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Abstract— A novel behavior representation is introduced that
permits a robot to systematically explore the best methods by
which to successfully execute an affordance-based behavior for
a particular object. The approach decomposes affordance-based
behaviors into three components. We first define controllers
that specify how to achieve a desired change in object state
through changes in the agent’s state. For each controller we
develop at least one behavior primitive that determines how
the controller outputs translate to specific movements of the
agent. Additionally we provide multiple perceptual proxies that
define the representation of the object that is to be computed
as input to the controller during execution. A variety of proxies
may be selected for a given controller and a given proxy may
provide input for more than one controller. When developing
an appropriate affordance-based behavior strategy for a given
object, the robot can systematically vary these elements as
well as note the impact of additional task variables such
as location in the workspace. We demonstrate the approach
using a PR2 robot that explores different combinations of
controller, behavior primitive, and proxy to perform a push or
pull positioning behavior on a selection of household objects,
learning which methods best work for each object.

I. INTRODUCTION

As the goal of having robots operate in uncontrolled environ-
ments becomes more critical to the advancement of robotics,
there has been much research on the notion of affordances of
objects with respect to a robot agent [1]. Within the context
of robotics, affordances describe the possible actions an agent
can take acting upon an object and the resulting outcome
[2]. Specific examples might include graspable (e.g. [3]) or
pushable [4] that indicate a particular object can be grasped
or pushed, respectively. Because one can cast affordances as
state-action pairs that will transform the object state in some
way, there has been further work in considering affordance as
a basis for planning [5]. If the robot has a goal of clearing the
path to an object being fetched, it might first push interfering
objects to the side assuming they can be pushed, i.e. have
the affordance pushable.

However, while a planner may be able to leverage an
abstracted description of the affordance as being true or not
of an object, such a high level description is not sufficient
to actually execute the action required for the affordance.
And, indeed the method of performing the action may vary
by object or object state: pushing a round cereal bowl might
be quite different than pushing a TV remote control that has
rubber buttons that occasionally stick to a table surface.
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Fig. 1: Composition of example frames of the robot performing
a successful pushing behavior. The green line denotes the vector
from the estimated centroid of the object to the goal location.

The goal of this paper is to introduce a mechanism by
which a robot determines whether a given object has a par-
ticular affordance by systematically exploring how the robot
should behave to successfully achieve the goal defined by the
affordance. We do this by decomposing an affordance-based
behavior into three components. We first define controllers
(control policies) that specify how to achieve a desired
change in object state through changes in the agent’s state.
For each controller we develop at least one behavior prim-
itive that determines what configuration the robot maintains
of those degrees of freedom not directly accounted for by
the controller. In Figure 1 the behavior primitive has the
robot keep the palm of the hand orthogonal to the table,
while the controller commands the x and y velocities of the
hand. Additionally we provide multiple perceptual proxies
that define the representation of the object which will be used
to compute the control signal. The proxy must be sufficiently
rich to support estimation of the variables required by the
controller. One novelty of our approach is that multiple
proxies may support the same control policy and a given
proxy representation may be selected for use with more than
one controller. Additionally, a single behavior primitive may
be compatible with multiple controllers. Decoupling these
components allows the systematic exploration of a variety of
strategies when evaluating the affordances of novel objects.
The composition of these components allows for a large
variability in robot behavior from a relatively small amount
of programming.
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In this paper we use as examples the affordances of push-
positionable and pull-positionable where the goal is to move
the target object to a specified location on a table. We
develop three different feedback controllers to implement
these actions. Each of the two push-positioning controllers
admits any of three behavior primitives of overhead push,
fingertip push, and gripper sweep. Additionally each con-
troller can choose to use one of several perceptual proxies.
These methods require no prior knowledge of the object
being pushed and make no estimates of underlying model pa-
rameters. We show how a robot can autonomously determine
the effectiveness of a particular affordance-based behavior
combination of proxy, controller, and behavior primitive for
a given novel object. We examine which methods perform
best for fifteen different household objects and explore the
success and failure of the approaches as a function of where
in the robot’s workspace the object is located. Figure 1
shows the robot successfully push positioning a dinner bowl
using the affordance-based behavior combination of centroid
perceptual proxy, centroid alignment controller, and gripper
sweep behavior primitive.

We organize the remainder of our paper as follows. Sec-
tion II describes relevant past work on the topic of affordance
learning and affordance-based planning; we also briefly
mention prior methods of robotic control for pushing. In
Section III we formally define our use of affordances and the
push and pull positioning tasks. Section IV presents our three
proposed feedback controllers whose effectiveness, as we
will see, varies depending upon object. We give details of our
implemented perceptual proxies in Section V followed by the
implemented behavior primitives in Section VI. Section VII
presents results of over 1500 affordance-based behavior trials
performed semi-autonomously by a robot using our proposed
system. We conclude with directions for future work in
Section VIII.

II. RELATED WORK

We divide prior work into efforts related to the general
problem of affordance learning and work about developing
the specific affordance of pushing.
Affordance Learning
In early work on affordance prediction described in [6, 7],
a humanoid robot learns to segment objects through actions
such as poking and prodding. After interaction with a set of
objects, the system could learn the rollable affordance for
the objects and predict the result of hand-object interactions.
The goal was to learn parameters such as initial location of
the hand with respect to the orientation of an object that best
induce the desired motion. The actions were atomic in the
sense that they were applied in their entirety and the results
measured. In [8], a classification method is applied to high-
level image features to learn the affordance of liftable. Using
decision tree classifiers with SIFT and patch features, they
demonstrate the ability to learn liftable vs nonliftable objects.
Sun et al. use object category prediction to aid in predicting
affordances, while Hermans et al. use object attributes as a
predictive layer between image features and affordances [9,
10].

A series of works [11–13] addresses the task of recogniz-
ing the graspable and tappable affordances, based upon ex-
perimentation through self-observation of actions. Learning
in a Bayesian network is employed to learn cuing rules for
actions. The network models the relationship between object
appearance and motion, end-effector motion, and action.
In [14], a functional approach to affordance learning is
developed in which subcategories of the graspable affor-
dance (such as handle-graspable and sidewall-graspable) are
learned by observation of human-object interactions. Ugur
et al. also examine grasping as an affordance prediction
problem, by first creating affordance labels through unsuper-
vised clustering of grasping attempts [15]. A support vector
machine is then trained to predict the affordance label as a
function of the object and a parameter of grasping behavior
used. Krömer et al. predict the probability of grasps being
successful at specific locations on an object using visual
kernel methods [16].

With respect to planning, affordance-based modeling of
robot-object interaction would allow a planning system to
systematically select from a set of actions to achieve desired
sub-goals. An example of such an approach is given in
[5] where the robot arranges plates and bowls on a table.
However, there is an assumption of a priori knowledge about
which behaviors can successfully operate on which objects
and what the resulting state of the action will be.

The concept of Instantiated State Transition Fragment
(ISTF) is introduced in [17]. It encodes the pairing between
an object and an action in the context of the state transition
function for a domain-specific planner. The authors describe
a process of learning Object Action Complexes (OACs)
through generalization over ISTFs. Montesano et. al. [13] use
learned OACs in planning and executing a multi-step task.
Ugur et al. present a planning architecture where behaviors
define the actions of the planner and state transition outcomes
are the learned outcomes of object affordances [18]. Full
plans to achieve higher level tasks, such as lifting an object,
are pieced together through chaining of affordance predic-
tions. Finally, while not explicitly mentioning affordances,
Klank et al. examine how a robot can choose from different
perceptual and manipulation mechanisms to more reliably
achieve a task on different objects in different scenarios [19].
That approach is related to the method of perceptual proxies
developed here.

Pushing Behaviors

Effective pushing behaviors offer a number of benefits in
robotics domains which complement standard pick-and-place
operations. For example pushing can be used to move objects
too large for the robot to grasp, to more quickly move objects
to new locations, or to move an object while another object is
already grasped. As such there has been considerable work
at developing such capability. Early work that analyzed a
complete model of the dynamics of pushing was developed
by Mason who describes the qualitative rotational changes
of sliding rigid objects being pushed by either a single point
or single line contact [20]; representative examples of some



more recent applications of pushing are available in [4, 21–
26].

Notably, Ruiz-Ugalde et al. execute a pushing behavior
by determining the static and kinetic friction coefficients for
multiple objects with rectangular footprints, both between the
robot hand and object and between the object and table [26].
Additionally they present a robust controller using a cart
model for the object being pushed. Their control is the closest
approach we have found to the pushing controllers presented
in this work. However, their overall approach presumes the
ability to predict the resulting action based upon known or
learned parameters that characterize the physics of the object.

To address the inherent difficulty in estimating model
parameters, there are data-driven methods that use an em-
pirically derived characterization of the outcomes of specific
actions applied to the object. For example, Narasimhan
uses vision to determine the pose of polygonal objects of
known shape in the plane [27] and then develops a variety
of methods to push objects into the desired location and
orientation including a data driven approach that learns the
effect of different pushes on the object. Similarly, Salganicoff
et al. present a method for learning and controlling the
position in image space of a planar object pushed with
a single point contact [28]. Slip of the object is avoided
by pushing at a notch in the object. Scholz and Stilman
learn object specific dynamics models for a set of object
through experience [29]. Each object is pushed at a number
of predefined points on the perimeter and the robot learns
Gaussian models of displacement of the object’s 2D pose,
(x, y, θ), at each location. These learned models are then
used to select the input push location given a desired object
pose.

III. PROBLEM STATEMENT

We define an affordance to exist between a robot and an
object, if the robot can select a specific behavior primitive,
controller, and perceptual proxy by which it can successfully
perform the desired action. We take as example actions those
of push positioning and pull positioning, where the robot
must position an object at an arbitrary location by pushing
or pulling with its arm. We assume that the object is being
manipulated over a plane and thus the object state X =
(x, y) defines the location of the origin of the object in a 2D
space. We denote the goal pose as X∗ = (x∗, y∗). This state
representation is sufficient for a task level planner, however,
a specific controller may require more state variables to be
estimated by the relevant perceptual proxy.

The (unknown) dynamics of the pushing system are gov-
erned by the nonlinear relation Ẋ = h(X,Q,U) which
defines the interaction dynamics between the object state,
the robot configuration Q, and the input to the robot U .
Importantly, we make no attempt to model h. In developing
our visual feedback controllers, we presume we do not have
an exact measurement of the object state. Instead we will
operate on the estimated state X̂ that will be computed at
each timestep based upon properties of a perceptual proxy.
In this work we control the arm through Cartesian control,
both position and velocity, in the robot’s task frame. We

denote the specific forms of U and X used in our controllers
in detail below. Our task thus becomes defining a feedback
control law U = g(X̂,X∗) which drives the position error
Xerr = X∗ − X̂ to zero.
IV. FEEDBACK CONTROLLERS: PUSHING AND PULLING

In this section we define several visual feedback controllers
for pushing and pulling. Each controller we develop defines
a necessary set of state variables. This state will be estimated
at each time step using an appropriate perceptual proxy de-
scribed below in V. The control outputs are used to command
an appropriately selected behavior primitive described in VI.
More details of the pushing controllers can be found in [30].

A. Spin-Correction Control

Our first method of defining a push-positioning controller
relies on the fact that the direction of an object’s rotation
while being pushed depends on which side of the center
of rotation the applied force intersects. This fact is well
described by the limit surface formulation [20, 31]. Mason
derived the velocity direction of a sliding object as a function
of the forces applied by the pushing robot as well as the
support locations and mass distribution of the object [20].
These parameters are difficult to know or estimate well
for a given object and even when they are known, the
exact behavior is often indeterminate [20]. However, we
make use of Mason’s observation that the rotation of the
object abruptly changes direction when the input force passes
directly through the center of rotation of the object. As such
we can use the direction of the observed rotation of the object
to infer which side of the center of rotation the applied
forces are currently acting through. We can then correct
the direction of our applied forces to compensate for any
unwanted rotation of the object.

To reduce induced rotation, our controller attempts to push
the object through its center in the direction of the goal
position. This gives a simple procedure for determining the
initial hand position. We cast a ray from the goal location
through the centroid of the object and find its intersection
with the far side of the object. This location defines the initial
position for the hand. We further orient the hand so that the
desired portion of the gripper is facing in the direction of the
goal from the initial position (cf. Section VI). An example
image of the initial hand placement can be seen in the
upper left of Figure 2. Once positioned our feedback control
process is initiated. The controller is defined in equations 1
and 2 which operates on state X = (x, y, θ, θ̇) and computes
input U of x and y velocity of the end effector in the robot’s
workspace.

uẋ = kgegoalx − sin(φg)(erot) (1)
uẏ = kgegoaly + cos(φg)(erot) (2)

Our control is comprised of two terms. The first pushes
through the object driving it to the desired goal, while the
second displaces the contact location between the robot and
object to compensate for changes in object orientation. The
input control defined in equation 3 commands the robot to
push in the direction of the goal. The overall effect of this



component is controlled by the positive gain kg . Since the
object lies between the end effector and the goal this causes
the object to translate towards the goal.

egoalx = (x∗ − x̂), egoaly = (y∗ − ŷ) (3)

However, since the forces applied by the robot on the object
are not pushing directly through the center of rotation, the
object will undoubtedly spin. To compensate for this we
apply additional input velocities proportional to the observed
rotational velocity of the object. We desire not only that
the object not rotate, but also that it maintains its initial
orientation θ0. We combine these terms to generate erot.

erot = ksd
˙̂
θ − ksp(θ0 − θ̂). (4)

We desire to displace the end effector perpendicular to the
current direction of the object’s translational motion. Since
our estimate of the instantaneous velocity is somewhat noisy,
we instead rotate the velocity vector about the angle defined
between the center of the object and the goal φg .

φg = atan2(y∗ − ŷ, x∗ − x̂) (5)

Our pushing controllers halt once xerr < εx and yerr < εy .
For the purpose of developing this method as well as the
controller in Section IV-B, the gains are manually adjusted,
but remain fixed for all objects.

B. Centroid Alignment Control

Our second push-positioning controller replaces the mon-
itoring of object orientation with a strategy based upon
the relative locations of the object’s centroid, the assumed
location of the contact point on the end effector, and the
goal position. This allows for control of objects where esti-
mating a dominant orientation is difficult, such as rotationally
symmetric objects.

The robot achieves this behavior by using a control law
that includes a velocity term to move toward the goal and a
second term that moves the end effector towards the vector
defined from the goal location through the object’s centroid:

uẋ = kgcegoalx + kcecentroidx
(6)

uẏ = kgcegoaly + kcecentroidy (7)

where egoalx and egoaly are as before. The second term pro-
vides the additional velocity term toward the goal-centroid
line; ecentroidx

and ecentroidy
are components of perpendic-

ular vector from the presumed end effector contact point to
the goal-centroid line. The robot then pushes in the direction
of the goal attempting to maintain this collinearity relation.
This controller has the state X = (x, y) and computes the
same U as in Section IV-A. Additionally, the end effector is
initially positioned relative to the object as above.

C. Direct Goal Pull Control

We implemented a single feedback control law to be used
with pulling objects. The controller assumes the object is
already grasped by the gripper and simply moves with a
velocity proportional to the direction of the goal from the

Fig. 2: The first image shows the overhead push behavior primitive
placed prior to pushing the television remote. The second image
show the sweep push behavior primitive pushing the dinner bowl.
The lower left image shows the teddy bear being pulled. The pink
box is being pushed with the fingertip push in the final image.
The first three images have drawn in green the vector from the
current centroid estimate to goal location. The box has the estimated
centroid location overlayed.

current object centroid. The gripper is placed following a
similar procedure to that used in pushing. However, the initial
hand placement is chosen to be at the closest location on the
object to the goal position. The gripper is opened prior to
moving to this initial pose. The gripper then moves forward
to surround the object and closes to grasp it. Upon halting
of the controller, the gripper opens to release the object and
moves backwards to clear the object prior to returning to the
ready position.
D. Controller Monitoring

During execution of each feedback controller we monitor
for certain conditions where execution should be aborted.
The simplest of these is when no object has been detected.
To avoid being stuck in strange configurations, we abort
execution when neither the arm nor the object has moved
after a short period of time. Execution stops when the robots
gripper moves farther than some predefined threshold from
the object in order to stop the robot from continuing control
after losing contact with the object. Finally, the robot halts
execution for both push controllers when the estimated object
centroid is not between the gripper and goal locations.

V. PERCEPTUAL PROXIES
The above defined controllers have modest perceptual re-
quirements. The orientation-velocity controller requires both
the location of the object and its orientation whereas the
centroid-driven push controller and pulling controller require
only position as defined by the object’s centroid. Here we de-
scribe concretely our proxies for estimating these properties
for a given object.

We begin with a simple depth-based segmentation and
tracking method that currently assumes only a single object
resting on the sliding surface (a table) is in the scene. The
input is the RGB-D image of a Microsoft Kinect though
in this implementation only the depth channel is used. We



Fig. 3: Examples of the robot performing pushing using feedback
from the tracking. The left image shows the state estimated with
the bounding box perceptual proxy. The right image displays the
estimated ellipse.

initialize the tracker by moving the robot’s arms out of
the view of the camera, capture the depth image and then
use RANSAC [32] to find the dominant plane in the scene
parallel to the ground plane. We then remove all points below
the estimated table plane and cluster the remaining points.
We filter out clusters with very few points and, because we’re
assuming only one object is on the table, we accept the
cluster with most points as the object.1

Once initialized we track the object by performing the
same procedure with the added step of removing points
belonging to the robot from the scene. We project the robot
model into the image frame using the forward kinematics of
the robot and remove points from the point cloud coincident
with the robot arm mask. Because of noise in measurements
and other calibration issues points belonging to the robot
can sometimes remain. To prevent the tracker from selecting
any of these points as the current object we perform nearest
neighbor matching between current cluster centroids and the
previous object state, selecting the closest as the current ob-
ject. We then estimate the object velocity using the previous
estimate of the object state.

Computing the perceptual proxies needed for each of the
controllers is straightforward given the tracker described
above. For the centroid based control methods, centroid
alignment and gripper pull, we can immediately return the x
and y values computed from the centroid of the object point
cloud as input. We name this the centroid proxy. However,
this estimate may not be the most accurate representation
of the objects actual centroid, do to occluded regions of
the object and non-uniform mass distributions. As such we
implemented two additional proxies to estimate the centroid
of the object. The first alternative approach uses RANSAC
to fit a sphere model to the object point cloud. We then
use the x and y estimates of the sphere’s center as input to
the controller. This allows for partially occluded spherical
objects to have a more stable estimate of the object’s center.
Our other estimate approach fits the minimum area bounding
box to the 2D footprint of the object. We then use the center
of this bounding box as the object centroid. While this proxy
is not robust to occlusion by the robot, it produces a result
that is just a function of the convex hull of the point cloud
and is not influenced by how many points occur in any single

1We note that we [25] and others (e.g. [33]) have previously developed
methods for singulating objects from each other by pushing actions, which
could be used to perform the necessary object segmentation in clutter.

region of an object’s interior.
For the orientation-velocity control we need a proxy that

includes an estimate of object orientation, as well as its
rotational velocity, with respect to the global robot frame.
The bounding box proxy can be used to give us an estimate of
the orientation. We simply set the orientation of the object to
be the dominant axis of the bounding box. As an alternative
proxy we fit a 2D ellipse to the x and y values of all points
in the object point cloud and use the orientation of the major
axis of the ellipse as the objects orientation θ. In both cases,
the change in θ from one frame to the next is the estimated
orientation velocity θ̇. Example of computed bounding box
and ellipse proxies are shown in Figure 3.

VI. PUSHING AND PULLING BEHAVIOR PRIMITIVES

We performed pushing with three behavior primitives: an
overhead push, a sweep push, and a fingertip push. These
behavior primitives define how the two outputs from the
pushing controller, velocity in x and y, are transformed to
control the six degrees of freedom of the robot’s end-effector.
The overhead push has the robot place its hand such that the
fingertips are in contact with the table with the wrist directly
above. The sweep push places the length of the hand on
the table with the flat of the hand facing the object. The
fingertip push keeps the palm of the hand parallel to the
table and pushes with the tip of the gripper pointing in the
push direction. As our controllers operate only within the
2D position of the hand (x, y), the configuration of the end
effector with respect to the arm and current table location
remain fixed during operation. Specifically this means that
the wrist remains above the hand throughout pushing for the
overhead push. Likewise the sweep push keeps the long side
of the robot hand along the table with the broad side of the
hand perpendicular to the surface during pushing and the
fingertip push keeps the palm parallel to the table. Images
of the robot operating with these behavior primitives can be
seen in Figure 2.

For all primitives the arm is moved to the initial pushing
pose using Cartesian position control. The arm is first moved
to a position directly above the table at the desired pose and
desired orientation. The hand is then lowered in a straight
line to the initial pushing pose. We use a Jacobian inverse
controller to control the Cartesian velocity of the end effector
during feedback control.

The gripper pull behavior primitive is similar to the finger-
tip push primitive, except that the gripper is first opened prior
to moving to the initial pose. The gripper then moves forward
to surround the object and closes to grasp it. Additionally the
initial hand placement is determined to be between the object
and goal not behind the object, as in pushing.

We experimentally validate our approach by having a
mobile manipulator explore the possible combinations of
affordance-based behavior actions over a set of 15 household
objects displayed in Figure 4. For each object, the robot
attempted at least one left arm and one right arm push or pull
action with every possible combination of proxy, behavior
primitive, and controller. This produces a set of thirty-two
possible affordance-based behaviors.



Fig. 4: The fifteen objects on which the robot performed experi-
ments.

VII. EXPERIMENTAL VALIDATION

For a given object we place it at an initial random position
on the table. The robot generates a random goal position at
least 0.2 meters from the current location and attempts the
first instantiated affordance-based behavior. If the execution
succeeds the robot generates a new goal pose as before
and attempts the next behavior instantiation with the object
positioned at its current location. If the controller aborts
execution prior to reaching the goal the robot will reattempt
the current combination up to two additional times. If the
goal is not reached after the third attempt the robot moves
on to the next affordance-based behavior combination. If
the object is knocked off the table or out of a predefined
workspace for the robot the robot asks a human operator
to replace the object and continues exploration. If upright
objects were knocked over during the exploration the robot
continues to attempt the current affordance-based behavior.
However once the robot completes the current trial, either
by being successful or by aborting three times, the human
operator pauses the search and returns the object to its
canonical pose.

We implemented our system on a Willow Garage PR2
robot with a Microsoft Kinect mounted on its head for visual
input. In all experiments εx = εy = 0.01 meters. Below
we show detailed results of the affordance-based behavior
exploration consisting of more than 1500 total push/pull
trials.
A. Object Affordances
For any given object we would like to know the best
affordance-based behavior to use to effectively move it when
a given task demands. Here we define the best affordance-
based behavior to be the choice of controller, perceptual
proxy, and behavior primitive which together produce the
smallest average final position error averaging over trial and
workspace location. The best choice of affordance-based be-
havior combination for each object, along with its statistics,
is presented in Table I. We note several results: First, we see
that the overhead push with the centroid controller performs
the best on average for most objects. Only the telephone
and soap box, both of which tend to rotate when pushed,
found better average performance with the spin compensation

controller. Additionally the chosen behavior primitives were
all either overhead push or gripper sweep for these objects.
This is explained by the fact that the fingertip push and
gripper pull operate well only in restricted areas and angles of
the workspace do to the constraint on the hand pose. We see
that there is a nearly even split between the use of bounding
box and centroid as perceptual proxy. The sphere is a much
more specialized proxy that only works well on a few objects
with mostly spherical shape.

We can gain further insight into the behaviors by examin-
ing which affordance-based behavior combinations produced
a final goal error below a specified threshold. The results for
all objects are presented in Table II. Here we can examine
individual attempts rather than average performance. For
example, the TV remote — with it’s rubber buttons that grip
the surface — could only be controlled by the overhead push
behavior using the spin-compensated controller employing
the ellipse proxy. Likewise, the shampoo was quite poorly
controlled: only one behavior combination (overhead-push,
bounding-box, spin-compensation) ever achieved the goal
and then only once out of six attempts. Conversely, the pink
box could be successfully manipulated using a variety of
combinations with only a slight preference for the same
control combination as the TV remote. By such detailed
experimentation and analysis the robot can develop a set of
strategies not only for an initially available set of objects
but also, potentially, for novel objects once the robot gains
experience with them. For example, once a new object is
observed to behave like a Mug with respect to several be-
havior combinations a robot could rapidly develop a strategy
for that new object based upon its familiarity with the Mug’s
behavior.
B. Affordance-Based Behavior Performance as Function of
Workspace

The above analysis averages performance independent of
target location under the assumption that the robot can
perform these actions equally well throughout its workspace.
Of course, mechanical limitations make certain actions more
difficult at different positions. For example, the fingertip push
behavior primitive has difficulty in pointing the fingertip
towards the robot’s torso. Additionally it may be impossible
for the robot to reach objects far to the right with the left
arm. Knowing which operations perform best in different
areas of the workspace is difficult to predict. We would prefer
learned models of where to apply certain behavior primitives
as opposed to the heuristics previously used (c.f. [25]).
Having knowledge of which behavior primitive works best
in a specific region of the workspace could be helpful
in attempting to manipulate a previously unseen object.
Behavior primitives that have been seen to consistently fail
may be skipped in favor of those more likely to succeed.

To compare the various behaviors, we grouped push trials
by their starting (x, y) locations as well as the pushing angle,
the angle from the initial object location pointing towards
the goal position. We quantized initial x and y locations
to the closest 0.05 meter value and angles to the closest
of eight directions at 45◦ increments. We visualize the best



Object Name Primitive Proxy Controller Mean Score Variance
Plate Gripper Sweep Centroid Centroid Controller 0.085 1.99e-05

Towel Overhead Push Centroid Centroid Controller 0.036 5.40e-05
Hair Brush Overhead Push Centroid Centroid Controller 0.136 0.001
Toothpaste Overhead Push Bounding Box Centroid Controller 0.126 0.015

Pink Box Gripper Sweep Centroid Centroid Controller 0.056 0.002
Shampoo Overhead Push Bounding Box Centroid Controller 0.159 0.032

Telephone Overhead Push Bounding Box Spin Compensation 0.032 5.21e-05
Soap Box Overhead Push Bounding Box Spin Compensation 0.086 0.003

Mug Overhead Push Centroid Centroid Controller 0.034 2.69e-04
Medicine Bottle Overhead Push Bounding Box Centroid Controller 0.032 9.12e-05

Teddy Bear Overhead Push Bounding Box Centroid Controller 0.083 2.15e-04
Red Bottle Overhead Push Bounding Box Centroid Controller 0.084 0.001

TV Remote Overhead Push Bounding Box Centroid Controller 0.147 0.007
Bowl Gripper Sweep Centroid Centroid Controller 0.020 3.52e-05

Salt Overhead Push Centroid Centroid Controller 0.015 1.02e-04

TABLE I: Lowest average final error affordance-based behaviors for the fifteen objects.

Object Name Primitive Proxy Controller # Within 0.02m # Within 0.04m # Attempts
Plate Overhead Push Sphere Centroid Controller 0 2 5

Overhead Push Centroid Centroid Controller 0 1 6
Fingertip Push Centroid Centroid Controller 0 1 4
Fingertip Push Sphere Centroid Controller 0 1 6

Towel Overhead Push Bounding Box Centroid Controller 1 1 5
Overhead Push Centroid Centroid Controller 0 4 5
Gripper Sweep Ellipse Spin Compensation 0 1 6
Overhead Push Sphere Centroid Controller 0 1 6

Hair Brush Gripper Sweep Centroid Centroid Controller 2 3 6
Toothpaste Overhead Push Bounding Box Centroid Controller 2 2 6

Overhead Push Ellipse Spin Compensation 1 1 4
Overhead Push Centroid Centroid Controller 0 3 6

Pink Box Overhead Push Ellipse Spin Compensation 2 2 5
Gripper Sweep Centroid Centroid Controller 1 1 4
Overhead Push Sphere Centroid Controller 1 1 6
Overhead Push Bounding Box Centroid Controller 1 2 6
Overhead Push Bounding Box Spin Compensation 0 3 6
Overhead Push Centroid Centroid Controller 0 1 6

Shampoo Overhead Push Bounding Box Spin Compensation 0 1 6
Telephone Overhead Push Centroid Centroid Controller 0 3 6

Overhead Push Bounding Box Spin Compensation 0 3 4
Soap Box Overhead Push Bounding Box Spin Compensation 0 2 6

Gripper Sweep Bounding Box Centroid Controller 0 1 6
Mug Overhead Push Bounding Box Centroid Controller 2 2 5

Overhead Push Sphere Centroid Controller 2 2 6
Overhead Push Centroid Centroid Controller 1 2 4
Gripper Sweep Bounding Box Centroid Controller 0 3 6
Gripper Sweep Centroid Centroid Controller 0 1 4
Gripper Sweep Bounding Box Spin Compensation 0 1 6

Medicine Bottle Gripper Sweep Sphere Centroid Controller 3 3 6
Gripper Sweep Centroid Centroid Controller 1 2 5
Overhead Push Bounding Box Centroid Controller 1 5 6
Gripper Sweep Bounding Box Centroid Controller 0 3 6

Teddy Bear Overhead Push Centroid Centroid Controller 3 3 6
Gripper Sweep Ellipse Spin Compensation 0 1 6
Gripper Sweep Bounding Box Centroid Controller 0 1 5

Red Bottle Gripper Sweep Centroid Centroid Controller 1 1 5
Overhead Push Centroid Centroid Controller 0 3 6
Gripper Sweep Bounding Box Centroid Controller 0 1 6
Overhead Push Bounding Box Centroid Controller 0 1 6

TV Remote Overhead Push Ellipse Spin Compensation 0 3 6
Bowl Overhead Push Ellipse Spin Compensation 2 3 6

Overhead Push Bounding Box Centroid Controller 2 3 6
Gripper Sweep Centroid Centroid Controller 1 3 3
Overhead Push Centroid Centroid Controller 0 1 4
Gripper Sweep Bounding Box Centroid Controller 0 1 6

Salt Overhead Push Bounding Box Spin Compensation 2 2 6
Gripper Sweep Bounding Box Centroid Controller 2 3 4
Overhead Push Centroid Centroid Controller 1 2 2
Overhead Push Bounding Box Centroid Controller 1 1 4
Gripper Sweep Centroid Centroid Controller 0 2 6
Gripper Sweep Bounding Box Spin Compensation 0 1 6

TABLE II: Successful (final error within 0.02m or 0.04m of goal) affordance-based behaviors for each object.



Fig. 5: Best on average performing behavior primitives for
different initial locations and pushing angles. Green is gripper
sweep. Blue is fingertip push. Red is overhead push. Yellow is
gripper pull. Bottom of the image is closer to the robot (smaller x).
Left of the image is left for the workspace (positive y).

average performance at each location and angle between the
four behavior primitives in Figure 5. We note how at the
edges of the workspace farthest from the robot the gripper
pull behavior primitive performs best on average. The robot
has discovered that at the farthest extent of its workspace
the gripper pull behavior is the most effective choice it can
make to push or pull an object to a desired location. We can
perform similar analysis to allow the robot to automatically
select between the left and right arms.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a novel behavior representation by which
a robot can systematically explore the affordances of objects.
Our method allows us to find the most likely to succeed
behavior as a function of object ID or location in the
workspace. We wish to extend this method to help predict
the success of behaviors for objects the robot has not had
any previous experience manipulating. Additionally we wish
to make more efficient use of our training data by the
use of more sophisticated learning methods to better share
information across objects and the workspace. We also wish
to accelerate the learning process by exploring behaviors
which will be most informative, instead of performing a naive
exhaustive search.
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