Moreover, we
are not guaranteed that the changes immediately improve the quality
of the network, that is, its similarity to the network that would be
found by an exhaustive algorithm, or by a sound algorithm with an
infinite amount of data.

What we see from preliminary tests is that imposing the inte-
grality condition over the fractional values in many cases leads the
LP solver to discard those variables setting them to zero, and choose
different variables, in general in fractional form, that were previously
unselected. us, this iterated integrality enforcement pushed the
objective function around the search space.

A high-level pseudocode for the oulined method is given in Al-
gorithm .. By stopping the algorithm at a different condition, for
example after a given amount of time, or when a given gap between
the linear solution upper bound and the integral solution lower bound
is reached, we can return the best network we have at hand, that is, a
suboptimal DAG.

.. Computational techniques
Apart from the ILP-based relaxations proposed so far, we note that
the cutting plane algorithm requires to solve from scratch a model
once it has been strengthened with the addition of cutting planes.
is is computationally expensive, first because we require the solver
to evaluate all the polytope again, even to move to an adjacent ver-
tex, and then because the model we ask to solve is increasingly heavy
iteration after iteration, thanks to the cuts added. In particular, the
by iterating this procedure until the optima solution is found, all we
do is to perform a huge, unnecessary amount of work only to solve, at
the last step, just the original, unrelaxated model. is is rational only
if we plan to perform few iterations of the cutting plane algorithm,



.. Solving the model efficiently

Algorithm .: I  
 .
Data: Problem model
Result: Integral solution

 initialize problem;
 solve the linear relaxation of the model;
 let x̃ the solution obtained;
 best_solution = x̃;
 STOP = false;
 repeat
 x̂ = get_CPCs_from_DAG(x̃);
 if Score(x̂) < Score(best_solution) then
 enforce integrality over fractional variables;
 else
 best_solution = x̂
 end
 if x̃ has fractional components then
 enforce integrality over fractional variables;
 else
 STOP = true;
 end
 solve the modified model;
 let x̃ the solution obtained;
 until STOP;
 return best_solution;

in order to find a feasible solution, while maintaining an anytime be-
haviour for the algorithm.

We can therefore take advantage of the advanced possibilities of-
fered by some modern LP solvers, in particular the callback system.
Callback functions are methods that are invoked by a system when-
ever a certain condition is met, for example the click of the mouse
in the browser by the user, or an error that has to be corrected. In
our context, we can choose to invoke a method for finding cutting
planes whenever a better feasible solution is found, with the lazy con-
straint callbacks. From the geometric point of view, this corresponds
to prune the incumbent vertex and move to a (possibly near) vertex



. A I P 

without needing to travel all the polytope. From the optimization
point of view, instead, this means to discover a feasible, generally sub-
optimal solution and strengthen it little by little, thus raising the lower
bound up to the optimal value, in contrast with the original approach
that consists in finding an upper bound and lowering it by means of
cutting planes. e theoretical justification for this system is the dual-
ity property of linear programming (section ..). Figure . shows
a example of how callbacks work, compared with iterative solving.

In practice, it suffices to implement algorithm . using callbacks,
relaxating themodel only by removing the acyclicity constraints, with-
out any further linear relaxation.



.. Solving the model efficiently

..

F .: geometric effect of lazy constraint callbacks compared
with iterative solving in a polytope in R2. e original polytope is
the inner polygone with white integer points, while the outer figure is
the relaxated polytope. Callbacks (red arrow) allow to travel directly
from an integral feasible solution inside the original polytope to a
better one, and cutting planes are used to push forward the objective
function. e iterative solving procedure (blue arrow) instead looks
for points in the relaxated polytope, and uses cutting planes to reach
the optimal solution. e main advantage of callbacks is that the
starting point is already known, being the incumbent solution, while
the iterative solving has to discover the incumbent solution every time
by solving the whole model.



Experimental results 

In this chapter we show how the approach developed in chapter 
performs on common test instances. e algorithm has been imple-
mented in the BNSTRUCT package using the R language (R Core
Team []). e ILP solver of choice is CPLEX ., interfaced us-
ing the cplexAPI R package (Gelius-Dietrich []).

All the results are reproducible, as the BNSTRUCT package is
available at https://github.com/magodellepercussioni/bnstruct under the
GNU GPL licence. e dataset have been generated starting from
networks found at http://www.bnlearn.com/bnrepository/, and can be
found at https://github.com/albertofranzin/data-thesis.

We have tried six instances of different sizes, and for each instance
we have generated multiple datasets of ,  and  items.
e instances are ASIA ( nodes, []), CHILD ( nodes, []),
INSURANCE ( nodes, []), ALARM ( nodes, []), HEPAR2 (
nodes, []), ANDES ( nodes, []). e first three are “easy” in-
stances, even solvable by complete search approaches such as dynamic
programming algorithms. e remaining ones are insteadmuch harder,
with also higher in-degree (up to  for both HEPAR2 and ANDES).

We have compared the results obtained by our implementation
based on CPLEX callbacks (see section ..) with the results ob-
tained with the GOBNILP package (http://www.cs.york.ac.uk/aig/sw/
gobnilp/) configured with CPLEX . as LP solver, to evaluate the
two different approaches that use integer programming, and with the



https://github.com/magodellepercussioni/bnstruct
http://www.bnlearn.com/bnrepository/
https://github.com/albertofranzin/data-thesis
http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://www.cs.york.ac.uk/aig/sw/gobnilp/

. E 

MMHC algorithm ([], presented in section .. already imple-
mented into BNSTRUCT) in order to compare the two exact ap-
proaches against a heuristic.

ere are four parameters under evaluation: the score of the final
network, the time needed to obtain it, the Structural Hamming Dis-
tance between the computed network and the original one (a measure
of how much they differ in terms of edges), and the memory alloca-
tion requested. As we have multiple instances for each network, we
report the median result for each parameter. e tests are executed
on a cluster of  DELL PowerEdge M blades, each with  In-
tel Xeon E CPUs (MB Cache, . GHz),  GB of RAM.
Each instance is allowed to run for no more than  hours.

Despite the computational resources exploited, we expect the al-
gorithms to perform well in the easy instances, but also to fail with at
least some of the harder instances.

. Preliminary considerations
We have proposed some different approaches in order to solve the
model described in chapter . However, while theoretically interest-
ing, some of them are not efficient, and, at the current state of our
implementation, are not considered for evaluation. For example, the
linear relaxation of section .. is solved by algorithm. until the
optimal solution, and only at that moment the integrality of the solu-
tion is evaluated; while, by doing this, the algorithm is able to provide
an anytime behaviour, this way is overly cumbersome. erefore, we
evaluate only the callback-based implementation of algorithm ..
We also do not look for long cycles in the beginning, as this is not
convenient with the implementation tested; we do not provide com-
putational evaluation of this here, but supplementary material will be
gradually provided in the dataset repository.

In our implementation, CPLEX is run without the presolve func-
tionalities. Again, we do not show results here as implementation
issues with CPLEX are not the focus of this thesis (but results will be
provided later on the dataset repository), but, oddly, the presolve does
not help at all the solution of the model; indeed, it may heavily slow
down the execution. is is very interesting, because the purpose of
the presolve is to exploit structures in the model in order to reduce



.. Test description

it, and thus to enable a faster resolution; commercial solvers vendors
invest vast efforts in order to develop effective presolving techniques.
We do not know why, with our model, the presolve fails so evidently,
and we have not tested with other solvers, so we cannot say whether
this behaviour is just an unfortunate configuration for CPLEX set-
tings, or there are other reasons.

. Test description
As already mentioned, we evaluate the algorithms over six common
synthetic instances, namely ASIA, CHILD, INSURANCE, ALARM,
HEPAR2 and ANDES. ese instances are chosen to provide a broad
spectrum of test cases: the first two are small, “easy” instances, while
INSURANCE andALARM aremid-sized networks, one easier and one
more difficult to solve, and the last two are big to very big networks,
with also a high in-degree, which raises the difficulty of the task.

For each network, we have generated  datasets with  items,
 datasets with  items, and  datasets with  items, in or-
der to assess different conditions of data availability. Larger datasets
allow the algorithms to behave in a manner that is closer to the ideal
case of infinite data, that is, to clearly infer causality relationships.
A smaller dataset means instead more difficulty in inferring causality
among the variables, and therefore a less efficient work of the statisti-
cal tests; furthermore, big datasets are rare in real-world applications,
so it is interesting to see how each algorithm may perform in a realistic
context.

We choose very standard parameters for our algorithm: theMMPC
step has an α threshold for the G2 test of 0.05, and the scoring func-
tion of choice is BDeuwith anESS of 1 (the same function and setting
of the other two algorithms tested).

MMHC and GOBNILP are tested with their default settings. e
only parameter we set to GOBNILP is the maximum size allowed for
the candidate parent set generation, and we use the values reported by
the authors in the package homepage, or values reported for similar-
sized instances.

As the tests are executed in batch mode, without any interaction,
in case of termination by the server for resource exhaustion we cannot
retrieve any intermediate result. While our implementation still do



. E 

Table .: Real in-degree of the networks used, and in-degree im-
posed for GOBNILP scoring. For the networks whose results are re-
ported at http://www.cs.york.ac.uk/aig/sw/gobnilp/ we have used the
same limitations; for the other instances, we have chosen a limit that
is employed for networks of similar size, such as  for HEPAR2 and 
for ANDES.

Instance size  edges
real max
in-degree

GOBNILP
max in-degree

average
degree

ASIA     
CHILD     .
INSURANCE     .
ALARM     .
HEPAR2     .
ANDES     .

not allow this, GOBNILP does, so we cannot evaluate any solution in
case of premature termination of a GOBNILP process.

For each instance and size, we compare:

• our implementation of algorithm . (EO-CP in what follows,
short for edge orientationwith candidate parents) using callbacks,
run starting from the skeleton computed with the MMPC al-
gorithm;

• the MMHC algorithm, in order to evaluate how an heuristic
approach compares with an exact algorithm over the same start-
ing sparsified skeleton;

• GOBNILP with an upper bound on the cardinality of candidate
parent sets (G-Pa), according to each instance (reported in table
.);

• GOBNILP over the scores computed with MMPC (G-S); in
case of failing of MMPC no results can be provided.

ere are two testings that use GOBNILP, in order to clearly show
the impact of the MMPC step. e execution of GOBNILP without
MMPC is the default one, and the parent set size limitation is the
default approach the authors employ, as we have already discussed



http://www.cs.york.ac.uk/aig/sw/gobnilp/

.. Results

in this thesis, and allows a clear evaluation of the two sparsification
approaches; conversely, showing how GOBNILP performs over the
same set of candidate parent sets of EO-CP and MMHC gives a fair
comparison of the quality of the solution algorithms, as they run over
the same reduced search space.

We observe:

• the score of the final network;
• the Structural Hamming Distance of the final network, com-

pared with the original network. ese two parameters measure
the quality of the solution computed;

• the time needed to compute the network, bounded at  hours;
• the maximal memory occupation of the process. ese two last

parameters measure the resources needed by the algorithm.

e Structural Hamming Distance (SHD) between two graphs G
and H is defined as the number of transformation via edge insertion,
removal or re-orientation (in case of directed graphs) needed to trans-
form G into H. It is therefore a measure of the similarity of the two
graphs.

For each of these metrics we report the median value among the
 results obtained, one for each dataset for every instance and size.
When some of the tests have failed to terminate, we report it with the
explanation. An instance may fail due to time or memory exhaustion;
while the time depends only on the instance, the memory available
depends also on the load of the machine, so memory exhaustions may
happen at different quantities.

. Results
We now report the results obtained for the metrics analyzed. e
tables contain the median value among the results computed for the
successful terminations of each trial.

.. Successful tests
First we show in table . how many trials have terminated success-
fully for each instance, and, if the instance has failed, we explain why
it happened. e failures may be due to time or memory exhaustion.



. E 

Table .: summary of how many trials, among the  for each in-
stance, have terminated succesfully.

Instance  items EO-CP MMHC G-Pa G-S
    

    ASIA
    

    
    CHILD

    
    

    INSURANCE
    

 -   
    ALARM

    
    

    HEPAR2
    

 -  - -
   - ANDES

    

We consider a success the discovery and certification of the optimal
solution (or a local one, for MMHC). In some cases the algorithm
may have determined a solution, but failed to certify it as the opti-
mum. Due to the structure of the tests, this is considered a failure.

is, however, may be a too strict evaluation for a practical con-
text: GOBNILP has an anytime behaviour, and could still provide the
incumbent solution if stopped during the execution. EO-CP has also
a theoretically anytime behaviour, though the current implementa-
tion does not allow to return an intermediate solution.

As it is clear from table . small instances are not an issue for
any of the algorithms. As the size grows, while MMHC still ter-
minates without problems (except one case for ANDES_1000), exact
approaches instead begin to encounter some failures. e problems



.. Results

F .: failure of scoring for HEPAR2_100.

[1] ”- evaluating node 52”

(has 45 possible parents, and therefore up to 3.518437e+13

candidate parent sets to evaluate)

[1] 1

5 / 45

[1] 2

3 / 990

[1] 3

1 / 14190

[1] 4

1 / 148995

[1] 5

1 / 1221759

[1] 6

1 / 8145060

[1] 7

1 / 45379620

[1] 8

1 / 215553195

[1] 9

1 / 886163135

[1] 10

of EO-CP are due to running out of time. For ALARM_100, in 
trials the execution has been terminated during the computation of
the scores for the CPCs, while in the remaining ones it was the edge
orientation part that took too long and was aborted. One instance of
ALARM_1000 also failed, and was terminated when CPLEX got a gap
among the bounds of 0.42% (having therefore a good candidate solu-
tion as incumbent, probably the optimal one, but failed to certify it).
ere were  failures for HEPAR2_100, whose scoring step got stuck
on a node with too many neighbours; in figure . we show what
happened in the scoring step in those cases, where a single subset got
expanded, causing the evaluation of too many other unnecessary par-



. E 

ent sets. As for ANDES_100, all of the trials got aborted during the
scoring step; the one instance of ANDES_1000 that failed, instead,
got terminated during the MMPC step.

GOBNILP instead always returned a solution for all of the datasets
but ANDES. All of the trials for datasets of  and  items,
and the  trials with  items that terminated in advance, got
aborted due to excessive memory demand. Such high requirements
were caused by the development of the branching tree over a high
number of variables (several thousands), despite the fact that the can-
didate parent sets were imposed a maximum size of .

Failures for GOBNILP when run over the scores computed after
the MMPC step are all due to abortion of the scoring step or the
MMPC one, as GOBNILP, otherwise, always returned the optimal
solutions in few instances. Results in terms of score of this setup may
differ from EO-CP because of possible failures of the CPLEX-based
part of EO-CP (thus varying the median value); results in terms of
SHDmay vary for both failures of EO-CP and the fact that theremay
exist multiple solutions with the same score, and GOBNILP and EO-
CP return different solutions of the same score, but with a different
edge combination.

.. Score of the networks
As it is clear from table ., GOBNILP with the limitation on parent
set size is the choice that leads to the best scoring networks for smaller
networks, while EO-CP (and of course GOBNILP ran over the scores
computed after MMPC) usually comes second best. is is to be
expected, since when an algorithm evaluates candidate parent sets of
size at least equal the degree of the original network, the search is,
in practice, complete. e MMPC step, instead, may discard some
true parents and therefore some optimal configurations, resulting in
lower-scoring networks.

As the size of network grows, and so does themaximum in-degree,
while GOBNILP remains the solution that yields the best scores, the
gap with EO-CP narrows. It is interesting that, even if the maxi-
mum in-degree allowed to GOBNILP is lower than the real one, it
still provides better-scoring networks in many cases. is is proba-
bly due to the fact that, while the loss of prospective candidate parent
sets of large size entail a loss of information, and therefore of score,



.. Results

Table .: summary of score (BDeu, ESS=) results, rounded to the
nearest decimal. e higher the better; the best results for each in-
stance are highlighted in bold.

Instance  items EO-CP MMHC G-Pa G-S

 −262.2 −262.3 −243.1 −262.2

 −2384.7 −2384.7 −2280.7 −2384.7ASIA

 −24 046.3 −24 046.3 −22416.8 −24 046.3

 −1472.0 −1483.6 −1466.7 −1472.0

 −12 848.5 −12 848.5 −12848.5 −12 848.5CHILD

 −122900.4 −122 977.6 −122900.4 −122900.4

 −1656.4 −1666.3 −1652.5 −1656.4

 −14 097.3 −14 193.4 −14019.2 −14 097.3INSURANCE

 −132 795.9 −133 138.1 −132562.1 −132 795.9

 - −1279.7 −1241.2 −1241.9

 −10 662.9 −10 806.4 −10589.7 −10 656.9ALARM

 −101 160.2 −108 917.3 −101 160.2 −101065.5

 −3425.5 −3451.5 −3329.5 −3435.6

 −33 190.4 −33 200.7 −33153.3 −33 190.4HEPAR2

 −326 636.2 −326 769.1 −326420.2 −326 633.8

 - −10 764.8 - -
 −98273.7 −99 476.8 - −98273.7ANDES

 −952 502.4 −959 474.9 −944432.3 −952 502.4



. E 
  

ASIA

● ● ●

EOCP MMHC GPa GS−
30

0
−

26
0

−
22

0

EOCP MMHC GPa GS−
26

00
−

24
00

−
22

00

EOCP MMHC GPa GS

−
24

50
0

−
23

50
0

−
22

50
0

CHILD

●
●

●

EOCP MMHC GPa GS−
16

00
−

15
00

−
14

00
● ● ● ●

EOCP MMHC GPa GS−
13

00
0

−
12

80
0

−
12

60
0

●

●

●

●

EOCP MMHC GPa GS

−
14

00
00

−
13

00
00

INSURANCE

EOCP MMHC GPa GS

−
17

00
−

16
00

●

EOCP MMHC GPa GS−
14

60
0

−
14

20
0

EOCP MMHC GPa GS

−
13

55
00

−
13

40
00

−
13

25
00

ALARM

●

EOCP MMHC GPa GS

−
13

50
−

12
50

●

●

●

●

EOCP MMHC GPa GS

−
11

60
0

−
11

00
0

−
10

40
0

EOCP MMHC GPa GS

−
11

50
00

−
10

50
00

HEPAR2

●

●

●

●

●

●

●

●

●

●

EOCP MMHC GPa GS−
36

00
−

34
00

−
32

00

EOCP MMHC GPa GS

−
33

50
0

−
33

20
0

−
32

90
0

EOCP MMHC GPa GS

−
32

75
00

−
32

65
00

ANDES

●

●

●

EOCP MMHC GPa GS−
10

90
0

−
10

75
0

−
10

60
0

EOCP MMHC GPa GS−
10

00
00

−
98

50
0

−
97

50
0

●

EOCP MMHC GPa GS

−
96

50
00

−
95

50
00

−
94

50
00

F .: score results for, left to right in each picture, EO-CP,
MMHC, G-Pa, G-S.



.. Results

this gets amortized by a more complete coverage of the variables with
fewer parent sets, especially if also EO-CP fails to identify correctly
the bigger parent sets (as is the case with HEPAR2 and ANDES). e
errors due to statistical inference show how a conservative test may be
harmful for small instances.

It is also clear how the amount of observed data impacts over the
algorithms based on MMPC: few data yield much unreliable results,
while, as the size of the dataset grows, their performance gets closer
to GOBNILP. GOBNILP, instead, does not perform any statistical
pruning before the executions, and is therefore less susceptible to the
bias that a dataset has when composed of few items.

.. Structural Hamming Distance
In table . we report the results regarding the Structural Hamming
Distance. It is interesting that the table does not reflect the situa-
tion that we obtained for the scores, but instead it shows that EO-
CP algorithm is more performing than its competitors, often yielding
better results than GOBNILP. Especially when the size and complex-
ity of networks grow, the approaches that evaluate (possibly) larger
parent sets according to statistical tests, and therefore according to
the data, significantly outperform GOBNILP for this metric. For
ANDES_10000 the approaches based on MMPC yield up to roughly
half of the errors with respect to the networks discovered byGOBNILP
with the parent set limitation.

Interesting, with smaller datasets the best results are often ob-
tainedwithMMHC, the only approximate algorithm of the lot. With
larger datasets, instead, exact approaches have lower SHD, as ex-
pected since they are sound (see section .).

e discrepancy among tables . and . suggests that the scoring
function may suffer of overfitting issues when the ratio among items
in the dataset and the number of variables in the graph is low. is
issue can be addressed by tuning the ESS in the scoring function,
hence by assuming a different confidence in the prior knowledge.

.. Time performances
In table . we report the timing of the algorithms for the instances
that terminated successfully. Instances that got terminated after 



. E 
  

ASIA

EOCP MMHC GPa GS

2
4

6
8

10
14

●

EOCP MMHC GPa GS

1
2

3
4

5
6

7
8

●

EOCP MMHC GPa GS

1
2

3
4

5
6

7
8

CHILD

●

EOCP MMHC GPa GS

10
15

20
25

●

●

●●

EOCP MMHC GPa GS

3
4

5
6

7
8

9

●

EOCP MMHC GPa GS

1
2

3
4

5

INSURANCE

EOCP MMHC GPa GS

35
40

45
50

●

●

●

EOCP MMHC GPa GS

20
25

30

EOCP MMHC GPa GS

10
15

20

ALARM

EOCP MMHC GPa GS20
30

40
50

●

EOCP MMHC GPa GS

5
10

15
20

25
30

●

EOCP MMHC GPa GS

5
10

15

HEPAR2

EOCP MMHC GPa GS16
0

18
0

20
0

22
0

24
0 ●

EOCP MMHC GPa GS

90
10

0
11

0
12

0
13

0

●

●

EOCP MMHC GPa GS

50
55

60
65

ANDES

EOCP MMHC GPa GS

44
0

46
0

48
0

50
0

●

EOCP MMHC GPa GS19
0

21
0

23
0

EOCP MMHC GPa GS

80
12

0
16

0

F .: SHD results for, left to right in each picture, EO-CP,
MMHC, G-Pa, G-S.



.. Results

Table .: summary of Structural Hamming Distance results with
respect to the original network used to generate the data. e lower
the better; the best results for each instance are highlighted in bold.

Instance  items EO-CP MMHC G-Pa G-S
 6.5 6 7 6.5

 6 6 2 6ASIA
 4 5 1 4

 16 18 19 16
 5 7 7 7CHILD

 2 3 3 2
 46 47 45 47

 23 29 21 24INSURANCE
 12 15 12 12

 - 38 42 30
 7 16 9 6ALARM

 4 15 5 3
 173 171 234 172.5

 101 104 109 101HEPAR2
 56 59 54 56

 - 476 - -
 202.5 232 - 204.5ANDES

 88 106 185 88

hours are therefore not counted. For each algorithm we show the
time spent in the preprocessing (including the MMPC step when
used), the time spent in the actual edge orientation or model solving,
and the total time of the execution of the whole process as measured
by the UNIX time utility.

With small instances, the lenghty part of EO-CP is the MMPC
step, while the actual CPLEX part takes very little time. It turns out
that ALARM is a hard instance for its size, and EO-CP takes signif-
icantly more time than its competitors, especially for small datasets,
where no trial terminated on time. For larger networks, if the pre-
processing is effective the edge orientation takes very little time; the
times for ANDES are the least among the algorithms tested.



. E 

Table .: summary of time needed for solving the instances, the
lower the better.

E
O

-C
P

M
M

H
C

G
-P

a
G

-S
In

sta
nc

e


ite
m

s
T
p

[s
]

Ts
[s
]

T
t[

s]
T
p

[s
]

Ts
[s
]

T
t[

s]
T
p

[s
]

Ts
[s
]

T
t[

s]
T
p

[s
]

Ts
[s
]

T
t[

s]




0.
77

6
0.

01
0.

78
4

0.
05

5
0.

01
5

0.
07

2
0.

04
0.

02
4

0.
06

4
0.

78
6

0.
03

7
0.

82
3




0.
79

4
0.

01
0.

80
9

0.
05

7
0.

02
3

0.
08

1
0.

07
0.

03
8

0.
11

0.
80

4
0.

04
0.

84
4

A
S
IA





0.

91
1

0.
01

0.
91

8
0.

08
3

0.
04

7
0.

12
4

0.
24

0.
14

9
0.

38
7

0.
92

1
0.

04
1

0.
96

2



2.

46
2

0.
13

2.
57

2
0.

13
5

0.
20

4
0.

34
3

0.
05

0.
16

0.
20

7
2.

52
2

0.
04

8
2.

57



2.

30
9

0.
25

2.
56

4
0.

46
4

0.
21

5
0.

68
2

0.
13

0.
32

2
0.

44
9

2.
36

9
0.

03
9

2.
40

8
C
H
IL
D





12

.2
43

0.
56

12
.8

12
9.

73
1

0.
4

10
.1

82
0.

9
1.

43
5

2.
33

12
.3

03
0.

04
3

12
.3

13



28

.1
38

15
.5

3
81

.1
89

0.
46

2
0.

87
1

1.
32

4
0.

27
0.

43
4

0.
72

2
28

.2
98

0.
04

4
28

.3
42




2.
12

6
2.

18
4.

49
9

0.
86

4
0.

54
4

1.
43

1.
01

0.
97

2.
00

9
2.

26
6

0.
04

1
2.

30
7

IN
S
U
R
A
N
C
E





13

.9
32

2.
23

16
.7

25
11

.5
48

1.
23

3
13

.1
48

8.
63

4.
72

13
.3

23
14

.2
12

0.
04

9
14

.2
61




-
-

-
1.

58
8

2.
50

2
3.

92
5

5.
13

1.
13

5
6.

33
1

15
29

8.
1

0.
21

9
15

29
8.

31
9




6.
38

90
01

.2
05

90
13

.4
54

2.
12

2
1.

13
3

3.
23

1
5.

89
2.

80
1

8.
91

1
7.

24
0.

06
2

7.
30

2
A
L
A
R
M





32

.0
76

13
05

.4
2

13
35

.3
28

25
.8

84
1.

58
4

27
.2

7
70

4.
62

15
.8

67
72

0.
31

8
34

.0
06

0.
06

4
34

.0
7




13
4.

86
2

1.
71

13
7.

09
2

13
.9

5
10

.0
65

24
.0

71
58

6.
77

10
.3

14
59

7.
21

2
13

4.
94

2
0.

04
55

13
4.

98
7




72
0.

55
0.

24
72

0.
98

11
12

.1
22

3.
78

2
11

17
.1

94
0.

66
26

.8
83

27
.5

8
72

0.
63

0.
04

5
72

0.
67

5
H
E
P
A
R
2





24

1.
92

1
1.

22
24

3.
39

1
22

5.
04

1
5.

22
8

23
0.

20
5

3.
83

18
4.

19
7

18
8.

27
6

24
2.

07
1

0.
07

1
24

2.
14

2



-

-
-

83
9.

98
5

28
4.

84
8

11
68

.0
35

-
-

-
-

-
-




20
23

.2
6

1.
72

20
24

.4
95

20
42

.3
41

18
5.

75
35

22
37

.0
49

5
-

-
-

20
25

.8
55

0.
06

1
20

25
.9

16
A
N
D
E
S





23

4.
15

7
2.

44
23

6.
29

7
23

7.
16

5
24

1.
44

8
47

4.
79

4
26

18
0.

43
25

4.
81

7
20

49
6.

39
7

23
4.

68
7

0.
12

5
23

4.
81

2



.. Results
  

ASIA

●

●●

●●●
●

●

EOCP MMHC GPa GS

0.
0

0.
5

1.
0

1.
5

2.
0 ●●

●●

●

●

●

●

EOCP MMHC GPa GS0.
0

0.
2

0.
4

0.
6

0.
8

●

●

●

●

EOCP MMHC GPa GS0.
0

0.
2

0.
4

0.
6

0.
8

CHILD

●

●

●

● ●

EOCP MMHC GPa GS

0
5

10
15

20

●

EOCP MMHC GPa GS

0
1

2
3

4

●

●

●●

EOCP MMHC GPa GS

0
5

10
15

INSURANCE

●

● ●●

EOCP MMHC GPa GS

0
50

10
0

15
0

●●●

EOCP MMHC GPa GS0.
0

1.
0

2.
0

●●

EOCP MMHC GPa GS

0
5

10
15

20

ALARM

●●

●

EOCP MMHC GPa GS

0
1

2
3

4

●

●

●

●

EOCP MMHC GPa GS

0
5

10
15

20

●
●

●

EOCP MMHC GPa GS

0
10

20
30

40

HEPAR2
●

●

●● ●

EOCP MMHC GPa GS

0
50

0
15

00
25

00

●

●

●

●

●

●

●

●●

EOCP MMHC GPa GS

0
20

00
40

00
60

00

●

●

EOCP MMHC GPa GS

0
50

15
0

25
0

ANDES

●

EOCP MMHC GPa GS50
0

10
00

15
00

20
00

●

●

●

●

●

●

●

EOCP MMHC GPa GS

0
10

00
0

30
00

0

●

●
●

●

●
●

●●

●

●●●

EOCP MMHC GPa GS

0
50

15
0

25
0

F .: preprocessing time results for, left to right in each picture,
EO-CP, MMHC, G-Pa, G-S.



. E 
  

ASIA
●

●

●

●

●●

●

EOCP MMHC GPa GS0.
00

0.
04

0.
08

●

●

●

●

EOCP MMHC GPa GS0.
00

0.
10

0.
20

●●●
●

●

●

●

EOCP MMHC GPa GS

0.
0

0.
5

1.
0

1.
5

2.
0

CHILD

●

●

●

EOCP MMHC GPa GS

0.
1

0.
2

0.
3

0.
4

EOCP MMHC GPa GS

0.
1

0.
2

0.
3

0.
4

●

●

●

●

EOCP MMHC GPa GS0.
0

0.
5

1.
0

1.
5

INSURANCE

● ●●

EOCP MMHC GPa GS

0
50

10
0

15
0 ●

●

●

●

EOCP MMHC GPa GS

0
1

2
3

4
5

6

●

EOCP MMHC GPa GS

0
2

4
6

8
10

ALARM
●
●

●
●

●

●

●

EOCP MMHC GPa GS

5
10

15
20 ●

●● ●

EOCP MMHC GPa GS

0
20

00
0

50
00

0

●

●

●

●

●

EOCP MMHC GPa GS

0
10

00
0

25
00

0

HEPAR2

●●● ●

●

●

●

EOCP MMHC GPa GS

0
50

00
15

00
0

●

●

EOCP MMHC GPa GS

0
1

2
3

4
5

6

EOCP MMHC GPa GS

0
2

4
6

ANDES

●

●

EOCP MMHC GPa GS

25
0

30
0

35
0

40
0

●

●

●

EOCP MMHC GPa GS

0
50

10
0

20
0

● ●

EOCP MMHC GPa GS

0
20

00
0

40
00

0
60

00
0

F .: edge orientation time results for, left to right in each
picture, EO-CP, MMHC, G-Pa, G-S.



.. Results
  

ASIA

●

●

●

●

●

●

EOCP MMHC GPa GS

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

●

●

●
●

●

●
●

EOCP MMHC GPa GS

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

EOCP MMHC GPa GS0.
0

0.
5

1.
0

1.
5

2.
0

CHILD

●

●

●

● ●

●

●

●

EOCP MMHC GPa GS

0
5

10
15

20

EOCP MMHC GPa GS

1
2

3
4

●

●

EOCP MMHC GPa GS

5
10

15
20

INSURANCE

●

●● ●●

●

EOCP MMHC GPa GS

0
50

15
0

25
0

●

EOCP MMHC GPa GS

2
4

6
8

●

EOCP MMHC GPa GS

10
15

20

ALARM
●
●

●

●

●

●

●

EOCP MMHC GPa GS

5
10

15
20

●

● ●●●

EOCP MMHC GPa GS

0
20

00
0

50
00

0

●

●

●

●

EOCP MMHC GPa GS

0
10

00
0

25
00

0

HEPAR2

●

●

●

●

●●

●

EOCP MMHC GPa GS

0
50

00
15

00
0

●

●

●

●

●

●

●

●

●

●

●

EOCP MMHC GPa GS

0
20

00
40

00
60

00

●

●

EOCP MMHC GPa GS

0
10

00
20

00
30

00

ANDES

●

●

EOCP MMHC GPa GS

0
10

00
0

20
00

0
30

00
0

●

●

●

●

●

●

●

EOCP MMHC GPa GS

0
10

00
0

30
00

0

●●●● ●●●

●

●

●

●

●●

EOCP MMHC GPa GS

0
20

00
0

50
00

0

F .: overall time results for, left to right in each picture, EO-
CP, MMHC, G-Pa, G-S.



. E 

e speed of the preprocessing is related to the size of the datasets:
a more effective statistical test yields a slower MMPC step, but the
sparser networks it entails allows a much faster scoring of candidate
parent sets, which is a true bottleneck for the tests with  items.
ere are some discrepancies among the values for EO-CP andMMHC:
for example, for some large networks the preprocessing for EO-CP
takes some noticeable less time than the MMCP for MMHC, which
is a bit odd. A possible explanation for this lies in the fact that the
load on the shared machine employed for the tests may have slown
down some tests; as the instances were ran in parallel, the same delay
impacted many of the trials.

GOBNILP with limitation on CPC size is instead much faster for
small instances. Conversely, as the number of nodes in the network
grows, the bound over the CPC size does not prevent the insertion in
the model of a consistent amount of variables that heavily burden the
resolution. For the ANDES network there are 223× 223× (223

2) ≈
1, 23× 109 candidate parent sets to evaluate, a process that takes sev-
eral hours. e model solving is also quite time consuming, due to
the many variables in the model.

More emphasis on the impact of the number of variables over
the computational resources requested is given by the comparison
with the behaviour of GOBNILP when fed with the scores precom-
puted after MMPC: with the exception of ANDES_100, for which
the MMPC+scoring step exceeds the  hours limit, it takes instants
to solve every instance, even the largest ones. is is indeed a corrob-
oration of the goodness of the model employed by Cussens, since it
runs even faster than the HC heuristic, with exact results.

.. Memory allocation
Table . contains the median values for the memory demand of the
algorithms. Missing values (except for G-S for ANDES_100 where
the algorithm was not ran) indicate that the execution terminated so
quickly that it was not possible to measure the memory usage, and
may therefore be viewed as the less demanding solutions.

e MMPC step and the HC algorithm have low memory re-
quirements, almost constant with respect to the size of the instance.
e solutions based on LP solving, instead, require a higher amount



.. Results
  

ASIA

EOCP MMHC GPa GS10
0

20
0

30
0

40
0

50
0

●

EOCP MMHC GPa GS

40
0

42
0

44
0

46
0

●

●

EOCP MMHC GPa GS

20
0

30
0

40
0

50
0

CHILD
●

●●

●

●

●

EOCP MMHC GPa GS10
0

30
0

50
0

●

●●

●

●

●

●

●

EOCP MMHC GPa GS

40
0

50
0

60
0

70
0

80
0

EOCP MMHC GPa GS

30
0

50
0

70
0

INSURANCE

●●

●

●●●

●

EOCP MMHC GPa GS

50
0

10
00

15
00

20
00

●

●

●

●●

●●●●●

EOCP MMHC GPa GS

20
0

40
0

60
0

80
0

●

●

EOCP MMHC GPa GS

20
0

40
0

60
0

80
0

ALARM

●●●●

●
●

EOCP MMHC GPa GS

0
20

00
40

00
60

00

●

●●

●●●

EOCP MMHC GPa GS

50
0

15
00

25
00

35
00

●

●

●

EOCP MMHC GPa GS

50
0

10
00

20
00

HEPAR2
●●●●

●

●

EOCP MMHC GPa GS

50
0

15
00

●

●

EOCP MMHC GPa GS

20
0

40
0

60
0

80
0

●●

●

●●●●

EOCP MMHC GPa GS

30
0

50
0

70
0

90
0

ANDES

●●

●

EOCP MMHC GPa GS

0
20

00
0

60
00

0

●
●●●● ●

EOCP MMHC GPa GS

0
10

00
0

25
00

0

●●
●●

●
●

EOCP MMHC GPa GS

0
10

00
0

25
00

0

F .: memory results for, left to right in each picture, EO-CP,
MMHC, G-Pa, G-S.



. E 

Table .: summary of memory requirements for the instances,
rounded to the nearest integer. e lower the better; the best results
for each instance are highlighted in bold.

Instance  items EO-CP MMHC G-Pa G-S
 375 394 - 347

 412 394 - 459ASIA
 413 398 180 350

 414 395 - 464
 416 398 - -CHILD

 431 402 245 350
 894 404 179 185

 871 399 192 -INSURANCE
 880 410 2480 182

 3906 403 231 250
 1384 408 234 196ALARM

 1071 414 1187 192
 824 458 310 184

 425 467 166 183HEPAR2
 538 425 262 -

 426 438 16 481 -
 639 438 16 941 204ANDES

 636 475 11 884 211

of memory to store the entire branching tree they employ. A small
number of variables is a key factor in maintaining low memory re-
quirement. e growth of the branching tree, especially in a struc-
ture as the one of CPLEX, which traverses it in order to find the most
promising nodes to evaluate, implies that a much larger amount of
memory is needed, and thatmore computational time is spent travers-
ing it, without actually solving the instance. is is one of the points
where the limits of the maximum candidate parent set size shows up:
many variables are kept in the model without a real need, burdening
the resolution, as is shown by the different computational results of
ANDES_10000, where the CPLEX part of EO-CP terminated in few
seconds, while its counterpart in GOBNILP sometimes failed to ter-



.. Comments

F .: Evolution of score of the ALARM_10000 network. e
blue line is the primal (lower) bound, and we can see it quickly con-
verges to the optimal value, while the red line is the dual (upper)
bound, which converges much slowly.

minate, getting aborted by the scheduler for memory exhaustion, in
some cases having allocated more than  GB of RAM. e per-
formances of GOBNILP when launched over the candidate parent
sets computed by MMPC strengthen this observation, with the algo-
rithm that terminates in few instants, allocating an almost negligible
amount of memory.

. Comments
First we briefly report (figure .) an example of how a problem is
solved via cutting planes with EO-CP, showing how the upper and
lower bounds converge to the optimal value. Since GOBNILP also
uses CPLEX, it exhibits an analoguous evolution. We report the pic-
ture for ALARM_10000 as an example of the behaviour in a situa-
tion of lengthy computation. For small instances the problem can be
solved at the root node of the branching tree.

In case of a rapid solution the gap closes very quickly from both
the upper and the lower side. When the computation needs more



. E 

time, instead, we note how the optimal solution is indeed discovered
quite quickly, after “few” iterations. It is a very common situation
among the instances, while it may happen in some instances that the
optimal solution is computed in late iterations; in this case, however,
generally the major updates of the lower bound happen in the begin-
ning of the iterations, and later updates are just refinements of the
incumbent value. Mainly, what really takes a lot of time is to lower
the upper bound, in order to close the gap from above. Even when
the instance has been terminated for having exceeded the time limit,
while we cannot confirm the optimality of the incumbent, we can see
that the lower bound has not improved, a sign of the fact that in the
last millions of nodes of the branching tree processed there was no
better feasible solution; therefore, if the solution in hand was not the
optimal one, it was al least a very good one.

e really difficult task is therefore to enhance the upper bound.
It is in fact a normal situation when solving integer programming
problems, where a good dual bound is often more important than a
very good primal bound.

EO-CP has proved to scale well, and has even solved with good
results all of the instances of ANDES with datasets containing 
and  items. is is largely due to the effectiveness of theMMPC
step, that heavily sparsifies the graph and allows the model to be com-
posed of few variables, and therefore few constraints. By contrast,
with few data, the statistical test performs poorly, and, in the given
time, the algorithm has failed even to compute all of the scores for
the variables. It has also to be reported that some instances, such as
ALARM, which are hard for their size, can require significant time
to complete. Furthermore, time performances may vary a lot, heavily
depending on the observed dataset. Smaller instances can be instead
solved even at the root node of the branching tree.

GOBNILP instead performs better on the instances with smaller
nodes and low in-degree. In particular, when the “hypothetical” in-
degree is equal or higher than the real one, the search is effectively
done in a neighbourhood of the optimal solution. For example,GOBNILP
is applied by the authors for pedigree reconstruction [] where the
maximum in-degree is two: in that case, this approach is perfectly

In fact, in minimization problems where costs or scores are positive, it is the
lower bound that requires a long time to reach the optimal value.



.. Comments

sensible, as prior knowledge over the domain ensures the optimal net-
work to be found. is approach, however, proves to be expensive
when scaled up to larger networks: the number of variables in the
model grows up to several thousand for ANDES, resulting in a cum-
bersome branching tree, burdened by a vast amount of unnecessary
variables. Nonetheless, the scores obtained by GOBNILP— when it
terminates — are slightly higher than the scores of the networks com-
puted by EO-CP, even if the networks cannot have nodes with more
than two parents.

e fairest comparison among the two approaches is given by
the results of GOBNILP when fed with the scores computed by the
MMPC step, letting it run over the same variables that EO-CP runs
on. In all of the cases, GOBNILP terminates almost immediately, so
fast that the server in many trials cannot even measure the memory
allocation. As it is clear from the results provided in this chapter,
running the MMPC algorithm as first step of a structure learning
instance allows the power of the model underlying GOBNILP to be
fully exploited, resulting in comparable or better quality results while,
in some cases drastically, reducing the computational demandings.

We can give two main explanations for the difference of perfor-
mance between the twomodels. e first one is that as violated cluster
constraints are searched in the fractional solution, infeasible solutions
can be ruled out at every node of the branching tree; furthermore,
the quest for the most promising cuts helps in keeping the model
as light, hence faster to solve, as possible. e acyclicity constraints
defined over the edge indicator variables are instead evaluated only
when an integral solution is found, a fact that lets the branching tree
grow without any external control, possibly analyzing many invalid
solutions before thay are effectively recognized as cyclic digraphs.

e second main reason is that, by letting the edge indicator vari-
ables and the bounding constraints that connect them to the CPC
variables out of the model, the model is smaller and less constrained,
and therefore easier to solve. e model used by Cussens may be seen
as a restricted version of the more general model we have developed
in this work. All of the information needed to represent the instance
is, of course, contained in both models, but while our model features
both the CPC point of view and the edge point of view and connects
them, the model provided by Cussens only shows the CPC side. e
simplification in the model entails however a more difficult separation



. E 

problem since it is needed to infer the graph and manage acyclicity
constraints using only the CPC variables. However, we have seen this
is not an issue from a practical point of view, at least for the testbed
we have used in this work.

We have maintained the same setting of the MMPC algorithm
for all the tests, but for very small networks it is clear that a com-
plete search can be done over all of the possible candidate parent sets,
as the MMPC step offers no practical avdantage in terms of com-
putational requirements to compensate the loss of information of the
pruning step. It is also clear from the reported results that when few
observations are available a statistical pruning of the space may be
problematic. In case of scarce data the G2 test cannot correctly infer
the connections among the variables, and is forced to keep too many
configurations, as there is no evidence for them to be irrelevant; the
generation of the score becomes, in this case, too lengthy to terminate.
For larger datasets, instead, the data-based pruning is more perform-
ing, and effectively yields a much lower number of variables with re-
spect to the competing approach. On the other hand, the test may
incorrectly discard nodes belonging to the optimal configuration, and
therefore yield a worse network. As happened with ANDES_10000,
a network with original maximum in-degree of , the MMPC step
followed by the BDeu scoring has yield a network with maximum in-
degree never higher than ; GOBNILP, performing a full search over
the candidate parent sets with maximum cardinality of , has discov-
ered networks with higher score.

However, the results for the Structural Hamming Distance show
a different picture, with the approaches performingMMPC that yield
networks more similar to the original ones. is is a clear indication
of how a statistical sieving of the search space may result in networks
more adherent to the real ones than networks discovered after arbi-
trary search space pruning; we can therefore say that the MMPC step
definitely helps us in nearing our final goal. e real effectiveness of
MMPC is however subject to the amount of data at hand. With few
data the statistical inference gives unreliable outcomes, while with lots
of data theMMPC stepmay be a bottleneck for the computation, and
it has happened that some instances have not completed the MMPC
step in the  hours given: the amount of data contributes not only
to the quality of the solution, but also to the time MMPC takes to
complete.



.. Comments

We have compared two integer programming approaches, with
two different ideas of how to cope with the combinatorial explosion
of the number of variables. Looking at the computational results, for
non-trivial networks it seems reasonable to perform statistical testing
when there is enough data to do so; to avoid degenerate cases of CPC
scoring some limitations over the number of parents may be imposed,
but this limitation can be set at a more permissive, and therefore less
arbitrary, level than what is done in the original works we have stud-
ied in section ... An even better setting consists in an “adaptive”
limitation, based on what effectively happens during the scoring step
(see for example figure .: in this case we could decide to stop at a
certain level, while ignoring larger candidate parent sets). As the solu-
tions are however efficient, especially the method used in GOBNILP,
the tests can be made more permissive, with a looser threshold, in or-
der to prevent as much as possible the exclusion of a real connection
among the variables, thus avoiding to discard the optimal network.

When the data is scarce, the statistical tests may even fail to obtain
some results, and therefore a blind (data-independent) pruning may
still be the more viable choice, since the loss of information it entails
is matched by the loss of precision, paired with supplementary work
requested, of the statistical tests.



Conclusions 

In this thesis we have studied the problem of learning a Bayesian
Network structure from a dataset. We have initially described the
Bayesian Networks paradigm and properties, accompanying it with
a brief but complete overview of the basic graph theory, probability
theory and integer programming concepts needed to understand the
remainder of this work.

We have then summarized the state-of-the-art works in the lit-
erature about the problem of Bayesian Network structure learning,
explaining the main approaches followed, with a much deeper focus
on scoring-based methods. We have described the most common
scoring functions used, and have proposed a broad, but still partial,
overview of the principal existing algorithms for the task. As there
are very many algorithms for structure learning, we have been forced
to leave out some of them, reviewing only the most popular ones.
In particular, we have reviewed some recent works based on integer
programming, in which the authors formulate the structure learning
problem as mixed integer programming model and employ optimiza-
tion methods such as gradient descent and branch-and-cut over some
relaxation of the model, in order to solve it in a more efficient way.

As the IP formulations have exponential size, some limitations
have to be imposed on them, in order to cope with medium-to-large
instances. e authors of those works choose to assume a maximum
cardinality for candidate parent sets, in order to stop the combina-



. C

torial explosion entailed by the growth of the number of observed
variables. We have discussed how this limitation is arbitrary and not
based on the observed data, yet it still leads to an unnecessary amount
of variables and constraints in the model, and moved from this con-
siderations in order to develop an alternative solution.

We have therefore borrowed the idea of performing an earlier
statistical sparsification of the search space by discovering a directed
graph called skeleton, which underlies the final DAG we have to find.
While the idea is absolutely general, we perform this statistical test us-
ing the MMPC algorithm. With the skeleton in hand, we can restrict
the scoring, and therefore the number of variables in the IP model,
to a set of candidates that is both smaller and related to the dataset,
overcoming in most cases the shortcomings of the arbitrary limitation
over the size of CPCs. We have also extended the IP model of some
of the previous works, including the notion of edges and connecting
them to the candidate parent sets, maintaining the linearity property
of the model.

We have also discussed how the model we have proposed con-
nects the notion of candidate parent sets with the edges of the DAG,
enabling two different points of view on the problem; our model can
be therefore be seen as underlying many of the existing approaches,
which usually address only one of the two aspects of structure learn-
ing. We have also suggested some connections with other problems,
such as the generalized version of the more studied Traveling Sales-
man Problem.

We have implemented our solution in the BNSTRUCT package,
using CPLEX as LP solver. We have compared our solution against
the GOBNILP package, another IP-based solver, and the MMHC
heuristic. Computational evaluations show that our solution can be
competitive, and for some larger networks even superior, to the de-
fault settings of GOBNILP and MMHC. e MMHC heuristic is
fast but generally yields to the worse networks, even if with few data
it is still very competitive. GOBNILP is very good for smaller in-
stances, but for large instances its sparsification strategy is not very
effective, and is very resource-demanding. e performances of our
algorithm depend on the results of the MMPC step, and therefore on
the amount of observed data. When the datasets have limited size,
the statistical evaluation is less effective, and therefore it yields worse
results. When, instead, the amount of data allows some valid sta-



.. Future directions

tistical inference, our solution shows encouraging results even for the
largest instances of our testset. Quality results show mixed behaviour,
with GOBNILP usually discovering better-scoring networks, but with
larger distance with respect to the original networks. We have also
hybridized our approach by feeding GOBNILP with the outcomes of
the MMPC algorithm: this is probably the winning approach, as the
quality of the IP-based solution it implements can be better exploited
when the model is restricted to a set of candidates more adherent to
the real ones.

Our idea of restricting the search space employing statistical tests
is therefore an effective approach, viable both per se paired with our
model and when embedded into existing frameworks, as we have
proven by making GOBNILP return better results than when run in
its original setting.

. Future directions
As this thesis is based on a novel approach, there are plenty of possibil-
ities for further studies. First, one possibility is to deepen the chance
of improving the existing framework by proper parameter tuning and
code optimization. For example, we have already planned to ana-
lyze the behaviour of the algorithm using different equivalent sample
sizes, different scoring methods, and difference confidence thresh-
olds in the independence tests; moreover, it seems that the separation
procedures can be further enhanced, perhaps by considering different
strategies such as clique discovery. is will, in general, add more cuts
at each step, and it may avoid to consider some infeasible solutions.

e solution implemented using the callbacks is theoretically any-
time, but the implementation currently do not allow this behaviour
to be exploited, so this is surely a feature to add. A more general im-
plementation of the solver, which can use open MIP solvers such as
COIN-OR or GLPK, may also help in making this approach available
for public use.

Another improvement concerns the integration of the existing ap-
proaches into our framework, for example evaluating the impact of
discovering violated cluster constraints in the fractional solution at the
root of the branch-and-cut tree, and possibly in other nodes; as this
means to look for violated constraints in both the fractional and the



. C

integer solutions, a good balancing between the two techniques may
yield better performances. Furthermore, another possible direction is
to study the possibility of integrate the characteristic imset into the
model: while Lindner [] show a connection to the model proposed
in Jaakkola et al. [], the introduction of edge indicator variables,
and their relation with candidate parent set indicator variables, may
enlighten new relationship between the two approaches.

e implementations provided so far heavily rely on the “good
behaviour” of a default CPLEX setting. While this eases the work
of the developer, it also leaves him/her exposed to the impredictable
erraticity of LP solvers. For example, in our setting the CPLEX pre-
solve algorithms heavily slow down the execution, which definitely is
an odd situation whose causes are to be studied. A custom branch-
and-cut strategy, which employs a full battery of cuts at each node, is
therefore a path to explore.

While the previous approaches consider the “full” structure learn-
ing problem as an integer program, we have employed a mixed strat-
egy, limiting the application of MIP techniques to a set of CPCs re-
duced using statistical methods (the model is, however, still valid even
for skeletons composed of complete graphs). However, the MMPC
step for highly interconnected structures can be a bottleneck. Another
possible development is therefore to study if mathematical program-
ming techniques can be applied also in the context of skeleton discov-
ery. A parallel pathway is to consider alternative methods to MMPC
among the solutions already in the literature, such as algorithms for
Markov Blanket discovery.

We have also observed how scoring function outcomes can be
misleading, having better-scoring networks with a much larger dis-
tance from the original network with respect to lower-scoring net-
works, even with large datasets. is is a clear problem, and it is
surely to be studied the possibility of improving the existing scoring
approaches, of developing alternative scoring methods, or even alter-
native approaches to the problem.

In the existing literature on Bayesian Networks structure learning,
few algorithms that consider Dynamic Bayesian Networks exist. It is
straightforward to extend our ILP model to the case of DNB: it just
suffices to consider a larger graph, with a higher number of nodes and
some edges already forbidden, namely the ones going from a level j
to a previous level i < j. However, a naive attempt to directly solve



.. Future directions

such model is clearly infeasible even for very small networks. A future
research of great interest is to develop clever techniques, or alternative
formulations, to enable the possibility of tackling such instances.

In existing IP formulations there is also no room for latent nodes,
and an extension of themodel that considers hidden nodes may there-
fore be of interest.

We solve the reconstruction step in exact form, meaning that the
loss of information is due to the statistical tests in the skeleton discov-
ery. Apart from the already mentioned exploration of different ways
for the task, we may try to apply approximate algorithms or heuris-
tic methods also for the edge orientation step, maybe starting from
a feasible but suboptimal network previously retrieved in some way.
is may help especially in case of huge networks to find.

So far, we have only provided many possible future directions only
considering the existing theory of the IP approaches for structure
learning. e field of mathematical programming is, however, very
rich of advances techniques whose applicability on this problem is up
to study, both for theory and practice. Graph theory may also have
untested tools, and the new connection between edges and candidate
parent sets may suggest to apply some other existing method. As we
have argued our model to be, a posteriori, at the base of many existing
approaches, it is likely that it can be used to study new improvements
to previously proposed algorithms.

We have suggested strong connections to other notorious graph
problems such as the Traveling Salesman Problem in its general for-
mulation, as already noted by other authors. While a direct relation
among the two problems has not been established yet, we hope we
have shed new light on this aspect of structure learning. As the TSP
is one of the most studied problems, a reduction among the two prob-
lems is of great theoretical and practical importance. In that case, fast
techniques for the TSP could be applied also to structure learning,
helping in a more efficient network discovery. Furthermore, as al-
most all of the mathematical programming tools can be applied on
the TSP, not to mention its vast pool of cuts, a direct connection may
bring a deeper understanding of the problem, and a broader portfolio
of techniques to apply.

Finally, as the structure learning of Bayesian Networks is far from
being a closed problem, there is also room for new, alternative solu-
tions, either based on IP formulations or on any other approach.



Bibliography

[] T. Achterberg. Constraint Integer Programming. PhD thesis,
Technische Universität Berlin, .

[] Hirotugu Akaike. Information theory and an extension of the
maximum likelihood principle. In Second international sympo-
sium on information theory, pages –. Akademinai Kiado,
.

[] David L Applegate, Robert E Bixby, Vasek Chvatal, and
William J Cook. e traveling salesman problem: a computa-
tional study. Princeton University Press, .

[] Silvana Badaloni, Francesco Sambo, and Francesco Venco.
Bayesian network structure learning: hybridizing complete
search with independence tests. AI Communications, .

[] Mark Bartlett and James Cussens. Advances in bayesian net-
work learning using integer programming. In Proceedings of
the th Conference on Uncertainty in Artificial Intelligence (UAI
), pages –, .

[] IngoABeinlich, Henri Jacques Suermondt, RMartin Chavez,
and Gregory F Cooper. e ALARM monitoring system: A
case study with two probabilistic inference techniques for belief net-
works. Springer, .

[] Richard Bellman. Dynamic programming. .

[] Timo Berthold, Gerald Gamrath, Ambros M. Gleixner, Ste-
fan Heinz, orsten Koch, and Yuji Shinano. Solving mixed



B

integer linear and nonlinear problems using the SCIP Op-
timization Suite. ZIB-Report -, Zuse Institute Berlin,
Takustr. ,  Berlin, .

[] John Binder, Daphne Koller, Stuart Russell, and Keiji
Kanazawa. Adaptive probabilistic networks with hidden vari-
ables. Machine Learning, (-):–, .

[] ChristopherMBishop andNasserMNasrabadi. Pattern recog-
nition and machine learning, volume . springer New York,
.

[] E Robert Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg,
and Roland Wunderling. Mip: eory and practice—closing
the gap. In System modelling and optimization, pages –.
Springer, .

[] Béla Bollobás. Modern graph theory, volume . Springer,
.

[] John Adrian Bondy and Uppaluri Siva Ramachandra Murty.
Graph theory with applications, volume . Macmillan Lon-
don, .

[] Nader H Bshouty and Lynn Burroughs. Massaging a linear
programming solution to give a -approximation for a gen-
eralization of the vertex cover problem. In STACS , pages
–. Springer, .

[] Wray Buntine. eory refinement on bayesian networks. Pro-
ceedings of the Seventh Conference on Uncertainty in Artificial In-
telligence, :–, .

[] Alexandra M Carvalho. Scoring functions for learning
bayesian networks. .

[] David Maxwell Chickering. Learning bayesian networks is
np-complete. In Learning from data, pages –. Springer,
.

[] David Maxwell Chickering. Learning equivalence classes of
bayesian-network structures. e Journal of Machine Learning
Research, :–, .



Bibliography

[] David Maxwell Chickering. Optimal structure identification
with greedy search. e Journal of Machine Learning Research,
:–, .

[] David Maxwell Chickering and Christopher Meek. Finding
optimal bayesian networks. In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence, UAI’,
pages –, San Francisco, CA, USA, . Morgan Kauf-
mann Publishers Inc. ISBN ---. URL http:

//dl.acm.org/citation.cfm?id=2073876.2073888.

[] David Maxwell Chickering, David Heckerman, and Christo-
pher Meek. Large-sample learning of bayesian networks is np-
hard. e Journal of Machine Learning Research, :–,
.

[] Vašek Chvátal. Edmonds polytopes and a hierarchy of combi-
natorial problems. Discrete mathematics, ():–, .

[] Cristina Conati, Abigail S Gertner, Kurt VanLehn, and
Marek J Druzdzel. On-line student modeling for coached
problem solving using bayesian networks. Courses And
Lectures-International Centre For Mechanical Sciences, pages
–, .

[] Gregory F Cooper and Edward Herskovits. A bayesian
method for the induction of probabilistic networks from data.
Machine learning, ():–, .

[] omas M Cover and Joy A omas. Elements of information
theory. John Wiley & Sons, .

[] James Cussens. Maximum likelihood pedigree reconstruction
using integer programming. In Proceedings of the Workshop on
Constraint Based Methods for Bioinformatics (WCB-), .

[] James Cussens. Bayesian network learning with cutting planes.
arXiv preprint arXiv:., .

[] James Cussens. Bayesian network learning by compiling to
weighted max-sat. arXiv preprint arXiv:., .



http://dl.acm.org/citation.cfm?id=2073876.2073888
http://dl.acm.org/citation.cfm?id=2073876.2073888

B

[] James Cussens, Mark Bartlett, Elinor M Jones, and Nuala A
Sheehan. Maximum likelihood pedigree reconstruction using
integer linear programming. Genetic Epidemiology, ():–
, .

[] Emilie Danna, Edward Rothberg, and Claude Le Pape. Ex-
ploring relaxation induced neighborhoods to improve mip so-
lutions. Mathematical Programming, ():–, .

[] George B Dantzig. Maximization of a linear function of vari-
ables subject to linear inequalities. New York, .

[] Sanjoy Dasgupta. Learning polytrees. In Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, pages
–. Morgan Kaufmann Publishers Inc., .

[] Cassio P De Campos, Zhi Zeng, and Qiang Ji. Structure
learning of bayesian networks using constraints. In Proceedings
of the th Annual International Conference on Machine Learn-
ing, pages –. ACM, .

[] Cassio Polpo de Campos and Qiang Ji. Efficient structure
learning of bayesian networks using constraints. Journal ofMa-
chine Learning Research, ():–, .

[] Luis M De Campos. A scoring function for learning bayesian
networks based on mutual information and conditional inde-
pendence tests. e Journal of Machine Learning Research, :
–, .

[] Luis M de Campos and Juan F Huete. Approximating causal
orderings for bayesian networks using genetic algorithms and
simulated annealing. In Proceedings of the Eighth IPMU Con-
ference, volume , pages –, .

[] Luis M De Campos, Juan M Fernandez-Luna, José A Gámez,
and José M Puerta. Ant colony optimization for learning
bayesian networks. International Journal of Approximate Rea-
soning, ():–, .

[] Rina Dechter and Judea Pearl. Tree clustering for constraint
networks. Artificial Intelligence, ():–, .



Bibliography

[] Marco Dorigo and Gianni Di Caro. Ant colony optimization:
a new meta-heuristic. In Evolutionary Computation, .
CEC . Proceedings of the  Congress on, volume . IEEE,
.

[] Matteo Fischetti and Andrea Lodi. Local branching. Mathe-
matical Programming, (-):–, .

[] Matteo Fischetti andAndrea Lodi. Heuristics inmixed integer
programming. Wiley Encyclopedia of Operations Research and
Management Science, .

[] Matteo Fischetti and Michele Monaci. Proximity search for
- mixed-integer convex programming. Technical report,
Technical Report, DEI, University of Padova (in preparation),
.

[] Matteo Fischetti, Juan José Salazar González, and Paolo Toth.
e symmetric generalized traveling salesman polytope. Net-
works, ():–, .

[] Matteo Fischetti, Andrea Lodi, and Domenico Salvagnin. Just
mip it! In Matheuristics, pages –. Springer, .

[] Nir Friedman, Iftach Nachman, and Dana Peér. Learning
bayesian network structure from massive datasets: the «sparse
candidate «algorithm. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, pages –. Morgan
Kaufmann Publishers Inc., .

[] Maxime Gasse, Alex Aussem, and Haytham Elghazel. An ex-
perimental comparison of hybrid algorithms for bayesian net-
work structure learning. In Machine Learning and Knowledge
Discovery in Databases, pages –. Springer, .

[] Gabriel Gelius-Dietrich. cplexAPI: R Interface to C API of IBM
ILOGCPLEX, . URL http://CRAN.R-project.org/package=

cplexAPI. R package version ...

[] Michel Gendreau and Jean-Yves Potvin. Metaheuristics in
combinatorial optimization. Annals of Operations Research, 
():–, .



http://CRAN.R-project.org/package=cplexAPI
http://CRAN.R-project.org/package=cplexAPI

B

[] Krasimira Genova and Vassil Guliashki. Linear integer pro-
gramming methods and approaches–a survey. Cybernetics And
Information Technologies, (), .

[] Fred Glover, Manuel Laguna, et al. Tabu search, volume .
Springer, .

[] Fred Glover, Manuel Laguna, and Rafael Martí. Fundamen-
tals of scatter search and path relinking. Control and cybernetics,
():–, .

[] Ralph E Gomory. Outline of an algorithm for integer solu-
tions to linear programs. Bulletin of the AmericanMathematical
Society, ():–, .

[] David Heckerman, Dan Geiger, and David M Chickering.
Learning bayesian networks: e combination of knowledge
and statistical data. Machine learning, ():–, .

[] Raymond Hemmecke, Silvia Lindner, and Milan Studený.
Characteristic imsets for learning bayesian network structure.
International Journal of Approximate Reasoning, ():–
, .

[] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex
Analysis and Minimization Algorithms: Part : Fundamentals,
volume . Springer, .

[] Saman Hong. A linear programming approach for the traveling
salesman problem. PhD thesis, JohnsHopkins University, .

[] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina
Meila. Learning Bayesian network structure using LP relax-
ations. In Proceedings of the irteenth International Conference
on Artificial Intelligence and Statistics (AI-STATS), volume ,
pages –. JMLR: W&CP, .

[] Donald B Johnson. Finding all the elementary circuits of a
directed graph. SIAM Journal onComputing, ():–, .

[] Narendra Karmarkar. A new polynomial-time algorithm for
linear programming. In Proceedings of the sixteenth annual ACM
symposium oneory of computing, pages –. ACM, .



Bibliography

[] Richard M Karp. Reducibility among combinatorial problems.
Springer, .

[] Jessica Kasza and Patty Solomon. A comparison of score-based
methods for estimating bayesian networks using the kullback-
leibler divergence. arXiv preprint arXiv:., .

[] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Neural Networks, . Proceedings., IEEE International Con-
ference on, volume , pages – vol., .

[] Leonid G Khachiyan. Polynomial algorithms in linear pro-
gramming. USSR Computational Mathematics and Mathemat-
ical Physics, ():–, .

[] Scott Kirkpatrick, D. Gelatt Jr., and Mario P Vecchi. Opti-
mization by simulated annealing. science, ():–,
.

[] Mikko Koivisto. Advances in exact bayesian structure dis-
covery in bayesian networks. arXiv preprint arXiv:.,
.

[] Mikko Koivisto and Kismat Sood. Exact bayesian structure
discovery in bayesian networks. e Journal of Machine Learn-
ing Research, :–, .

[] Daphne Koller andNir Friedman. Probabilistic GraphicalMod-
els. MIT Press, .

[] Ailsa H Land and Alison G Doig. An automatic method of
solving discrete programming problems. Econometrica: Journal
of the Econometric Society, pages –, .

[] Gilbert Laporte and Yves Nobert. Generalized traveling sales-
man problem through n-sets of nodes-an integer programming
approach. Infor, ():–, .

[] Pedro Larranaga, CindyMHKuijpers, RobertoHMurga, and
Yosu Yurramendi. Learning bayesian network structures by
searching for the best ordering with genetic algorithms. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, ():–, .



B

[] Steffen L Lauritzen and David J Spiegelhalter. Local com-
putations with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological), pages –, .

[] Charles E Leiserson, Ronald L Rivest, Clifford Stein, and
omas H Cormen. Introduction to algorithms. e MIT press,
.

[] Silvia Lindner. Discrete Optimisation in Machine Learning:
Learning of Bayesian Network Structures and Conditional Inde-
pendence Implication. PhD thesis, München, Technische Uni-
versität München, Diss., , .

[] John DC Little, Katta G Murty, Dura W Sweeney, and Car-
oline Karel. An algorithm for the traveling salesman problem.
Operations research, ():–, .

[] Zhifa Liu, Brandon Malone, and Changhe Yuan. Empirical
evaluation of scoring functions for bayesian network model se-
lection. BMC bioinformatics, (Suppl ):S, .

[] Andrea Lodi. e heuristic (dark) side of mip solvers. In Hy-
brid Metaheuristics, pages –. Springer, .

[] Brandon Malone, Changhe Yuan, Eric A Hansen, and Susan
Bridges. Improving the scalability of optimal bayesian network
learning with external-memory frontier breadth-first branch
and bound search. arXiv preprint arXiv:., .

[] Vittorio Maniezzo, omas Stützle, and Stefan Voß.
Matheuristics: hybridizing metaheuristics and mathematical pro-
gramming, volume . Springer, .

[] Christopher Meek. Causal inference and causal explanation
with background knowledge. In Proceedings of the Eleventh con-
ference on Uncertainty in artificial intelligence, pages –.
Morgan Kaufmann Publishers Inc., .

[] Christopher Meek. Graphical Models: Selecting causal and sta-
tistical models. PhD thesis, PhD thesis, Carnegie Mellon Uni-
versity, .



Bibliography

[] George L Nemhauser and Laurence A Wolsey. Integer and
combinatorial optimization, volume . Wiley New York, .

[] Teppo Niinimaki and Pekka Parviainen. Local structure dis-
covery in bayesian networks. arXiv preprint arXiv:.,
.

[] Charles E Noon and James C Bean. An efficient transforma-
tion of the generalized traveling salesman problem. Ann Arbor,
:–, .

[] Agnieszka Onisko. Probabilistic causal models in medicine: Ap-
plication to diagnosis of liver disorders. PhD thesis, Ph.D. disser-
tation, Institute of Biocybernetics and Biomedical Engineer-
ing, Polish Academy of Science, Warsaw, .

[] Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding opti-
mal models for small gene networks. In Pacific symposium on
biocomputing, volume , pages –, .

[] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut
algorithm for the resolution of large-scale symmetric traveling
salesman problems. SIAM review, ():–, .

[] Judea Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann, .

[] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, . URL http://www.R-project.org/.

[] Jorma Rissanen. Modeling by shortest data description. Auto-
matica, ():–, .

[] Sheldon M Ross. Introduction to probability models. Access
Online via Elsevier, .

[] Francesca Rossi, Charles J Petrie, and Vasant Dhar. On the
equivalence of constraint satisfaction problems. In ECAI, vol-
ume , pages –, .



http://www.R-project.org/

B

[] Edward Rothberg. An evolutionary algorithm for polishing
mixed integer programming solutions. INFORMS Journal on
Computing, ():–, .

[] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jiten-
dra M Malik, and Douglas D Edwards. Artificial intelligence:
a modern approach, volume . Prentice hall Englewood Cliffs,
.

[] Tuhin Sahai, Stefan Klus, and Michael Dellnitz. A trav-
eling salesman learns bayesian networks. arXiv preprint
arXiv:., .

[] Alexander Schrijver. Combinatorial optimization: polyhedra and
efficiency, volume . Springer, .

[] Gideon Schwarz. Estimating the dimension of a model. e
annals of statistics, ():–, .

[] Claude Elwood Shannon. A mathematical theory of commu-
nication. ACM SIGMOBILE Mobile Computing and Commu-
nications Review, ():–, .

[] Tomi Silander and Petri Myllymäki. A simple approach for
finding the globally optimal bayesian network structure. arXiv
preprint arXiv:., .

[] Tomi Silander, Teemu Roos, Petri Kontkanen, and Petri Myl-
lymäki. Factorized normalized maximum likelihood criterion
for learning bayesian network structures. .

[] Ajit P Singh and Andrew W Moore. Finding optimal bayesian
networks by dynamic programming. Technical report, CMU,
.

[] Stephen Frederick Smith. A learning system based on genetic
adaptive algorithms. .

[] David Sontag. Approximate Inference in Graphical Models using
LP Relaxations. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer
Science, .



Bibliography

[] David Sontag and Tommi S Jaakkola. New outer bounds on
the marginal polytope. In Advances in Neural Information Pro-
cessing Systems, pages –, .

[] David Sontag, Talya Meltzer, Amir Globerson, Yair Weiss,
and Tommi Jaakkola. Tightening LP relaxations for MAP
using message-passing. In th Conference in Uncertainty in
Artificial Intelligence, pages –. AUAI Press, .

[] DAVID J Spiegelhalter and ROBERT G Cowell. Learning
in probabilistic expert systems. Bayesian statistics, :–,
.

[] Daniel Spielman and Shang-Hua Teng. Smoothed analysis of
algorithms: Why the simplex algorithm usually takes polyno-
mial time. In Proceedings of the thirty-third annual ACM sym-
posium on eory of computing, pages –. ACM, .

[] Peter Spirtes, Clark Glymour, and Richard Scheines. Causa-
tion, prediction, and search, volume . e MIT Press, .

[] SS Srivastava, Santosh Kumar, RC Garg, and PRASENJIT
Sen. Generalized traveling salesman problem through n sets
of nodes. CORS journal, :–, .

[] Milan Studený. On Probabilistic Conditional Independence
Structures. Springer, .

[] Milan Studený. Lp relaxations and pruning for characteristic
imsets. Preprint, .

[] Milan Studený. Integer linear programming approach to
learning bayesian network structure: towards the essential
graph. International Journal of Approximate Reasoning, .

[] Milan Studený and David Haws. Learning bayesian network
structure: Towards the essential graph by integer linear pro-
gramming tools. International Journal of Approximate Reason-
ing, .

[] Milan Studený and Jiří Vomlel. A reconstruction algorithm
for the essential graph. International Journal of Approximate
Reasoning, ():–, .



B

[] Milan Studený and Jiří Vomlel. On open questions in the ge-
ometric approach to structural learning bayesian nets. Interna-
tional Journal of Approximate Reasoning, ():–, .

[] Milan Studený, Raymond Hemmecke, and Silvia Lindner.
Characteristic imset: a simple algebraic representative of a
bayesian network structure. In Proceedings of the th European
workshop on probabilistic graphical models, pages –. Cite-
seer, .

[] Milan Studený, Jiří Vomlel, and Raymond Hemmecke. A ge-
ometric view on learning bayesian network structures. Interna-
tional Journal of Approximate Reasoning, ():–, .

[] Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM journal on computing, ():–, .

[] Jin Tian. A branch-and-bound algorithm for mdl learning
bayesian networks. In Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence, pages –. Morgan
Kaufmann Publishers Inc., .

[] Ioannis Tsamardinos and Giorgos Borboudakis. Permuta-
tion testing improves bayesian network learning. In Machine
Learning and Knowledge Discovery in Databases, pages –
. Springer, .

[] Ioannis Tsamardinos, Laura E Brown, and Constantin F Al-
iferis. e max-min hill-climbing bayesian network structure
learning algorithm. Machine learning, ():–, .

[] Francesco Venco. Structural learning of bayesian networks
using statistical constraints. Master’s thesis, Università degli
Studi di Padova, .

[] Douglas Brent West. Introduction to graph theory, volume .
Prentice hall Englewood Cliffs, .

[] Shulin Yang and Kuo-Chu Chang. Comparison of score met-
rics for bayesian network learning. Systems, Man and Cybernet-
ics, Part A: Systems and Humans, IEEE Transactions on, ():
–, .



Acknowledgements
I thank prof. Silvana Badaloni for being my advisor for this thesis.
I’m of course indebted with dr. Francesco Sambo, who guided me
while letting me freedom of tinkering. I’ve had fun, and learnt a lot.

I need also to thank my coursemates, for the time spent (and the
help with the projects), and my family and friends for support.

Finally, I thank all of those who, inside or outside schools and
university, taught me something. I tried to learn from many.

	List of Figures
	List of Tables
	Introduction
	Theoretical foundations
	General graph theory
	Probability theory
	Hypothesis testing
	Information theory

	Bayesian Networks
	Definition
	BNs and conditional independence
	Properties

	Mixed-Integer Linear Programming
	Theoretical introduction
	Techniques for solving MILPs
	Software for solving MILPs

	Bayesian Network Structure Learning
	Scoring metrics
	General properties
	Bayesian scoring functions
	Information theoretic scoring functions

	Independence tests
	Algorithms
	Dynamic Programming
	Greedy
	Max-min hill-climbing
	Branch-and-bound
	Local learning
	Structure learning as IP problem
	Hybrid methods and other approaches

	Comments
	On the significance of the results

	Alternative Integer Programming formulation
	Reducing the search space
	From sets of nodes to edges
	A family of skeleton-based cuts
	Finding violated cuts

	Notes on the model
	Relations with other problems

	A cutting-plane algorithm
	Computational costs and considerations
	Finding cycles

	Solving the model efficiently
	Partial linear relaxation
	Computational techniques

	Experimental results
	Preliminary considerations
	Test description
	Results
	Successful tests
	Score of the networks
	Structural Hamming Distance
	Time performances
	Memory allocation

	Comments

	Conclusions
	Future directions

	Bibliography

