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Inclusion of 6-methoxy-1-methylquinolinium (C1MQ) in the cavity of cucurbit[7]uril (CB7) 

was studied by absorption, fluorescence, NMR and isothermal calorimetric methods in 

aqueous solution at 298 K. The free C1MQ exhibited dual-exponential fluorescence decay 

kinetics due to the two torsional isomers differing in the orientation of the methoxy moiety 

relative to the heterocyclic ring. The enthalpy-driven encapsulation of the heterocycle in CB7 

led to very stable 1:1 complex with a binding constant of (2.0±0.4)×10
6
 M

−1
. The rate of 

C1MQ−CB7 complex dissociation was found to be comparable to the NMR timescale. 

Because the methoxy moiety is oriented outward from the host, its s-cis−s-trans 

isomerization is slightly affected by the confinement. Inclusion complex formation 

significantly slowed down the photoinduced electron transfer from I
−
 and N3

−
 to the singlet-

excited C1MQ, but did not preclude the reaction because long distance electron transfer 

occurred through the wall of CB7 macrocycle. Due to the large difference in the quenching 

rate constant for free and encapsulated forms, C1MQ is an excellent probe for the study of the 

inclusion of nonfluorescent compounds in CB7 in the presence of Cl
− or Br

−. 

                                                
*
 Corresponding author. Phone: +36-1438-1103;  Fax: +36-1438-1143; E-mail: biczok.laszlo@ttk.mta.hu 
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1. Introduction 

Quinolinium derivatives are valuable fluorophores due to their high fluorescence quantum 

yield, applicability in wide pH range, solubility in water, and considerably Stokes-shifted 

emission. This moiety causes the intense fluorescence of cinchona alkaloids in strongly 

acidic medium.
1-5

 N-Substituted 6-methoxyquinolinium cations were employed for the 

detection of Cl
−
 transport across cell membranes,

6
 the fluorescence imaging of the 

intracellular Cl
−
 levels in living brain slices,

7,8
 and for the characterization of the role of 

Ca
2+

-dependent Cl
−
 channels.

9
 6-Methoxy-1-methylquinolinium was linked to a mesityl 

moiety to enhance Cl
−
 sensitivity,

10
 whereas its grafting on silica nanoparticles allowed the 

preparation of a cell-penetrating ratiometric nanoprobe.
11

 The fluorescence response to 

Cl
− concentration was attributed to quenching via electron transfer.

12,13
 Systematic molecular 

structure-activity studies demonstrated that electron-donating substituent is required to 

achieve high chloride sensitivity.
14

  

The major limitation for the quinolinium type of Cl
−
 sensitive fluorescent probes 

stands in their difficult loading into cells.
15

 The encapsulation of the dye in a cell-permeable 

molecular container may help to overcome this problem. Therefore, we studied the 

thermodynamics and kinetics of confinement in a macrocycle. Cucurbit[n]urils are 

biocompatible hosts composed of n glycoluril units linked by a pair of methylene groups, 

whose inclusion complex formation can be exploited to deliver guest molecules.
16

 Cellular 

uptake of the nanoparticles composed of substituted cucurbit[6]uril has been reported.
17

 Very 

low toxicity was found for cucurbit[7]uril (CB7) and cucurbit[8]uril.
18,19

 Their complexes 

were able to cross the cell membrane.
20

 In the present work, the most water-soluble 

homologue, CB7 was used to reveal the characteristics of the inclusion complex formation 

with 6-methoxy-N-methylquinolinium (C1MQ) cation, and the effect of the encapsulation on 
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the fluorescent behavior. Although lots of fluorescent inclusion complexes are known,
21

 

information regarding the effect of the host macrocycle on the electron transfer and torsional 

isomerization of the embedded guest is scarce. C1MQ uniquely permits the investigation of 

both types of processes. On the basis of the systematic examination of C1MQ−CB7 associate, 

we develop a strategy for the study of the competitive confinement of nonfluorescent 

compounds by probes whose fluorescence properties are insensitive to inclusion complex 

formation. The deeper understanding of the photoinitiated processes and inclusion in CB7 

may promote the targeted delivery and efficient utilization of C1MQ as a fluorescent probe. 

The formulas of the investigated substances are given in Scheme 1. 

 

Scheme 1. Formulas of the studied compounds 

 

2. Experimental 

Iodide salt of C1MQ was synthesized as has been reported.
22

 The concentration of C1MQ was 

determined spectrophotometrically on the basis of the molar absorption coefficients of 5500 

M
−1

cm
−1

 at 315 nm. High purity cucurbit[7]uril
23

 was kindly provided by Dr. Anthony I. 
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Day. The UV-visible absorption spectra were recorded on a Unicam UV 500 

spectrophotometer. Fluorescence quantum yields (Φf) were determined relative to that of 

quinine sulfate in 0.5 M H2SO4 solution, for which a reference yield of Φf = 0.546 was 

taken.
24

 Corrected fluorescence spectra were obtained on a Jobin-Yvon Fluoromax-P 

spectrofluorometer. Fluorescence decays were measured with a time-correlated single-photon 

counting technique on a previously described apparatus.
25

 Data were analyzed by a non-

linear least-squares deconvolution method with Picoquant FluoFit software. Quantum 

chemical calculations were performed with RM1 method using HyperChem 8.0 program 

(Hypercube Inc., Gainesville, FL). Isothermal titration calorimetry (ITC) measurements were 

carried out with a MicroCal VP-ITC microcalorimeter at 298 K as have been reported 

elsewhere.
26

 NMR spectra were taken on a Bruker Avance II 400 MHz NMR spectrometer, 

equipped with a 5 mm 
1
H/X probe. The error limits represent standard deviation. 

 

3. Results and Discussion 

Photophysical properties in water 

The absorption and fluorescence spectra of C1MQ resemble that of quinine sulfate in strongly 

acidic medium. (Supporting Information, Figure S1) The absorption maxima around 316 and 

345 nm in water are attributed to transitions to S2 and S1 singlet excited states on the basis of 

the analogous spectrum of quinine sulfate in 0.5 M H2SO4 aqueous solution.
27,28

 Excitation at 

the red edge of the C1MQ absorption band (415 nm) led to about 10 nm bathochromic 

displacement of the fluorescence peak. The excitation spectrum moved to a smaller extent to 

lower energy when the detection wavelength was changed from 400 to 500 nm (Supporting 

Information, Figure S2). These phenomena indicate the existence of two species in the 

ground and excited states, which correspond to s-cis-C1MQ and s-trans-C1MQ (Scheme 1).
29
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Two distinct isomers have also been reported for 2-methoxynaphthalene
30

 and 2-

methoxyanthracene.
31

  

 RM1 semiempirical calculations using HyperChem 8.0 program showed that the 

energy of the s-cis form is about 4 kJ mol
−1

 lower in the ground state. This is in accord with 

the s-trans−s-cis energy difference of 4.82 kJ mol
−1

 found by NMR for 2-

methoxynaphthalene.
32

 The calculated electron density distribution of the heterocyclic ring 

significantly differs for the two C1MQ isomers. The partial charge at the position 5 is more 

negative for the s-cis form, whereas higher electron density is obtained at the position 7 in 

the case of s-trans-C1MQ. The calculations also showed that the dipole moment component 

along the long axis of the aromatic ring is larger for s-cis-C1MQ.  

Time-resolved fluorescence measurements exhibited dual-exponential decay kinetics. 

Deaeration of the solution insignificantly affected the fluorescence lifetimes implying very 

slow quenching of the singlet-excited molecules by oxygen. The fluorescence signals were 

concentration-invariant indicating that C1MQ aggregation did not take place. The time-

dependence of the fluorescence intensity could be well described with a sum of two 

exponential functions (I(t)=A1exp(-t/τ1)+A2exp(-t/τ2)). The fluorescence lifetimes (τ1 and τ2) 

listed in Table 1 did not change with the detection wavelength within the limits of 

experimental errors (ca. ±4%), but the relative contribution of the amplitude of the longer- 

Table 1. Fluorescence characteristics of C1MQ in water and CB7 cavity 

 ΦF τ1 / ns τ2 / ns A1/(A1+A2) 

at 500 nm 

C1MQ 0.46 19.4 37.1 0.72 

C1MQ−CB7  0.50 28.3 46.3 0.81 
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lived component gradually increased towards longer wavelengths. Both amplitudes were 

positive irrespective of the detection wavelength. The lack of initial build-up indicates that 

the equilibrium between the two torsional isomers does not alter significantly upon excitation 

and/or the interconversion between the s-cis and s-trans excited forms is much faster than the 

lifetime of their excited states. Figure 1 displays the time-resolved area-normalized emission 

spectra (TRANES)
33

 constructed from the fluorescence decays of C1MQ at various 

wavelengths. The fluorescence maxima are located at 441 and 450 nm at 0 and 100 ns after 

the excitation, respectively. The appearance of an isoemissive point at 447 nm proves that the 

nonexponential decay kinetics is not due to solvation dynamics. This is in sharp contrast to 

the continuous red-shift of the spectra with increasing time reported for 6-

methoxyquinolinium
34

 and double protonated quinidine
35

 in 1 N H2SO4 glycerol-water 1:1 

mixture as well as for 6-methoxyquinoline at pH 12 in water
36

 

400 450 500 550
0.0
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n
s
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Figure 1. Time-resolved area-normalized fluorescence spectra of C1MQ in water at 0 (red), 

25 (green), 50 (black), and 100 ns (blue) after excitation at 372 nm.  

 

and quinine sulfate in 1 N H2SO4 aqueous solution.
37

 The lower-energy emission of the 

TRANES spectra, which has longer lifetime, is assigned to singlet-excited s-trans-C1MQ 

because the excitation at the red edge of the absorption spectrum, where ground state s-trans-
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C1MQ preferentially absorbs, induces this fluorescence. The shorter-lived s-cis-C1MQ 

emission dominates at the blue edge of the fluorescence band. The energy gap between S1 

and S0 states (E0-0) was estimated from the intersection of the normalized excitation and 

TRANES spectra (Supporting Information, Figure S2). The E0-0 values were found to be 

25650 and 26060 cm
−1

 (3.18 and 3.23 eV) for s-trans- and s-cis-C1MQ, respectively. 

 

Inclusion of C1MQ in CB7 cavity 

Figure 2 presents the results of spectrophotometric titration of 31 µM C1MQ with CB7 in 

water. The addition of CB7 leads to marked alteration in the absorption spectrum, and 

isosbestic points develop at 256, 273, and 357 nm. The bathochromic shift and the 

hypochromicity of the bands are evidence of host-guest complex formation. The absorbance 
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Figure 2. Alteration of the absorption spectrum of 31 µM C1MQ upon addition of 0, 4.1, 8.1, 

15, 21, and 42 µM CB7 in water. Inset: absorbance at 250 nm as a function of [CB7]/[C1MQ] 

molar ratio. 

 

at 250 nm exhibits an initial linear decrease followed by a CB7 concentration independent 

domain (inset to Figure 2). A sharp break appears at equimolar concentration of C1MQ and 

CB7 indicating 1:1 binding stoichiometry. The equilibrium constant of complexation cannot 
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be determined accurately when the concentration dependence of the measured quantity 

consists of two portions of straight lines.
38

 Therefore, fluorescence spectroscopic 

measurements were performed, which allowed much more diluted solutions to be studied. 

Figure 3 displays the change of the fluorescence spectra with the increase of CB7 

concentration in 0.37 µM C1MQ solution. The samples were excited at the isosbestic point at  
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Figure 3. Fluorescence spectrum of 0.37 µM C1MQ in the presence of 0, 0.31, 0.54, 0.94, 

1.6, and 3.2 µM CB7 in aqueous solution. Excitation at 357 nm, slits 5 nm. Inset: 

fluorescence intensity vs. CB7 concentration at 407 (●) and 480 nm (▲). The line represents 

the result of the global analysis in the 370-650 nm range. 

 

357 nm. The intensity of the band slightly grew and the location of the maximum shifted 

from 444 to 452 nm. The fluorescence quantum yields (ΦF) were found to be 0.46 and 0.50 

for the free and complexed C1MQ, respectively. The fluorescence decay kinetics remained 

dual exponential in CB7 cavity indicating that the methoxy substituent can have s-cis and s-

trans conformation even after complexation. The fluorescence lifetimes of C1MQ−CB7 

complex became longer compared to those of free C1MQ. (Table 1.) The very low 

polarizability inside the CB7 cavity
39

 slightly diminishes the rate constants of fluorescence 

and radiationless deactivation for s-cis- and s-trans-C1MQ alike. Interestingly, the 
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encapsulation in CB7 decreases the amplitude of the fluorescence of the s-trans form. This 

implies that the s-trans−s-cis energy gap grows upon inclusion complex formation probably 

both in the ground and singlet-excited states. The TRANES spectra resembles those of 

uncomplexed C1MQ (Supporting Information, Figure S3), but the maximum shifts to a 

smaller extent from 451 nm to 455 nm at 0 and 100 ns after excitation, respectively. The 

isoemissive point is observed at 462 nm.  

Equilibrium constant of inclusion complex formation (K) was calculated by the 

nonlinear least-squares fit of fluorescence intensities (I) by the following function:  
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where I∞ and I0 denote the intensity for the fully complexed and free C1MQ, [CB7]0 and 

[C1MQ]0 represent the total concentration of the host and guest compounds, respectively. The 

global analysis of the experimental data in the 370−650 nm range provides K = 

(1.8±0.2)×10
6
 M

−1
. The inset in Figure 3 shows the quality of the fit at two representative 

wavelengths. The strong binding stems from the combined effects of ion-dipole and 

hydrophobic host-guest interactions within the nonpolar cavity of CB7.  

 

Effect of CB7 on the fluorescence quenching by anions 

To reveal how electrolytes influence the fluorescence decay kinetics of singlet-excited C1MQ 

(C1MQ
*
) time-resolved fluorescence was detected at 550 nm, where both s-cis- and s-trans-

C1MQ* emit. Among the various sodium salts, NaClO4 caused negligible effect in the 0 − 0.3 

M concentration range, whereas addition of sodium halides to C1MQ aqueous solution 

markedly accelerated the fluorescence decay. The reciprocal lifetime of both torsional 
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isomers (1/τ) showed linear correlation with anion concentration and the slope corresponds to 

the rate constant of quenching (kq): 

1/τ = 1/τ0 + kq[anion]     (2) 

where τ0 denotes the lifetime in neat water. Table 2 summarizes kq values and reports the 

oxidation potential of the various anions (Eox). Jayaraman and Verkman demonstrated that 

anions quench the fluorescence of substituted N-methylquinolinium cations via electron 

transfer, but the effect on the fluorescence decay was not examined.
12

 We always found 

larger kq for s-cis-C1MQ
* 

quenching both for the encapsulated and free species. This trend is 

probably due mainly to the larger energy gap between S1 and S0 states in the case of s-cis-

C1MQ
*
 (vide supra).  

 

Table 2 Quenching rate constants of s-cis- and s-trans-C1MQ* by different anions with their 

oxidation potentials 

Anion Eox 

V vs. 

NHE
a 

s-cis-C1MQ
*
 s-trans-C1MQ

*
 

∆G / eV kq / 10
8
 M

−1
s

−1 ∆G / eV kq / 10
8
 M

−1
s

−1 

in H2O in H2O in CB7 

solution
b
 

in H2O in H2O in CB7 

solution
b
 

I
− 1.33 -0.98 260 5.4 -0.93 230 2.6 

N3
− 

 1.35 -0.96 260 1.6 -0.91 210 0.57 

Br
−
 1.92 -0.39 220 c -0.34 190 c

 

Cl
−
 2.50 0.19 91 c 0.24 27 c

 

a
Reference

40
, 

b
[C1MQ] = 0.023 mM and [CB7] = 0.25 mM, 

c
negligible quenching 

 

The free enthalpy change in the photoinduced electron transfer reaction (∆G) can be 

estimated as
41
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∆G = Eox − Ered −  Ε0−0 + C           (3) 

Ε0−0 denotes the energy of the singlet-excited state. Ered = -0.84 V vs. NHE is derived from 

the reported
12

 reduction potential of C1MQ using 0.22 V for the standard potential of the 

Ag/AgCl electrode.
42

 The same Ered is assumed for s-cis- and s-trans-C1MQ. The Coulomb 

term (C), which accounts for the effect of the electrostatic attraction of the reactants is 

negligible in water. The calculated ∆G values are summarized in Table 2. Because of the 

substantial driving force of electron transfer, the reactions with I
−, Ν3

−  and Br
−
 are close to 

diffusion controlled. A small increase of kq with decreasing ∆G has been found for highly 

exergonic electron transfer in qualitative agreement with theories.
43

 The much slower 

quenching with Cl
−
 arises from the positive ∆G of the reaction.  

Surprisingly, complexation with CB7 does not preclude the reaction with I
−
 and N3

−
 

despite the almost complete embedment of the heterocyclic ring of C1MQ in the hydrophobic 

core of the host (vide infra). After the encapsulation of C1MQ no space remains for the 

coinclusion of anions. CB7 prevents the contact between embedded C1MQ and anions. 

However, through-space electron transfer can occur at long range when the driving force is 

large. Because of the deceleration of the electron transfer with the donor-acceptor separation 

distance, kq values for C1MQ
*−CB7 complexes are much smaller than those of free C1MQ

*
. 

The electrostatic repulsion between the anions and the large electron density of the carbonyl 

oxygen atoms at the portals of the macrocycle hinders the access of C1MQ
*
 by anions from 

the direction of the opening of CB7. However, the partially positive charge of carbons 

located at the symmetry plane of CB7 promotes the approach by anions facilitating thereby 

the long distance electron transfer from I
−
 and N3

−
 to the CB7-embedded C1MQ

*
. The 

effective separation interval, at which the electron transfer can takes place, becomes smaller 

when ∆G is increased. Br
−
 and Cl

− cannot reach this distance due to the protection of C1MQ
*
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by the host macrocycle. Consequently, they are not able to react with the encapsulated 

C1MQ
*
. Nau and coworkers have also observed significant deceleration of fluorescence 

quenching upon embedment in CB7.
44

 The rate constant of singlet-excited 2,3-

diazabicyclo[2.2.2]oct-2-ene−CB7 complex interaction with I
−
 was found to be

44
 less then 

5×10
6
 M

−1
s

−1
. The much more rapid reaction of C1MQ

*−CB7 associate with I
−
 originates 

probably from the more negative ∆G of electron transfer to the positively charged excited 

guest. 

 

Utilization of C1MQ as a fluorescent probe 

The small difference between the fluorescent properties of free and CB7-confined C1MQ in 

neat water (Figure 3) substantially increases in the presence of Br
−
 or Cl

−
 because these 

anions selectively quench the unbound C1MQ, but do not react with C1MQ
*−CB7 inclusion 

complex. Therefore, the competitive binding of a nonfluorescent compound in CB7 can be 

sensitively detected by the change of the C1MQ fluorescence intensity in the solution of Br
−
 

or Cl
−. When a competitor expels C1MQ from the cavity of CB7, the intense fluorescence is 

quenched by these anions and the binding constant of the competitor can be determined from 

the fluorescence intensity diminution.  
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Figure 4. Change of the intensity at 453 nm and the spectra of fluorescence (inset) with 

increasing DOPAH
+
 concentration in 25 mM NaCl aqueous solution. [C1MQ] = 1.1 µM, 

[CB7] = 3.4 µM and [DOPAH
+
] in the inset 0, 6.0, 24, 58, 130, 290, 660, 1100 mM. 

Excitation was at 357 nm. The line through the experimental points represents the fitted 

function (see text and ref.45 for the adopted fitting procedure). 

 

As a proof of concept, the results with dopamine hydrochloride are displayed in 

Figure 4. The blue-shift of the fluorescence band indicates that C1MQ is gradually released 

from CB7 cavity when protonated dopamine (DOPAH
+
) concentration is raised, and the 

fraction of the encapsulated DOPAH
+
 grows. The substantial intensity diminution originates 

from the efficient quenching of the uncomplexed C1MQ
*
 via electron transfer with Cl

−
. 

DOPAH
+
 does not absorb at the excitation wavelength (357 nm), and its low concentration 

does not permit reaction with C1MQ
*
. The experimental data were analyzed with a home-

made MATLAB program as described in our previous paper.
45

 K = (3.8±0.2)×10
5
 M

−1 
was 

used for the equilibrium constant of C1MQ inclusion in CB7 in the presence of 25 mM NaCl. 

This K value was obtained from a fluorescence titration in the absence of dopamine. The 

slightly lower binding constant in NaCl solution compared to that in water results from the 

coordination of Na
+ 

to the carbonyl-fringed portals of CB7, which hinders the confinement of 

C1MQ.
46-48

 The nonlinear least-squares fit of the data in Figure 4 provided (5.2±0.7)×10
4
 M

−1
 

for the binding constant of DOPAH
+
 in CB7 in the presence of 25 mM NaCl. 

 

Thermodynamics of inclusion in CB7 

Isothermal calorimetric titrations provided information on the thermodynamics of 

encapsulation of C1MQ in CB7. A representative result is presented in Figure 5. Upon 
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successive addition of 0.7 mM C1MQ solution into 0.08 mM CB7 in water, the quantity of 

released heat per mole of injectant is proportional to the extent of binding. As CB7 becomes 

saturated with C1MQ, the signal vanishes. The inflexion point appears around 1:1 molar ratio 

confirming the equimolar complexation stoichiometry. The nonlinear least-squares analysis 

of the experimental data with the one site model provided ∆H= −37.0 kJ mol
−1

 for the 

enthalpy of complexation. Because of the steep change of the binding isotherm with  

 

Figure 5. ITC profile of injections of 0.7 mM C1MQ into 0.08 mM CB7 solution (�) and 

into water (�). The line represents the results of the fit with a one site model. 

 

[C1MQ]/[CB7] ratio around the inflexion point, only a lower limit (K > 10
6
 M

−1
) was 

obtained for the binding constant. It is known that the product of K and the ligand 

concentration should stand in the range 10-500 for ITC experiments.
49,50

 To determine 

accurate K value, displacement assay
51

 was carried out using the competitive inclusion of 

1,3-dimethylimidazolium cation (C1mim
+
) in CB7 as a reference because it has a well-

established equilibrium constant
26,52

 (K = 7.5×10
4
 M

−1
). The titration of 0.08 mM CB7 and 

0.13–0.20 mM C1mim
+
 solutions with 0.7 mM C1MQ gave K= (2.2±0.2)×10

6
 M

−1
 for the 
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stability constant of C1MQ−CB7 complex in fair agreement with the corresponding quantity 

(K=(1.8±0.2)×10
6
 M

−1
) derived by fluorescence method (vide supra). Knowing ∆H and K 

enables the calculation of the standard free enthalpy (∆G) and entropy (∆S) changes upon 

confinement in CB7 according to the equation 

∆G= −RT ln K= ∆H − T∆S    (2) 

where R is the gas constant and T is the temperature. ∆G = -35.9 kJ mol
-1

 was obtained for 

the standard free enthalpy. The substantial enthalpy gain, ∆H= -37.0 kJ mol
−1

 indicates that 

confinement of C1MQ in CB7 is an enthalpy-controlled process. The entropic contribution to 

the driving force is slightly negative (T∆S = -1.1 kJ mol
−1

 at 298 K). It has been 

demonstrated that the release of high-energy water from the cavity of cucurbit[n]uril 

macrocycles plays a decisive role in the stabilization of the inclusion complexes of neutral 

guests.
53

 In the case of the cationic C1MQ, electrostatic interactions with CB7 also contribute 

to the significant enthalpy diminution upon encapsulation.  

 

Structure of C1MQ−−−−CB7 complex 

RM1 semiempirical calculations with HyperChem 8.0 program provided information on the 

position of C1MQ in CB7 macrocycle. In the energy-minimized structure (Figure 6), the 

aromatic quinolinium and the methyl substituent of the heterocyclic nitrogen are located in 

the apolar core of CB7, whereas the methoxy group protrudes into the aqueous phase. 
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Figure 6. Structure of s-cis-C1MQ−CB7 inclusion complex in the ground state calculated by 

RM1 semiempirical method. Color codes: CB7, green; C1MQ, oxygen, red; nitrogen, blue; 

carbon, light blue and hydrogen, white. 

 

Among the aromatic hydrogen atoms, those in the positions 4 and 8 are the ones the most 

deeply embedded within the macrocycle. The calculations show that the charge of C1MQ is 

delocalized. The carbon atom at the position 6 has the most substantial positive partial 

charge, which interacts with the high electron density of the oxygen atoms at the portal of 

CB7. Considerable electron density in the aromatic ring of C1MQ is found in the positions 5 

and 3, which are in the vicinity of the planes of the electron deficient carbon atoms of the CO 

groups of CB7. The interaction of the partial positive charge of the aromatic hydrogen atoms 

with the considerable negative electrostatic potential of the inner surface of the macrocycle
54

 

also contributes to the stability of the C1MQ−CB7 complex. Because the methoxy substituent 

is located outside the host, the inclusion complex formation only slightly influences the s-

trans−s-cis torsional isomerization. 

 

NMR spectra and complexation kinetics 
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The calculated structure was confirmed by 
1
H NMR measurements. Figure 7 depicts the 

1
H 

NMR spectra of C1MQ in D2O in the absence and presence of 1.35 equivalents of CB7. The 

assignment of the resonances in Figure 7A, originating from 
1
H−1

H COSY and NOESY 

experiments (Supporting Information, Figure S4, S5), is in qualitative agreement with 

reported chemical shift values.
10

 Because of the rapid isomerization, the O−CH3 signals for s-

cis- and s-trans-C1MQ are indistinguishable on the 
1
H NMR spectrum. Upon addition of 

more than one equivalent of CB7 to C1MQ solution, the resonances related to all aromatic 

and N−CH3 protons are significantly shifted upfield (Figure 7B) indicating the encapsulation 

in CB7. In contrast, the peak attributed to the O−CH3 protons slightly moves downfield 

suggesting that this moiety is located near to the carbonyl portal outside the CB7 cavity. 

Table 3 summarizes the CB7-induced chemical shift variation (∆δ) of the C1MQ protons.  

 

Figure 7. 
1
H NMR spectra of (A) 0.7 mM C1MQ and (B) after addition of 1.35 equivalent 

CB7 in D2O. (* denotes the peaks related to the CB7 protons)  

 

Table 3. Displacement of proton resonances upon the confinement of C1MQ in CB7 

H5 H8H2 H4
H3 H7

B)

A)

H2 H4

N-CH3
O-CH3

H3 H7
H5

H8

O-CH3

N-CH3

*

*

*
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 H2 H3 H4 H5 H7 H8 N−CH3 O−CH3 

∆δ (ppm) -0.321 
-0.298 

-0.233 
-0.981 -0.484 

-0.230 

-0.165 
-1.168 -0.557 0.074 

 

The largest changes appear for the signal of the protons located at the positions 4 and 8 of the 

quinolinium ring. This implies, in accordance with the calculated structure of C1MQ−CB7 

complex (Figure 6), that these two hydrogen atoms occupy, on average, the innermost 

position in CB7. 

Figure 8 displays the variation of the aromatic resonances observed on the 
1
H NMR 

spectrum upon gradual increase of CB7:C1MQ molar ratio. Because of the large equilibrium 

constant of C1MQ−CB7 complex formation (K=(2.0±0.4)×10
6
 M

−1
 vide supra), nearly all 

 

Figure 8. Aromatic proton resonance region of 
1
H NMR spectra at [CB7]:[C1MQ] molar ratio 

of 0 (A), 0.22 (B), 0.47 (C), 0.62 (D), 0.88 (E), 1.35 (F) and 3.12 (G) in D2O.  

 

A)

F)

E)

B)

D)

C)

G)
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C1MQ molecules are encapsulated in CB7 at the equimolar solution of the components. 

Therefore, the spectra in Figure 8F and G barely differ, and are assigned to C1MQ−CB7 

inclusion complex. When the CB7:C1MQ molar ratio is decreased from 1 to 0, a continuous 

displacement of the aromatic proton resonances is observed (Figure 8A-E). The line width 

also undergoes significant changes, reaching the largest broadening around CB7:C1MQ molar 

ratio of 0.6. The resonances assigned to H4 and H8 become so broad that they can hardly be 

detected. Such a behavior of both chemical shift and line width implies that the rate of the 

exchange between bound and free C1MQ is comparable to the NMR time scale, which can be 

expressed in this kind of experiments as �� � �2���	
� � 
	�
��

, i.e. about 1 ms.
55

 In this 

equation, �� stands for the 
1
H Larmor frequency, whereas δb and δf denote the 

1
H chemical 

shift for bound and free C1MQ, respectively. Yu and coworkers investigated
56

 a series of 

cyclohexane derivatives in presence of CB7, and found that the relative contributions of 

hydrophobic interactions and ion-dipole/hydrogen bonding interactions influence both the 

thermodynamic constant and the exchange rate between the host and the guest. In the case of 

C1MQ hydrogen bonding is not possible with the host. The structure of the complex (Figure 

6) permits a good balance between the hydrophobic interaction within the CB7 cavity and the 

interactions of the partial charges in the portal region and inside CB7.  

The kinetic parameter � of the exchange has the following relationship with the mean 

lifetime of the bound (��) and free (�) C1MQ:  

1 � � 1 �� � 1 �⁄⁄⁄     (3) 

In the case of intermediate exchange, close to the coalescence point, τ can be derived from the 

effect of the exchange on the 
1
H NMR line width δν by the following equation:

55
 


� � 
�� � 4�����/���    (4) 
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where 
�� stands for the line width in the absence of exchange phenomena, which is 

estimated from the 
1
H NMR spectra of C1MQ in D2O (Figure 8A), whereas pf and pb denote 

the molar fraction of free and bound C1MQ molecules. On the basis of equation 4, τ = 0.25 

ms was obtained from the line width of the H4 resonance at the CB7:C1MQ molar ratio of 

0.62 (Figure 8C) at 297 K. From this τ value, kd = 1.5×10
3
 s

−1
 is calculated for the rate 

constant of the dissociation of C1MQ−CB7 complex using the relationship
55

 kd = 

1/[(1+pb/pf)τ] . The rate constant of the inclusion complex formation ka = 3.0×10
9
 M

−1
s

−1
 is 

derived from the average of the binding constant determined by fluorescence and ITC 

measurements K=ka/kd = (2.0±0.4)×10
6
 M

−1
. Surprisingly, the rate constant of association is 

not far from the diffusion-controlled limit of bimolecular reactions (6.5×10
9
 M

−1
s

−1
) in 

water.
57

 This suggests that the relatively small C1MQ can easily enter into CB7 without 

significant steric hindrance and structural alteration of the reactants. No significant barrier has 

to be overcome before inclusion. Moreover, the release of water from CB7 cavity and from 

the hydrate shell of C1MQ seems to require insubstantial activation energy. The ka found in 

this study closely agrees with the corresponding values published for the ingress of singlet-

excited 2-naphthol
58

 (2.5×10
9
 M

−1
s

−1
), triplet-excited chromone

59
 (3×10

9
 M

−1
s

−1
) and triplet-

excited flavone
59

 (2.4×10
9
 M

−1
s

−1
) into β-cyclodextrin (β-CD). Because of the weaker host-

guest interactions, the latter two β-CD complexes dissociate much more rapidly than 

C1MQ−CB7, which has a considerable negative binding enthalpy (vide supra). The larger 

apolar ring system of singlet-excited 2-naphthol give rise to stronger association with β-CD. 

Therefore, the exit rate constant from this complex
58

 (522 s
−1

) is similar to that obtained for 

C1MQ−CB7. Bohne and coworkers showed that formation of a complex between a positively 

charged guest and CB7 can occur at a rate close to the diffusion-controlled limit without 

Page 20 of 34Photochemical & Photobiological Sciences



21 

 

detectable intermediate.
60

 The association rate constant of 6.3×10
8
 M

−1
s

−1
 was found for the 

confinement of R-(+)-2-naphthyl-1-ethylammonium in CB7.
60

 

 

4. Conclusions 

The dual fluorescence of C1MQ is due to two torsional isomers, which differ in the orientation 

of the methoxy substituent. Such a sometimes overlooked phenomenon may also contribute to 

the intricate photophysics of methoxyquinoline type of alkaloids. The relative amounts of the 

two fluorescence components are barely affected by inclusion in CB7 cavity because the 

methoxy moiety of C1MQ is located outside the macrocycle in the aqueous phase. When 

methoxyquinolinium fluorophores are employed as probes in various environments, it has to 

be taken into account that the rate constant of fluorescence quenching can markedly differ for 

the s-cis and s-trans forms. Therefore, the results may alter with the detection wavelength, 

which influences the accuracy of quantitative analysis. The remarkably stable 1:1 binding of 

C1MQ with CB7 is an enthalpy-driven process, and the slow dissociation of the produced 

inclusion complex is responsible for the high binding constant. The cooperativity of the 

hydrophobic effects and dipole interactions decelerates the C1MQ exchange in CB7. The 

close to diffusion-controlled rate constant of the confinement in CB7 is advantageous in the 

utilization of C1MQ as a fluorescence probe for the examination of the competitive 

encapsulation of nonemitting compounds. The enormous difference in reaction rate of the free 

and CB7-embedded singlet-excited C1MQ in the electron transfer from Cl
−
 or Br

−
 can be 

exploited to sensitively detect the release of C1MQ from CB7.  
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The inclusion of 6-methoxy-1-methylquinolinium in cucurbit[7]uril decelerates electron 

transfer but does not affect torsional isomerization. 

Page 29 of 34 Photochemical & Photobiological Sciences



S1 

 

SUPPORTING INFORMATION 

 

Effect of torsional isomerization and inclusion complex formation with 
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Figure S1. Absorption (A) and fluorescence spectrum (B) of C1MQ in water (blue line) and 

quinine sulfate in 0.5 M H2SO4 aqueous solution (red line). Excitation at 350 nm. 

Figure S2. Time-resolved area-normalized emission spectrum (TRANES) and excitation 

spectrum of cis- and trans-C1MQ in water. 

Figure S3. Time-resolved area-normalized emission spectrum (TRANES) of 0.043 mM 

C1MQ and 0.316 mM CB7 in aqueous solution at 0 (red), 50 (black) and 100 ns (blue) after 

excitation at 370 nm. 

Figure S4. 400 MHz 
1
H COSY spectrum of C1MQ in DMSO at 298 K. 

Figure S5. 400 MHz 
1
H NOESY spectrum of C1MQ in DMSO at 298 K. The mixing time 

value was set to 800 ms. 
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Figure S1. Absorption (A) and fluorescence spectrum (B) of C1MQ in water (blue line) and 

quinine sulfate in 0.5 M H2SO4 aqueous solution (red line). Excitation at 350 nm. 
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Figure S2. Time-resolved area-normalized emission spectrum (TRANES) and excitation 

spectrum of cis- and trans-C1MQ in water. 
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Figure S3. Time-resolved area-normalized emission spectrum (TRANES) of 0.043 mM 

C1MQ and 0.316 mM CB7 in aqueous solution at 0 (red), 50 (black) and 100 ns (blue) after 

excitation at 370 nm. 
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Figure S4. 400 MHz 
1
H COSY spectrum of C1MQ in DMSO at 298 K. 
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Figure S5. 400 MHz 
1
H NOESY spectrum of C1MQ in DMSO at 298 K. The mixing time 

value was set to 800 ms. 
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