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LIFE CYCLE BOUNDARIES AND GREENHOUSE GAS EMISSIONS FROM BEEF CATTLE 

Quentin M. Dudley, M.S. 

University of Nebraska, 2012 

Advisor: Adam J. Liska 

Beef cattle are estimated to directly contribute 26% of U.S. agricultural greenhouse gas 

(GHG) emissions, and future climate change policy may target reducing these emissions. 

Life cycle assessment (LCA) of GHG emissions from U.S. feedlot beef cattle was 

conducted to compare methods of the U.S. Environmental Protection Agency (EPA) with 

a more complete evaluation of emissions. The inclusion of emissions from crop 

production for feed, associated land use change, and other minor factors nearly doubled 

GHG emissions associated with beef feedlots from the EPA Annual Inventory estimate of 

1611 kgCO2e hd-1 yr-1 to 3182 ± 167 kgCO2e hd-1 yr-1. Feeding of coproducts from ethanol 

production is estimated to reduce feedlot emissions by 6%. Furthermore, inclusion of 

pasture and land use change emissions from the cow-calf stage of the animal life cycle 

nearly tripled GHG emissions compared to the feedlot LCA (6.0 to 16.67 ± 0.32 kgCO2e 

kg-1 beef). Despite use of expanded system boundaries in the LCA, U.S. beef cattle GHG 

emissions were lower than the majority of previous U.S. and international assessments 

of beef cattle. Nearly a 16-fold range in results can be found for U.S. beef using different 

system boundaries and assumptions. Use of LCA-driven carbon pricing on U.S. beef 

could reduce beef demand and associated beef GHG emissions by 2.7 to 21 Tg CO2e yr-1. 
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Chapter 1: Climate Change Policy and Livestock 

1.1 Greenhouse Gas Emissions from Livestock 

Climate change due to anthropogenic greenhouse gas (GHG) emissions is leading to a 

range of environmental challenges and corresponding mitigation policies (Karl, Melillo, 

& Peterseon 2009).  Global GHG emissions from livestock production were recently 

estimated to be 18% of total anthropogenic GHGs (Steinfeld, Gerber, Wassenaar, Castel, 

& de Haan, 2006), which is roughly equal to emissions from all transportation systems 

globally, although this value has been disputed (Asner & Archer, 2010; Pitesky, 

Stackhouse, & Mitloehner, 2009). Global livestock production accounts for 78% of 

agricultural land, 33% of all crop land for feed, and covers roughly 30% of terrestrial 

area (Steinfeld et al., 2006). Increasing population and rising living standards between 

2000 and 2050 are projected to more than double the demand for meat from 229 

million tonnes per year to 465 million tonnes per year (Steinfeld et al., 2006). In 

conjunction, by 2050, direct GHG emissions from meat, milk, and egg production are 

projected to increase by 39% above year 2000 levels (Pelletier & Tyedmers, 2010), yet 

many technologies may be developed or used to decrease these projected emissions 

levels. 

Although beef cattle are estimated to be a relatively large source of GHG 

emissions, accurate quantification of these GHG has considerable uncertainty due to the 

use of inconsistent system boundaries, timeframes, and metrics (Crosson et al., 2011). 
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The Intergovernmental Panel on Climate Change (IPCC) has defined a methodology for 

estimation and monitoring of national GHG emissions, and these methods form the 

basis for U.S. Environmental Protection Agency (EPA) calculations of livestock emissions 

(IPCC, 2006). Direct emissions from beef cattle production are estimated by the EPA 

based on three localized sources: methane from enteric fermentation, methane from 

manure decomposition, and nitrous oxide from manure (both direct and indirect) (EPA, 

2010a). Cattle also emit signficant amounts of carbon dioxide via respiration and enteric 

fermentation, but these emission sources are not counted by GHG assessment 

methodologies since this carbon originated in feed that was captured from the 

atmosphere via photosynthesis; cattle respiration merely returns this carbon to the 

atmosphere.  

According to the EPA, GHG emissions from beef cattle in the United States 

totaled 110.7 Tg carbon dioxide equivalent (CO2e) in 2008, equivalent to 25.9% of 

emissions from agriculture (EPA, 2010a). These emissions are approximately 1.6% of 

total GHG emissions in the U.S., which is somewhat larger than emissions from the U.S. 

military (Liska & Perrin, 2010). About 72% of all U.S. enteric methane emissions come 

from microbial digestion in the rumen of beef cattle (EPA, 2010a), and manure from 

beef cattle contributes about 43% of manure N2O emissions from all U.S. livestock 

(Table 1; Table 2). 
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Table 1. Livestock emissions of CH4 and N2O in the United States. 

Source: Adapted from EPA (2010a). Chapter 6, Table 6-3 and 6-6 
a Totals may not sum due to independent rounding. 
b Manure CH4 includes emissions from anaerobic digestion 
c Manure N2O includes both direct and indirect emissions 

 

  

 
1990  2008 

Gas/Animal typea Tg CO2 Eq. % of total  Tg CO2 Eq. % of total 

Methane from manure b      

Total U.S. livestock 29.3 100.0%  45.0 100.0% 

Swine 13.1 44.7%  19.6 43.6% 

Dairy Cattle 10.2 34.8%  19.4 43.1% 

Poultry 2.8 9.6%  2.6 5.8% 

Beef Cattle 2.6 8.9%  2.5 5.6% 

Sheep 0.1 0.3%  0.8 1.8% 

Horses 0.5 1.7%  0.1 0.2% 

Nitrous oxide from manure c      

Total U.S. livestock 14.4 100.0%  17.1 100.0% 

Beef Cattle 6.3 43.8%  7.4 43.3% 

Dairy Cattle 5 34.7%  5.5 32.2% 

Poultry 1.5 10.4%  1.8 10.5% 
Swine 1.2 8.3%  1.7 9.9% 

Horses 0.2 1.4%  0.4 2.3% 

Sheep 0.1 0.7%  0.3 1.8% 

Methane, enteric fermentation    

Total U.S. livestock 132.0 100.0%  140.6 100.0% 

Beef Cattle 94.5 71.6%  100.8 71.7% 

Dairy Cattle 32.0 24.2%  33.1 23.5% 

Swine 1.7 1.4%  2.1 1.5% 
Horses 1.9 1.4%  3.6 2.6% 

Sheep 1.9 0.0%  1 0.7% 
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Table 2. Fraction of U.S. emissions for agriculture from beef cattle. 

 

 
U.S. Agr. 2008 U.S. Beef Cattle in 2008 

Gas/Source Tg CO2 Eq. Tg CO2 Eq. Beef, % 

Methane    

Total U.S. agricultural 194.0 103.3 77.3% 

Enteric Fermentation 140.8 100.8 71.7% 

Manure Management 45.0 2.5 5.6% 

Rice Cultivation 7.2 - - 

Field Burning Ag. Residues 1.0 - - 

Nitrous oxide    

Total U.S. agricultural 233.5 7.4 3.2% 

Agricultural Soils 215.9 - - 

Manure Management 17.1 7.4 43.3% 

Field Burning of Ag. Residues 0.5 - - 

Total U.S. agricultural GHG 427.5 110.7 25.9% 

    

 U.S. Total Beef  Beef % 

Total U.S. total GHG emissions 6,956.8 110.7 1.6% 
 

Source: Adapted from EPA (2010a). Executive Summary, Table ES-4; Chapter 6, Table 6-3 & 6-6. 

 

1.2 Existing Climate Change Policies  

Climate change mitigation policies generally do not include livestock GHG emissions. 

The Kyoto protocol is the only climate policy that accounts for livestock GHG emissions 

at this time, and the U.S. is not a participant (IPCC, 2006). Livestock are not included in 

the largest active cap-and-trade system globally, the European Union Emissions Trading 

Scheme which began in 2005 (Ellerman & Buchner, 2007). Other regional cap-and-trade 

systems within the United States, specifically the Regional Greenhouse Gas Initiative in 

the Northeastern states and the Global Warming Solutions Act (AB 32) of California, also 
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do not account for GHG emissions from livestock. The Netherlands imposes some of the 

most extensive air quality requirements for livestock (including odor, particulate matter, 

SOx, NOx, volatile organic compounds, and ammonia), but do not specifically include 

GHG emissions at this time (Melse, Ogink, & Rulkens, 2009). 

Historically, international treaties have been precedents for environmental 

regulatory policies at the national level. For example, the 1987 Montreal Protocol and 

the 1972 London Convention were both responsible for defining U.S. emission levels 

concerning ozone depleting chemicals (e.g. chlorofluorocarbons) and marine waste 

dumping, respectively (Weiss & Jacobson, 1998). In both cases, some U.S. legislation 

preceded international consensus, but once international treaties were in place, U.S. 

law conformed to a more restrictive international standard. The U.S. has yet to formally 

participate in international climate change agreements, but a recent Supreme Court 

decision Massachusetts et al. vs. Environmental Protection Agency on April 2, 2007 

specifically granted the EPA authority under the Clean Air Act to regulate GHG emissions 

(Massachusetts v. EPA, 2007). Indicating the direction of related policy developments, 

the proposed American Clean Energy and Security Act of 2009 (Waxman-Markey bill) 

outlined a national cap-and-trade system and was passed by the U.S. House of 

Representatives, but was not approved by the Senate. 

Based on a U.S. national surveys in 2008 and 2009, “most U.S. citizens believe 

not only that global warming exists but also that it is a serious problem facing the 

nation…[and] most Americans believe that immediate government action is needed to 
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deal with climate change and that governments at all levels of the federal system have a 

responsibility” (Borick, 2010, p. 54). In sum, momentum for climate mitigation and 

potential legislation appears to be growing; thus, discussion concerning the accuracy 

and scope of relevant quantification methodologies is needed to inform future policy. 

1.3 Current EPA Quantification Methodologies 

The EPA uses two methods for estimating GHG emissions. The Inventory of U.S. 

Greenhouse Gas Emissions and Sinks has been calculated annually since 1990 and is 

consistent with the IPCC methods used by the Kyoto protocol (EPA, 2010a). In response 

to the 2007 Supreme Court ruling, the Mandatory Reporting of Greenhouse Gases was 

created in 2009 under the U.S. Consolidated Appropriations Act of 2008 to begin 

comprehensive collection of data needed to inform future regulatory actions (Ellerman 

& Buchner, 2007; EPA, 2012a). The rule requires U.S. GHG emitters across all industries 

to report emissions of more the 25,000 metric tons carbon dioxide equivalent (CO2e) 

per year. The 13,000 total facilities above this threshold encompass 85-90% of U.S. GHG 

emissions, and results of the national survey are now publically available 

(http://ghgdata.epa.gov/ghgp/main.do). The livestock section of the Mandatory 

Reporting rule was effectively eliminated by House Resolution 2996 in Section 425, 

which prohibits the EPA from using fiscal year 2010 appropriations to implement 

subpart JJ (Manure Management) of Part 98 of the Mandatory Reporting legislation 
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(EPA, 2012b). This funding ban was further extended by the Continuing Appropriations 

Act of 2011 (Public Law 111-242).  

1.4 Life Cycle Assessment  

In response to recent trends in climate change policy, there is a need for a more 

complete and accurate understanding of GHG emissions from beef cattle. Life cycle 

assessment (LCA) is a method to determine the full environmental impact of a product 

due to the extended impacts from its supply chain, and it can be used to 

comprehensively estimate GHG emissions. The U.S. Energy Independence and Security 

Act of 2007 currently uses LCA for quantifying GHG emissions from biofuels, and similar 

LCA methods are used in response to California climate policy (Bremer et al., 2010; Liska 

et al., 2009; Liska & Perrin, 2009). With varying results, LCA has recently been applied to 

determine the total GHG emissions from intensive beef cattle production (Beauchemin, 

Henry Janzen, Little, McAllister, & McGinn, 2010; Casey & Holden, 2006; Cederberg, 

Meyer, & Flysjö, 2009; Cederberg, Persson, Neovius, Molander, & Clift, 2011; Cederberg 

& Stadig, 2003; Crosson et al., 2011; de Vries & de Boer, 2010; Gurian-Sherman, 2011; 

Hamerschlag, 2011; Nguyen, Hermansen, & Mogensen, 2010; Ogino, Kaku, Osada, & 

Shimada, 2004; Pelletier, Pirog, & Rasmussen, 2010; Peters et al., 2010; Phetteplace, 

Johnson, & Seidl, 2001; Verge, 2008; Veysset, Lherm, & Bébin, 2010; Williams, Audsley, 

& Sandars 2006). An LCA of GHG emissions from beef cattle includes many emissions 

not directly emitted from the feedlot and not accounted for in current EPA monitoring 
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frameworks. A comprehensive inventory of production inputs within a defined boundary 

is required to estimate all GHG emissions, which includes impacts occurring away from 

facilities. For example, most LCAs of livestock would account for GHG emissions from 

the cropping system that provides cattle feed (Liska et al., 2009). Yet, a standard LCA 

boundary for GHG emissions from beef cattle is currently non-existent, which 

necessitates an extensive investigation of possible significant emissions that may occur 

either directly or indirectly from production. 

Whereas LCAs of beef GHG emissions are not currently used in policy, there is 

also substantial interest in beef GHG emissions for labeling the environmental impact of 

products, as many production and retail companies wish to label “greener” products to 

inform consumers or to add retail value (Fliegelman, 2010). 

1.5 Beef Production Systems 

Beef cattle are dispersed throughout the U.S. to utilize available resources of forage and 

feed grains. Cattle move frequently throughout their life cycle due to the varied 

geography of cow-calf systems, feedlots, and processing locations. Calf populations 

(including dairy steers) are largest in Texas, Missouri, California, and Oklahoma, which 

accounted for ~25% of supply in 2003 (Shields & Mathews, 2003). Roughly half of the 

U.S. beef cow inventory is on rangeland and pastures on the Great Plains, and most 

cattle on feed are concentrated in the Central and Southern Plains where feed grains are 
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abundant. Beef cattle feedlots in Texas, Kansas, Nebraska, and Colorado accounted for 

65% of cattle on feed in 2003 (Shields & Mathews, 2003). 

1.5.1 Beef Life Cycle Phases 

The U.S. EPA defines three separate life cycle phases for cattle production: 1) calves, 2) 

replacements and stockers, and 3) feedlot animals. Most beef cattle (74%) are born 

between February and May, while dairy cattle are calved year round (EPA, 2010b). At 

seven months, a designated number of beef and dairy heifers are chosen as 

"replacements" for breeding and milking, while steers and remaining heifers are fed on 

pasture for ~0-17 months, depending on regional and temporal factors (EPA, 2010b; 

USDA, 2012a), and then transferred to feedlots. Time in feedlots depends on starting 

weights, rates of daily gain, and finishing weights, each of which depends on climate, 

feed sources, management, and other factors. 

1.6 Review of Nitrogen Cycling Mechanisms 

Livestock play a significant role in the global nitrogen cycle, directly and indirectly 

through use of forage and grain crops. This necessitates a basic understanding of global 

nitrogen cycling processes and nitrous oxide (N2O) production. Most of the world’s 

nitrogen is present in the atmosphere as inactive N2; the atmosphere is 78.09% nitrogen 

(dry volume). However, there are two natural processes (biological nitrogen fixation and 

lightning), as well as two artificial processes (fossil fuel combustion and the Haber-Bosch 
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process) which convert N2 to reactive N. Haber-Bosch is an industrial process which 

typically uses natural gas to supply the energy and H2 needed to produce ammonia 

(NH3) from N2 (Smil, 2001). All nitrogen (whether natural or artificial) must be returned 

to the environment at some point; this occurs through a variety of processes, in varying 

amounts and time periods (Figure 1). Of the 170 Tg N yr-1 applied to global cropland, 

70% is lost to the environment, 20% is fed to animals, and 10% is fed to humans; of the 

20% fed to animals, 17% is lost to the environment and only 3% is fed to humans as an 

animal product (Steinfeld, Mooney, & Schneider, 2010). Despite the relatively low 

efficiency of feed conversion by ruminants (e.g. cattle) relative to non-ruminants (e.g. 

swine and poultry), the nitrogen efficiency of beef feeding is generally higher than for 

non-ruminants since most pastures need no artificial fertilizer (Steinfeld et al., 2010). 

However, the precise nitrogen impact of beef is difficult to assess since the distinction 

between artificial and natural N is often arbitrary, metrics are difficult to define, and 

other byproducts besides meat, such as milk and eggs, have nitrogen cycle impacts. 

 Nitrogen flow to the environment is often coupled with transformations 

between oxidation-reduction states of nitrogen which are often mediated by microbes. 

Nitrogen in soil (often in the form of ammonium (NH4
+)), proteins, and nucleic acids is 

generally reduced at the -3 level and is produced from N2 by nitrogen fixing bacteria (or 

the Haber-Bosch process) or from NO3
- via nitrate reduction via bacteria. Within the soil, 

organic materials are converted to ammonium through ammonification (also called 

nitrogen mineralization). Nitrification occurs when NH4
+ is oxidized to NO3

- (a +5 
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oxidation state) by chemoautotrophic bacteria in the Nitrobacteraceae family, as well as 

other heterotrophic organisms. Organic and ammonium forms of nitrogen are generally 

stable within soil; most N loss occurs through leeching of water-soluble NO3
-  (which has 

low anion-exchange capacity with soil) and volatilization of ammonium (NH4
+ ) to the 

volatile gas ammonia (NH3) (which occurs at high pH and in dryer soil) (Connor, Loomis, 

& Cassman, 2011). Volatized ammonia can then be redeposited on soil surfaces and 

subsequently nitrified/denitrified biologically to N2O and other compounds (IPCC, n.d.). 

Additional loss occurs via denitrification, a process by which NO3
-
 is released to the 

atmosphere, where each step is carried out by various heterotrophic bacteria including 

species from the genera Pseudomonas, Bacillus, Thiobacillus, and Propionibacterium in 

the following progression: NO3
- 
 NO2

- 
 NO 

 N2O 
 N2 (Connor et al., 2011). The 

principle end production is N2, but often conditions allow for emission of the 

intermediate N2O. Denitrification is favored by wet, anaerobic conditions and an 

abundant supply of nitrate and available carbon.  

Estimates of livestock’s impact are difficult to quantify since it is impossible to 

track reactive nitrogen as it is input into aquatic and terrestrial ecosystems before being 

denitrified into the atmosphere as N2 and N2O. By one estimate, of 17.7 Tg N year-1 of 

global N2O emissions, agricultural soils are estimated to give off 6.3 Tg N year-1 of N2O, 

where 2.1 is directly from animal waste management systems while synthetic fertilizer 

(0.9), animal waste (0.6), crop residue (0.4), leaching/runoff (1.6), atmospheric 

deposition (0.3) and other sources (0.4) account for the rest (Nieder & Benbi, 2008, p. 
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279). Other studies count cattle and feedlots as contributing 1.0 Tg N year-1 out of 14.9 

Tg N year-1 of global N2O (Nieder & Benbi, 2008, p. 279). Others estimate that 

industrialized animal production systems emit 1.8 Tg (40%) of the 4.5 Tg N-N2O emitted 

globally to the atmosphere (Steinfeld et al., 2010, p. 93). 

Many environmental factors affect the emission of N2O. N2O emission rate is 

generally linearly correlated with N application rate (Nieder & Benbi, 2008). Increasing 

soil water content increases denitrification; reducing O2 concentration also increases 

N2O production (this can be influence by soil texture, tillage, and water content). N2O 

increase with increasing soil temperature and is positively correlated with higher levels 

of organic carbon, as well as in neutral or slightly alkaline soils. No-tillage increases 

denitrification due to higher C levels in topsoil and lower aeration. Conversion of land 

from forest and grasslands to cropland generally increase emission of nitrogen oxides 

while grazing increases N2O from grasslands due to greater availability of inorganic N, as 

well as concentrated urine and dung patches.  

Within the IPCC and EPA nitrous oxide characterization methods, direct N2O 

emissions refer to nitrification and denitrification of manure and urine. Emissions are 

most likely to occur in dry manure handling systems that have aerobic conditions 

(favoring nitrification) with pockets of anaerobic conditions due to saturation (favoring 

denitrification). Additionally, indirect N2O refers to two fractions of nitrogen losses: 

volatilization of ammonia (with redeposition and nitrification/denitrification to N2O) and 

runoff/leaching (with denitrification to N2O) (IPCC, n.d.; EPA, 2010a).  
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Figure 1. Components of the global nitrogen cycle  

 

Fixation amounts are for early 1990s. Adapted from Steinfeld et al., 2010, p. 86. 

1.7 Objectives 

This introduction notes many of the background information necessary to understand 

the complexity of the beef production system. Throughout this study, our objectives 

here are to use quantitative methods to evaluate the beef life cycle in the following 

ways: use industry data to investigate quantitative differences in current EPA 

assessment methods, compare these with LCA methods, and determine the 

contribution of LCA components to total GHG emissions. 
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Chapter 2: Existing GHG Monitoring Frameworks: EPA Methods 

2.1 Feedlot Data from Professional Cattle Consultants 

To characterize U.S. dry feedlots (e.g. those without bedding or confinement), 

proprietary data from the Professional Cattle Consultants (PCC) published in monthly 

newsletters was compiled and analyzed (PCC, 2010). Data from the PCC are defined by 

five U.S. cattle regions, and in this study, data from the North Plains, Central Plains, and 

Corn Belt are used, comprising 11,575,000 steers and 9,635,000 heifers (Figure 2, Table 

3). The North Plains region includes the state of Wyoming, and parts of Colorado, 

Kansas, Montana, Nebraska, North Dakota, and South Dakota. The Central Plains region 

includes parts of the states of Colorado, Kansas, New Mexico, Oklahoma, and Texas. The 

Corn Belt region includes the state of Iowa, Illinois, Indiana, Michigan, Minnesota, 

Missouri, Wisconsin, and parts of Kansas, Nebraska, North Dakota, and South Dakota. 

These surveys included in weight, out weight, average weight, days on feed, average 

daily gain, and dry matter intake (Table 3). 

Figure 2. Map of the Professional Cattle Consultants (PCC) regions in the central U.S.  
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Additional parameter values were used from the literature to describe feedlot 

performance, including energy content of feed dry matter (Vasconcelos & Galyean, 

2007) and energy for maintenance (Table 6) (NRC, 2000). To characterize geospatial 

variability in feedlots, data from the EPA were used for animal mass, volatile solids, 

excreted nitrogen, ambient temperature, methane conversion factor, and fraction of 

nitrogen runoff/leaching (EPA 2010b). The total number of cattle by state was used to 

obtain a weighting factor for each parameter for each PCC region (USDA-NASS, 2012a). 

(Table 4). Due to limited data, variables such as crude protein in the diet, fraction of 

gross energy converted to methane, ratio of net energy for maintenance to digestible 

energy, etc. were held constant throughout the analysis (Table 6). 

 Industry data from these sources will be used within the Mandatory Reporting, 

Annual Inventory, and Life Cycle Assessment sections of this analysis; see tables 

associated with each section for specific values and assumptions. 
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a Region areas from Figure 2 were analyzed with Image J software, ratio of pixels was compared  
b (16)   
c Texas, Percent of cattle in Central Plains is approximately 80% (based on approximation based 
on data from (16)); Avg temp is for Amarillo,TX to better represent northern region 
d http://www.esrl.noaa.gov/psd/data/usclimate/tmp.state.19712000.climo  
e (14) 

 

2.2 EPA Mandatory Reporting 

To gather GHG emissions data relevant for future climate policy, the Mandatory 

Reporting rule attempts to quantify all facility-level sources of emissions greater than 

25,000 Mg CO2 per year. The following equations define the approach (EPA, 2009). 

Methane from Manure Management: 
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Total Emissions from Mandatory Reporting Methodology: 

                                 
                

    
 

 [                                   ]  [                        ] 

 

For beef cattle feedlots in the North Plains, Central Plains, and Corn Belt, 

relatively consistent results occurred when data from the EPA, PCC, and American 

Society of Agricultural and Biological Engineers (ASABE) were applied to Mandatory 

Reporting equations and assumptions (Figure 3; Table 5). The use of PCC industry 

assumptions produced an emissions average for the combination of steers and heifers 

at 300 kg CO2e per head per year, with large variability due to animal mass and excreted 

nitrogen ranging from 290 to 433 kg CO2e per head per year. Comparatively, the 

average using EPA values was 526 kg CO2e hd-1 yr-1 and ASABE data values totaled 600 

kg CO2e hd-1 yr-1 (Table 5). Using industry values, emissions from heifers (286 kg CO2e hd-

1 yr-1) were lower than for steers (314 kg CO2e hd-1 yr-1) due to steers weighing more. 

Conversely, EPA values indicate heifers (542 kg CO2e hd-1 yr-1) emit more than steers 

(510 kg CO2e hd-1 yr-1) as heifers excrete more volatile solids (Table 5). Variability in 

emission levels between the three regions was minimal, being less than 6% for industry 

and 3% for EPA. Sensitivity analysis shows that the nitrogen excretion rate has the 

greatest influence on final emissions (Figure 3). Using industry data, gas contributions to 

total emissions from manure management as assessed by the Mandatory Reporting rule 

were found to be ~93% N2O and ~7% CH4.   
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Table 3. EPA Mandatory Reporting of GHG emissions, including manure only.   

 
  EPA 

Assumptions 
Industry 

Assumptions 
ASAE 
Data 

Parameter/Emission Units Steer Heifer Steers Heifers Avg. 

Methane       

TAMAT kg head-1 420a 420 459.3b 418.6 446c 

MCFMMSC d decimal 1.14% 1.14% 1.14% 1.14% 1.14% 

VSAT kg VS day-1 1000kg-1 3.97e 4.35 1.58f 1.58 4.25c 

Total CH4 emissionsg kg CO2e hd-1 yr-1 36.3 39.9 15.8 14.4 41.3 

Nitrous oxide       

NAT Kg VS day-1 1000kg-1 0.33e 0.35 0.19f 0.19 0.37 

Total Direct N2O 
emissionsh 

kg CO2e hd-1 yr-1 473.8 502.5 298.3 271.9 558.6 

Total GHG emissions kg CO2e hd-1 yr-1 510.1 542.4 314.1 286.3 599.9 

Total GHG emissions 
(average) 

kg CO2e hd-1 yr-1 
526.3 300.2 

 

a TAM = typical animal mass, Table JJ-2 (EPA, 2009) 
b (PCC, 2010) 
c (ASABE, 2010) 

d MCF = methane conversion factor (average), Table JJ-5, assume dry lots and average of 1.0% 
(cool ambient temp = <14 Co) and 0.5% (temperate ambient temp = 15-25 Co), weighted by 
number of cows in region (EPA, 2009). 
e VS = volatile solid excretion rate, N = nitrogen excreted per animal mass, Table JJ-2, assuming 
feedlot steers and spatial weighting of three-region average (EPA, 2009). 
f 0.19 is average value, 0.269 is maximum value, (BFNMP$, 2009) 
g Equations JJ-2 and JJ-3 (EPA, 2009). 
h Equations JJ-13 and JJ-14 (EPA, 2009). 
Additional assumptions:  
VSSS (VS removal by solids separation) = 0 (no solid separation) 
Bo (Maximum CH4 conversion factor) = 0.33. Table JJ-2 (assume feedlot steers) (EPA, 2009). 
VSMMSC (fraction manure in system) = 1 (assume all manure is in dry lot feedlot) 
EFMMSC = 0.02 kgN2O-N/kgN2O. Table JJ-7 (assume drylot)  
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Figure 3. EPA Mandatory Reporting Methodology for quantification of cattle greenhouse 

gas emissions (kg CO2e hd-1 yr-1): a) Comparison of results b) Sensitivity of parameters 

using EPA data. See Table 5. 

 

 

 
 
 
  

  

a) 

b) 



   22 

 

2.2.1 Consistency with EPA thresholds 

To identify individual facilities for reporting GHG emissions, the EPA suggests that 

feedlots with a capacity of over 29,300 head would emit GHG emissions above the 

policy threshold of 25,000 Mg CO2  yr-1 for Mandatory Reporting (EPA, 2009, p. 56485). 

Yet emissions for a representative 30,000 head feedlot that uses the above assumptions 

totals to 16,100 Mg CO2e yr-1, well under the emissions threshold. However, if maximum 

assumptions are used for volatile solids (5.25 kg VS day-1 1000kg-1 animal mass), 

nitrogen excretion rate (0.42 kg VS day-1 1000 kg-1 animal mass), and methane 

conversion factor (5%, solid manure storage), the threshold is nearly met (24,000 Mg 

CO2e yr-1) for the 30,000 head feedlot. Deep bedding systems can also significantly 

increase emissions by utilizing a methane conversion factor (MCF) of 30% to 80%; for 

comparison, the drylot MCF used here is 1.5%. To minimize underreporting, it appears 

that the EPA’s suggested reporting threshold of 29,000 head feedlot capacity that 

assumes the highest level of emissions per head. 

2.3 EPA Annual Inventory 

To estimate national GHG emissions, the EPA Annual Inventory consists of four 

components: CH4 from enteric fermentation, CH4 from manure, direct N2O from manure 

volatilization, and indirect N2O from runoff and leaching with subsequent volatilization 

(Table 6; Figure 4). The following equations are key to deriving this approach (EPA, 

2010b). 
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Methane from Enteric Fermentation: 
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The PCC values formed the basis for an industry emissions estimate of 1653 kg CO2e hd-1 

yr-1, ranging from 1590 to 1716 kg CO2e hd-1 yr-1. Two general annual emissions 

calculations are possible, one where the EPA uses default values for volatiles solids (VS) 

and Nexcreted parameters and totals 1611 kg CO2e hd-1 yr-1. Alternatively, similar 

calculations by the IPCC (which was the original basis for the EPA methods (EPA, 2010b, 

p. A-122), use empirical equations to determine both VS and Nexcreted, where these 

calculations sum to 1613 kg CO2e hd-1 yr-1.  ASABE values used in EPA calculations 

correspond to 1668 kg CO2e hd-1 yr-1.  Using EPA calculations, steers were calculated as 

emitting ~60 kg CO2e hd-1 yr-1 more than heifers on an annual basis. Spatial differences 

between the three PCC regions were 0.3% for values from using EPA methods and 

values, 0.4% for EPA methods and IPCC values, and 5% for EPA methods and industry 

values. In a general comparison of the sensitivity of five parameters (a change of ±10% 

for animal mass, daily gain, energy for growth, Nexcreted, and energy for maintenance), 

variability of these factors had a roughly equal result on final values to be reported 

(Figure 4). For industry data, the distribution of emissions was roughly ~55% for CH4 

from enteric fermentation, ~2% for CH4 from manure management, ~39% from direct 

manure N2O, and ~5% from indirect manure N2O (Table 6).  
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Table 4. EPA Annual Inventory of GHG emissions. 

a Table A-171, assume feedlots and year 2009 (EPA, 2010b) 
b (PCC, 2010) 
c (ASABE, 2010) 
d Page A-206, 2.8 to 3.3 lbs day-1 (EPA, 2010b) 
e assume CFi =0.322. Chapter 10. Equation 10.3 and Table 10.4 (IPCC, 2006) 
f 450kg beef animal requires 7.52 Mcal day-1. (31.46 MJ day-1 for maintenance) (NRC, 2000). 
g Equation 10.6, assume body weight, castrates, mature body weight of female, and weight gain) 
(IPCC, 2006) 
h assume NEm + NEg = total energy intake. Average beef animal consumes 12.75 Mcal day-1 
(Vasconcelos & Galyean, 2007). Subtract NEm to get NEg (Table 3) 
i Page A-212 in Section 3.9 (EPA, 2010b) 
j DayEmit equation. Page A-212 (EPA, 2010b) 
k Table A-186 (assume On Feed Beef Steer, Nebraska), cited from Moffroid and Pape, 2010 (EPA, 
2010b) 
m see equation, Page A-216 (refers to IPCC2006 Tier II equations), assume UE=.02*GE for 
feedlot, assume ash content = .08 (EPA, 2010b) 
n assume 85% digestibility (BFNMP$, 2009). 
p Equation, Page A-222 (EPA, 2010b) 

  EPA  
Assumptions 

IPCC 
Assumptions 

Industry 
Assumptions 

ASAE 
Data 

Parameter/Emission 
Type 

Units Steer Heifer Steer Heifer Steer Heifer Avg. 

Methane, enteric fermentation        

Typical Animal Mass kg 457.7
a 

430.9 457.7
a 

430.9 459.3
b 

418.6 446.0
c 

Average Daily Gain kg day
-1

 1.41
d 

1.41 1.41
d 

1.41 1.44
b 

1.29 1.42
c 

NEm (Net energy for 
maintenance) 

MJ day
-1

 31.9
e 

30.5 31.9
e 

30.5
 

31.5
f 

31.5 31.5
e 

NEg (Net energy  for 
growth) 

MJ day
-1 

30.0
g 

28.7 30.0
g 

28.7 25.5
h 

22.0 29.7
g 

GE (Gross Energy) MJ day
-1

 165.6
i 

158.3 165.6
i 

158.3 150.3
i 

139 163
i 

CH4 Emissions
j 

kgCO2e hd
-1

 yr
-1

 1016.5 971.5 1016.5 971.5 922.7 852.3 1001.9 

Methane from manure         

Volatile solids (VS)  kg animal
-1 

yr
-1 

661.2
k 

680.1 88.4
m 

84.5 547.5
n 

547.5 691.8
c 

CH4 Emissions
p 

kgCO2e hd
-1

 yr
-1

 39.5 40.6 5.3 5.1 32.7 32.7 41.3 

Nitrous oxide from manure        

Nexcreted kg animal
-1

 yr
-1

 55.5
q 

54.2 60.2
r 

56.6 69.7
s 

69.7 69.7
s 

Direct N2O Emissions
t 

kgCO2e hd
-1

 yr
-1

 519.6 508.0 563.7 529.6 652.3 652.3 652.3 

Indirect N2O Emissions
u 

kgCO2e hd
-1

 yr
-1

 64.3 62.9 69.8 65.6 80.8 80.8 80.8 

Total GHG emissions kgCO2e hd
-1

 yr
-1

 1640.0 1583.0 1655.3 1571.7 1688.5 1618.1 1679.9 

Total GHG emissions 
(average) 

kgCO2e hd
-1

 yr
-1

 1611.5 1613.5 1653.3  



   26 

 

q Total Kjeldahl N excretion rate, Table A-186 (assume On Feed Beef Steer, averaged over 
regions), cited from Moffroid and Pape, 2010 (EPA, 2010b) 
r Equations, Page A-217 (EPA, 2010b) based on IPCC 2006, Tier II equations and constants, 
assume percent crude protein = 13.34% (Vasconcelos & Galyean, 2007) 
s based on 13.34% crude protein diet and 23 lb. intake; correlates to  27.48 kg N animal-1 for 144 
d feeding period changed to 365 d = 69.65 kg N animal-1 yr-1  (Maximum value is potentially 
98.12 based on 18% CP) (BFNMP$, 2009). 
t Equation, Page A-223 (EPA, 2010b) 
u Equation, Page A-224 (EPA, 2010b) 

 
Assumptions 
Ym (fraction of GE converted to CH4) = 0.039, Table A-177,  year 2009,  steer/heifer feedlot 
(EPA, 2010b) 

Milk production, milk fat, and pregnancy all assumed to be 0 

REM (ratio of NEm to DE consumed) = 0.555, Equation 10.14 (IPCC, 2006) 

REG (ratio of NEg and DE consumed) = 0.375  Equation 10.15 (IPCC, 2006) 

Standard Ref. Weight (mature female) = 500 kg  

Net Energy for Activity (feedlot) = 0 MJ day-1  see page A-211, footnote #54 (EPA, 2010b) 

DE (% GE intake digestible) Table A-177, year 2009,  steer/heifer feedlot (EPA, 2010b) 

Table A-187, assume dry lot 
CH4 production potential (Bo) = 0.33 m3 CH4 kg-1 VS (EPA, 2010b),Table A-184 (assume Feedlot 
steers/heifers), cited from Hashimoto 1981 (EPA, 2010b) 
Methane Conversion Factor (MCF)=0.11, Table A-189, assume aerobic treatment and weighted 
average over central U.S. (Table 4) (EPA, 2010b) 

Fraction of manure managed = 1, assume all manure is managed in feed lot 
Direct N2O emission factor (EFWMS) = 0.02 kg N2O kg-1 Kjeldahl N. Table A-191, assume dry lot 
(EPA, 2010b) 
EFvolitalization = .010 kg N2O-N/kg N. Indirect N2O emission factor for volatilization, page A-224 
(EPA, 2010b) 
EFrunoff/leach = 0.008 kg N2O-N/kg Indirect N2O emission factor for runoff and leaching, page A-
224 (EPA, 2010b) 
Fracgas = 23.0%. Fraction of N loss from volatilization of ammonia and NOX, Table A-192, assume 
beef cattle on dry lot (EPA, 2010b) 
Fracrunoff/leach = 2.35%. Fraction of N loss from runoff and leaching, Table A-192, assume beef 
cattle on dry lot and spatial average over central U.S. (EPA, 2010b) 
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Figure 4. EPA Annual Inventory Methodology for quantification of cattle greenhouse gas 

emissions (kg CO2e hd-1 yr-1): a) Comparison of results b) Sensitivity of parameters using 

EPA data. See Table 6.  
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2.4 EPA System Boundaries  

The EPA Mandatory Reporting and Annual Inventories only estimate localized GHG 

emissions from the feedlot portion of cattle production. Feedlots would be the only part 

of the production sequence where GHG emissions could be concentrated enough to 

meet the regulatory threshold in the EPA’s Mandatory Reporting methodology (25,000 

Mg CO2e per year, designated by the EPA as 29,300 head, encompassing an estimated 

50 operations in the U.S.) (EPA, 2009; EPA 2012b). The Annual Inventory methodology 

was developed to comply with international agreements and is based on IPCC methods; 

parameters such as volatile solids production rate and nitrogen excretion rate were 

calculated using the original IPCC equations (IPCC, 2006)(Table 6). The EPA equations 

used in Mandatory Reporting and Annual Inventories were previously published (EPA, 

2009; EPA, 2010b). As intermediate metrics, both the Mandatory Reporting and Annual 

Inventory use kg CO2e per head per year, but both ultimately produce results in Mg 

CO2e per year for a feedlot facility and national industry, respectively. 

The Mandatory Reporting only includes emissions from manure management, 

and the Annual Inventory includes both manure management and enteric fermentation. 

A graphical comparison is shown of these boundary differences, which are limited to 

direct emissions from the feedlot portion of the cattle life cycle (Figure 5). 
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Figure 5. Beef cattle feedlot GHG emissions from EPA methodologies and system 

boundaries. EPA Mandatory uses Mandatory Reporting boundaries and includes only 

data from EPA documentation (EPA, 2009; EPA, 2012b) while EPA Mandatory-Industry 

uses PCC data (2010; Table 5). EPA-Annual utilizes EPA Annual Inventory boundaries and 

values (EPA, 2010b), EPA-Annual-IPCC uses IPCC empirical equations in conjunction with 

EPA values (IPCC, 2006; Vasconcelos & Galyean, 2007), and EPA Annual-Industry 

employs several industry sources (NRC 2000; PCC, 2010) (Table 6).  
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Chapter 3: Life Cycle Assessment of Beef Cattle GHG Emissions 

3.1 Life Cycle Assessment Principles and Limitations 

Life Cycle Assessment (LCA) is defined as “a technique for assessing the environmental 

aspects and potential impacts associated with a product” (ISO 14040, i). It is an iterative 

process in which practitioners define a goal and scope, conduct an inventory analysis, 

assess impacts, and interpret results.  LCA is a valuable tool, however, it also has 

inherent limitations.  

The International Standards Organization (ISO) provides an outline of LCA 

methodologies, though it readily acknowledges that it provides only an outline and not a 

detailed procedure. It also notes several important considerations: 

- “If LCA is to be successful in supporting environmental understanding of 

products, it is essential that LCA maintains its technical credibility while providing 

flexibility, practicality, and cost effectiveness of application” (ISO, 2006, p. iii).  

- “the nature of choices and assumptions made in LCA (e.g. system boundary 

setting, selection of data sources, and impact categories) may be subjective” 

(ISO, 2006 p. iv). 

- “Results of LCA studies focused on global and regional issues may not be 

appropriate for local applications” (ISO, 2006, p. iv). 

- “The lack of spatial and temporal dimensions in the inventory data used for 

impact assessment introduces uncertainty in impact results.” (ISO, 2006, p. iv). 
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In summary, comparing the results of different LCA studies is only possible if the 

assumptions and context of each study are identical. These assumptions should be 

explicitly stated for reasons of transparency (ISO, 2006, p. iv). It should also be noted 

that “there is no scientific basis for reducing LCA results to a single overall score or 

number since trade-offs and complexities exist for the systems analyzed at different 

stages of their life cycle.” (ISO, 2006, p. 4). 

3.1.1 Attributional versus Consequential LCA 

Theoretically, two broad categories of LCA exist: attributional and consequential. 

“Attributional LCA (ALCA) provides information about the impacts of the processes used 

to produce (and consume and dispose of) a product, but does not consider indirect 

effects arising from changes in the output of a product” (Brander et al., 2008).  In other 

words, ALCA is a static “total emissions” approach and is characteristic of the methods 

discussed so far as well as consistent with principles from ISO standards. On the other 

hand, “Consequential LCA (CLCA) provides information about the consequences of 

changes in the level of output (and consumption and disposal) of a product, including 

effects both inside and outside the life cycle of the product” (Brander et al., 2008). 

CLCAs are useful for policy discussions and examining the causal relationships between 

dynamic economic and logistical changes. “Whereas ALCAs are generally based on 

stoichiometric relationships between inputs and outputs, and the results may be 

produced with known levels of accuracy and precision, CLCAs are highly dependent 
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upon economic models representing relationships between demand for inputs, price 

elasticities, supply, and markets effects of co‐products. Such models rarely provide 

known levels of accuracy or precision and should therefore be interpreted with caution” 

(Brander et al., 2008).  

It is a common misconception that “direct” emissions correlate to ALCA and 

“indirect” emissions are for CLCA and that the two can be summed. This is not possible 

as there are key differences between the methods; it is very likely that double counting 

would occur since coproducts are treated differently. It is also helpful to note that CLCAs 

could potentially be negative (for example, increasing dairy production could displace 

meat from beef feedlots). In sum, CLCA should ideally be used for policy analysis and 

decision making when insights outweigh the uncertainty; ALCA is designed for product 

comparison and GHG inventory construction. Brander et al. 2008 even suggest that LCA 

should not be used at all and an alternate, pre-decided indicators for the success or 

failure of a policy that is readily monitored.  

Many LCAs exist in literature, yet few differentiate themselves between the 

attributional and consequential methodologies. Indeed many of the regulatory LCAs are 

inconsistent hybrids (i.e. the California Air Resources Board LCAs include both emissions 

from fuel burning (attributional) and land use change (consequential)) (Sanchez et al., 

2012). Understanding the difference between these two types is important, especially 

since regulators are inconsistently combining the approaches.   
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3.2 GHG Emissions from Feed Production and Direct Feedlot Sources 

An attributional beef feedlot LCA would also include emissions from all direct and off-

site inputs and outputs. The boundaries for the feedlot LCA presented here are limited 

to inputs and outputs during the feedlot operation, and do not consider the pasture 

cow-calf stage, which is later included in the complete LCA of beef production. The LCA 

includes enteric fermentation and manure management emissions as described by 

Annual Inventory and IPCC methodology (EPA, 2010a). Additionally, emissions from corn 

grain and alfalfa production, manure as an off-site soil carbon amendment, and feedlot 

fossil fuel use were used. An attributional approach for quantification of land use 

change (LUC) GHG emissions from grain consumption is included as well. Emissions per 

amount of usable product are the standard units for LCA; thus, in the full LCA, kgCO2e 

kg-1 beef replaces kgCO2e hd-1 yr-1 as the units of comparison. 

Direct GHG emissions from beef feedlots include fossil fuel use in management 

operations (144 kgCO2e hd-1 yr-1) (Steinfeld et al., 2006), and changes in soil organic 

carbon from spreading manure (-124 kgCO2e hd-1 yr-1) (Fronning et al., 2008). A carbon 

sequestration rate of 106 kg C ha-1 yr-1 was assumed (Fronning et al., 2008), however 

higher values (200-500 kg C ha-1 yr-1) have been reported (Follett, 2001). In addition to 

the direct GHG emissions from the beef feedlot, attributional LCA quantifies related 

production emissions that occur away from the EPA-defined facility. Beef cattle are fed 

primarily corn grain which is produced in energy and GHG intense field operations and 

contribute 788 kgCO2e hd-1 yr-1 to the feedlot LCA (Liska et al., 2009) (Figure 6; Table 7).  
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3.3 Land Use Change 

A consequential LCA accounts for emissions that occur from a range of sources that may 

change as a consequence of production (Finnveden et al., 2009). Indirect land use 

change (ILUC) was recently estimated to occur based on the change in level of demand 

for corn for ethanol production, and a similar calculation is employed in state 

(California) and federal (EPA’s Renewable Fuel Standard, RFS2) regulatory LCAs for corn-

ethanol (Hertel et al., 2010; Liska & Perrin, 2009; Searchinger et al., 2008; Wang et al., 

2011). Economic analysis estimated the marginal change in grain price due to the 

change in grain demand, and the accompanied change in global land conversion due to 

the increased grain price. Carbon dioxide emissions are then released from soils and 

standing biomass during deforestation from growth of cropping areas.  

If the U.S. beef cattle population were increasing, such an additional GHG 

emission from ILUC could be applied to the LCA, as calculated by the EPA for corn-

ethanol. Alternatively, if the cattle population were decreasing, U.S. beef cattle would 

receive a GHG emission credit based on the ILUC calculation. The cattle population 

cycles due to various factors, but for this analysis it is assumed that the population is at 

a steady-state; in July 2006 and July 2011, beef cattle totaled 33.3 and 31.4 million, 

respectively (USDA-NASS, 2012a). 

A second approach to calculating GHG emissions from land use change (LUC) due 

to beef production allocates ongoing global land use change to aggregate global 
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agricultural products (Steinfeld et al., 2006). A recent LCA of European beef and dairy 

cattle employed four different methods for estimating LUC directly from the rate of 

grain consumption (Flysjö, Cederberg, Henriksson, & Ledgard, 2011). Feed for most 

European cattle is sourced from LUC sensitive areas (e.g. Brazil), which prompts 

European LCA practitioners to focus on physical relationships between cattle and LUC. 

On the other hand, nearly all feed for U.S. cattle is sourced from within the United 

States; this means US LUC relationships are primarily due to economic teleconnections 

and require a broader set of life cycle impact boundaries. In light of this, a more general 

approach to LUC assumes “agricultural commodity markets are global and 

interconnected, and all demand for agricultural land contributes to commodity and land 

prices, and therefore contributes to land use change” (Audsley, Brander, Chatterton, 

Murphy-Bokern, Webster, & Williams, 2009). By this method, it is assumed that 1.43 Mg 

CO2 is emitted from LUC from each hectare of agricultural land used (including crop and 

pasture) regardless of usage; this value attributes 58% of global land use change 

emissions to agriculture. To determine the LUC impact of the feedlot, the amount of 

land necessary for sufficient corn production (per head) was multiplied by the LUC 

emissions factor. Within the pasture phase of the life cycle, the LUC impact was 

determined by multiplying the LUC emissions factor by the amount of pasture land 

utilized by each cow. 

By including emissions from crop, urea, and alfalfa production (863 kgCO2e hd-1 

yr-1) and land use change based on the area of land used per head (582 kgCO2e hd-1 yr-1), 
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GHG emissions from feedlot beef cattle nearly double compared to the direct feedlot 

emissions based on the Annual Inventory assessment (1674 kgCO2e hd-1 yr-1)(Figure 6, 

Table 7).  

There is currently no consensus on how to employ LUC to livestock. However, 

there have been explicit calls for LUC to be included in beef LCAs (Garnett, 2009). By 

including LUC based on a global average rate of agricultural land use, a rough LUC has 

been estimated here, but it is likely associated with a large uncertainty. This value only is 

applied to estimate the relative magnitude of LUC compared to other factors, and to 

estimate a maximum level of life cycle GHG emissions from beef cattle. If the EPA were 

to monitor cattle production using LCA methods, it is reasonable to assume that LUC 

emissions would not be counted as they have been for corn-ethanol, because the cattle 

population is not changing (Hertel et al., 2010; Liska & Perrin, 2009; Searchinger et al., 

2008; Wang et al., 2011). It is clear that a general LCA perspective could apply LUC based 

on continuous demand as shown here, but this is perhaps unlikely to be used by the 

EPA. When LUC and cropping emissions were added to the Annual Inventory, total 

emissions per head per year more than doubled.  

3.4 Ethanol Coproducts Use in Feedlots 

Corn ethanol production has risen dramatically in recent years in the central U.S., 

resulting in expanded use of coproducts as livestock feeds (Bremer et al., 2010). 

Distillers grains plus solubles (DGS) have a higher energy density than the corn it 
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displaces, resulting in greater daily gain and less time in the feedlots or greater beef 

production compared to conventional corn diets (Table 7). As DGS contain a larger 

fraction of protein, nitrogen from urea is not added to DGS-supplemented diets. On 

average, DGS are fed at 20% of dry matter intake when substituted in corn-based beef 

cattle diets (Bremer et al., 2010). With growing ethanol production, DGS could be 

substituted into cattle diets at a 45% of dry matter intake. When considering DGS use in 

the LCA of feedlot cattle, the decreased feeding time was calculated her to reduce GHG 

emissions per head from 1640 kgCO2e hd-1 (conventional diet) to 1548 kgCO2e hd-1 

(current inclusion) to 1730 kgCO2e hd-1 (maximum inclusion) (Table 7). The GHG 

emissions from DGS are assumed to be identical to corn grain by mass (changes in 

emissions from drying coproducts were not assessed). Thus, feeding DGS reduces GHG 

emissions from a beef cattle feedlot by 5.7% at current levels, but increases emissions 

by 5.4% at future DGS levels due to higher nitrogen excretion and estimated N2O 

emissions. If only wet DGS were fed at the maximum inclusion level to a subset of local 

feedlots, the resulting emissions would be roughly equivalent to a conventional corn 

diet (Table 7). Yet, if pasture emissions (7.97 kgCO2e kg-1 beef) (Pelletier et al., 2010) 

from the cow-calf system are included in the beef life cycle, the current DGS diet (16.26 

kgCO2e kg-1) would reduce GHG emissions by 1.8% compared to the conventional corn-

based diet (16.55 kgCO2e kg-1); whereas higher DGS diets (16.90 kgCO2e kg-1) are 

estimated to increase emissions by 2.1% (Table 8). 
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Although feeding coproducts markedly changes the chemical composition of 

corn fed diets, data on changes in enteric fermentation are not available and thus no 

difference is assumed. Nitrogen in the diet is higher with coproducts, which results in an 

18% increase in excreted nitrogen and N2O emissions for current DGS inclusion levels 

over the conventional diet (Luebbe et al., 2012).  
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Figure 6. Beef cattle GHG emissions from different methodologies and system 

boundaries from feedlots. Feedlot LCA-Conventional uses the most inclusive system 

boundaries for the feedlot (see Table 7). See Figure 5 for other caption details. Error 

bars include 90% of Monte Carlo simulation values (Table 9; Table 10; Figure 7).
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Table 5. Inventory of GHG emissions from U.S. beef cattle feedlots.  

EPA Annual Inventory calculations (EPA, 2010b) with industry source data (PCC, 2010). 
The feed production scenarios Conventional Corn Diet, Current DGS Use, and Maximum 
DGS Use estimated default industry practice, current use of distillers grains plus solubles 
(DGS) from ethanol production, and hypothetical maximum DGS feeding rate, 
respectively (Bremer et al., 2010). The scenario Max Wet DGS Use uses wet DGS only.  

a see Table 4, assume Nexcreted increased by 18% (for 15% WDGS scenario) and 49% (for 30% 
WDGS scenario) which correlates to current DGS and the maximum scenarios, respectively 
(Luebbe, Erickson, Klopfenstein, & Greenquist, 2012); similar conclusions from (Regassa, 
Koelsch, & Erickson, 2008) 
b GHG Intensities: Diesel=0.047 ton CO2e hd-1, LPG= 0.015 ton CO2e hd-1, Electricity=0.014 ton 
CO2e hd-1, Total= 0.076 ton CO2e hd-1, Minnesota is characteristic of central U.S., see Table 3.10, 
page 101 (Steinfeld et al., 2006). 

Emissions Sources Units 

Conv
Corn 
Diet 

Cur-
rent 
DGS 
Use 

Max 
DGS 
Use 

Max 
Wet  
DGS 
Use 

Feedlot       

Manure Managementa      

       N-excretion rate kg N  hd-1 yr-1 69.5 82.2 103.8 103.8 

       N2O (direct & indirect) kgCO2e hd-1 yr-1 733 865 1092 1092 

       CH4 kgCO2e hd-1 yr-1 33 33 33 33 

Enteric Fermentation (CH4)a kgCO2e hd-1 yr-1 888 888 888 888 

Feedlot Fossil Fuel Useb kgCO2e hd-1 yr-1 144 156 150 156 
       Cattle on farm in one yearc head yr-1 

1.901 2.062 1.973 2.062 

Soil Organic Carbon from Manured kgCO2e hd-1 yr-1 -124 -124 -124 -124 

 kgCO2e hd-1 yr-1 1674 1818 2038 2045 

Feed Production (Feedlot)      

Co-product inclusion levele % DM intake 0% 20% 45% 45% 

Average daily intake, coproductf kg hd-1 day-1 0 2.09 4.70 4.70  

Average daily intake, corng kg hd-1 day-1 9.14 7.05 4.44 4.44 

Days on Feedh days 192 177 185 177 

Ureah kgCO2e hd-1 yr-1 71 - - - 

Alfalfa hayi  kgCO2e hd-1 yr-1 4.3 4.3 4.3 4.3 

Corn Productionj kgCO2e hd-1 yr-1 788 788 788 788 

 kgCO2e hd-1 yr-1 863 792 792 792 

Land Use Change from Croppingk kgCO2e hd-1 yr-1 582 582 582 582 

Total Feedlot Emissions kgCO2e hd-1 yr-1 3119 3192 3412 3419 

Feedlot Emissions per head kgCO2e hd-1 1640 1548 1730 1658 

Percent relative to conventional  % 100 94.3 105.4 101.1 
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c inverse of days on feed (Bremer et al., 2010) 
d Applying manure at 45 kg N ha-1 yr-1 and carbon sequestration at a rate of 106 kg C ha-1 yr-1 
(Fronning, Thelen, & Min, 2008) 
e Current DGS feed on average is composed of 24% dry DGS, 38% modified DGS, and 38% wet 
DGS; Maximum DGS scenario is composed of 62% dry DGS, 19% modified DGS, and 19% wet 
DGS (Bremer et al., 2010). 
f Average dry matter feed intake of corn-based diet, 10.45 kg hd-1 day-1 (PCC, 2010) times 
inclusion level (Bremer et al., 2010). 
g Average daily dry matter intake, times 87.5%, 67.5%, and 42.5%, respectively (Bremer et al., 
2010). 
h Urea intake=0.13  kg hd-1 day-1 &GHG Intensity=1.5  kgCO2e kg-1 urea yields 0.195 kgCO2e hd-1 

day-1  (Bremer et al., 2010) 
i Alfalfa intake=7.5% dm=0.78  kg hd-1 day-1, GHG Intensity=31.1kgC ha-1, Yield=3.4 short ton 
 acre-1 equates to 0.015  kgCO2e kg-1 dry matter which yields 0.012 kgCO2e hd-1 day-1, assume 
114 kgCO2 ha-1 GHG intensity, based on fossil fuel use for one seedling year, two established 
years, and one final year (Adler, Del Grosso, & Parton, 2007), U.S. average yield of 3.4 tons acre-1 

in 2011 (USDA-NASS, 2012b) and feeding rate of 0.784 kg hd-1 day-1, or  286 kg hd-1 yr-1 (Bremer et 
al., 2010). 
j Corn and DGS are assumed to have same direct GHG intensity of 0.236 kgCO2 kg-1 grain; 
calculated by spatial averaging over central U.S. (Liska et al., 2009), see Table 10 for values and 
weighting/frequency factors. 
k LUC Emissions from Cropping = Land Intesity of corn * LUC GHG Intensity of agricultural land 
Land intensity of corn = corn consumed / corn yield = 0.407 ha hd-1 where 

Corn Consumed = 3337  kg hd-1 yr-1 assume constant 9.14 kg hd-1 day-1 daily intake of corn or 
DGS (Bremer et al., 2010) 

Corn Yield = 8.20  Mg ha-1 yr-1, (Bremer et al., 2010) Central U.S. average, see Table 10 for 
values and weighting/frequency factors. 

LUC GHG Intensity, agricultural land = 1430  kgCO2 ha-1 yr-1, assume land use change intensity for 
all agricultural land to be 1.43 MgCO2e ha-1 (Audsley et al. 2009)  
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3.5 Complete Life Cycle Assessment of Beef Cattle 

When meat production emissions are considered in LCA, the appropriate metric is 

emissions per mass of product. In addition to feed and feedlot emissions as defined 

above, feedlot operations also require a system to produce incoming feeder cattle for 

finishing to market weight. Prior to arriving at the feedlot, beef cattle are fed on pasture 

for roughly 0-17 months, depending on regional and temporal factors (Shields & 

Mathews, 2003). In pasture systems, GHG emissions occur primarily from enteric 

fermentation (~42%), feed production (~37%), and manure (~21%) from both cow and 

calf (Pelletier et al., 2010). When pasture emissions (7.97 kgCO2e kg-1 beef), land use 

change from pasture (2.48 kgCO2e kg-1 beef), and processing (0.15 kgCO2e kg-1 beef) are 

added to the LCA emissions of the feedlot, total LCA emissions grow by nearly three-fold 

from 5.95 to 16.6 kgCO2e kg-1 beef (Table 8).  
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Table 6. Life cycle assessment of GHG emissions from U.S. beef, including pasture and 
feedlot. 

a Conversion (kgCO2e hd-1 yr-1 to kgCO2e kg-1 beef) of feedlot emissions from Table 7), assumes 
slaughter weight of 584 kg, dressing percentage of 63% and 75% meat:waste ratio.  
b 63% of life cycle emissions are from pasture (Pelletier et al., 2010).  
c (Steinfeld et al., 2006) 
d Assume: 
Total Cattle = 32,800,000 head (USDA-NASS, 2012a) = sum of state counts for cattle, cows, beef 

inventory, 2007 Census of Agriculture 
Pasture acres attributed to beef = 38,800,000 acres, derived from (USDA-NASS, 2012a) = sum of 

state counts for pastureland, 2007 Census of Agriculture (39,941,360 acres). Distribution 
between sheep and beef production was determined by economic value where “land 
attributed to beef” = 

                     
                                  

 

  

                                  
 

  
                                  

 

  

 

Beef pasture density = 0.478  ha hd-1 = pasture acres attributed to beef/ total cattle 
Pasture LUC emission per head = 683.9 kgCO2e hd-1 yr-1 = LUC GHG Intensity of agricultural land * 

beef pasture density 

Land use change intensity for all agricultural land = 1.43 Mg ha-1 (Audsley et al., 2009) See Table 
7 for similar land intensity calculations. For comparison, 7.98 kgCO2e kg-1 beef = 684 kgCO2e hd-1 

yr-1  

 
 

 

 
 

Emissions Sources Units 

Conv 
Corn 
Diet 

Cur-
rent 
DGS 
Use 

Max 
DGS 
Use 

Max 
Wet 
DGS 
Use 

Feedlot Emissionsa kgCO2e kg-1 beef 5.95 5.65 6.25 6.01 

Emissions from Pastureb kgCO2e kg-1 beef 7.98 7.98 7.98 7.98 

Emissions from Processingc  kgCO2e kg-1 beef 0.15 0.15 0.15 0.15 

Land Use Change from Pastured kgCO2e kg-1 beef 2.48 2.48 2.48 2.48 

LCA Total Net Emissions kgCO2e kg-1 beef 16.55 16.26 16.90 16.62 

Percent relative to conventional % 100 98.2 102.1 100.4 
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3.6 Monte Carlo Simulation and Uncertainty Analysis 

Depending on a number of spatial and temporal factors that affect crop production and 

cattle performance, a range of GHG intensities for the LCA is expected to occur. To 

generate a probability distribution of the expected LCA intensities, Monte Carlo 

simulation, a stochastic method of repeated random sampling, was used. The program 

@Risk (Palisade Corporation, Ithaca, NY, www.palisade.com) was used to compute 

10,000 iterations of outputs by varying six parameters in a manner consistent with their 

probability of occurrence. Three parameters (animal mass, daily gain, and energy for 

gain) were assigned a normal distribution consistent with a known standard deviation  

from PCC data and three other parameters (methane conversion factor, corn cropping 

GHG intensity, and corn yield) were assigned a discrete distribution characterized by 

frequencies determined by spatial weighting (Table 9).  

 

  

http://www.palisade.com/
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Table 7. Monte Carlo simulation input distributions using @Risk. 

 Normal Distributions 
  Parameter Units Average Std. Dev. 

Animal Massa kg 438.92 26.2 
Daily Gaina kg day-1 1.37 0.11 
Dry Matter Intakea,b  kg day-1 8.80 0.51 

    Discrete Distributions 
  Methane Conversion Factord MCF value Frequency 

Cool (<14 oC) 
 

0.015 0.2 
Temperate (15-25 oC) 0.01 0.8 
Weighted Average 

 
0.0114 - 

    

 
Cropping Intensitye Grain Yielde Frequencyf 

 
kg CO2e Mg-1 grain Mg ha-1 

 Colorado 316 8.72 0.0131 
North Dakota 261 7.22 0.016 
South Dakota 230 7.53 0.0544 
Nebraska 301 9.73 0.1088 
Kansas 327 8.47 0.0402 

Minnesota 235 10.00 0.0935 
Iowa 236 10.70 0.1675 
Missouri 347 7.97 0.0394 
Wisconsin 250 8.66 0.038 
Illinois 274 10.20 0.1575 
Michigan 290 8.47 0.0271 
Indiana 287 9.79 0.076 
Texas 426 7.78 0.0236 
Ohio 311 9.54 0.0429 
Kentucky 360 8.79 0.0155 
Weighted Average 248.59 8.53 - 

 a See Table 3 
b Dry matter intake determines energy for gain parameter. See Table 3 

c MCF  
d Methane Conversion Factor (MCF), Table A-189, assume aerobic treatment and weighted 
average over central U.S. (Table 4) (EPA, 2010b).Frequency determined by state averages, see 
Table 4 
e (14) 
f Determined by comparing levels of corn production for various states, average of years 2003-
2005 (USDA-NASS, 2012a). 
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Available statistics were applied in a stochastic Monte Carlo simulation to 

generate probability distributions of GHG intensities for both the feedlot and the full 

LCA. Without inclusion of land use change, the mean and standard deviation of feedlot 

emissions intensity is 2673 ± 156 kg CO2e hd-1 yr-1 (Table 10, Figure 7). Where land use 

change is included, emissions increase to 3182 ± 167 kg CO2e hd-1 yr-1. The 

corresponding GHG intensity of beef with the most inclusive life cycle boundaries, 

including pasture, is 16.67 ± 0.32 kg CO2e kg-1 beef (Figure 7). This distribution is skewed 

to the right, due to the distribution of emissions from crop production, where the 

majority of production occurs at lower intensities, but many relatively inefficient states 

still produce corn at lower production levels (e.g. South Dakota) (Table 9). If land use 

change were not included in the life cycle inventory, the emissions intensity is 12.35 ± 

0.32 kg CO2e kg-1 beef. Quantifying these distributions of possible results is limited by 

lack of information concerning the distribution of most parameters; only six were tested 

in this analysis. The two factors that would likely further expand the range of possible 

results include emissions from pasture systems and those from land use change, but 

additional data for these factors is limited. 

Table 8. Monte Carlo simulation probability results using @Risk. 

Boundaries Calculated 
Value 

Mean/Expected 
Simulation 

Value 

Standard 
Deviation 

5th 
Percentile 

95th 
Percentile 

Feedlot LCA 3119 3182 167 2950 3475 

Feedlot LCA (no LUC) 2537 2673 156 2464 2943 

Full LCA 16.55 16.67 0.319 16.23 17.23 

Full LCA (no LUC) 11.97 12.35 0.315 11.91 12.90 
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Figure 7. Monte Carlo simulation probability distributions using @Risk: a) Feedlot LCA, 

b) Feedlot LCA (without LUC), c) Full LCA, d) Full LCA (without LUC). Designations for 5th 

and 95th percentiles shown. 
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3.7.1 Literature Comparison and the Importance of Boundary Definitions 

Estimates of the life cycle emissions intensity of beef production from previous studies 

were summarized and compared with this analysis (Figure 8). The life cycle emissions 

intensity reported here is very similar to a recent assessment for beef cattle in the U.S. 

(using the same pasture intensity) (Pelletier et al., 2010), but the estimate provided here 

is roughly half of the intensity of two other estimates, at 25 and 32 kgCO2e kg-1 meat 

(Hamerschlag, 2011; Phetteplace et al., 2001). Previous estimates for U.S. beef were 

higher due to moisture and fat loss in cooking, plate loss, and spoilage (Hamerschlag, 

2011), and higher enteric fermentation emissions and higher ill-defined N2O emissions 

(Phetteplace et al., 2001). Life cycle emissions from other studies encompass Australia, 

North America, South America, Europe, and Asia and range from 12.7 kgCO2e kg-1 meat 

in U.S. (Pelletier et al., 2010) to 37.3 kgCO2e kg-1 meat in Brazil (Cederberg et al., 2009) 

(Figure 8).  

Life cycle GHG emissions could be even greater where emissions are included 

from deforestation from the expansion of pasture (Cederberg et al., 2011). Previous 

global assessments of pasture and feed crops expansion have indicated these emissions 

could range from 38 to 53% of all emissions from livestock (Asner & Archer, 2010; H. 

Steinfeld et al., 2006). A recent study in Brazil found that deforestation associated with 

pasture expansion produced additional emissions in the range of 21.3 to 976 kgCO2e kg-1 

meat, depending on whether these regional land use change emissions are allocated to 

all beef cattle in Brazil, or to the cattle only in areas of newly deforested land (Figure 8). 



   50 

 

3.7.2 LCA Conclusions 

Comparison of the LCA presented here with previous studies indicates that system 

boundaries have a defining impact on total GHG emissions from beef cattle. For all 

geographic areas, and where variable system boundaries are used, over a 1000-fold 

range in GHG emissions for beef cattle were identified (1.0 to 1013 kgCO2e kg-1). With 

only the variation of system boundaries in the U.S., nearly a 16-fold range in results was 

found from EPA Mandatory Reporting at 1.0 kgCO2e kg-1 beef to a LCA at 16.6 kgCO2e kg-

1 beef. Even though shorter and more intensive feedlot finishing has been found to have 

lower GHG emissions compared to longer pasture finishing (Peters et al., 2010), much of 

the increase in LCA emissions from feedlot beef cattle found here was due to inclusion 

of pasture emissions associated with earlier stages of the animal life cycle. These results 

suggest that further research should focus on pasture level contributions to life cycle 

GHG emissions, and validation of estimated feedlot emissions by direct measurements 

of GHG emissions.  
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Figure 8. Comparison of estimated emissions from the life cycle of beef cattle 

production, including both feedlot and pasture. Data from Table 11. LCA (arrow) 

comprises manure management, enteric fermentation, off-site feed production 

emissions, including land use change, and pasture (Table 7), building on Figure 6. All 

studies include emissions from both feedlot and pasture, and where data was available, 

emissions were differentiated by color. Emissions of regional land use change from 

deforestation are allocated to beef production over three different areas (Cederberg et 

al. 2011): B) all of Brazil, A) the entire Legal Amazon Region, F) newly deforested land 

cleared for cattle. Error bars include 90% of Monte Carlo simulation values (Figure 7). 
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Table 9. Literature comparison of beef LCA results (kg CO2e kg-1 beef).  

Country Source 
Feedlot 
Stage 

Cow-Calf 
Stage 

Land 
Use 

Change Total 

USA Pelletier et al. 2010 4.7 8.0 - 12.7a 

Australia Peters et al. 2010 2.9 10.3 - 13.2b 

USA Feedlot LCA 3.84c 8.13d 4.59 16.6e 

U.K./Wales Williams et al 2006    20.3b 

Canada Verge et al. 2008 - - - 21.9f 

Sweden Cederberg & Stadig 2003 - - - 22.3 

Ireland Casey &Holden 2006 - - - 23.3f 

USA Hamerschlag et al. 2011 6.5 20.5 - 27.0 

EU/Denmark Nguyen et al. 2010 - - - 27.3 

Canada Beauchemin et al. 2010 3.5 25.8 - 29.3b 

Japan Ogino et al. 2004 - - - 32.3 

USA Phetteplace et al. 2001 12.0 20.8 - 32.8f 

France Veysset et al. 2010 - - - 35.1f 

Brazil Cederberg, et al. 2009 - - - 37.3b 

Brazil Cederberg, et al. 2011g - - 21.3 58.7b 

Brazil Cederberg, et al. 2011h - - 202.7 240.0b 

Brazil Cederberg, et al. 2011i - - 976.0 1013.3b 
a Conversion from kg CO2e hd-1 to kg CO2e kg-1 beef; assume 584 kg slaughter weight, 63% 
dressing percentage, and 75% meat:waste ratio 
b Conversion from kg CO2e kg-1 carcass weight to kg CO2e kg-1 beef; assume 75% meat:waste 
ratio 
c From Table 7 
d adapted from Pelletier et al. 2010, 63% of life cycle emissions are from pasture 
e Conversion from kg CO2e hd-1 yr-1 o kg CO2e kg-1 beef; assume 192 days on feed, 365 days yr-1, 
584 kg slaughter weight, 63% dressing percentage, and 75% meat:waste ratio 
f conversion from kg CO2e kg-1 live weight to kg CO2e kg-1 beef; assume 63% dressing percentage, 
and 75% meat:waste ratio 
g Rainforest land use change averaged over all of Brazil 
h Rainforest land use change averaged over the Legal Amazon Region 
i Rainforest land use change averaged over newly deforested land 
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Chapter 4: Economic Implications and Future Work 

4.1 Implications for Regulatory Policy 

Based on the analysis presented here, current federal regulation methodologies are 

incomplete measures of the actual life cycle emission of the feedlot system. If EPA were 

to choose to monitor only localized GHG emissions from beef cattle, the Annual 

Inventory appears to provide the better framework for direct GHG emission 

quantification relative to the limited Mandatory Reporting method. Yet, if an 

assessment of the total GHG emissions that result from beef cattle production were to 

be monitored or used for marketing purposes (Fliegelman, 2010; Hamerschlag, 2011), 

then a much higher emissions level, as documented here, would be expected. These 

results demonstrate that a range of GHG emissions intensities can be determined by 

often arbitrary choices in system boundaries. 

4.2.1 Environmental Economic Theory 

Many have discussed the impact and costs of climate change on society. These costs (in 

2005 dollars discounted at 3% over a 95 year period from 2010-2105) range from $10 

trillion to $270 trillion with significant uncertainty associated with the estimation 

(Bosello, Carraro, & de Cian 2010). Many human activities emit greenhouse gases where 

the environmental cost is a negative externality not covered by the private cost of the 

activity. In welfare economics, this situation is a market failure and socially optimal 

activity will not be reached without some kind of market correction (Hanley, Shogren, & 
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White, 2007). Economists have long discussed means of correction; Ronald Coase has 

famously argued that defined property rights will provide incentive for polluters and 

pollution-affected individuals to come to a private, mutually beneficial economic 

transaction. This assumes that pollution “rights” are definitive and clear, something very 

difficult to do with regard to common pool resources like the atmosphere where 

quantification is often uncertain and impacts are spread globally. Alternatively, Arthur 

Pigou is credited with the idea of implementing a tax on the economic activity producing 

the externality equal to the marginal cost of damages from the activity (Hanley, 

Shogren, & White, 2007). Alternatively to this price-based approach, a quantity-based 

cap-and-trade system will theoretically achieve identical reduction in damages by 

distributing a limited number of emissions permits that can be traded and sold among 

emitters. There are many logistical and economic variables that must be considered by 

policy makers to produce the optimal results; these include tax and permit levels, 

whether permits are auctioned or given away, how market power is affected, 

correlation of the taxed entity to emissions level, uncertainty of damages, use of tax 

revenue, and incentive for innovation (Hanley, Shogren, & White, 2007). 

4.2.2 Implications of Direct Carbon Pricing on the Economics of the Beef Industry 

Though policy regimes do not yet regulate agricultural GHG emissions at this time, it is 

useful to know how future prices on carbon may affect food prices. Twomey and 

Webber use emissions intensities for nine primary fuel sources, as well as EPA and LCA 
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methods to determine a 16.00 kg CO2e kg-1 beef carbon intensity for beef which 

includes the following components:  crop production, enteric fermentation, manure 

management, food manufacturing, food packaging, commercial food services, food 

retail facilities, residential food preparation, and transportation costs but does not 

include pasture or land use change emissions (Twomey & Webber, 2010). For the 

purposes of this analysis, the 16.6 kgCO2e kg-1 kg beef found in the LCA presented above 

is used. Twomey and Webber suggest that the social cost of emitting CO2e is in the 

range of $11 and $85 per tonne CO2e. Thus, these direct carbon tax prices formed the 

upper and lower limits for this brief discussion. Using these parameters, the price of 

beef (if directly taxed based on the LCA) would increase by 9.9 to 53.5% (Table 12).  

As the price of a product or good increases, the amount of people willing to pay 

these higher prices is reduced, resulting in a loss of demand that reduces the number of 

units that the industry produces. A review of 51 U.S.-based studies on price elasticity of 

demand for major food categories indicates mean price elasticity of 0.75 for beef with a 

range of 0.29-1.42 and 95% confidence interval of 0.67-0.83 (Andreyeva, Long, & 

Brownell, 2010).  In other words, for every 10% increase in price, there will be a 7.5% 

decrease in demand. Demand elasticity is determined by a multitude of factors including 

availability of substitutes, household income, consumer preferences, expected duration 

of price change, and product’s share of a household’s income. 
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Applying this principle to the scenario modeled below, the U.S. beef industry as a 

whole will likely shrink by 2.5 to 18.9% as prices rise. This would result in a reduction of 

2.7 to 21.0 Tg CO2e emitted by the U.S. beef industry which is equivalent to 0.04 to 

0.30% of net U.S. emissions. These results are extremely uncertain and highly 

dependent on demand elasticity as well many other unexplored parameters such as 

change in number of producers, change in production technology, supply elasticity, use 

and distribution of government tax revenue, and income elasticity of consumers. Also 

unclear is how beef substitutes (e.g. pork and chicken) would be taxed relative to beef 

and how the lower LCA of these meats would affect prices. Assuming limited structural 

change to the beef production, the $32 billion year-1 beef industry would shrink by $0.8 

to 6.0 billion year-1. However, it is likely that revenues would be returned to farmers in 

some form or some other tax/permit scheme used to limit the financial impact on beef 

producers.  

Table 10. Carbon price and potential for reduced beef demand 

 
Units 

Lower 
Price 

 Upper 
Price 

Carbon pricea $ ton-1 CO2e 11 50 85 
Baseline price for beefb $ kg-1 beef 5.59 5.59 5.59 

Beef Carbon Intensityc kgCO2e kg-1 16.6 16.6 16.6 
Carbon Taxd $ kg-1    0.18  0.83   1.41  
New Beef Price $ kg-1   5.77  6.42   7.00  
Percent Increase % 3.27% 14.86% 25.25% 
Demand Decreasee % 2.45% 11.14% 18.94% 

Reduction of Beef Revenue to Industry billion $ yr-1 -0.77 -3.51 -5.98 
     
Reduction of Emissions Tg CO2e -2.71 -8.81 -20.97 
Percent of total US emissions reduced % -0.04% -0.18% -0.30% 
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a Carbon price range as estimated in (Twomey & Webber, 2010). 
b Beef industry produced 26,291,800,000 lbs of beef in 2011 (USDA-NASS, 2012a). Assume 
average price is ~$120 per hundred pounds at end of 2011(USDA-NASS, 2012c). Conversion to 
kg yields average price of $2.64 kg-1 liveweight = $5.59 kg-1 beef assuming dressing percentage of 
63% and 75% meat:waste ratio. 
c Beef carbon intensity from this study; also closely correlated with Twomey & Webber, 2010 
(though methodolgies are vastly different) 
d carbon price * beef carbon intensity 
e using a demand elasticity of 0.75 from Andreyeva, Long, & Brownell, 2010. 
   

It is likely that any future carbon tax would be structured so as to tax large GHG 

sources as far “upstream” as possible (e.g. coal producers, oil refiners, etc) and allow the 

higher prices to permeate through the rest of the economy. Many of these industries 

are already taxed at lower levels and the convenience of merely increasing tax rates (as 

opposed to inventing a complex carbon trading network) is one of the attractive aspects 

of carbon taxation. LCA-driven carbon taxing for agriculture sectors would likely not 

occur until consensus LCA methods are formalized and more convenient GHG sources 

are subject to taxation. 

While this analysis does not examine global impacts of beef prices, a recent 

examination of land use change explores potential future policy related to beef cattle 

(Dumortier et al. 2012). In this study, a 10% tax is imposed on U.S. fed steer prices. 

Modeled beef prices rise globally and consumption decreases. Specifically, U.S. 

production decreases by 17.06%; however, this is countered by increased production in 

Argentina (4.82%), Brazil (4.88%), Canada (6.69%), Indonesia (3.98%), and elsewhere 

since production in these areas is not subject to tax. However, resulting land use change 

in these countries will ultimately increase emissions by 37 to 85 kg CO2e kg-1 U.S. beef 
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reduced. This result argues that intensive U.S. beef production should be maintained in 

lieu of extensive production in carbon sensitive areas elsewhere (i.e. Brazil) in order to 

meet an inelastic global demand for beef. These findings emphasize how the 

attributional LCA approach used for this thesis may not be appropriate for informing the 

consequential effects of significant policy changes such as taxation and that more 

research is needed. 

4.2.3 Logistics of Cap-and-Trade under Waxman-Markey (HR 2454) with regard to beef 

cattle 

In the United States, there appears to be little momentum for legislative action on 

climate change and that most future climate policy will be determined by: 1) executive 

discretion of the EPA motivated by judicial mandate (Mass v. EPA, 2007), 2) 

international agreement and a top-down approach (Weiss & Jacobson, 1998), or 3) 

federal expansion of state-level policies and a bottom-up approach (Rabe, 2010). In 

discussing comprehensive federal approaches, the American Clean Energy and Security 

Act of 2009 (HR 2454), sponsored by Representatives Henry Waxman (D-CA) and 

Edward Markey (D-MA), was passed by the House of Representatives on June 26, 2009 

and provides a model of what potential future legislative policy might be with regard to 

beef cattle. The bill included a cap-and-trade system that set a national limit on CO2e 

emissions and granted a set number of emission allowances that could be traded and 
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sold amongst regulated entities. The bill would have limited GHG emissions by 17% 

below 2005 levels by 2020 and by 83% by 2050.  

 The bill excluded the agricultural and forest industries from regulation and, 

instead, made them eligible for an incentive program titled “Offset Credit Program from 

Domestic Agricultural and Forestry Services”. This program, run by the USDA as opposed 

to the EPA, allowed entities to establish land management practices, manage carbon 

stocks, or improve waste management practices that could be proved to reduce, avoid, 

or sequester CO2e. Though specific activities were never finalized, it appears that 

improvements in manure management could have made feedlot producers able to sell 

carbon offsets. Though enteric fermentation makes up a large portion of the cattle 

lifecycle (28% of the feedlot LCA presented here), it will not be regulated in this 

framework. Beef production might experience a small increase in costs as electric 

utilities and petroleum refineries will likely pass on their higher costs to consumers. 

However, feedlots will not be subject to specific caps on cattle transportation emissions 

since HR 2454 covers only “stationary” emission sources.  

 Due to the difficulty of delineating natural vs. anthropogenic emissions from 

agriculture and oppositional political interests, it appears that future comprehensive 

climate legislation will likely cover beef production emissions only as offsets and that 

the majority of emissions will go unregulated. 
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4.3 Future Work 

The need for additional research is most apparent in evaluating the uncertainty 

associated with this life cycle assessment. In constructing the Monte Carlo simulation, 

only six parameters were associated with verifiable uncertainty. Thus, it is 

recommended that future empirical work be done to validate and assess the uncertainty 

of direct feedlot emissions (especially with regard to enteric fermentation and manure 

management). It appears that the vast majority of beef LCAs use some form of the IPCC 

emission factors in their inventories (Crosson et al., 2011); additional empirical evidence 

would be useful in constructing future life cycle assessment models. Additionally, few 

studies document the factors associated with assessment of pasture GHG emissions 

(though admittedly, these emissions are highly variable and difficult to quantify). 

However, additional work on measuring and modeling pasture emissions and potential 

mitigation efforts would be useful. 
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4.4 Conclusions 

Policy frameworks for accounting for GHG emissions from livestock are currently in a 

relatively underdeveloped state. The quantitative methods underlying the EPA 

Mandatory Reporting rule are shown here to account for roughly 20% of the GHG 

emissions recognized by the more complete EPA Annual Inventory for beef cattle 

feedlots, with the latter approach giving relatively consistent emissions estimates 

despite variable input data (Figure 6). If the Annual Inventory is expanded to account for 

more GHG emissions associated with beef cattle feedlots, such as including emissions 

from crop production for cattle feed, the methods employed in the Mandatory 

Reporting rule would only account for roughly 8% of life cycle GHG emissions from 

feedlots. Despite being a relatively conservative approach to estimate emissions from 

beef cattle, the Mandatory Reporting rule will not be used by the EPA due to recent U.S. 

Congressional action to exclusively defund its implementation associated with livestock.  

The EPA Annual Inventory was derived from IPCC methodology and this 

approach appears to be a standard for emissions in the LCAs of beef cattle feedlots 

(Crosson et al., 2011). It is clear from this analysis that when only accounting for 

localized emissions directly from the feedlot, other significant related GHG emissions 

that are attributed to the feedlot are not quantified, such as emissions from feed 

production. Inclusion of emissions from corn and alfalfa production raised Annual 

Inventory emissions by >60%. These environmental impacts from feed production are 

conventionally included in the inventory of attributional life cycle emissions from a 
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feedlot. Emissions from other feed components, direct use of fossil fuels at the feedlot, 

and changes in soil carbon from spreading manure were found to be relatively minor 

contributions or savings in the feedlot life cycle. 

In examining the economics of carbon and beef, it is clear that an increase in the 

price of beef (whether by a direct carbon tax, as in this analysis, or by some other 

means) has the potential to dramatically reduce beef consumption and GHG emissions 

associated with beef production by 2.7 to 21.0 Tg CO2e. However, it appears that future 

comprehensive and state climate legislation will likely view beef production emissions 

only as offsets and that the majority of emissions will go unregulated. 
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