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ABSTRACT 

Some visually impaired people are able to recognize their 
surroundings by emitting oral sounds and listening to the sound 
that is reflected at objects and walls. This is known as human 
echolocation. The present paper reports the calculation of 
objective auditory cues present in human echolocation by 
means of the boundary element method using a spherical model 
of the human head in the presence of a reflecting disc at 
different positions. The studied frequency range is 100 Hz to 8 
kHz. The results show that frequencies above 2 kHz provide 
information for localization of the object, whereas the lower 
frequency range might be used for size determination. It is also 
shown that stationary sound signals in echolocation can provide 
relevant acoustic cues, so as displacements in the proximity of a 
reflecting object become frequency-dependent amplitude 
modulations. Further calculations in a higher frequency range 
and with a realistic model of a human head could bring more 
light to the current knowledge in human echolocation, 

1. INTRODUCTION 

The hearing system has an unsurpassed capability for detecting, 
analyzing, discriminating and identify sounds, so that there is 
no electronic device which replicates its performance [1]. The 
process of hearing is the result of a complex interrelationship of 
physical, physiological, sensory-perceptual and cognitive 
aspects [2]. When we hear a sound, we identify several 
properties about the source: what/who is it? where is it? is it a 
potential threat? etc. 

A particular case of interest is in self-generated sounds (e.g. 
fingersnaps, oral clicks). In this case, a person controls and 
manipulates them. The self-generated sound arrives to the ears 
of the person directly and also through the reflections at the 
boundaries of the environment. In principle, human beings are 
able to identify objects or walls by recognizing different 
qualities of the echoes arising in response to self-generated 
sounds, as the expertise of different visually impaired people 
like Daniel Kish or Juan Ruiz (from the World Access for the 
Blind [3], an organization to train blind people on using this 
method) proof. This object identification / localization method 
is sometimes referred to as ‘human echolocation’ in analogy to 
the system used by some animals, like bats or cetaceans.  

Research on human echolocation was carried out in the 
mid-20th century by experimental psychologists as Cotzin and 
Dalenback [4], Kellogg [5] and Rice [6], with an interest on the 
factual human performance: how small and far an object can be 
detected, of which material it is made and what are the best 
self-generated signals. These experiments stated the importance 
of loudness and pitch cues in obstacle detection. However, no 
analysis was made on the acoustic signals or the transmission 
paths between the sound sources and the ears of the subjects. 

Bassett and Eastmond [7] examined the objective variations 
in the sound field close to a reflecting wall. In this case, a 
loudspeaker playing back Gaussian noise was placed at more 
than 5 m from a large horizontal reflecting panel in an anechoic 
chamber and a microphone was placed at a number of points 
between the loudspeaker and the panel, observing an 
interference pattern. In addition, they reported the perceived 
pitch caused by the interference of direct and reflected sound at 
different distances from the wall. Even though the 
measurements of Bassett and Eastmond provide relevant 
qualitative information, they do not take into account the 
influence of the head and the ears on the resulting sound field.  

Recently, Papadopoulos et al. [8] examined the acoustic 
cues in the experiments of Dufour et al. [9] using a dummy 
head measuring device. On the latter article, subjects had to 
detect the position of a panel that could be located towards the 
right, towards the left or in the center (in the latter case with no 
effective reflecting area, because its surface normal was 
perpendicular to the user-obstacle line). It was found that blind 
subjects performed much better in this task. The analysis of 
Papadopoulos et al. stated that the prevalent cues for obstacle 
discrimination were found in the frequency dependent 
Interaural Level Differences (ILD, defined as the differences in 
sound pressure level between the ears), especially in the range 
from 5.5 to 6.5 kHz, rather than on Interaural Time Differences 
(ITD, defined as the delay of the signals at the two ears).  

Rojas et al. [10], [11] examined the properties of different 
signals used in echolocation. Whereas the palatal clicks were 
found optimal in repeatability and noise immunity as 
echolocation signals, hand claps were useful to examine far 
objects, due to their higher energy – and despite their lower 
repeatability and their misalignment with respect to the ears. In 
some situations, visually impaired people use hissing sounds as 
echolocation signals. The magnitude spectrum of anechoic 
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recordings of signals is shown in Figure 1. Whereas the click 
signal contains energy at a broad frequency band mainly 
between 1 kHz and 10 kHz, the hissing sound (in the figure, a 
sustained /s/ sound) has energy between 4 and 11 kHz with a 
clearly dominant peak at around 8 kHz. 

The aim of the present article is to simulate the 
echolocation signals at the ears – thus containing direct and 
reflected sound – in the presence of a reflecting object, as a 
complement to acoustic measurements with a dummy head. 
These transfer paths will be used in the future to auralize virtual 
objects in response to one’s own voice by means of streaming 
convolution. The present approach looks at using the boundary 
element method (BEM) to calculate the transmission of sound 
from the mouth to the ears – and take into account diffraction 
effects that are oversimplified with other geometrical acoustics 
methods, which are more commonly used in auralization.  

 

2. BOUNDARY ELEMENT METHOD 

The boundary element method (BEM) is a numerical method 
used to find solutions to acoustics problems by taking into 
account the actual physics of sound propagation in a 
homogeneous medium. BEM in acoustics requires the meshing 
of the boundaries (but not of the medium, as finite elements 
methods require), the definition of boundary conditions at all 
points in terms of pressure, velocity or impedance, and 
characterization of other sound sources. BEM is widely used 
for solving exterior problems, namely sound radiation and 
diffraction, where the volume of the calculation domain is 
infinite. 

The fundamental principle underlying BEM is the 
formulation of an acoustics problem as a Boundary Integral 
Equation (BIE). Thus, the inhomogeneous Helmholtz wave 
equation, states that the pressure p at position x in the presence 
of a monopole source with strength Qs at position xs varies 
according to 

2 2( ) ( ) ( )
s s

p x k p x Q x xδ∇ + = − − , (1) 

where k is the wave number. Applying Green’s theorem to 
(1) within the domain V bounded by S, the direct integral 
formulation reads as 
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with i 1= − , z0 the characteristic medium impedance, vn(x0) 
the velocity normal to the surface at the boundary point x0. In a 
3D-space, G(x0,x) is the free space Green’s function defined by 
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and 0r x x= − is the distance between two points. The 

factor c(x) in (2) has the value ½ at smooth boundary points, 0 
outside the domain and 1 at points of the domain V. At other 
non-smooth points, c(x) fulfills the relation 

1 1
( ) 1 ( )

4
S

c x dS x
n rπ

∂  
= −  
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The integrals are numerically evaluated from a set of 
discrete points at the surface. In order for the results to be 
meaningful, the spacing between elements on the boundary 
should not be more than 1/6th of a wavelength. Moreover, 
boundary conditions of the type 

n
p vα β γ+ =  (5) 

(with α, β and γ arbitrary constants) must be imposed on 
the boundary elements. Further information about BEM can be 
found in [12] and [13]. 

3. METHOD 

In this article, the sound propagation between the mouth and 
the ears of a spherical head model in the presence of a circular 
obstacle is calculated.  
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Figure 2. Model of the spherical head of 100 mm radius 
with the position of the source S as a mouth, and the 
calculation points MRP (mouth reference point), RERP 
(right ear reference point) and LERP (left ear reference 
point). Annotations are in mm. 

 

Figure 1. Magnitude spectrum of an oral click signal (left) 
and of a sustained /s/ sound. Individual repetitions are shown 
in grey and the average value is shown in black/bold. 
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Figure 2 shows the head modeled as a sphere of radius 10 
cm; the mouth is then modeled with a monopole source at point 
S, 1 cm in front of the sphere, and three reference points are 
introduced for further calculations: 

 Mouth reference point (MRP), 25 mm in front of the 
mouth 

 Right ear reference point (RERP), 10 mm at the right 
of the head 

 Left ear reference point (LERP), 10 mm at the left of 
the head 

3.1. Scenarios 

Three different kinds of situations — illustrated in  Figure 3—
were considered for calculating the Oral-Binaural Transfer 
Function (OBTF). In all of them, a reflecting disc of 15 mm 
thickness was placed in front of a totally reflecting spherical 
head.   

In the first situation —  Figure 3(a) — a disc of diameter d 
= 0.2, 0.4 or 0.6 m, was placed on-axis in front of the spherical 
head at distances between 0.2 and 2 m, in steps of 2 cm. The 
axis of the disc was aligned with the center of the mouth and 
the head. 

In the second situation, a disc of 0.6 m diameter was placed 
in front of the spherical mouth at an on-axis distance r = 0.5 or 
1 m. The OBTF was calculated for different horizontal 
displacements (offsets) in the direction perpendicular to the 
axis, in steps of 2 cm up to 1 m either to the right or to the left. 

In the third situation, a disc of 0.6 m diameter was placed in 
front of the spherical mouth at an on-axis distance r = 0.5 or 1 
m. The OBTF was calculated for different vertical 

displacements (offsets) in the direction perpendicular to the 
axis, in steps of 2 cm up to 1 m either up or down. 

3.2. Software  

The pre-processing — i.e. meshing, adjusting boundary 
conditions, setting sources, field points and all other relevant 
parameters - was carried out with a combination of the open 
source project Salome [14] and Matlab [15] scripts. All the 
normals were pointing inwards the objects, so as to calculate 
the solution to the exterior problem. The sphere and the discs 
were modeled as meshes of triangular elements with 8 to 10 
mm of spacing between neighbor nodes. 

The BEM calculations were carried out with FastBEM 
Acoustics [16], which is a commercial BEM software that 
implements the Fast Multipole Method to speed up the 
calculations. We used a free license which was limited to a 
mesh with a maximum of 20.000 elements. In order to avoid 
singularities at the natural frequencies occurring of the interior 
of the head and the reflecting object, the HBIE (hypersingular 
boundary integral equation) formulation of the problem was 
used. We calculated the frequency responses with a resolution 
of 1/5th octave up to 8 kHz, due to the limitation in the 
maximum number of elements. 

The post-processing (visualization of the results) was done 
with custom Matlab scripts. Cubic interpolation was used to 
visualize the different sets of transfer functions as images. 
Nevertheless, FastBEM has a simple post-processor to visualize 
pressure and velocity on the mesh and on the field points. 

3.3. Definition of metrics 

The OBTF characterizes the propagation of sound between the 
mouth and the ears; therefore two transfer functions are 
calculated: the transmission between the mouth and the right 
ear (H1), and the transmission between the mouth and the left 
ear (H2), such that OBTF = {H1, H2}. 

More specifically, H1 is the ratio of the pressure at RERP 
in the presence of an obstacle, pi, to the pressure at MRP in 
free-field (without reflecting disc), pane. The sub-index i 
indicates the presence of a disc. 

(RERP)
1

(MRP)
i

i

ane

p
H

p
=  (6) 

and analogously, H2 is the ratio of the pressure at LERP in 
the presence of an obstacle, pi, to the pressure at MRP in free-
field (without reflecting disc), pane. 

(LERP)
2

(MRP)
i

i

ane

p
H

p
=  (7) 

In the results section, H1 is not shown and H2 will be 
referred to as the left channel of the OBTF or simply the OBTF 
(despite being non-rigorous). 

The voice support STV, used as an objective measure in 
classroom acoustics (e.g. [17]), is an important metric to focus 
on the reflected sound. It is defined as ten times the logarithmic 

 Figure 3. (a) Disc of diameter d at different distances (0.2 m 
to 2 m) in front of the spherical head, with its axis aligned to 
the mouth. (b) Disc of diameter 0.6 m at an on-axis distance 
r and a horizontal offset between -1 and 1 m. (c) Disc of 
diameter 0.6 m at an on-axis distance r and a vertical offset 
between -1 and 1 m. 

(b) 

(c) 

(a) 



256

ICAD 2013
The 19th International Conference on Auditory Display (ICAD-2013)  July 6-10, 2013, Lodz, Poland 
 

ratio between the reflected sound energy and the direct sound 
energy at the ears, or as measurable variables: 

2

, 2

(LERP) (LERP)
ST 10log
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i ane

V L

ane

p p
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−
=  (8) 
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where the differences in the numerators are the reflected 
pressures. The main limitation of STV is that it does not 
illustrate the interference between the reflected and the direct 
sound. 

In addition, the Interaural Level Difference (ILD) is defined 
as 

2
2

10log
1

H
ILD

H
= . (10) 

4. RESULTS 

The left-ear OBTF for a circular obstacle at different distances 
from 0.2 m to 2 m in front of the head, as a function of 
frequency, is shown in the leftmost column of Figure 4. The 
interference patterns between the direct and the reflected sound  
 
 

 

Figure 4. First column: Transfer function between MRP (free-field) and LERP (with reflector) as a function of frequency and distance, 
showing characteristic reflection patterns. Second column: Ratio between the energy of the reflected sound and the energy of the direct 
sound as a function of frequency and distance. Third column: spectrum of an oral click at the left ear with a reflector at different 
distances. Fourth column: spectrum of a sustained /s/ sound at the left ear with a reflector at different distances. Top row: disc r = 10 
cm. Middle row: disc r = 20 cm. Bottom row: disc r = 30 cm. 
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Figure 4. First column: Transfer function between MRP (free-field) and LERP (with reflector) as a function of frequency and distance, 
showing characteristic reflection patterns. Second column: Ratio between the energy of the reflected sound and the energy of the direct 
sound as a function of frequency and distance. Third column: spectrum of an oral click at the left ear with a reflector at different 
distances. Fourth column: spectrum of a sustained /s/ sound at the left ear with a reflector at different distances. Top row: disc r = 10 
cm. Middle row: disc r = 20 cm. Bottom row: disc r = 30 cm. 
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Figure 5. First column: Transfer function between MRP (free-field) and LERP (with reflector) as a function of frequency and 
horizontal displacement of a disc of r = 30 cm. Second column: Ratio between the energy of the reflected sound and the energy 
of the direct sound as a function of frequency and horizontal displacement of a disc of r = 30 cm. Third column: spectrum of an 
oral click at the left ear with a disc of r = 30 positioned with an off-axis horizontal displacement. Fourth column: spectrum of a 
sustained /s/ sound at the left ear with a disc of r = 30 positioned with an off-axis horizontal displacement. Top row: on-axis 
distance to the disc = 50 cm. Bottom row: on-axis distance to the disc = 100 cm. 

 

Figure 6. First column: Transfer function between MRP (free-field) and LERP (with reflector) as a function of frequency and 
vertical displacement of a disc of r = 30 cm. Second column: Ratio between the energy of the reflected sound and the energy of 
the direct sound as a function of frequency and vertical displacement of a disc of r = 30 cm. Third column: spectrum of an oral 
click at the left ear with a disc of r = 30 positioned with an off-axis vertical displacement. Fourth column: spectrum of a 
sustained /s/ sound at the left ear with a disc of r = 30 positioned with an off-axis vertical displacement. Top row: on-axis 
distance to the disc = 50 cm. Bottom row: on-axis distance to the disc = 100 cm. 
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are weakest for the smallest obstacle size (r = 10 cm, top row), 
whereas they become clearer with increasing obstacle size (r = 
20 cm, middle row, and r = 30 cm, bottom row). The strength 
of the reflected sound relative to the direct sound can be 
observed on the second column of Figure 4. Due to diffraction 
effects, smaller reflectors are less efficient in reflecting the low 
frequencies than larger ones (compare e.g. top row, r = 10 cm, 
with bottom row, r = 30 cm). The actual interference patterns at 
the ears, taking typical echolocation signals into account is 
shown in the two last columns of Figure 4. The third column is 
obtained with an oral click as the sound source and the fourth 
column, with a sustained /s/ sound. It is shown that one can 
‘highlight’ a broader spectrum of the OBTF by using an oral 
click rather than by using a sustained /s/.  

Similar patterns are shown in Figure 5, but in this case a 
disc of r = 30 cm is displaced off-axis horizontally between 1 m 
to the left and 1 m to the right, keeping the on-axis distance 
constant. The distance between the mouth and the obstacle is 
set at 50 cm (top row) and 1 m (bottom row). Fluctuations in 
the OBTF are observed mainly when the obstacle is passing in 
front of the head. It is in the same conditions that the reflected 
sound is maximum (see second column, STv). The high values 
of reflected sound above 7 kHz indicate computational error in 
BEM that can be solved with the use of a finer mesh.  

Figure 6 is almost identical to the previous one, showing 
the results for vertical displacements of a reflecting disc located 
at 50 cm (top row) and 100 cm (bottom row) on-axis in front of 
the mouth. Due to the simple geometry used in the calculations, 
the results are almost identical to those obtained with horizontal 
displacements. 

Both in Figure 5 and in Figure 6 the fluctuations of the 
sound at the ears  are very faint, indicating that discrimination 
across different horizontal and vertical displacements is a 
difficult task. However, in the case of  horizontal displacements 
of the obstacle, there are binaural cues due to the differences 
between the signals at the two ears. Figure 7 shows the ILD for 
the  different horizontal displacements of the disc, at an on-axis 
distance of 50 cm (left) and 100 cm (right). These cues 
complement the OBTF shown on the first column in Figure 5 
and enable a more accurate localization. In the case of vertical 
displacements or on-axis displacements, there are no ILD cues, 
as the signal reaching both ears are identical. 

5. DISCUSSION 

The boundary element method is a helpful tool for the study of 
human echolocation, through the calculation of transfer 
functions of sound between the mouth and the ears (OBTF). It 
has been previously used for the calculation of Head Related 
Transfer Functions (HRTF) to external sounds, and now it is 
used to characterize the sound of one’s own voice. 

The interference patterns of the OBTF observed in Figures 
4 to 6 must be judged together with the spectrum of the signals 
— the oral click and the sustained /s/ —, which are displayed in 
the third and the fourth columns on these figures. The oral click 
(on the third column) excites a broader range of the spectrum, 
so that more frequency components are available to judge the 
presence / absence of an object, when compared to the 
sustained /s/, which excites a relatively narrow band of 
frequencies. Nevertheless, the sustained /s/ (fourth column) is 
helpful in exploratory movements, because the variations in 
distance to the object are perceived as amplitude modulations at 
certain frequency bands. 

Moreover, the low frequency range (below 2 kHz) does not 
provide any useful cues for object detection — even though the 
absence of energy in this frequency range might be a cue in 
itself for size identification. The reason for this is twofold. 
First, the finite object size does not reflect low frequencies 
efficiently — a big wall would reflect much more low 
frequency sound. Second, high frequency sound propagating 
from the mouth and the ears is shadowed by the head, whereas 
low frequency sound diffracts with minimum attenuation. 

These figures allow estimating roughly human echolocation 
limits, comparing the spectral fluctuations in the figures with 
the outcome of amplitude modulation detection thresholds. 
Nonetheless, there are more acoustic cues than the ones 
visualized here. For example, a simple reflection of sound 
generates a comb filtering. In this condition, a broadband noise 
signal acquires a perceptible pitch sensation which is linked to 
periodicity of spectral notches rather than tonal components.  

Figures 4 to 6 show in most of the cases smooth variations 
and clear patterns, which are the result of using a circular model 
of a head. Further variations are expected when using a realistic 
head model, due to the characteristic geometry of the external 
ear. In this case, the fluctuations of sound field, OBTFs and 
STv in Figures 5 and 6 and of ILD in Figure 7 are expected to 
be larger than shown here, and the localization of off-axis 
obstacles improved.  

The Just Noticeable Differences in the level of fluctuating 
signals are of the order of 1 dB [18]. This information is useful 
to estimate the obstacle detectability by its comparison to the 
fluctuations in Figures 4 to 6. For example, a disc of r = 10 cm 
might not be detected at a distance of 1 m (see in the top left of 
Figure 4), because neither the fluctuations of the OBTF with 
frequency nor with distance are higher than 1 dB. 

Moreover, background noise and reverberant reflections 
present in actual environments reduce the modulation of the 
OBTFs shown in Figures 4 to 6, to which echolocators would 
react emitting louder sounds and increasing the signal-to-noise 
ratio (though not under purely reverberant conditions). At some 
levels of background noise, due to human limitations on the 

 

Figure 7. ILD of one's own voice in the presence of a 
reflecting disc (r = 30 cm) at different off-axis horizontal 
displacements. Left: on-axis distance 50 cm. Right: on-
axis distance  100 cm. 
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production sound and on the social acceptance of emitting 
echolocation signals, echolocation becomes impossible. 

The frequency limit of the calculations to 7.5 kHz is 
representative of most of the energy content of oral clicks used 
as echolocation signals, as illustrated in Figure 1. Nevertheless, 
this limit overlooks higher frequencies which are still relevant 
in echolocation and where other signals contain most of their 
energy.  

5.1. Future work 

Further analysis will compare the quantities obtained with the 
spherical head model and those obtained with an accurate 
model of the head, in order to evaluate the role of the external 
ear in the enhancement of echolocation cues. Moreover, 
psychoacoustic models will be applied to the results obtained 
here in order to determine the relative importance of different 
cues in human echolocation. In addition, we will explore a 
higher frequency range by increasing the level of detail of the 
meshes used in the calculations. The data presented in this 
paper will be compared to the results of subjective tests for 
determining detection thresholds in human echolocation and 
under different noise and reverberation conditions. 

6. CONCLUDING REMARKS 

The results show the potential of BEM to simulate and predict 
the acoustic cues present in human echolocation in the 
proximity of obstacles. A simple geometrical model of the 
human head was used to compute the airborne propagation of 
sound between the mouth and the ears of the same person, in 
the presence of a reflecting obstacle. 

It is shown that stationary sound signals in echolocation can 
provide relevant acoustic cues, so as displacements in the 
proximity of a reflecting object become frequency-dependent 
amplitude modulations. 
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