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 2 

Abstract 15 

This paper describes an investigation of the effect of fill factor; on the compaction behaviour of the 16 

granules during tableting and hence mechanical properties of tablets formed. The fill factor; which 17 

is the ratio of volume of wet powder material to vessel volume of the granulator, was used as an 18 

indicator of batch size. It has been established previously that in high shear granulation the batch 19 

size influences the size distribution and granule mechanical properties [1]. The work reported in this 20 

paper is an extension to the work presented in [1], hence granules from the same batches were used 21 

in production of tablets. The same tabletting conditions were employed during tabletting to allow a 22 

comparison of their properties. The compaction properties of the granules are inferred from the data 23 

generated during the tabletting process. The tablet strength and dissolution properties of the tablets 24 

were also measured. The results obtained show that the granule batch size affects the strength and 25 

dissolution of the tablets formed. The tablets produced from large batches were found to be weaker 26 

and had a faster dissolution rate. The fill factor was also found to affect the tablet to tablet variation 27 

of a non-functional active pharmaceutical ingredient included in the feed powder. Tablets produced 28 

from larger batches show greater variation compared to those from smaller batches.  29 

Keywords: fill factor, compression, granules strength, compaction energy, batch size 30 

 31 

32 
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1. Introduction 33 

High shear wet granulation has been used extensively in the pharmaceutical industrial as a 34 

size enlargement process for granulating feed powders in order to improve their flow characteristics. 35 

Moreover, it has been used in a number industries for the manufacture of different products, e.g. 36 

fertilisers in agro-based industries  [2-4], and for the granulation and mixing of metal or powder 37 

oxides such as iron , silica and  aluminium in the metal processing industry [5, 6]. The quality of the 38 

granules formed during this process is sensitive to the process conditions as well as the formulation 39 

[1, 7-11]. Several studies have been undertaken to investigate the importance of process variables on 40 

the granule size and size distribution [8, 12-15]. Research on scale-up has focused particularly on 41 

the influence of the size distribution of the product [7, 12, 16-20]. Hassapour et al. [21] and 42 

Rahmanian et al. [22] examined scale-up rules based on constant speed, shear stress and the Froude 43 

number to achieve a target granule strength. It was concluded that a constant tip speed was the most 44 

effective. However, even when using the same granulator, small variations in the size of the batch 45 

can lead to significant differences in the properties of the granules [10, 12, 20, 23-25]. 46 

The fill factor is defined as the ratio of the volume of wet powder material to the vessel 47 

volume of the granulator. Recent work has shown that not only is the  granules size affected by the 48 

variations in the fill factor but also the mechanical properties of the granules formed [1]. The total 49 

mass of the granulate material was varied (from 2113 to 2875 g corresponding to fill factors of 0.21 50 

to 0.42 respectively) without changing the other variables such as impeller speed, granulation time 51 

and liquid to solid ratio. The resulting mechanical properties, such as strength, yield stress and 52 

Young’s modulus, of the granules were measured. The granule strength, Young’s modulus and yield 53 

stress of the granules were shown to increase with increasing batch size as represented by the fill 54 

factor.  55 
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The implications of batch size variation on the downstream processes due to changes in the 56 

material properties have not been investigated and this is the objective of the current work. The 57 

main aim was to establish the effects of the fill factor on the compression behaviour of the granules 58 

and the consequent effect on the tablet properties. The fill factor was varied by changing the total 59 

mass of the feed powder and binder liquid without changing other variables (impeller speed, liquid-60 

to-solid ratio and granulation time) as described in previous work by the current authors [1]. It was 61 

found out that changing the fill factor of the granulator resulted in changes in the size distribution 62 

and mechanical properties of the granules produced.  63 

The behaviour of granular solids under compression depends on the mechanical properties of 64 

the granules and this in turn has an effect on the mechanical properties of the tablets formed. A 65 

number of parameters that characterise the compression behaviour were determined (efficacy 66 

coefficient, net compression work and degree of compression), which will be described in the next 67 

section. The objective of this paper was to study the effect of fill factor on the mechanical, 68 

dissolution, and homogeneity of tablets formed from high shear granules. The effects of the fill 69 

factor on the strength and mean dissolution times of tablets formed from the granules were also 70 

measured. Although previous studies have considered the compositional uniformity of tablets [26-71 

30], the effect of granulation process variables on tablet homogeneity has not been addressed.   72 

2. Materials and Methods 73 

2.1 Production of the granules and tablets  74 

Granules were produced in a 10 L high shear granulator (RomatoRoto Junior) from a mixture 75 

of lactose monohydrate powder (Granulac 230, MolkerelMeggelGmBH, German) and potato starch 76 

(Solani, Pharma, Quality Avebe) using an aqueous solution of hydroxypropyl cellulose (HPC)  as 77 

the binder. Sodium chloride was added to the powder mixture (1% w/w) as non-functional active 78 
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ingredient. In all the experiments, the feed powder was pre-mixed at an impeller speed of 250 rpm 79 

for 2 min. The subsequent inclusion of the binder involved pouring for a period of about 1 min with 80 

an additional granulation period of 6 min [1]. The granules were dried in a fluidised bed at a 81 

temperature of 50C to a moisture content of approximately 4% w/w, which required a drying time 82 

of about 25 min. The fill factor was calculated from the following expression [1]: 83 

HR

m

Bw

w

2
             Eq (1) 84 

 85 

where wm and w are the mass and bulk density of the wet powder, and BR  and H are the radius and 86 

height of the cylindrical granulator vessel. The bulk densities of the dried granules, b , in the size 87 

range 0.5 to 0.6 mm, from the different batches, were determined by measuring the mass, m , of a 88 

known volume of granules, V : 89 

V

m
b            Eq (2) 90 

2.1.1 Production of tablets  91 

100 mg tablets were also produced from the granules in the size range 0.5 - 0.6 mm at a 92 

maximum compression force of 5 kN using a universal material tester (Instron model 3555); the 93 

loading and unloading data were stored in a computer. The loading and unloading speeds were both 94 

10 mm/min and the internal diameter of the die was 6.35 mm. The tablets were stored in sealed 95 

plastic bags before their strength and dissolution characteristics were measured. The force –96 

displacement data was recorded during compression of bed of granules into tablet and was used to 97 

determine the strength of the granules as described in section 2.1.2.  98 

  99 
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 100 

2.1.2 Determination of granule strength  101 

 During compression of the bed of granules to form tablets the force displacement data was 102 

recorded The force-displacement data were analysed using a method described previously [31] to 103 

obtain the single granule strength:  104 

  neP n




 









 1lnlnln         Eq ( 3) 105 

 106 

where P is the applied pressure, n  is the natural strain,   is a pressure coefficient and   is the 107 

strength parameter which is a measure of the single granule strength. The values of   and   were 108 

obtained by fitting Eq. (3) to the measured values of Pln as a function of n using non-linear 109 

regression.   110 

2.1.3 Analysis of the granule compaction data 111 

 The stored elastic energy per unit mass of granules during compression of granules into 112 

tablets, eW  , was calculated from the integral of the unloading force data: 113 

 






0

d
1

m

unl

b

e F
m

W           Eq (4) 114 

where  unlF is the force during unloading, bm  is the mass of the bed of granules in the die; 0 and 115 

m correspond to the displacement at zero and maximum loading respectively. The net compaction 116 

work, netW , which represents the energy dissipated, corresponds to the difference between the 117 

integrals of the loading and unloading curves: 118 
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        Eq (5) 119 

 120 

where  lF  is the force during loading.  121 
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 122 

The degree of compression was determined from the initial bed height, 0h , and bed height at 123 

maximum compression pressure, 
max

h  using [32]: 124 

 %100
0

max0 








 


h

hh
C p         Eq( 6) 125 

 126 

This parameter corresponds to the maximum percent engineering compressive strain.  127 

2.1.4 Tablet tensile strength 128 

The tablets were compressed diametrically at a speed of 2 mm/min, until fracture occurred and 129 

the force-displacement data were automatically logged. A minimum of 10 tablets were measured for 130 

each experimental condition and compact type. The strength of the tablets, t  , was calculated from 131 

the maximum load, maxF  and the dimensions of the tablet, i.e. the tablet diameter tD   and thickness, x 132 

[33, 34]: 133 

 

t

t
Dx

F


 max2           Eq (7) 134 

 135 

The specific fracture energy required to fracture the tablets, tW  , was determined from the integral 136 

of the force-displacement curve: 137 

  

max

0

d
1



F
m

W
t

t          Eq (8) 138 

 139 

where  F  is the current compressive force,   is the current displacement, max  is the 140 

displacement corresponding to fracture of the tablet, and tm  is the mass of the tablet. The fracture 141 

energy was normalised by the mass. 142 

 143 
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2.1.5 Efficacy of compression coefficient  144 

The efficacy of compression coefficient, Ceff, which expresses the ability of the granules to 145 

convert the net compression energy into cohesion energy, was determined [35, 36]. The cohesion 146 

energy is that required to form bonds between the granules during compression: 147 

 %100
net

t
eff

W

W
C          Eq (9) 148 

 149 

Values > 0.1% are characteristic of an effective conversion of net compression work into cohesion 150 

[36-39]. The strength of the tablets formed during compression is linked to amount of cohesion 151 

between the constituents of the tablet; higher cohesion would result in formation of stronger tablets 152 

whereas lower cohesion would be linked to formation of weaker tablets. Hence efficacy of 153 

compression is of particular interest to this study.  154 

2.2 Tablet dissolution  155 

The dissolution of 100 mg tablets in 250 ml distilled water was measured at a temperature of 156 

37C. This involved stirring with a paddle at 250 rpm and monitoring the conductivity of the 157 

solution as a function of time using a conductivity meter (Hanna 9000, Hanna Instruments, USA). 158 

The conductivity and temperature data were recorded automatically at 10 s intervals using a 159 

computer. Five repeat measurements were made.  160 

The fraction of the non-functional active ingredient (sodium chloride) dissolved, Y, after a time, 161 

t, was determined as follows: 162 

 %100















 o

oY



        Eq (10) 163 

where   is the conductivity of the solution at a time t, and o and   are the initial and final 164 

conductivities (µS/cm).  The Weibull distribution function was used to describe the data [9, 40]. 165 
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
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



 




 d

tt
Y 0exp1          Eq (11) 167 

where d is the time taken to dissolve 63.2% of the non-functional active ingredient,   is a shape 168 

factor of the curve and 0t  is the lag-time, which is zero in the current work. The amount of the non-169 

functional active ingredient in each tablet, am (mg), was determined from: 170 

  sosa VVm             Eq (12) 171 

where  is a constant obtained from a calibration curve of the amount of NaCl as a function of  , 172 

which is the change in conductivity of the solution caused by presence of  a known mass active of 173 

ingredient,  and sV  is the volume of the dissolution medium (ml). The mean of 10 measurements 174 

was determined for each fill factor and the coefficient of variation of the non-functional active 175 

ingredient in the tablets was determined using: 176 

%100
a

t
m

n


         Eq( 13) 177 

 178 

where am  is the mean value of active ingredient composition in the tablets and  is the standard 179 

deviation of the non-functional active ingredient compositions.  180 

2.2.1 Determination of acceptance values 181 

The European Pharmacopea recommends assessing the content uniformity of tablets by 182 

computing Acceptance Values (AV) from the concentrations of the active ingredient and their 183 

standard deviations and comparing them with previously established ranges [41]. The AV is 184 

calculated from: 185 

kXMAV            Eq ( 14) 186 
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where M  is the reference value, X  is the average value for individual tablets, k  is a constant equal 187 

to 2.4 for n = 10 (n = number of repeat measurements) and   is the standard deviation. The content 188 

of uniformity requirement is assumed to be met if the AV of the first set of 10 tablets is  15. The 189 

acceptance values of the tablet from the different batches are reported in Table 1. According to this 190 

table the granulation batches with fill factors of only 0.31 and 0.34 would pass acceptance.  191 

3. Results 192 

3.1 Bulk density  193 

Before compression of the granules into tablets, the bulk densities of the dried granules were 194 

determined as outlined previously. Fig.1 shows that there is a reduction in the bulk density of the 195 

granules as the fill factor is increased. This can be attributed to the changes in the degree of 196 

consolidation and compaction of the granules when the batch size is changed whilst maintaining the 197 

other granulation conditions.  198 

3.2 Compression data 199 

Fig. 2 (a) shows the loading and unloading curves for the fill factors investigated and Fig. 2 (b) 200 

shows the same data expressed as the pressure as a function of the strain, which was calculated from 201 

0/ h where 0h is the initial height of the granular bed and  is displacement. It is clear from Fig. 2 202 

(b) that the maximum strain increases (54 to 59%) as the fill factor decreases.  203 

 The increase in strain required to achieve a given compression force as the fill factor 204 

decreases (Fig. 2b) is consistent with data published previously that showed an increase in the 205 

strength, Young’s modulus and yield stress with increasing fill factor [1]. This is exemplified in Fig. 206 

3 for the strength, which shows that the strength of the granules approximately doubles for the range 207 

of fill factors examined.  208 
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Fig. 4 shows that efficacy coefficient decreases as the fill factor increases with the values 209 

being less than the lower ideal limit of 0.1% for the three largest fill factors. The trend is consistent 210 

with the increase in granule strength since the propensity of granules to deform is important in the 211 

development of a cohesive tablet. 212 

3.3 Mechanical properties of the tablets 213 

Results in Fig. 5 (a) shows that the tablet strength is reduced by ~ 25% when the fill factor is 214 

increased from 0.31 to 0.42. Since the tablets were formed by the compression of granules of the 215 

same mass, maximum pressure and compression speed, the differences in the tablet strength cannot 216 

be attributed to the tabletting conditions.  Consequently, they must arise from the differences in the 217 

mechanical properties of the granules as exemplified in Fig. 3 and the trend is reflected in the 218 

reduction of the efficacy coefficient. Fig. 5(b) also shows that there is a clear correlation between 219 

the tablet strength and that of the granules. Moreover, the reduction of the tensile strength of the 220 

tablets corresponds to a similar reduction of ~ 30% in the specific fracture energy (Fig. 6).  221 

3.4 Effect of fill factor on tablet dissolution 222 

Since it has been shown that the fill factor or size of the batch affects the strength of the tablets 223 

it is reasonable to expect that they should also have different dissolution rates and this is evident 224 

from the data Fig. 7 (a). The symbols show the measured data points (an average of 5 225 

measurements) and the error bars are the standard deviation. The continuous line through the data 226 

points are fits to Eq. (11). The dissolution profiles shift to the left with increasing fill factor, 227 

implying an increase in the dissolution rate. The parameter d; which is the length of time it takes to 228 

release 63.2 % of the drug was obtained from non-linear regression of Eq. (11) to the dissolution 229 

data. 230 
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 In our previous work similar procedure was done using granules in same size range to those 231 

used for tableting in current study to obtain dissolution characteristics of the granules [3]. The 232 

granule dissolution tests were performed using granules of the same mass as the tablets (100 mg). 233 

The results that were obtained showed that the dissolution time, g of the granules increased with 234 

increasing fill factor (~4 to ~12s). The correlation between the dissolution time of the tablets and 235 

that of granules is shown in Fig 7 (b). This result is consistent with the decrease in tablet strength 236 

with increasing fill factor since it is generally the case that there is a correlation of the rate 237 

dissolution and the tablet strength  [1]. The correlation between the mean tablet dissolution time and 238 

the tablet strength is shown in Fig. 8. The data demonstrate that stronger tablets require a longer 239 

time to dissolve compared to those that are weaker. On the other hand, there is a minimum strength 240 

is required for packing and handling purposes, therefore a trade-off has to be made in producing 241 

tablets sufficient strength to survive handling processes without compromising the dissolution 242 

kinetics. 243 

3.5 Effect of batch size on tablet drug homogeneity  244 

The relative standard deviation of the non-functional active ingredient composition in different 245 

tablets produced from granules made with different fill factors is presented in Fig. 9 (a). The 246 

coefficient of variation of the tablet non-functional active ingredient increases with the batch size, 247 

which would result in a similar variation in the active pharmaceutical ingredient (API) composition 248 

for a real pharmaceutical tablet. A similar trend has been found for the dissolution characteristics of 249 

granules [1].  In our previous work [1] the coefficient of variation of the non-functional active 250 

ingredient of samples of granules (g) obtained from different fill factors was determined using the 251 

same procedure described in section 2.5.  The coefficient of variation of non-functional ingredient in 252 

the granules data from [3] was then plotted Fig. 9 (b). Please note that the masses of granules used 253 
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in these measurements were the same as tablet masses used in the current study. The results show 254 

that there is a linear correlation of the coefficient of variations of the tablets and corresponding 255 

granules. This is an interesting point to note since it implies that information about the content 256 

homogeneity of the tablets can be inferred from tests performed on the granules even before the 257 

tablets are produced. 258 

4.  Discussion  259 

In the current work it was found that increasing the granulator fill factor results in an 260 

increase in the strength of the granules and a decrease in their degree of compression. It has also 261 

been observed previously that the compressibility of granules decreased with their strength [42]. 262 

Similarly it was reported that the degree of compression of microcrystalline cellulose pellets 263 

decreased with increasing values of their crushing strength [32]. Recent work by Chan et al. [43] 264 

showed that increasing the bed load (which is equivalent to increasing fill factor) results in an 265 

increase in granule-blade bed stress and the effect was more pronounced at high impeller speeds. 266 

The granules from larger batches are then more likely to be more consolidated than those from 267 

smaller batches. Such strong granules would be less compressible compared to those that are weaker 268 

as observed in the current work. Thus it may be concluded that the ability of granules to convert net 269 

compaction energy to cohesion decreases with increasing fill factor. This is consistent with the 270 

tablet strength data, which showed a reduction with increasing fill factor.  271 

  272 
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 273 

5. Conclusion 274 

 The granulator fill factor has a profound effect on the compaction properties of the granules. 275 

Those produced from smaller batch sizes have superior compaction properties than those from 276 

larger batches. The degree of compression of the granules decreases with increasing fill factor. This 277 

may be due structural changes in the granules as a result of the different batch sizes. Further work is 278 

recommended to analyse the changes in the internal and surface properties of the granules. An 279 

important novel finding of the current work is that the variation of the non-functional active 280 

ingredient in tablets are significantly affected by the value of the fill factor.   281 
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 425 

Table 1: Summary of non-functional active ingredient composition, acceptance values for tablets from 426 
different batch sizes. 427 

Fill factor 
(-) 

Average 

composition

tabaim ,   

(mg) 

Reference 
composition  

M  
(%) 

Percentage 
Average 

composition fX  
(%) 

Acceptance 
value 
AV  
(-) 

0.31 1.83 100 91.6 8.7 

0.34 1.88 100 94.0 6.4 

0.38 1.59 100 79.5 21.1 

0.41 1.78 100 89.0 11.7 

 428 

  429 



 20 

 430 

 431 

Fig. 1: Bulk density of the granules in the size range 0.5 - 0.6 mm. 432 
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 434 

Fig. 2: a) Force-displacement profiles for the four different fill factors and (b) applied bed pressure as 435 
function of bed strain. 436 
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 439 

Fig. 3: Effect of fill factor on granule strength parameter. 440 
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 442 

 443 

Fig. 4: Efficacy coefficient as a function of fill factor. 444 
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Fig. 5: (a) Tablet tensile strength as a function of fill factor and (b) correlation between granule and tablet 448 
strength. 449 
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 451 

Fig. 6:  Specific fracture energy of the tablets as a function of the fill factor  452 
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 454 

Fig. 7: (a) Tablet dissolution profiles for fill factor and (b) dissolution time of the tablets vs dissolution time 455 
for granules.  456 
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Fig. 8: Correlation between the mean dissolution time and the strength of the tablets. 459 

460 



 29 

 461 
Fig. 9: (a) Coefficient of variation of the tablet non-functional active ingredient content as a function of fill 462 
factor and (b) correlation between t and g. 463 
 464 
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