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In joint work with Valentin Blomer (Göttingen) and Nicolas Templier (Princeton) we made progress
on three problems concerning the size of automorphic forms and L-functions. The results appear in the
research papers [BH10, BH11, HT11a, HT11b] and in the survey article [BH09]. A detailed account of
the results is provided below.

1. TWISTED MODULAR L-FUNCTIONS OVER NUMBER FIELDS

The first result within the project is a Burgess-like subconvex bound for twisted modular L-functions
over totally real number fields. It is of similar quality as our earlier result was over Q, see [BHM07].

Theorem 1 ([BH10]). Let K be a totally real number field. Let π be an irreducible cuspidal repre-
sentation of GL2(K)\GL2(AK) with unitary central character, and let χ be a Hecke character of K of
conductor q. Then for any ε > 0 one has

L(1/2,π⊗χ)�π,χ∞,K,ε (N q)
3
8+

θ

4 +ε .

We note that this result contains a bound for all values L(1/2+ it,π⊗χ) on the critical line, because
replacing 1/2 by 1/2+ it has the same effect as replacing χ by χ⊗|·|it . The convexity bound in this con-
text is (N q)

1
2+ε . The first subconvex bound over totally real number fields is due to Cogdell, Piatetski-

Shapiro and Sarnak [CPSS, Co03], in which they obtained the subconvexity exponent 1
2 −

1−2θ

14+4θ
for π

induced by a holomorphic Hilbert cusp form. They used an effective spectral method based on bounds
for triple products [Sa94]. As an application of a new geometric method, Venkatesh [Ve10, Theo-
rem 6.1] achieved the subconvexity exponent 1

2 −
(1−2θ)2

14−12θ
over any number field and for all irreducible

cuspidal representations. For the proof of Theorem 1 we devised a different spectral approach based on
the Kirillov model and Sobolev norms of automorphic forms, generalizing our earlier work [BH08b].

Perhaps the most appealing application of Theorem 1 is to combine it with the formula of Walds-
purger [Wa81] and its extensions by Shimura [Sh93], Khuri-Makdisi [KM96], Kojima [Ko04], Baruch–
Mao [BM07] and others in order to bound the Fourier coefficients of half-integral weight Hilbert mod-
ular forms. For K = Q, the original breakthrough was achieved by Iwaniec [Iw87], and the currently
strongest bounds are given in [BH08a]. For a totally real number field K other than Q we could not find
an explicit reference in the literature.

Corollary 1 ([BH10]). Let (π̃,Vπ̃) be an irreducible cuspidal representation of S̃L2(K)\S̃L2(AK), or-
thogonal to one-dimensional theta series, and let r ∈OK be a nonzero square-free integer. Then the r-th
normalized Fourier coefficient ρ

φ̃
(r) of a pure tensor φ̃ =⊗vφ̃v ∈Vπ̃ satisfies√
|N r|ρ

φ̃
(r)�

φ̃ ,K,ε |N r|
1
4−

1
16 (1−2θ)+ε .

One particular situation where such bounds are needed, are asymptotic formulae for the number
of representations of totally positive integers by ternary quadratic forms. Hilbert’s eleventh problem
asks more generally which integers are integrally represented by a given n-ary quadratic form Q over a
number field K. If Q is a binary form, it corresponds to some element in the class group of a quadratic
extension of K. If Q is indefinite at some archimedean place, Siegel [Si52] for n > 4 and Kneser [Kn61]

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/20327133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 GERGELY HARCOS

and Hsia [Hs76] for n = 3 proved a local-to-global principle, so Siegel’s mass formula [Si37] tells
us exactly which integers are represented by Q. If Q is positive definite at every archimedean place
and n > 4, again Siegel’s mass formula [Si37] and bounds for Fourier coefficients of Hilbert modular
forms give a complete answer (some care has to be taken in the case n = 4). The only remaining
case of Q positive definite and n = 3 was solved by Duke and Schulze-Pillot [DSP90] for K = Q. For
arbitrary totally real K, the result was established by Cogdell, Piatetski-Shapiro and Sarnak [CPSS]; an
account of the key ideas appeared in [Co03]. In fact, the systematic study of subconvexity over number
fields was initiated by [CPSS] about a decade ago motivated by this striking application. The relevant
subconvex bound was subsequently generalized over arbitrary number fields by Venkatesh [Ve10], while
our Corollary 1 allows a better approximation for the number of representations.

Corollary 2 ([BH10]). Let K be a totally real number field, and let Q be a positive integral ternary
quadratic form over K. Then there is an ineffective constant c > 0 such that every totally positive
square-free integer r ∈ OK with N r > c is represented integrally by Q if and only if it is integrally
represented over every completion of K. More precisely, the number of representations for such r equals
(N r)

1
2+o(1)+O((N r)

7
16+

θ

8 +o(1)), where the main term is the product of local densities given by Siegel’s
mass formula.

2. SECOND MOMENT OF RANKIN–SELBERG L-FUNCTIONS

The second result within the project is concerned with the asymptotic behavior of the hybrid second
moment

I (T,K) :=
∫

∞

0
W1

( t
T

)
∑

k≡0(2)
W2

(
k−1

K

)θk(N,χ)

∑
j=1

ρ( f j,k)|L(1/2+ it, f j,k⊗g)|2 dt

over bases ( f j,k) of holomorphic cuspidal newforms of large even weights k, fixed level N and fixed
primitive nebentypus. Here g is a fixed automorphic form of full level (including the “limit Eisenstein
series”), ρ( f j,k) =

Γ(k−1)
(4π)k−1‖ f j,k‖2 are the usual harmonic weights, W1,2 : (0,∞)→ [0,∞) are fixed smooth

functions with nonempty support in [1,2], and T,K > 1 are two large parameters. Motivated by earlier
results of Duke [Du88], Jutila–Motohashi [JM05], Kim–Zhang [KZ09] and Sarnak [Sa85], we estab-
lished the following asymptotic formula for I (T,K) with a power saving error term.

Theorem 2 ([BH11]). Define the analytic conductor

C (t,k) :=
N2

(2π)4

(
t2 +

k2

4

)2

,

and its smooth averages

L j(T,K) :=
1

T K

∫
∞

0

∫
∞

0
W1

( t
T

)
W2

( x
K

)
log j C (t,x)dt dx,

Mir(T,K) :=
1

T K

∫
∞

0

∫
∞

0
W1

( t
T

)
W2

( x
K

)
C (t,x)ir dt dx.

For g cuspidal there are constants a0,a1 ∈ R depending only on N and g such that

I (T,K) = T K
(
a1L1(T,K)+a0L0(T,K)

)
+O

(
(T K)1+ε(T 4K−5 +T−4K3)

)
.

For g = E(·,1/2+ ir) with r ∈R\{0} there are constants a0,a1,a2 ∈R and b± ∈C depending only on
N and r such that

I (T,K) = T K
( 2

∑
j=0

a jL j(T,K)+b+Mir(T,K)+b−M−ir(T,K)

)
+O

(
(T K)1+ε(T 4K−5 +T−4K3)

)
.
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For g = ∂

∂ s E(·,s)|s=1/2 there are constants a0,a1,a2,a3,a4 ∈ R depending only on N such that

I (T,K) = T K
( 4

∑
j=0

a jL j(T,K)

)
+O

(
(T K)1+ε(T 4K−5 +T−4K3)

)
.

The implied constants depend only on N, g, W1, W2, ε .

We note that for T = K and fixed W1,2 the above asymptotic formulae take a particularly simple shape
as L j(K,K) is a polynomial in logK of degree j and Mir(K,K) is proportional to K4ir. The presence
of the oscillating secondary terms M±ir(T,K) is rather interesting as it seems to display a new feature
of moments of automorphic L-functions. In all cases we calculated the leading coefficient ai and the
coefficients b± explicitly, and they turned out to be nonzero. In particular,

b± =
1
2

ζ (1±2ir)4
∏
p|N

(1− p−2∓4ir).

For the proof of Theorem 2 we develop a precise uniform approximate functional equation with
explicit dependence on the archimedean parameters [BH11, Proposition 1], and a Voronoi summation
formula for Eisenstein series [BH11, Proposition 2].

3. SUP-NORM OF MAASS CUSP FORMS

The third result within the project establishes a new upper bound for the sup-norm ‖ f‖
∞

of a Hecke–
Maass cuspidal newform f . The two basic parameters are the Laplacian eigenvalue λ and the level N.
The form f is assumed to have L2-norm 1 with respect to the hyperbolic measure dxdy/y2 on Γ0(N)\H .
In the λ -aspect the first nontrivial (and so far unsurpassed) bound is due to Iwaniec and Sarnak [IS95]
who established ‖ f‖

∞
�N,ε λ

5
24+ε for any ε > 0, improving on ‖ f‖

∞
� λ

1
4 which is valid on any

Riemannian surface (see Seeger–Sogge [SS89]). In the N-aspect the “trivial” bound is ‖ f‖
∞
�λ ,ε Nε

(see [AU95, MU98, BlHo10]), while the most optimistic bound would be ‖ f‖
∞
�λ ,ε N−

1
2+ε . Here and

later the dependence on λ is understood continuous. The breakthrough in the N-aspect was recently
achieved by Blomer–Holowinsky [BlHo10, p. 673] who proved ‖ f‖

∞
�λ ,ε N−

25
914+ε , at least for square-

free N. The restriction on N seems difficult to remove: it is needed for a certain application of Atkin–
Lehner theory. Templier [Te10] revisited the proof by making a systematic use of geometric arguments,
and derived a stronger exponent: ‖ f‖

∞
�λ ,ε N−

1
22+ε . Helfgott–Ricotta (unpublished) improved some

of the estimates in [Te10] and obtained ‖ f‖
∞
�λ ,ε N−

1
20+ε . Using Atkin–Lehner theory we developed

a more efficient treatment of the counting problem at the heart of the argument. This way we proved

Theorem 3 ([HT11b]). Let f be an L2-normalized Hecke–Maass cuspidal newform of square-free level
N, trivial nebentypus, and Laplacian eigenvalue λ . Then for any ε > 0 one has

‖ f‖
∞
�λ ,ε N−

1
6+ε ,

where the implied constant depends continuously on λ .

It seems that −1
6 is the natural exponent for the sup-norm problem in the level aspect. Examples

of such exponents are the Weyl exponent 1
6 (resp. Burgess exponent 3

16 ) in the subconvexity problem
for GL1 in the archimedean (resp. non-archimedean) aspect, or their doubles in the GL2-setting. For
comparison, Blomer–Michel [BM11] obtained a bound of the same quality for Hecke eigenforms on
certain compact arithmetic surfaces.

The key new idea in the proof of Theorem 3 is the observation that for Atkin–Lehner operators of
square-free level N there is a fundamental domain consisting of points z ∈H with very good diophan-
tine properties [HT11a, Lemma 2.2].
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