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The stopping condition is a common problem for non-regularized deconvolution 

methods. We introduce an automatic procedure for estimating the ideal stopping 

point based on a new measure of independence, checking an orthogonality criterion 

of the estimated signal and its gradient at a given iteration. We provide an effective 

lower bound estimate than the conventional ad-hoc methods, proving its superiority 

to the others at a wide range of different noise models. 

 

Introduction: Blurring is a common issue in almost all image acquisition processes. 

The distortion is often modeled as convolution: the original unknown image is 

convolved with a Point Spread Function (PSF): 

              (1) 

where   is the measured blurry image,   is the unknown original image,   is the 

PSF and   is additional noise.  ,   and   are       sized 2D images and   is a 

      sized kernel (           ) with some boundary constraints.  

In this letter we will focus on a common issue of non-regularized iterative methods, 

the stopping condition. Although nowadays regularization is the main trend, non-

regularized methods also produce results comparable to the state of the art [1]. We 

introduce a new error metric based on the independence of the estimated signal 
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and the estimation noise. We show that the ideal (but unknown) criterion can be 

well estimated by our theoretically new calculus, without any regularization or other 

constraints. 

In the experiments an iterative, non-blind deconvolution algorithm, the Richardson-

Lucy (RL) method was used: [2, 3].  

The Necessity of Stopping Condition: Since we do not know the original image ( ), 

only the blurry measured one ( ) can be used to guide us toward  . If      is the 

output of a deconvolution process after   iterations (starting with         ), then 

its cost function is usually ([2]) based on minimizing the Mean Square Error (MSE): 

               
 

   
              (2) 

where  |.| is the Euclidean norm. 

The above MSE measures similarity between two images. In the ideal case the goal 

is to minimize             (or         ) by stopping the iterations at the 

minimum. However, we can only access the smoothed and thus vague         

     . Let      be an iterated estimation, while another one is                , 

where they differ in an additional      noise and residual error with zero mean. In 

this case          can be considered, and                        

        Since the iterations of      are controlled by       , this allows possible 

cases for         where                        is true, while           

               (see Fig.1.), and this is why the problem is ill-posed. As stated 

in [3, 4] this problem affects the quality of the solution of the iterative algorithms 

highly.  

One way to stop this corruption is to make additional assumptions about the target 

image through regularization [5, 6]. This can enhance the image quality, but the 

output depends on the chosen regularization parameters.  
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Without regularization one has to estimate the number of iterations needed to reach 

the image quality considered best, and stop the process before the image gets 

corrupted.  A straightforward idea is to stop the process after a constant number of 

iterations or after the change between two consecutive estimations of the image 

has become lower than a certain threshold [6]. In the following we will refer to this 

latter as Differential Based Stopping Condition (DBSC):  

        
             

      
      (3) 

where    is a heuristic choice for threshold, usually between 10-3 and 10-6. 

We have also tested a modified version of DBSC (in the following: MDBSC), where 

the re-blurred estimated images (      ) were considered instead of      in 

Eq.(3). Other similar solutions are summarized in [4]. 

Orthogonality Based Stopping Condition: In recent years, the concept of a new 

estimation error has been introduced for similar purposes. Its efficiency has been 

proven for focus measurement in blind deconvolution problems, see [7]. This error 

definition, termed as Angle Deviation Error (ADE), is based on the orthogonality 

principle [8], considering the independence of noise and the estimated signal, using 

the scalar product: 

                 
     

       
     (4) 

where   and   are n*m sized vectors on  , and       is their scalar product. 

We will show that conventional MSE measures cannot help us to find optimal 

stopping criteria; while ADE has an optimum, close to the minimum of the 

practically unknown            . 

When estimating the      image, there is a point where further iterations do not 

enhance the image anymore and the difference between two consecutive estimated 
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images                     contains minimal information about the residual 

error of the estimated image vs. the original, (             ), that we want to 

minimize. We can assume that at this point the independence of       and        is 

maximal. Once this independence has been reached, the process must be stopped, 

since any steps after this point may add false information - which is not part of   - 

to the reconstructed image. In other words, we have to stop the iterative process 

when the                   function reaches its minimum. 

This theory has been confirmed by checking the statistical dependency between 

                  and            : the                          correlates 

well with the                   , the correlation coefficient is 0.9986 for our 

image database (see Results section for database details). 

                  still refers to the unknown image  , and            cannot 

be used instead of the unknown        because the deviation error is blurred by the 

function   in       . We found that the best estimation for the independence of 

the signal and the noise is using the difference between two consecutive estimated 

images       and the unblurred estimation     :  

                 (5) 

Function in (5) only contains measurable images and provides a promising solution 

for the stopping problem, assuming that at the minimum of fn. (5) the change 

between two consecutive iterations       contains mostly independent noise and 

not structural information about the image     , resulting in the highest possible 

independence of the actual reconstructed image and the iterative modification; 

hence further iterations will not enhance the image quality, but may add more noise.  

The hypothesis that                        gives the t closest to the optimum 

has been proved by comparing it to the                       , where      is 
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the expected value: the correlation was 95.56% for our database. This high 

correlation shows that fn. (5)  stops the iterations near to the theoretically best but 

unknown minimum of            . In the following we present the test conditions 

and the results achieved with the proposed algorithm and other competing 

methods.  

Results: To test the proposed method and to compare it to other algorithms, we 

used 25 images as database, which contain landscapes, images of buildings, 

animals, textures, black and white drawings. The PSF is a Gaussian kernel defined 

by different blur radii between 1 and 5. We tested a wide range of noise levels and 

different models: Poisson noise or white Gaussian noise with 

                     was added to the blurred images. 

To compare the proposed method to other existing stopping conditions, we 

calculated the ratio between the MSE value at the real minimum location of 

            and at the point where the stopping condition would stop the iteration.  

We compared the proposed method to fixed iteration count (the best results were 

obtained when this constant was 7), to DBSC (eq. (3)) and as a baseline to the 

blurred image,  . The experiments were taken using all the 25 images with different 

blur radii and noise levels. The results can be seen on Fig. 2. 

Our tests prove that the commonly used DBSC is outperformed by the one using 

the blurred comparison (MDBSC), and both of them are outperformed by the 

proposed ADE based function. DBSC and MDBSC work well occasionally, but their 

quality is not stable. 

We have also tested the stability of the proposed and compared methods at 

different noise levels between 20 and 40 dB separately and against an inaccurate 

estimation of the radius of   Gaussian deconvolution kernel. The results show that 
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fn. (5) based stopping criterion gives the best SNR estimation of   at each noise 

level and it is robust as long as the deconvolution kernel's radius deviates from the 

blurring kernel's size with less than 10%, which is a reasonable assumption. 

Conclusions: We presented a novel method for calculating the optimal stopping 

point and bounding criterion for iterative deconvolution processes. The proposed 

method is capable of estimating a theoretically reasonable stopping point of 

iterations, indicating it when an aimless section of the iterations is starting. It 

outperforms the generally used ad-hoc methods, while we did not apply any 

constraints about dimensionality or regularization issues.  
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List of Captions: 

 

Fig. 1: The measurable function               and other investigated methods 

(on the left, relative values) do not follow the immeasurable function             

(on the right). 

 

Fig. 2: The relative MSE quality error of the deconvolved image using different 

methods with Gaussian (a) and Poisson (b) noise; The proposed ADE based 

stopping condition gives a lower bound than any other methods. 
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Figure 1: 
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Figure 2: 
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