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Abstract

In this article we construct a model to analyse permit markets which are connected by a
network of links. A link between markets means that participants of one emissions trading
system can use the permits of another. In a linked network of markets, domestic policy
outcomes can be influenced by foreign regulators even without a direct link. We apply
graph theory to study the dependencies between permit markets and develop a method to
determine who can affect domestic emissions and prices. The results help to avoid
unexpected interference with domestic policy outcomes and secure the effectiveness of
climate change policies.
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1 Introduction

Climate change is a global externality that is best solved through interna-
tional coordination. Unfortunately, international efforts to mitigate climate
change by reducing greenhouse gases with a binding global agreement have
been unsuccessful so far. Instead, many countries have moved forward with
unilateral climate policies, with a hope of coordinating efforts in the future
(Stavins, 2010; Newell et al., 2013).

Emissions trading, despite its controversies, has been one of the main
policy tools used to reduce emissions (Grubb, 2012). Many countries and
regions have implemented local emissions trading systems with the ability
to link them to other systems. Linking means that the regulator of one
emissions trading systems allows its participants to use permits of another
system. Open trade tends to result in a common price level for permits and
equalize marginal abatement costs for emitters, which is commonly consid-
ered a requirement for efficiency (Montgomery, 1972). Thus, in principle,
it is possible to achieve a globally efficient solution by first creating local
emissions trading systems and later linking them.

However, a common concern related to linking is that links make domestic
permit market outcomes dependent on policy decisions of foreign regulators.
When two permit markets are linked, one regulator might unilaterally cre-
ate and sell new permits, and thus affect both markets and increase the
aggregate amount of emissions, while making a profit.! Preventing this, and
other similar harmful actions, requires an agreement and trust between the
regulators.

Furthermore, it is well known that dependencies arise indirectly when two
unlinked systems trade with a common third system (Anger, 2008; Flachs-
land et al., 2009a; Newell et al., 2013). In the general case, considering a
network of several emissions trading systems arbitrarily linked to each other,
dependencies can be conveyed thorough several links. To our knowledge, no
previous study has been devoted to the general case, which is understandable,
as one could easily imagine that it is simply sufficient and necessary to have
a path of links between two systems to make them dependent. Somewhat
surprisingly, we find this is not the case.

Our main questions is, given a network of arbitrarily linked emissions
trading systems (like in Figure 1), which systems will be affected by a change
in some other system? Knowing this is crucial for the policymaker, as the
domestic policy outcomes could be undermined not only through its own

'Rehdanz and Tol (2005) and Itkonen (2009) show that linking gives an additional
incentive to print more permits.



()=
(emF—{w)

Figure 1: The graph depicts links between emissions trading systems at
the end of the Kyoto period. The systems are identified by their emis-
sions unit: Emission Reduction Unit (ERU), Removal Unit (RMU), Assigned
Amount Unit (AAU), New Zealand Unit (NZU), Certified Emission Reduc-
tions (CER), EU emission allowance (EUA). Loops have been omitted from
the figure.

links, but also through the links of its partners and their partners. In more
technical terms, we ask how will marginal changes in exogenous variables of
one system, e.g. the endowment of permits, change endogenous variables of
other systems, with an emphasis on which systems will be affect and which
will not.

Alongside the literature on emissions trading in general (Goulder, 2013),
the idea of linking emissions trading system became a topical issue when the
Kyoto protocol established multiple emissions trading mechanisms with the
possibility of using permits from different mechanisms to meet the emissions
targets set by the agreement. Since then, linking has been extensively stud-
ied in policy papers and technical reports, which cover diverse issues relevant
for the implementation of linking policies, such as cost-effectiveness, distri-
butional effects, and the compatibility of different design features (Haites,
2001; Ellis and Tirpak, 2006; Jaffe and Stavins, 2007; Itkonen, 2009; Mehling
and Haites, 2009; Flachsland et al., 2009b; Tuerk et al., 2009; Hare et al.,
2010; Newell et al., 2013). Some studies focus on legal issues (Jaffe et al.,
2009) or sectoral perspectives (Aasrud et al., 2009; Anger, 2010; Marschinski
et al., 2012), while other consider linking as a part of an international pol-
icy architecture (Flachsland et al., 2009a; Hare et al., 2010; Olmstead and
Stavins, 2012). Cason and Gangadharan (2011) even perform a laboratory
experiment where they test the efficiency of different linking structures.

In academically oriented literature, the idea of viewing legal rights as
factors of production originates from Coase (1960), while Dales (1968) and



Crocker (1966) refined the idea into permits markets. Montgomery (1972)
gave a proof for efficiency in a partial equilibrium model. In more recent
literature, Copeland and Taylor (2005) framed linking as an application of
trade theory with an emphasis on the general equilibrium effects which show
that benefits can be ambiguous (see also Chichilnisky, 1994; Marschinski
et al., 2012). Some studies use numerical simulations to analyse the costs
and benefits of linking in general equilibrium (Béhringer et al., 2005; Klepper
and Peterson, 2006) or partial equilibrium (Anger, 2008) models. In a related
study Rehdanz and Tol (2005) analyse linking with a particular focus on how
it affects the incentives of regulators to uphold emissions targets that were
set prior to linking.

In this paper, we follow the tradition of partial equilibrium analysis and
set up a model with emitting firms that participate in an emissions trading
system which may be linked to other systems. We restrict the analysis to
the partial equilibrium in order to focus on permit markets and the links
between them. Trade is incentivizes by allowing firms and endowments to
be heterogeneous. We set up the model to allow for both cap-and-trade and
baseline-and-credit types of emissions trading schemes, that is, firms either
need permits for their emissions or they receive credits from their emissions
reductions.

To address the policymaker’s concern for indirect influence, we use graph
theoretic tools to derive a dependency structure from the equilibrium con-
ditions. We show that the network is partitioned into segments, which we
call supply and demand components. The members of these components are
connected by a specific type of alternating path of supply and demand, and
they face the same price. We show that two systems are dependent if and
only if there is such an alternating path between them, that is, they belong
to the same component. By identifying the supply and demand components,
we get a subset of equilibrium conditions that allows us to study the com-
parative statics of the equilibrium and show how changing endowments and
production possibilities of one system affects other systems.

For a policymaker, who wishes to avoid unexpected interference by a for-
eign regulator to domestic policy outcomes, the theory provides an easy tool:
if there is an alternating supply or demand path between the domestic and
foreign systems, then the foreign regulator can interfere with the domestic
market, and the policymaker should take precautionary measures.

Even though we apply the theoretic framework solely for the analysis of
permit markets, the model shows potential for more general use. Considering
trade theory, the framework generalizes the comparison between free trade
(all markets are linked) and autarky (no markets are linked) by allowing
bilateral trade between some markets while disallowing it between others.



From this point of view, one could ask, for example, what is the sufficient
set of links needed to achieve an efficient outcome? Or which links need to
be removed to achieve an effective embargo? Our theory predicts, that only
after removing all the alternating paths between the embargoed country and
the rest of the world, would the global market tear apart into separate supply
and demand components, forcing the embargoed country to loose its gains
from trade.

To our knowledge, this is the first study devoted to the network structure
of dependencies in a market equilibrium with a network of trading possibil-
ities and restrictions.? Even though the model setup we use is very conven-
tional in economics (e.g. compare with Baumol and Oates, 1975), the network
of constraints opens up a host of new questions and a need for graph theory,
which enables us to contribute rather fundamental results.

In the next section we define necessary graph theoretic tools and set up
the economic model. In Section 3, we solve the equilibrium, show some
basic properties of the equilibrium, and derive a network to describe the
equilibrium’s dependency structure. In Section 5, we analyse comparative
statics. In the final section we conclude. In the appendix we give examples.

2 Preliminaries

Next, we define the necessary graph theoretic concepts and set up the eco-
nomic model. Graph theory will not only help us visualize the dependencies
between markets, but it also provides us with a tool for rigorous deduction,
and turns out to be extremely useful as we prove key propositions in the
following sections.?

2.1 Graphs and connectivity

A graph (S, A) consists of a set of vertices S and a set of edges A C {{s,r} |
s,7 € S}. A directed graph (S, A) consists of a set of vertices S and set of
arcs A C {(s,r) | s,7 € S}. A (directed) graph (S’, A’) is a subgraph of

2Mathematically the setting resembles network flow problems (see for instance Boyd
and Vandenberghe, 2004), which are studied in operations research, even though the struc-
ture of the problem is very different to ours. Also, Ostrovsky (2008); Hatfield and Kominers
(2012); Hatfield et al. (2013) study the existence of equilibria in a trade network of agents
with predetermined roles and indivisible goods in a matching model. With divisible goods,
as in our case, existence is easy to show and we can focus on the structure of dependencies.

3For a similar approach, see De Benedictis and Tajoli (2011) who apply tools of network
analysis to study international trade.



(directed) graph (S, A) if " € S and A’ C A. If (5, A’) is a subgraph of
(S, A) then (S, A) is said to be a supergraph of (S, A’).

Vertices sg and s; are connected by a path in graph (S, A) if there is a
sequence of vertices sq,...,s,_1 € S, k € N such that (s;_1,s;) € A for all
i=1,...,k.* Subgraph (S’, A’) of graph (5, A) is a connected component if
(1) any vertices s, € S are connected by a path in (S’, A’) when s # r, (2)
there are no s € S" and r € S\ S’ which are connected by a path in (S, A),
and (3) if s,r € S and (s,r) € A then (s,r) € A'.

2.2 The model

We construct a partial equilibrium model that focuses on dependencies be-
tween permit markets. We give a very simple description of the production
side, in order to make the analysis tractable.

Consider a set of emissions trading systems S. Each system s € S has an
endowment of permits w® > 0 and regulates a set of firms which we call par-
ticipants.® As our focus is on the relationships between the systems and not
on what happens inside the the systems, we assume each emissions trading
system s € S can be described by a representative firm whose choices are
equivalent to the sum of choices of the individual firms which participate in
the system and trade permits under perfect competition. The representative
firm produces output y, > 0 using emissions ¢, > 0 as a factor. The pro-
duction possibilities of the representative firm s are described by a strictly
concave, twice continuously differentiable production function f;: R, — R
for which y, = f,(cs).%

These assumptions allow for a saturation point ¢, above which there is
no gain from further emissions, that is f!(¢;) = 0, where f! is the derivative
of fs. In the emissions trading literature the saturation point is often called
the baseline emissions level.”

The choice of firms is constrained by an obligation to buy permits for the

4Note that in some texts this would be referred to as a walk, with the distinction that
a path has no repeated vertices or edges, but in our case this contrast makes no difference.

SEach firm is a participant of exactly one emissions trading system. See Goulder and
Stavins (2011) for an account of the problems that arise from overlapping policy measures.
For the same reason we omit emissions taxes from the analysis.

6 Alternatively, one could begin by deriving the choices of the representative firm by
explicitly defining a set of participating firms Ps; which have such production functions f;,
i € Ps, that ys = >, p fi(c;) and the sum has the properties assumed for the represen-
tative firm, and also ¢, = ZiePs C.

"In our application it would not be unreasonable to assume that all firms have satura-
tion point, i.e. firms would emit a finite amount even without regulations, but we do not
wish to waste generality.



emissions they make. The rules of emissions trading dictate that participants
can only emit an amount less or equal to the amount of permits they have
acquired. That is, firms must have enough permits to cover their emissions.

In this specification a credit-and-baseline type of emissions trading system
is a special case where the endowments equal the baseline emissions levels.
Note that in order to have a positive price, this type of permits must have
demand outside the system through a link.

When several emissions trading systems exist, their rules might allow for
participants to use permits of other systems. When it is not explicitly al-
lowed, the regulator will simply not accept foreign permits. In other words,
the rules of an emissions trading system determine which permits its partic-
ipants can use to comply with their obligations. We call the set of emissions
trading systems and the description of which permits they allow, a trading
network:

Definition. A trading network is a directed graph (S, A), where the set of
vertices S = {1,...,m} refers to a set of m emission trading systems and
the set of arcs A C S x S specifies which permits are allowed in each system:
(s,r) € A indicates that system r allows its participants to use permits of
system s. We use binary variable a? € {0,1} to indicate that (s,r) € A and
vector a; = (al,...,a™) to summarise which permits are allowed by system
ses.

Even though in principle, firms can buy emissions permits from any emis-
sions trading system, for compliance they can only use permits that are al-
lowed by the system they participate in. The emissions permit vector of
representative firm s describes how many permits of each system is held by
the firm, and it is denoted by e, = (el,...,e™), where ¢’ > 0 is the amount
of emissions permits of system r held by firm s. The obligations constraint
requires that firms emit an amount less or equal to the amount of acquired
permits which are allowed by their system.

The resource constraint requires that sum of permits used cannot exceed
the amount of permits issued.

Given a trading network, prices are denoted by a non-negative vector
p = (p1,...,pm). We assume prices are taken as given by the firms.

The profit maximization problem of a firm that represents system s € S
of network (S, A) is to choose emissions ¢, € R, and emissions permit vector

8In real-life implementations the number of credits generated equals the difference
between the baseline and emissions, w; — ¢s, while the emissions themselves require no
permits, but using this type of formulation would lead to identical results but a less
concise presentation.



es € R to maximize its profits

fs (Cs) +psws — Pé€s,
subject to the obligations constraint
Cs < ases,

while prices p € R’} are taken as given. Note that the value of the endowment
psw?® is also taken as given by the firms.

3 Equilibrium

The decentralized perfect competition equilibrium in a trading network is
equivalent with the solution of a social planner’s problem of maximizing the
sum of outputs. To show this, we solve the social planner’s problem and show
that its solution is equivalent with the competitive equilibrium conditions.
The social planner’s problem is to choose emissions ¢, for each s € S and
emissions permits el for each s,r € S to maximize the sum of outputs while
satisfying the obligations and resource constraints, that is, to solve

Jmax > f(cs),

€l,...,m SES

so that resource constraints

Zeigws

res
and obligations constraints
Cs < sy

are satisfied for all s € S.

As the optimization problem is convex and satisfies appropriate regularity
conditions, such as the Slater’s condition, the Karush-Kuhn-Tucker theorem
gives the necessary and sufficient conditions for the solution. The conditions
can be expressed with the help of a Lagrangian function

L<€17"'76mucl7"'7cm7)\17"'7>\m7p17"'7pm)

5 (e Ao (5-))

seS res

where A1, ..., A\, P1, - - -, Pm are the non-negative Lagrangian multipliers.



Karush-Kuhn-Tucker conditions are as follows:
for all s,r € S such that a], =1
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for all s, € S such that a], =0

forall se S
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ps > 0.

An equilibrium of the model is a (m? 4+ 3m)-tuple
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that satisfies conditions (1-5). We interpret the Lagrangian multipliers
P1,...,Pm as the competitive market equilibrium prices and Aq,..., \,, as
the marginal costs of regulation.

Note that the Karush-Kuhn-Tucker conditions for the social planners
problem can also be derived by first solving the firms’ problems individu-
ally, while taking prices as given, to get equation (1-4), and then postulating
the market clearing conditions (5). Hence the conditions characterize an
equilibrium for the representative firms of the trading network under perfect
competition, as no firm can increase its profits by deviating from the social
planner’s optimum.

We can see, that the equilibrium conditions include inequality constraints
and not all equilibrium variables might appear in each system’s constraint, so
it is possible that a subset of equilibrium variables can be solved with a subset
of the equilibrium conditions. In such cases, the value of the equilibrium
variables will depend only on the exogenous variables that appear in the
subset of equations. Our goal in the following chapters is to make an exact
account of such subsets and show that they are essential in answering our
main question: which systems will be interdependent in the equilibrium.
Subsequently, this will allow us to study the comparative statics of changes
made by foreign regulators.

3.1 Equilibrium properties

First, we show some descriptive properties of the equilibrium using the
Karush-Kuhn-Tucker conditions (1-5).

Proposition 1. In equilibrium, a representative firm

1. uses only the cheapest permits among the allowed,
2. never emits beyond its saturation point, and

3. holds unallowed permits only if their price is zero.

Proof. Let s € S. First, to state the first part of the proposition precisely,
we aim to show, that if ¢ > 0 and " € S is such that (+’,s) € A and
pr > Ming.geapr then el = 0. By rearranging inequalities (1a) and (3a),
we see that the marginal product f!(c;) is a lower bound for all prices among
the allowed permits, that is

r

Jo(cs) < A <

=

for all r such that (r,s) € A. Inequality
there is some r for which e} > 0 and a]

—~

4a) implies ases > ¢; > 0, so
1. For such r equation (1b)

9



implies that also inequality (1a) must be binding, and equation (3b) implies
that inequality (3a) is binding, i.e. fl(cs) = A, therefore fl(cs) = As = p;.
Because f!(c) is a lower bound,

/ .

s) — - 6

files) = min p (6)

For all 7’ for which p,» > p, = A, that is Ay — p» < 0, equation (1b) implies
e’ =0.

Second, let there be a saturation point ¢;. Suppose, contrary to our claim,
that ¢, > ¢, > 0. Strict convexity and the definition of a saturation point
implies that fl(c;) < fl(és) = 0. Now equation (3b) and inequality (3a)
imply that A\; = f!(cs) < 0 which is a contradiction with inequality (4c), and
hence ¢, < é,.

Third, let e} > 0 for some r € S such that (r,s) ¢ A. Then equation (2b)
implies p, = 0. O

We denote by p* the lowest price available to system s, as in equation (6).

Note that the profit maximization problem does not generally have a
unique solution with respect to the emissions permit vectors ey, even though
the solution for emissions ¢, is unique. This is because allowed permits
are perfect substitutes, and when their prices are equal, firms are indifferent
between them. As the production function f; is strictly concave, its derivative
is also strictly decreasing and therefore it has an inverse function f/~!, which
we can use with equation (6) to express equilibrium emissions ¢; > 0 in terms
of the lowest price available:

(r,s)€EA

e = frt k) = fi! ( min p,,) Vs e S.

This gives a unique amount of emissions for every price vector p.

3.2 Equilibrium network

Next, we apply the graph theoretic tools defined in Subsection 2.1 to analyse
the dependencies further, with an aim to determine which equilibrium prices
and emissions will be affected by changes in the endowment of a given system.

In the proof of Proposition 1, we noticed that equilibrium emissions ¢ are
directly dependent only from prices that equal the lowest price among the
permits which are allowed in system s. That is, equilibrium conditions relate
specific emissions choices to specific prices according to the network structure
and the ordering of prices. Part 1 of Proposition 1 implies that permits
whose price is higher than lowest price will not be used in equilibrium. This

10



suggest we can focus on a smaller set of connections. To study the equilibrium
further, we define the subgraph that characterises the relevant dependencies
between the equilibrium prices and quantities:

Definition. The equilibrium network of trading network (S, A) is the di-
rected subgraph (S, M), where M = {(r,s) € A |p, =p*} C A, and p, and
pi are equilibrium prices.

It is worth noting that, in equilibrium, the system’s own permits might
be too expensive for its participants to buy. More specifically, it is possible
that p; > p% and hence (s,s) ¢ M, even if (s,s) € A.

3.3 Supply and demand

Next, we use the network equilibrium to define two adjacency properties, and
in the following lemma we show that these properties imply an equivalence
relation for prices.

Definition. Systems s and r are adjacent sellers in equilibrium network
(S, M) if there is a system ¢ such that (s,t) € M and (r,t) € M. Similarly, s
and r are adjacent buyers in equilibrium network (S, M) if there is a system
t such that (t,s) € M and (¢t,r) € M.

That is, systems s and r are adjacent sellers if there is a subgraph

OO0

and adjacent buyers if there is a subgraph

O——O

The practical interpretation of the adjacency concepts is that when two
firms sell to the same market or two firms buy from the same markets, under
perfect competition, prices tend to be the same. The following lemma states
this in more exact terms:

Lemma 1. In an equilibrium network, the permits of adjacent sellers have
an equal price, and adjacent buyers use permits with an equal price. That is,
adjacent sellers sell for the same price and adjacent buyers buy at the same
price.

11



Proof. First, let s and r be adjacent sellers. Now there is a system t such
that (s,t) € M and (r,t) € M, and by definition p; = p; and p, = p;. Hence
Ps = Dr.

Second, let s and r be adjacent buyers. Now there is a system t such
that (¢,s) € M and (t,r) € M, and by definition p; = p¥ and p, = p’. Since
systems s and r have the same minimum price among the allowed permits,
Proposition 1 implies that the permits they use have the same price. O

Due to the transitivity of the equivalence relation, prices are equated
beyond adjacent pairs. Next we aim to find the largest set of system among
which prices are equated.’

First, we note that the relationship of being adjacent sellers or buyers is
symmetric, so all such relationships found in the equilibrium network can be
summarized as an undirected graph.

Definition. The adjacent seller graph is the undirected graph (.S, Mg), where
Mg = {{s,r} | s,r € S, 3t: (s,t) € M and (r,t) € M}. The adjacent
buyer graph is the undirected graph (S, Mp), where Mp = {{s,r} | s,r €
S, 3t: (t,s) € M and (t,r) € M}.

The adjacent seller and buyer graphs can be used to partition the set of
systems of the trading network into connected components that are essential
for characterizing the dependencies between between systems.

Definition. A supply component of equilibrium network (S, M) is a con-
nected component in adjacent seller graph (S, Mg). Similarly, a demand

component of (S, M) is a connected component in adjacent buyer graph
(87 MD)

Basic graph theory tells us that the connected components of a graph
induce a unique partition for the set of vertices, and in a finite graph there
is a finite number of components.

We can now show that both supply and demand components constitute
a set of systems which have an equal prices.

Proposition 2. In equilibrium,

1. permit prices of systems that belong to the same supply component are
equal, and

2. prices of permits bought by firms in systems belonging to the same de-
mand component are equal.

9That is, we aim to construct the equivalence classes for the equal permit price relation.

12



Proof. First, let s and r be members of a supply component. Now there is a
path of adjacent sellers between s and r. According to Lemma 1, each con-
secutive pair in the path must sell at the same price. Due to the transitivity
of the equivalence relation, s and r sell at the same price. The proof of the
second part is similar. O

Proposition 2 allows us to define a single price for all permit in a supply
component. We denote the price of permits in supply component S; by pg,.
Later we will show that this is the price faced by all systems in a particular
demand component.

To illustrate the idea behind Proposition 2, consider a supply component
of equilibrium network (S, M). If systems s and r are separate members of
the same supply component, then by definition, there must a particular type
of path connecting them in (S, M). For example, consider a subgraph

O—@D— -0

where s and t,, as well as t5 and r are adjacent sellers. Both pairs have a
common system to which their permits are sold to, in this case t; and t3,
respectively. Similarly, in subgraph

OO OnG

Y

systems s and t,, as well as t, and r are adjacent buyers, which buy permits
from t; and t3, respectively.

The illustration suggest another way of stating that two systems belong
to the same supply or demand component: by defining an appropriate form
of connectivity in the underlying equilibrium network.

Definition. Vertices sy and s; are connected by an alternating supply path
in equilibrium network (S, M) if there is a sequence of vertices sy, ..., Sg_1,
where k£ > 2 is an even number, such that (s;_1,s;) € M and (s;11,5;) € M
forall odd i =1,...,k— 1. Similarly, vertices sg and s; are connected by an
alternating demand path in equilibrium network (S, M) if there is a sequence
of vertices si,...,Sk_1, where k is an even integer, such that (s;,s;_1) € M
and (s;,8;41) € M foralloddi=1,...,k— 1.

Based on the definitions, it is clear that two systems are connected by an
alternating supply path or demand path if and only if they are members of
the same supply component or demand component, respectively. As we will

13



later show that supply and demand components are essential for specifying
dependencies between equilibrium variables, alternating supply and demand
paths will help determine whether two systems are dependent.

Next, we will show that each supply component is related to a particular
demand component, and conversely each demand component is related to a
particular supply component. We say that such components are matching.

Lemma 2. Let (S, M) be an equilibrium network.

1. Let S; be the set of systems in a supply component of (S, M) and D; =
{r € S| 3s € S;:(s,r) € M}. Then D; is the set of systems of a
demand component of (S, M).

2. Let D; Be the set of systems in a demand component of (S, M) and
S;={s€ S| 3IreD;:(s,r)€ M}. Then S; is the set of systems of a
supply component of (S, M).

Proof. Let S; be the set of systems in a supply component of (S, M) and
D;={reS|3seS;:(s,r) € M}. Let s,r € D;. Now there are vertices
to € S; and t; € S; such that (t9,s) € M and (t;,r) € M. If tg = ¢;, then s
and r are adjacent buyers. Suppose ty # t;. Since S; is a supply component,
to and t; are connected by a path of adjacent sellers, which we denote by
sequence of vertices (to,tq,...,t_1,%). For each j = 1,... [, subsequent
system (t;_1,t;) are adjacent sellers, and hence there exists a ¢; € D; such
that (t;_1,¢;) € M and (t;,q;) € M. Now vertices ¢;_; and ¢; are adjacent
buyers for all j =2,...,1, as are (s,q;) and (q;,7), so s and r are connected
by a path in the adjacent buyer graph.

Also note that vertices in D; are not connected to other vertices of the
supergraph outside of D;: if s € D; were connected to r € S\ D;, we could
use the same strategy as above to show, that » € D,;, which would be a
contradiction.

The proof for part 2 is similar. O

Lemma 2 shows us that for each supply component there is a unique
matching demand component, and vice versa. We denote the sets of systems
of the supply component by S; and D;, where ¢ = 1,..., k is index for the k
components.

Finally, we show that the set of arcs having an initial vertex in the supply
component equals the set of arcs having a terminal vertex in the demand
component. This result can be interpreted as a type of completeness property
of matching supply and demand components and it will be pivotal in the next
section where we analyse the comparative static results of the equilibrium.
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Proposition 3. If S; and D; are matching supply and demand components
of equilibrium network (S, M), then

{(s,r)e M |seS;,reS}={(s,r)e M|seS,reD}.

Proof. Let S; and D; be matching supply and demand components of equi-
librium network (.S, M).

Suppose (s,7) € {(s,r) € M | s € S;,7 € S}. Now s € S; and r € S, and
part 1 of lemma 2 implies r € D; = {r € S| 3ds € S;: (s,r) € M}, therefore
(s,r) € {(s,r) € M | se€ S,re D}

Suppose (s,r) € {(s,r) e M | s € S;r € D;}. Now s € S and r € D;,
and part 2 of lemma 2 implies r € S; = {s € S | Ir € D;: (s,7) € M},
therefore (s,r) € {(s,r) € M | s € S;,r € S}. O

Proposition 3 means that all permits that are sold from the supply com-
ponent are bought somewhere within the matching demand component. And
the other way around, the permits bought by firms in the demand component
are sold from the matching supply component.

4 Comparative statics

Next, we will study the comparative statics of the equilibrium. First, we
define a concept, which we use to restrict to non-trivial equilibria. Second,
we apply Propositions 1-3 to derive a (sub)system of equations, which char-
acterizes the equilibrium locally and allows us to analyse the comparative
statics. Finally, two comparative statics results are presented.

4.1 Slackless equilibrium

Some constraints can be unbinding in the equilibrium if the endowment of
permits is so large that there is no scarcity or the endowment is so small that
firms stop emitting (i.e. exit the permit market). In such cases, marginal
changes in the involved exogenous variables would have no effect on the equi-
librium. Also, in the special case where constraints are binding in only one di-
rection, analysing marginal effects would have to be restricted to semideriva-
tives. We will exclude these equilibria from the analysis and focus on the ones
where constraints are binding within an open set. To be exact, we restrict
to what we call slackless equilibria!:

ONote that to avoid confusion we do not use the term non-boundary as the equilibria
are indeed on the boundary in the sense that the related constraints are binding.
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Definition. An equilibrium is slackless for matching supply and demand
components S; and D; if for all s € S; and r € D, there exists € > 0 such
that ¢, > e, A\, > ¢, ps, > ¢ and e} > ¢ when (s,r) € M.

The slackless assumption refers to the complementary slackness condi-
tions of the optimization problem and implies that the resource and obli-
gations constraints are binding. If there are permits with no value or non-
emitting firms, then marginal changes in the exogenous variables will have
either one-sided effects or no effect at all on the equilibrium variables. By re-
stricting the analysis of comparative statics to matching components with a
slackless equilibrium, we are guaranteed that within an open neighbourhood
of the exogenous variables the endogenous variables have an open neigh-
bourhood in which the relevant equilibrium constraints are binding and fully
characterize the equilibrium. This allows us to apply the implicit function
theorem to analyse the marginal effects on the equilibrium prices and emis-
sions of changes in the production functions and endowments.

4.2 Subset of equations

Finally, we will apply the theory and concepts we have developed to derive a
subset of equilibrium conditions that are necessary and sufficient to describe
the equilibrium locally.

Consider a slackless equilibrium for matching supply and demand com-
ponents S; and D;.

The slacklessness of the equilibrium and Propositions 2 imply that pg, =
ps > 0 for each s € S;, so the related resource constraints (5) are binding
and we can use part 1 of Proposition 1 to represent the constraints as

Yo el=w VseS,. (7)

(s,r)eM

Similarly, slacklessness means that A, > 0 for each r € D;, so the related
obligations constraints (4) are binding and we can use part 1 of Proposition
1 to restate the constraints as

Y e =c¢ Vreb,. (8)

(s,r)eM

Using equations (7) and (8), together with Proposition 3, we can equate
the sum of emissions demands of demand component D; and the endowments
of supply component S;:

Ye=Y Y a=Y ¥ 4=

reD; reD; (s,r)eM s€8S; (s,r)eM s€S;
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This can be summarized as

Yo=Y w=0. 9)

reD; sES;

Also for all s € S; and r € D; such that (s,r) € M slacklessness implies
e? > 0, which means constraint (1) is binding so that A, = p,. Following
Proposition 2, all prices of the supply component are bound to be equal. As
¢, > €2 > 0 and constraints (3) are binding, equation f/(¢,) = A\, = ps = pg,
applies for all s € S; and r € D;. This allow us to restate equation (6) as

fi(e;) —ps, =0 VreD,. (10)

Equations (9) and (10) are necessary and sufficient conditions for an equi-
librium that is slackless for matching supply and demand components with
sets of systems S; and D; within some neighbourhood.

Equations (9) and (10) can be interpreted as implicit functions that de-
scribe the relationship between exogenous parameters and the endogenous
variables, which are uniquely defined, within matching supply and demand
components. The slackless assumptions guarantee that equations (9) and
(10) are equivalent to the Karush-Kuhn-Tucker conditions in an open set
containing the equilibrium. Because the production functions are twice con-
tinuously differentiable, the implicit functions defined by equations (9) and
(10) are continuously differentiable. Hence, equations (9) and (10) character-
ize the system of equations that determine the endogenous variables related
to the matching supply and demand components.

Finally, in the next two subsections we use comparative statics to assess
the economic outcomes resulting from (1) a change in endowments and (2)
an additional non-emitting factor that substitutes emissions.

4.3 Endowment effect

Let s € S; be a system that changes its endowment w?®, i.e. it issues more
permits. We can use the implicit function derived from equations (9) and (10)
to get the system of equations that specifies the implicit function’s partial
derivatives:

—1=0 (11)
and 5 9
1" Cr Ps;
— L= D;. 12
fr (Cr)(?ws T 0 VreD, (12)
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Equation (12) can be rearranged to get

e,
ows

and plugged into equation (11) to get

= f;'(cr)laapﬁ Vr e D, (13)

s _ (z fi’(cr)_l) <o, (14)

reD;

which is negative because the second derivative of a strictly concave function
is negative. Plugging this into equation (13) gives

-1
- :fﬁ'(cr)_l(z f;',(c,«/)—l) >0 vreD. (15)

r’'eD;

This means that increasing the endowment of any system of a supply
component has an effect on the supply component’s price level and on the
emissions of the matching demand component. Inequality (14) implies by
that increasing the endowment, the price of all permits in the supply com-
ponent will decrease, and inequality (15) implies that emissions will increase
in all systems of the demand component.

4.4 Effect of cleaner technology

Let 7 € D; be a system that has a production function of form f,. (¢, + f3),
where 8 € R is a factor of production that can be used to replace emissions.
We assume f,~ has all the properties required from other production functions
in the model.

Now the implicit function defined by equations (9) and (10) has a deriva-
tive that is determined by equations

dc,
=0 16
Tgi 86 Y ( )
fleds =2 —0 weDA\f) (D
e+ 8)+ e+ M55 — B2 =0, '€ D (18)

We evaluate the derivative at § = 0, and rearrange equations (17) and
(18) to get
de, "

Ops
55 =1 (c)! apg Vr e D\ {1} (19)
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and 0 0
Crr " —10Ds; /
- A& - — 1, Dz
op C )5} re

Plugging these into equation (16) gives

-1
8pSi o " -
T —(gimcr) ) <0, (20)

which is negative as the second derivatives of a strictly concave function is
negative. Plugging equation (20) into equation (19) gives

a T " —1 " —1 B /
acﬁ :fr (CT) (Z fr (C’I‘) ) >0 VTGDi\{T }7 (21)
reD;

while equation (16) is equivalent to

ac, Jdc
== ) =<0, (22)
aﬁ reD\{r'} 86

where the expressions are negative due to inequality (21).

The analysis implies that introducing clean technology to any firm in
a demand component has an effect on the emissions of other firms in the
demand component and on the price of the matching supply component.
Inequalities (21) and (22) tell us that cleaner technology in one firm decreases
its own emissions while allowing others to emit more. Inequality (20) tells
us that cleaner technology decreases the price of permits in the matching
supply component.

5 Conclusions

We have set up a simple model to analyse trade given an underlying network
of trade possibilities. We have shown that the restrictions will partition the
market into areas of equal price. These supply and demand components
constitute market areas, within which agents are dependent of each other
even if they are not directly connected, while agents remain unaffected by
events outside the market area.

The concepts of alternating supply and demand paths provide a conve-
nient tool for finding out whether systems are interdependent. If we observe
permits being sold from one system to another, it is sufficient to conclude
that they are connected in the equilibrium network. If the observed connec-
tions form an alternating path between two markets, we can infer that they
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are interdependent. In such a case, the policymaker should acknowledge that
their policy outcome will depend on the actions of the foreign regulator, even
if there is no direct link between the systems.

To offer a rather abstract idea, alternating paths could be understood
as pathways for price signals, which are necessary to equate prices and to
achieve gains from trade. The theory shows that it is not necessary for
agents to operate directly in the same market to equate prices. The essential
requirement is to have a path of agents who share buyers and sellers. Without
such paths the perfectly competitive markets are unable to generate the
efficient outcome.

One could also interpret the framework as a generalization of a simple
trade model. When all systems are linked, the model reduces to a simple
partial equilibrium model of production with open trade. When no systems
are linked, the model is equivalent with autarchy. In these extreme cases,
the tools developed here are trivial. However, they allow us to study the
intermediate cases. With intermediate linking structures, one could study
how the equilibrium breaks in to separate markets, while losing benefits from
trade. Or one could study which links are necessary to establish the open
trade equilibrium, or which links need to be removed in order to cut the
interdependence. Clearly the model and theory constructed in this paper
shows various possibilities for further investigation.

A A numerical example

Consider emissions a trading network (.S, A) with systems S = 1,2, 3 and arcs
A={(1,1),(1,2),(2,2),(2,3),(3,3)}. The corresponding graph is depicted

below.
B ()

Let fy(cs) = Bscs — 2 and w® = 1/4 for s = 1,2,3, and 5 = 3, = 2 and
fs = 5. We can derive the derivatives f!(cs) = f8s — 2¢s and the saturation
points ¢, = (3,/2. Given the arcs, the resource constraints are e} + ej < w',
€3+ e2 <w?, and €3 < W

Consider the equilibrium of the specified model. First, note that part b
of Proposition 1 implies that in equilibrium f!(cs) > 0 when ¢ < é;. Because
cs < ases < Ycqw” = 3/4 < Bs/2 = & for all s € S applies fs(cs) > 0.
Now inequality (3a) implies Ay > 0, therefore equation (4b) implies that
obligation constraint (4a) is binding, and inequality (1la) implies that p, > 0
and resource constraint (5a) is binding for all s, € S.
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Given that the obligation constraint (4a) are binding, inequalities (1a)
(3a) implies that
2 — 26% S b1,

2—2(6%—{—6%) <p; and 2—2(6%—{—6%) < po,

and
5—2(6%—1—6%) <ps and 5—2(6%4—6%) < p3.

If p3 > po, then €3 = 0 and e} # w3, which would contradict the binding
resource constraint for system 3. If ps < po, then €2 = 0. As el > 0 and
Co > €3 = w? = 1/4, which means py = \y = fo(c,), we get

3/2>2-2(eb+e3) =pp>ps=5-2(c3+¢}) =9/2,

which is a contradiction. Therefore p3 = ps.

If ¢y = 0, then ¢; = e} = 1/4 > 0 and inequalities (1a) and (3a) imply
that 3/2 =2 —2e} = p; > 2 — 2 (el + €2) = 2, which is a contradiction. If
c1 = 0, then ¢; > e} = 1/4 > 0 and inequalities (1a) and (3a) imply that
2=2—2ef <p; =2—2(ej +e3) <3/2, which is a contradiction. Therefore
c1 > 0and ¢ > 0. Also c3 > e = w? >0

Now equation (3b) implies that fs(cs) = A for s = 1,2, 3.

Suppose p; = p» = p3. Now el = ¢; > 0, €3 > 0, and either e} > 0 or
e2 > 0, which implies \; = Ay = A3 = p; = po = p3. Hence the marginal
products must be equal:

2-2=2-2(ch+¢}) =5-2(c +¢}).
By plugging in the resource constraints, we get
2-2w' —ep) =2-2(eb+e}) =5-2((W?—e) +uw?). (23

Both sides of the first equation in (23) can be reduced by 2 and divided by

—2 to get w! — el = el + €2 and solved to get e} = Lw! — %e%. The second

2
equation in (23) can be rearranged to get, e} = w? +w? — 2 — %e%. Equating

2

these gives sw!' — 1e3 = w? +w® — 2 — 2e3, which can be solved to get
3 1 9
2 2. 3 1
e=w 4w —=———w =—=<0,
? 2 2 8

which is a contradiction.
Suppose p; > pa = p3. Now e = 0, el = w!, and p; = Ay, which implies
3/2=2—2ef =p; >py=5—2(el+e3) > 4, which is a contradiction.
Therefore in equilibrium the prices must have order p; < py = p3. Now,
because py > g, equation (1b) implies that €3 = 0. As the marginal products
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of systems 1 and 2 are equal, 2 — 2e} = 2 — 2el, we can solve their permit

usage: e] = ey = ¢, = ¢ = w'/2 = 1/8. The price of permit 1 is set
to the marginal product, p; = 2 — % = g. Given the resource constraints

e = ef = w? = w® = 1/4 and emissions are c3 = 1/2. Also the prices of

permit 2 and 3 are set to the marginal product of system 3:

2
p2=p3=95—5=4

2

The equilibrium network is determined as (S, M), where S = 1,2,3 and
M ={(1,1),(1,2),(2,3),(3,3)}. This depicted by the solid arcs in the pre-
vious graph. Note that arc (2,2) is missing which indicates that system 2 is
not using its own permits in equilibrium.

The equilibrium network contains 2 pairs of demand and supply compo-
nents: components with low price, Dy = {1,2} and S; = {1}, and compo-
nents with high price, Dy = {3} and S; = {2,3}. We can denote the supply
components’ prices by pg, = p1 and pg, = p2 = ps, respectively.

B A graphical example

Consider a trading network of six systems whose links can be depicted by
the following directed graph:

Suppose the dashed arcs are part of the trading network but not the equi-
librium network. That is, the dashed links are removed because the lowest
price available to the system at the arc’s terminal vertex is cheaper than the
price of the permit at the initial vertex.

Now we can directed graph to determine vertices are adjacent sellers and
construct the adjacent seller graph:
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v

We identify the supply components with different vertex shapes. Similarly we
can determine the adjacent buyers and construct the adjacent buyer graph:
6

0

ONNONE

<C} U
We identify the matching demand component with the corresponding shapes.
Sets {1}, {2,4,5}, and {3,6} indicate supply components and sets {1,4},
{4,5}, and {3, 6} indicate their matching demand components, respectively.
Now we can easily determine which systems will be affected by changes in
exogenous variables. For example, a change in the endowment of system 4,
which is a member of the "circle component”, will affect the price of permits
2, 4, and 5 and emissions of systems 2 and 5. Similarly, replacing emissions

by a non-emitting factor in system 4 will affect the price of permit 1, decrease
emissions in system 4 and increase emissions in system 1.

O—@p

O—@=
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