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SUMMARY

MutationswithinBRCA1predispose carriers to a high
risk of breast and ovarian cancers. BRCA1 functions
to maintain genomic stability through the assembly
ofmultiple protein complexes involved in DNA repair,
cell-cycle arrest, and transcriptional regulation. Here,
we report the identification of a DNA damage-
induced BRCA1 protein complex containing BCLAF1
and other key components of the mRNA-splicing
machinery. In response toDNAdamage, this complex
regulates pre-mRNA splicing of a number of genes
involved inDNAdamagesignaling and repair, thereby
promoting the stability of these transcripts/proteins.
Further, we show that abrogation of this complex
results in sensitivity to DNA damage, defective DNA
repair, and genomic instability. Interestingly, muta-
tions in a number of proteins found within this com-
plex have been identified in numerous cancer types.
These data suggest that regulation of splicing by
the BRCA1-mRNA splicing complex plays an impor-
tant role in the cellular response to DNA damage.

INTRODUCTION

TheDNAdamage response (DDR)pathwayhasevolved toprotect

cells from both endogenous and exogenous sources of DNA

damage and ultimately to prevent tumorigenic transformation.

One of the key players in the DDR pathway is BRCA1. Heterozy-

gous mutations within BRCA1 predispose carriers to a high risk

of breast and ovarian cancer (Savage and Harkin, 2009). BRCA1

functions to maintain genomic stability and plays key roles

in cell-cycle checkpoint activation, homologous recombination

(HR)-mediated DNA double-strand break (DSB) repair, and tran-

scriptional regulation (Savage and Harkin, 2009). BRCA1 broadly

functions asa scaffoldingprotein, facilitating the assemblyofmul-

tiple and distinct multiprotein complexes, with various functions

within the DDR. The formation and function of these complexes

are thought to be regulated by phosphorylation of BRCA1 by

the ATM, ATR, and Chk2 kinases in response to DNA damage,

and a number of BRCA1 functions have been attributed to these

phosphorylation events. For example, DNA damage-induced

phosphorylation of BRCA1 serine-1423 and serine-1524 by

ATM or ATR is required for resistance to ionizing radiation (IR)

and G1/S and G2/M-phase arrest, respectively, whereas phos-

phorylation of serine-1387 is specifically required for intra-S

phase arrest (Cortez et al., 1999). However, despite the broad

functions associatedwith different BRCA1 phosphorylation sites,

the mechanistic role(s) of specific DNA damage-induced BRCA1

phosphorylation events remains largely unknown.

Here we identify a DNA damage-induced BRCA1 binding pro-

tein, BCLAF1, which mediates the formation of a BRCA1-mRNA

splicing complex following DNA damage. We show that through

this interaction with BCLAF1, BRCA1, which is constitutively

bound to a subset of genes, recruits the mRNA splicing ma-

chinery, resulting in enhanced pre-mRNA splicing of BRCA1/

BCLAF1 target genes, thereby promoting transcript stability

and protein expression. Intriguingly, many of the genes/proteins

regulated by the BRCA1/BCLAF1 complex are involved in the

DDR, and depletion of BRCA1, BCLAF1, and other members

of the BRCA1-mRNA splicing complex (U2AF65) results in sensi-

tivity to DNA damage and defective DNA repair.

RESULTS

Identification of BCLAF1 as a BRCA1pSer1423-Interacting
Protein
To examine how DNA damage-induced BRCA1 phosphoryla-

tion events might mechanistically regulate associated BRCA1

functions, we performed phosphopeptide pull-down assays
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followed by LC-MS/MS, to identify phospho-BRCA1-interacting

proteins. Using this approach, we identifiedBCLAF1 as aBRCA1

phosphoserine-1423 (pSer-1423)-interacting protein (Figure 1A

and see Figure S1A available online). Coimmunoprecipitation

confirmed that BCLAF1 interacts with BRCA1 in response to

DNA alkylation (MMS), stalled replication forks (HU), and DNA

double-strand breaks (IR and etoposide) and is not mediated

indirectly through RNA/DNA bridging (Figures 1B, S1B, and

S1C). This suggests that this complex forms as part of a general

DDRmechanism and is likely a reflection of BRCA1Ser-1423 being

a substrate of both ATM and ATR, which are activated in

response to DSBs or DNA single-strand breaks/stalled replica-

tion forks, respectively. In keeping with this, substitution of

Figure 1. BCLAF1 Interacts with Phosphor-

ylated BRCA1 following DNA Damage

(A) Colloidal Coomassie-stained gel of peptide

pull-down assays carried out from 293T cell nu-

clear extracts with phosphorylated BRCA1-S1423

peptide and its nonphosphorylated counterpart.

The indicated phosphopeptide-interacting band

was identified as BCLAF1 by LC-MS/MS.

(B) Coimmunoprecipitation assay demonstrating

an interaction between BRCA1 and BCLAF1 in

293T cells treated with etoposide (1 mM, 16 hr),

IR (2 Gy, 1 hr), MMS (200 mM, 6 hr), and HU

(5 mM, 3 hr).

(C) Coimmunoprecipitation assay demonstrating

DNA damage-induced interaction of BCLAF1 with

ectopic Flag-BRCA1 is abrogated by BRCA1-

S1423A phosphosite substitution. A Flag-BRCA1

IP was also carried out from cells depleted of

BCLAF1 to confirm the specificity of the BCLAF1

antibody.

(D) Mapping of the BRCA1-interacting region

within BCLAF1. Coimmunoprecipitation experi-

ments were carried out from etoposide-treated

cells transfected with the Flag-BCLAF1 truncation

mutant constructs depicted in (E).

(E) Schematic diagram of BCLAF1 truncation

constructs used for BRCA1 coimmunoprecipita-

tion experiments in (D).

(F) Peptide pull-down assays carried out with

[35S] in vitro-translated BCLAF1, indicating that

BCLAF1 interacts directly and specifically with

the phosphorylated BRCA1-S1423 peptide and

not its unphosphorylated counterpart. See also

Figure S1.

BRCA1Ser-1423 with alanine abrogated

the damage-induced interaction between

BRCA1 and BCLAF1, confirming BCLAF1

as a BRCA1pSer-1423 interacting protein

(Figure 1C). Coimmunoprecipitation ex-

periments with a series of Flag-tagged

BCLAF1 truncated proteins (harvested

from etoposide treated cells) revealed

that deletion of the C-terminal region of

BCLAF1 abolishes its ability to interact

with BRCA1 (Figures 1D and 1E). The C

terminus of BCLAF1 contains no defined

domains, though it is positively charged under physiological

conditions (pI = �9.5), suggesting that the interaction between

BRCA1pSer-1423 and the BCLAF1 C terminus may occur directly.

Consistent with this, in vitro-translated BCLAF1 bound strongly

to the phosphorylated Ser1423-BRCA1 peptide, but not its non-

phosphorylated counterpart (Figures 1F and S1D).

BCLAF1 Promotes Resistance to DNA Damage and Is
Required for Efficient DNA Repair and Maintenance of
Genomic Stability
BCLAF1 was first identified as a Bcl2-associated transcription

factor that promotes apoptosis. Further studies found that

BCLAF1 binds the TP53 promoter in response to Adriamycin
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treatment, where it is required for PKC-delta-mediated TP53

transcription and apoptosis (Liu et al., 2007). However, we and

others have been unable to demonstrate a role for BCLAF1 in

the regulation of TP53 expression following DNA damage

(McPherson et al., 2009). Additionally, BCLAF1 null (�/�) mice

do not appear to have an altered apoptotic response; rather

they exhibit immunodevelopment defects and die within 24–

48 hr after birth due to gross lung malformation (McPherson

et al., 2009).

BRCA1 mediates resistance to DNA-damaging agents, and

phosphorylation of BRCA1Ser-1423 has also been linked with

this function (Cortez et al., 1999). Therefore, to evaluate if

BCLAF1 may also play a role in this process, we assessed the

effect of BCLAF1 depletion on cellular survival following DNA

damage. Interestingly, BCLAF1 depletion resulted in sensitiza-

tion to both IR and etoposide to an equivalent level as BRCA1

depletion (Figures 2A, 2B, and S2A). To determine whether

BRCA1 and BCLAF1 promote resistance to DNA damage

through a common pathway, we examined the effect of BCLAF1

depletion on cellular survival following DNA damage in the

BRCA1-deficient MDA-MB-436 breast cancer cell line, which

we stably transfected with an empty vector (EV) or a BRCA1

expression vector (Elstrodt et al., 2006). Surprisingly, BCLAF1

depletion did not sensitize the BRCA1-deficient MDA-MB-436-

EV cells and only sensitized these cells when reconstituted

with ectopic BRCA1, suggesting that BCLAF1 and BRCA1 may

be epistatic, at least in mediating resistance to IR-induced

DSBs (Figures S2C and S2D).

The direct role of BRCA1 in DNA DSB repair is thought to

contribute strongly to its ability to promote cellular survival

following DNA damage. To evaluate if BCLAF1 may also play

a role in DNA repair, we assessed DNA repair kinetics

in both BRCA1- and BCLAF1-depleted cells 0 and 24 hr follow-

ing DNA damage. Surprisingly, like BRCA1-depleted cells,

BCLAF1-depleted cells also exhibited a significant defect in their

ability to resolve g-H2AX-marked DNA breaks 24 hr after IR

treatment (Figures 2C, 2D, S2D, and S2E). Moreover, depletion

of BCLAF1 using an shRNA also resulted in sensitization to IR

and defective DNA repair, whichwas rescued by ectopic expres-

sion of shRNA resistant BCLAF1 (Figures S2F–S2H). Addition-

ally, IR-treated cells depleted of BRCA1 or BCLAF1 displayed

a marked increase in chromosome aberrations in comparison

to control cells, indicating that loss of BCLAF1 results in

increased genomic instability following DNA damage (Figures

2E and 2F). BRCA1Ser-1423 phosphorylation has also been linked

with G1/S and G2/M checkpoint function. However, we did

not observe any checkpoint defects in BCLAF1-depleted cells,

suggesting that the BRCA1pSer-1423-dependent interaction with

BCLAF1 does not play a role in DNA damage-induced cell-cycle

arrest (data not shown). BRCA1 plays a direct role in HR-medi-

ated DSB repair, during which it localizes to DNA break sites.

Given the dramatic DNA repair defect observed in BCLAF1-

depleted cells, we examined BCLAF1 cellular localization

following DNA damage. Unlike BRCA1, we found that BCLAF1

was excluded from DNA break sites induced by laser microirra-

diation (Figure S2I).

Similar findings were recently reported for BCLAF1 and

THRAP3, a protein sharing 48% identity with BCLAF1 and which

has also been identified as a DNA damage-induced ATM/

ATR phosphorylation substrate (Beli et al., 2012). BCLAF1 and

THRAP3 associate within a complex containing a number

of mRNA processing proteins, which promotes the efficient

splicing of Cyclin-D1 pre-mRNAs, functioning to generate stable

postspliced Cyclin-D1 transcripts (Bracken et al., 2008). In sup-

port of a role in mRNA splicing/processing, Beli et al. found that

exclusion of THRAP3 and associated factors such as BCLAF1

from DNA break sites was concomitant with inhibition of tran-

scription and subsequent loss of mRNA processing at sites of

DNA damage mediated by ATM/ATR/DNA-PK (Beli et al.,

2012). Taken together, these findings support a role for BCLAF1

in mRNA processing/splicing and suggest that, unlike BRCA1,

BCLAF1’s role in DNA repair is likely to be indirect.

BRCA1/BCLAF1 InteractionMediates the Formation of a
BRCA1-mRNA Splicing Complex, which Drives the
Splicing of a Subset of Genes following DNA Damage
BCLAF1 contains a Serine-Arginine (SR) rich region within its N

terminus, which is consistent with a role in pre-mRNAprocessing

and/or splicing (Cáceres et al., 1997). In addition, as mentioned

above, BCLAF1 has been shown to form part of an mRNA

splicing/processing complex required for the production of sta-

ble spliced Cyclin-D1 transcripts (Bracken et al., 2008). BCLAF1

has also been copurified with the core splicing machinery, within

both spliced and unspliced human mRNP complexes, further

suggesting a role in mRNA splicing (Merz et al., 2007). Indeed,

when examining its subcellular localization, BCLAF1 was local-

ized to pannuclear speckles, in both unperturbed and DNA dam-

age-treated cells, a pattern consistent with interchromatin

granule clusters formed by proteins, such as U2AF65, involved

in pre-mRNA processing and splicing (Cáceres et al., 1997)

(Figure S2J).

Given this previously identified role for BCLAF1 in pre-mRNA

splicing and interaction with a number of core splicingmachinery

proteins, we examined the ability of BCLAF1 and BRCA1 to

interact with known components of the BCLAF1 interacting spli-

ceosome (Merz et al., 2007). Coimmunoprecipitation confirmed

that BCLAF1 constitutively interacts with a number of these

core mRNA splicing proteins such as Prp8, U2AF65, U2AF35,

and SF3B1, independently of DNA damage (Figure 3A). In

contrast, BRCA1 coprecipitated with Prp8, U2AF65, U2AF35,

and SF3B1 only in response to DNA damage (Figure 3B).

Furthermore, depletion of BCLAF1 resulted in abrogation of the

damage-induced interaction between BRCA1 and these pro-

teins, suggesting that BCLAF1mediates the interaction between

phosphorylated BRCA1 and core components of the spliceo-

some in response to DNA damage (Figure 3B).

We have previously demonstrated that BRCA1 is bound to a

large subset of gene promoters throughout the genome, though

it does not regulate the transcription of the majority of these

genes in unperturbed cells (Gorski et al., 2011). However, in

response to various stresses, such as DNA damage, expression

of many of these genes is regulated in a BRCA1-dependent

manner. BRCA1Ser-1423 phosphorylation is thought to occur at

DNA break sites, where it colocalizes with active ATM/ATR. In

contrast, we and others have observed that BCLAF1, which

only interacts with BRCA1pSer-1423, is excluded from DNA break
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Figure 2. BRCA1/BCLAF1MediatesResistance toDNADamageand IsRequired forEfficientDNARepairandMaintenanceofGenomicStability

(A and B) Clonogenic survival assays demonstrating that depletion of BRCA1 or BCLAF1 (two independent siRNAs) induces sensitivity to ionizing radiation (IR)

and etoposide in (MCF7) cells. Mean surviving fraction of three independent experiments is plotted ± SEM.

(legend continued on next page)
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sites (Beli et al., 2012). Therefore, to examine whether

BRCA1Ser-1423 phosphorylation is restricted to DNA break

sites, or may occur on BRCA1 bound to chromatin more glob-

ally, we performed high-resolution confocal microscopy with

BRCA1pSer-1423 antibodies on cells following extraction of non-

chromatin-bound proteins. As expected, this revealed that

BRCA1pSer-1423 is concentrated at DNA break sites (marked by

g-H2AX) but also revealed the presence of chromatin bound

BRCA1pSer-1423 throughout the nucleus, which was abolished

by depletion of BRCA1 using specific siRNAs. This suggests

that BRCA1pSer-1423 exists in distinct chromatin bound com-

plexes at different loci within the nucleus, which are likely to

have distinct functions following DNA damage (Figure S2K).

It is well accepted that mRNA splicing occurs cotranscription-

ally through the sequential recruitment of spliceosomal proteins

to the chromatin/mRNA template of actively transcribed genes

and is required to promote transcript maturation and stability.

Therefore, we hypothesized that BRCA1, constitutively bound

at gene promoters, may regulate their expression following

DNA damage, through the recruitment of BCLAF1 and the co-

transcriptional spliceosome, thereby promoting mRNA splicing

and transcript production/stability.

In order to test this model and identify BRCA1/BCLAF1 target

genes, we performed chromatin immunoprecipitation array hy-

bridization (ChIP-chip) with BCLAF1 antibodies in unperturbed

and etoposide-treated cells in the presence and absence of

BRCA1 (data not shown). This strategy identified 675 genomic

regions bound by BCLAF1 in response to etoposide treatment

(Figure S3A). Interestingly, 610 of these regions, which mapped

to 782 genes, were not bound by BCLAF1 in BRCA1-depleted

cells, suggesting that, as hypothesized, BRCA1 may recruit

BCLAF1 and the associated spliceosome to genetic promoter

regions in order to promote cotranscriptional splicing of target

genes following DNA damage (Figure S3A). Ingenuity Path-

way Analysis of BRCA1/BCLAF1 regulated promoters/genes

revealed that the top network involving these genes was the

DNA Replication, Recombination and Repair, and Cancer

network (p = 1 3 10�43). In keeping with this, many of these

genes, such as ATRIP, BACH1, and EXO1, are involved in the

DDR pathway, suggesting that BRCA1/BCLAF1-mediated

splicing of a large subset of DDR genesmay regulate cellular sur-

vival/DNA repair in response to DNA damage.

To validate ChIP-chip-identified target genes, we tested

BRCA1, BCLAF1, and U2AF65 (a BCLAF1 interacting spliceo-

some assembly factor) binding to the promoter regions of these

genes and an additional three DDR genes not identified from the

ChIP-chip screen (CHEK2, BRCA2, and ATM) as negative con-

trols. This confirmed that BRCA1 constitutively associates with

the promoter regions of ATRIP, BACH1, and EXO1, in both un-

perturbed and etoposide-treated cells (Figures 3C and S3B–

S3D). In contrast, BCLAF1 and U2AF65 binding to these regions

was significantly induced upon DNA damage. As BCLAF1 only

interacts with BRCA1 in response to DNA damage, we tested

whether BRCA1 is required for BCLAF1 recruitment to these

genes. Indeed, BRCA1 depletion resulted in loss of damage-

induced BCLAF1 and U2AF65 recruitment to DNA (Figures 3C

and S3B–S3D). Concurrently, we also found that BRCA1 and

BCLAF1 depletion resulted in loss of recruitment of U2AF65 to

these promoter regions, suggesting that BRCA1-dependent

recruitment of BCLAF1 mediates binding of the core splicing

machinery to these genes. Importantly, we did not observe any

significant binding of BRCA1, BCLAF1, or U2AF65 to the pro-

moter regions of the negative control genes, CHEK2, BRCA2,

and ATM (Figure S3E). We also found that the splicing proteins

U2AF35 and SF3B1, which also interact with BRCA1 following

DNA damage through interaction with BCLAF1, are recruited

to these promoters following DNA damage in a BRCA1- and

BCLAF1-dependent manner (Figure S3F).

Consistent with a role in cotranscriptional splicing, we

also observed significant enrichment of BRCA1, BCLAF1, and

U2AF65 on ATRIP, BACH1, and EXO1 mRNA transcripts in

response to DNA damage that was not evident in unperturbed

cells (Figures 3D and S3G). Moreover, depletion of BRCA1 re-

sulted in lossofBCLAF1andU2AF65associationwith these tran-

scripts (Figures 3D and S3G). Intriguingly, depletion of BCLAF1

also resulted in loss of damage-induced BRCA1 binding, sug-

gesting that BRCA1 does not interact directly with these mRNA

transcripts but is likely associated with target transcripts through

interactionswith BCLAF1 and the associatedmRNAbinding spli-

ceosome (Figures 3D and S3G). Additionally, we did not observe

any enrichment of BRCA1, BCLAF1, or U2AF65 with CHEK2,

BRCA2, or ATM transcripts (Figure S3H).

We also assessed binding of BRCA1, BCLAF1, and U2AF65 to

a number of regions along the ATRIP, BACH1, and EXO1 genes

using ChIP-qRT-PCR. This revealed that BRCA1 constitutively

binds to exonic and exon/intron boundary regions (but not in-

tronic regions) within these genes, albeit with reduced binding

associated with progression toward the 30 end of these genes

(Figures S4A–S4C). This is consistent with a role in mRNA pro-

cessing/splicing, where reduced binding, with progression along

genes, is associated with reduced transcript tethering concur-

rent with transcriptional termination. In contrast, BCLAF1 and

U2AF65 were enriched at BRCA1-bound regions only following

DNA damage. In support of this, examination of publically

(C) Representative immunofluorescent staining of g-H2AX marked DNA damage in untreated 293T cells depleted of either BRCA1 or BCLAF1 and 1 and 24 hr

following 2Gy IR.

(D) Quantification of three independent experiments described above (R200 cells were scored/experiment). Mean fraction of cells containingR5 g-H2AX foci is

plotted ± SEM. Significant differences in the fraction of cells containing R5 g-H2AX foci were assessed using Student’s two-tailed t test and are indicated by

***p < 0.001.

(E) Representative metaphase spreads of control (siCtrl) and BRCA1- or BCLAF1-depleted 293T cells either untreated or 24 hr following 2Gy IR. FISH-mediated

whole chromosome painting (chromosome 1, green; chromosome 2, red) was used to identify complex chromosome aberrations.

(F) Quantification of total chromosome aberrations in control, BRCA1, and BCLAF1 depleted 293T and MCF7 cells 24 hr after mock irradiation or irradiation with

2 Gy IR. Graphs represent the mean number of chromosome aberrations/metaphase from three independent experiments ± SEM (R200 metaphases scored/

experiment). See also Figure S2.
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available BRCA1 ChIP-seq data, derived from the normal-like

breast cell line MCF10A (GEO accession number GSE40591

[Barrett et al., 2013]), also revealed BRCA1 binding across

ATRIP, BACH1, and EXO1 exons (Figures S4D and S4E). More-

over, a genome-wide analysis of all BRCA1 binding peaks within

this data set revealed enrichment of BRCA1 binding peaks within

Figure 3. BRCA1/BCLAF1 Forms an mRNA Splicing Complex which Is Recruited to Target Gene Promoters and Transcripts following DNA

Damage

(A) Coimmunoprecipitation assays demonstrating that BCLAF1 interacts with the spliceosome proteins Prp8, U2AF65, U2AF35, and SF3B1 in both the presence

and absence of DNA damage.

(B) Coimmunoprecipitation assays demonstrating DNA damage-induced interaction between BRCA1 and the spliceosome proteins Prp8, U2AF65 U2AF35, and

SF3B1 in response to DNA damage. Additionally, depletion of BCLAF1 results in abrogation of DNA damage-induced interaction between BRCA1 and these

proteins.

(C) BRCA1, BCLAF1, and U2AF65 ChIP-qPCRs demonstrating constitutive binding of BRCA1 to ATRIP, BACH1, and EXO1 promoters irrespective of DNA

damage in control (siCtrl) cells. The ChIPs also demonstrate that BCLAF1 and U2AF65 are recruited to these promoters only in etoposide-treated cells and that

depletion of BRCA1 or BCLAF1 results in loss of DNA damage-induced BCLAF1 and U2AF65 recruitment, respectively. Graphs represent the mean fold

enrichment quantified from three independent experiments ± SEM.

(D) BRCA1, BCLAF1, and U2AF65 RIP-qRT-PCRs demonstrating that BRCA1, BCLAF1, and U2AF65 only bind to ATRIP, BACH1, and EXO1mRNAs in response

to DNA damage. In addition, depletion of BCLAF1 results in loss of BRCA1 and U2AF65 mRNA binding to all three transcripts. Graphs represent the mean fold

enrichment quantified from three independent experiments ± SEM. See also Figure S3.
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Figure 4. The BRCA1/BCLAFmRNA Splicing Complex Promotes the Splicing and Stability ofATRIP,BACH1, and EXO1 Transcripts following

DNA Damage

(A) Ratio of postspliced to prespliced ATRIP, BACH1, and EXO1 mRNAs in control (siCtrl) and BRCA1- or BCLAF1-depleted cells mock treated or treated

with etoposide. mRNA levels were assessed by qRT-PCR using exon 9-exon 10 (post-spliced-ATRIP) and exon 9-intron 9 (pre-spliced-ATRIP), exon 15-exon

(legend continued on next page)
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gene promoters (and 50 UTRs) as well as coding exons but not

introns, again supporting a role for BRCA1 in mRNA splicing

(Figure S4F).

Consistent with this, we found that the mRNA splicing of

ATRIP, BACH1, and EXO1 transcripts was significantly upregu-

lated in response to DNA damage in both a BRCA1- and a

BCLAF1-dependent manner using two independent siRNAs

(Figures 4A and S5A). Additionally, saturating RT-PCR analysis

with intron-targeted primers revealed the presence of introns in

ATRIP, BACH1, and EXO1 transcripts following DNA damage

in BRCA1- and BCLAF1-depleted cells, but not control cells,

confirming that splicing of these transcripts following DNA

damage requires BRCA1 and BCLAF1 (Figure 4B). In response

to DNA damage, transcription of ATRIP, BACH1, and EXO1 is

upregulated. However, BRCA1 or BCLAF1 depletion does not

affect the transcription of these genes as indicated by similar

levels of pre-mRNA production, in the absence or presence of

DNA damage (Figure 4C). Similarly, RNA Pol II loading and activ-

ity on these gene promoters is unaffected by BRCA1 or BCLAF1

depletion (Figure S5B). In contrast, we observed a marked

reduction in the production of postspliced ATRIP, BACH1, and

EXO1 transcripts following depletion of BRCA1 or BCLAF1

(Figure 4C). Additionally, the increased ratio of postspliced/

prespliced mRNA observed in BRCA1/BCLAF1-depleted cells

following DNA damage is not due to increased decay of pre-

spliced transcripts in these cells (Figure S5C). Instead, mRNA

decay experiments revealed reduced levels of postspliced

ATRIP, BACH1, and EXO1 transcripts, in comparison to pre-

spliced transcripts, in BRCA1/BCLAF1-depleted cells following

inhibition of transcription, which is consistent with a role for

BRCA1/BCLAF1 in the cotranscriptional splicing of these genes

(Figure S5C). Importantly, we did not observe changes in ATRIP,

BACH1, or EXO1 splice variant expression following DNA dam-

age, suggesting that DNA damage induced BRCA1/BCLAF1-

mediated splicing of these genes does not facilitate alternative

splicing (data not shown).

As previously mentioned, mRNA splicing is required to

maintain transcript stability, as unspliced transcripts are rapidly

degraded through the non-sense-mediated decay (NMD)

pathway. This likely explains why we did not observe increased

levels of pre-spliced ATRIP, BACH1, or EXO1mRNAs after DNA

damage in BRCA1- and BCLAF1-depleted cells. Consistent with

this, siRNA-mediated depletion of SMG1, a key player in the

NMD pathway, led to a marked increase in prespliced ATRIP,

BACH1, and EXO1 mRNAs in BRCA1- and BCLAF1-depleted

cells following DNA damage (Mendell et al., 2004) (Figures 4D,

S5D, and S5E).

BRCA1 Ser-1423 Phosphorylation Is Required for
BCLAF1 Recruitment and Target Gene Splicing
following DNA Damage
Taken together, our data suggest a model in which phosphory-

lated BRCA1, bound at a subset of gene promoters following

DNA damage, recruits BCLAF1 and associated spliceosomal

proteins, thereby facilitating DNA damage-induced mRNA

splicing. To confirm that BRCA1, bound at the ATRIP, BACH1,

and EXO1 promoters, is indeed phosphorylated at serine-1423

following DNA damage, we performed ChIP-qRT-PCR with

BRCA1pSer-1423 antibodies. This revealed marked enrichment

of BRCA1pSer-1423 at the ATRIP, BACH1, and EXO1 promoters

only following DNA damage (Figure 5A). Also in support of this

model, reconstitution of BRCA1 mutant cells (HCC1937) with

wild-type BRCA1 restored their ability to upregulate ATRIP,

BACH1, and EXO1 mRNA splicing following DNA damage,

whereas reconstitution with BRCA1S1423A phosphomutant pro-

tein did not (Figures 5B–5D). Additionally, wild-type BRCA1

was able to recruit BCLAF1 to the ATRIP, BACH1, and

EXO1 promoter regions following DNA damage, whereas

the BRCA1S1423A phospho mutant was not (Figures 5E–5H).

Consistent with this, inhibition of ATM and ATR (mediators

of BRCA1S1423 phosphorylation) also abrogated DNA dam-

age-induced ATRIP, BACH1, and EXO1 mRNA splicing and

recruitment of BCLAF1 and U2AF65 to their promoters (Figures

S6A–S6C).

BRCA1/BCLAF1-Mediated mRNA Splicing Maintains
ATRIP, BACH1, and EXO1 Protein Expression and
Resistance to DNA Damage
As BRCA1 and BCLAF1 were required for efficient splicing

and stability of spliced ATRIP, BACH1, and EXO1 transcripts

following DNA damage, we next assessed the effect of BRCA1

or BCLAF1 depletion on ATRIP, BACH1, and EXO1 protein

expression. In keeping with the reduced expression of ATRIP,

BACH1, and EXO1 spliced transcripts, we observed substan-

tially reduced expression of all three proteins in BRCA1- and

BCLAF1-depleted cells following DNA damage (Figure 6A).

However, to our surprise, in control cells we did not observe

increased levels of ATRIP, BACH1, and EXO1 protein levels

following DNA damage that would be expected, given the

increased expression of spliced transcript observed. This sug-

gests that either ATRIP, BACH1, and EXO1 translation is attenu-

ated following DNA damage or or that turnover of these proteins

may be increased and that BRCA1/BCLAF1-regulated cotran-

scriptional splicing serves to maintain the expression of these

proteins in response to DNA damage.

16 (post-spliced-BACH1) and exon 15-intron 15 (pre-spliced- BACH1), and exon 1-exon 2 (post-spliced-EXO1) and exon 1-intron 1 (pre-spliced- EXO1) primers

and normalized to ACTBmRNA. Graphs represent the mean ratios of postspliced/prespliced mRNA from three independent experiments ± SEM. Significance of

changes in splicing ratios was assessed using Student’s two-tailed t test with significant changes indicated by **p < 0.01.

(B) Semiquantitative PCR analysis of a cDNA generated from DNase-treated RNA, collected from control (siCtrl) and BRCA1- or BCLAF1-depleted cells, mock

treated or treatedwith Etoposide. Primers targeting two independent intronic regions withinATRIP,BACH1, andEXO1 and a single intronic regionwithin ATMand

CHEK2 (control genes) were used for semiquantitative PCR analysis. Exon-spanning primers targeted against ACTB were used as a loading control.

(C) Normalized expression of prespliced and postspliced mRNAs evaluated in (A).

(D) Expression levels of postspliced and presplicedATRIPmRNAs in control (siCtrl) and BRCA1- or BCLAF1-depleted cells, transfectedwith control siRNA (siCtrl)

or depleted of SMG1 (siSMG1), a key regulator of the non-sense-mediated decay pathway. Normalized expression levels were quantified as in (A). Graphs

represent the mean normalized expression from three independent experiments ± SEM. See also Figures S4 and S5.
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Figure 5. BRCA1 Ser-1423 Phosphorylation Is Required for BCLAF1 Recruitment and Target Gene Splicing following DNA Damage
(A) BRCA1, pS1423-BRCA1, and BCLAF1 ChIP-qPCRs demonstrating constitutive binding of BRCA1 to ATRIP, BACH1, and EXO1 promoters irrespective of

DNA damage and DNA damage-dependent enrichment of pS1423-BRCA1 and BCLAF1 on these promoters. Graphs represent the mean fold enrichment

quantified from three independent experiments ± SEM.

(legend continued on next page)
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To examine whether their translation is attenuated following

DNA damage, we inhibited protein degradation in control and

etoposide-treated cells using the proteasome inhibitor MG132.

Cells were treated with etoposide for 30 min prior to MG132

treatment, after which cells were harvested at increasing time

points to visualize protein production (Figure 6B). Intriguingly,

ATRIP, BACH1, and EXO1 protein levels all increased more

rapidly following DNA damage. This is consistent with the

increased expression of spliced ATRIP, BACH1, and EXO1 tran-

scripts observed in these cells following DNA damage and sug-

gests that increased turnover of these proteins is responsible for

their lack of increased protein expression following DNA dam-

age, rather than decreased translation.

To test this, we inhibited protein translation in control and

etoposide-treated cells transfected with scrambled, BRCA1, or

BCLAF1 targeted siRNAs using cyclohexamide. Cells were

treated with etoposide for 30 min prior to cyclohexamide treat-

ment, after which cells were harvested at increasing time points

to visualize protein degradation (Figures 6Cand6D). Additionally,

image densitometry was used to determine ATRIP, BACH1, and

EXO1 protein half-lives (t1/2) in these cells (Figures 6E–6G). This

revealed that the degradation/turnover of all three proteins was

increased following DNA damage and that this was unaffected

by depletion of BRCA1or BCLAF1. Taken together, this suggests

that BRCA1/BCLAF1-mediated cotranscriptional splicing and

transcript stabilization serve to maintain levels of target gene

proteins in response to higher rates of protein turnover following

DNA damage.

Given that loss of BRCA1/BCLAF1-mediated splicing of

ATRIP, BACH1, and EXO1 results in reduced but not absent

protein levels following DNA damage, we examined whether

reduction of these proteins could contribute to the DNA damage

sensitivity observed in BRCA1/BCLAF1-depleted cells. Indeed,

reduction but not complete absence of any of these proteins,

using titrated siRNA concentrations, resulted in sensitization to

IR induced DNA damage (Figures S7A and S7B). In contrast,

ectopic expression of ATRIP, BACH1, or EXO1 alone was unable

to rescue the sensitivity of BRCA1- or BCLAF1-depleted cells to

IR (data not shown). However, the combined ectopic expression

of ATRIP, BACH1, and EXO1 was able to partially rescue the

IR sensitivity of both BRCA1- and BCLAF1-depleted cells, sug-

gesting that BRCA1/BCLAF1-mediated splicing of these genes

is required, at least in part, for BRCA1 and BCLAF1’s ability

to mediate resistance to DNA damaging agents (Figures 7A

and S7C).

To further confirm that the defect in DNA repair observed in

BCLAF1-depleted cells is due to loss of BRCA1/BCLAF1-medi-

atedmRNA splicing, we tested the role of U2AF65, a splicing fac-

tor recruited to target genes by BRCA1/BCLAF1, in mediating

sensitivity to DNA damage and DNA repair. Indeed, U2AF65

depletion induced sensitivity to IR and defective DNA repair to

a similar extent as BCLAF1 depletion (Figures 7B–7D, S7D,

and S7E). Moreover, as is the case for BRCA1- and BCLAF1-

depleted cells, ectopic expression of ATRIP, BACH1, and

EXO1 partially rescues IR sensitivity in U2AF65-depleted cells

(Figures 7E and S7F).

DISCUSSION

This study has identified a function for BRCA1 in the regulation of

mRNA splicing in response to DNA damage, through the forma-

tion of a DNA damage-induced protein complex with BCLAF1,

Prp8, U2AF35/65, SF3B1, and other spliceosome proteins.

Consistent with this, a large, as-yet uncharacterized DNA dam-

age-induced BRCA1 complex containing RNA and hnRNP pro-

teins has been previously reported (Chiba and Parvin, 2001).

In addition, our data suggest that BRCA1/BCLAF1-mediated

mRNA splicing in response to DNA damage may serve as

a mechanism for the processing of key pre-mRNAs required

for an efficient DDR and DNA repair. Intriguingly, BRCA1 has

been previously reported to inhibit 30 mRNA polyadenylation

and thereby mRNA stability, through BRCA1/BARD1 ubiquitin-

dependent degradation of RNA-Pol II (Kleiman et al., 2005).

These studies suggest a general role for the BRCA1/BARD1

complex in blocking active transcription on a genome-wide

level following DNA damage, presumably to prevent transcrip-

tion of damaged genes. Despite this, it is accepted that specific

genes, for example ATRIP, are actively transcribed in response

to DNA damage, suggesting an additional mechanism that

facilitates transcription/expression of a subset of genes in the

context of a more genome-wide shutdown of transcription.

We propose that as part of this mechanism, BRCA1 recruits

the mRNA splicing machinery to a subset of promoters of

genes required for an efficient DDR (such as ATRIP, BACH1,

and EXO1), thereby promoting the cotranscriptional splicing

of these genes, positively regulating the stability of their

transcripts and subsequent protein expression. Intriguingly,

although the BRCA1/BCLAF1 complex promoted the splicing

and stability of ATRIP, BACH1, and EXO1 transcripts following

DNA damage, we did not observe an increase in the expression

of these proteins in control cells, suggesting that following DNA

damage the levels of these proteins may also be regulated

at the translation and/or protein stability levels. When testing

this, we observed no detectable change in the levels of

(B–D) Ratio of postspliced to presplicedATRIP,BACH1, and EXO1mRNA in BRCA1-deficient cells (HCC1937) transfectedwith empty vector (EV), wild-type Flag-

BRCA1 (wt-BRCA1), or S1423A Flag-BRCA1 (S1423A-BRCA1). Cells were mock treated or treated with etoposide. mRNA levels were assessed as described in

Figure 4A. Graphs represent the mean ratios of postspliced/prespliced mRNA from three independent experiments ± SEM ATRIP, BACH1, and EXO1 splicing is

upregulated in cells expressing wild-type BRCA1 but not S1423A-BRCA1, indicating that phosphorylation of BRCA1 S1423 is required for DNA damage-induced

splicing.

(E–G) FLAG and BCLAF1ChIP-qRT-PCR analysis carried out in BRCA1-deficient cells (HCC1937) transfectedwith empty vector (EV), wild-type Flag-BRCA1 (wt),

or S1423A Flag-BRCA1 (S1423A). Cells were mock treated or treated with etoposide. Graphs represent the mean fold enrichment from three independent

experiments ± SEM.

(H) Representative western blots demonstrating wild-type and S1423A Flag-BRCA1 in HCC1937 cells used for splicing assays and ChIPs presented above. See

also Figure S6.

Molecular Cell

BRCA1-Dependent mRNA Splicing of DDR Genes

454 Molecular Cell 54, 445–459, May 8, 2014 ª2014 The Authors



(legend on next page)

Molecular Cell

BRCA1-Dependent mRNA Splicing of DDR Genes

Molecular Cell 54, 445–459, May 8, 2014 ª2014 The Authors 455



translation of these proteins following DNA damage but instead

observed a dramatic increase in the rate of their turnover,

suggesting that BRCA1/BCLAF1-mediated cotranscriptional

splicing and transcript stabilization may serve as a mechanism

through which the levels of these genes/proteins are maintained

in response to higher rates of protein turnover following DNA

damage. Exactly why the rate of turnover of these proteins is

increased following DNA damage will require further investiga-

tion. However, it is well accepted that a number of DNA repair

proteins are degraded at DNA break sites during the DNA repair

process in order to facilitate removal of various proteins at

different stages of repair, thereby allowing fine temporal and

spatial control of repair processes. For example, KDM4A/

JMJD2A is degraded through an RNF8/RNF168-dependent

pathway at DNA break sites, thereby facilitating 53BP1 recruit-

ment, loading, and subsequent repair (Mallette et al., 2012).

Given that ATRIP, BACH1, and EXO1 are all recruited to DNA

break sites following DNA damage, it is possible that these pro-

teins are also degraded at break sites following DNA damage

in order to facilitate ordered repair. In this context, BRCA1/

BCLAF1-mediated stabilization of spliced transcripts may func-

tion in order to maintain levels of these proteins, thereby allow-

ing the efficient repair of all DNA damage.

An intriguing finding of our study is that following DNA dam-

age, BRCA1 and BCLAF1 interact on target gene promoters,

but not at DNA break sites where BRCA1pSer-1423 is also local-

ized but BCLAF1 is excluded. However, it has been previously

reported that exclusion of BCLAF1 and its homologous binding

partner THRAP3 from DNA break sites occurs in parallel with in-

hibition of transcription and subsequent loss of mRNA process-

ing at sites of DNA damage, which is mediated by ATM/ATR/

DNA-PK localized at these sites (Beli et al., 2012). This suggests

that after DNA damage BRCA1 plays distinct roles that require

BRCA1 containing complexes at different loci: one at DNA

break sites, where it is directly involved in repair (and tran-

scription/mRNA processing is directly inhibited and BCLAF1

excluded by active ATM, ATR and/or DNA-PK), and another

at transcriptionally active regions, near the promoters of DDR

factors.

Surprisingly, given that the BRCA1/BCLAF1 complex regu-

lates a relatively large pool of genes following DNA damage,

we found that ectopic expression of ATRIP, BACH1, and EXO1

could partially rescue the DNA damage sensitivity phenotype

of BRCA1-, BCLAF1-, and U2AF65-depleted cells, suggesting

that the BRCA1/BCLAF1-mediated splicing of these genes is

important for their ability to mediate resistance to DNA damage.

This finding may be a reflection of the highly important role

of these three proteins in the DDR, in which all play important

and cooperative roles in HR-mediated DSB repair. Nevertheless,

the finding that ectopic expression of these three BRCA1/

BCLAF1 regulated genes only partially rescues the DNA damage

sensitivity of BRCA1-, BCLAF1-, and U2AF65-depleted cells

highlights that the regulation of other genes by the BRCA1/

BCLAF1 complex may also be important for BRCA1/BCLAF1-

mediated DNA damage resistance.

Additionally, althoughwe have not observedBRCA1/BCLAF1-

mediated alternative splicing in the genes examined in this study,

it is possible that increased cotranscriptional splicing mediated

by BRCA1/BCLAF1may affect the inclusion or skipping of differ-

ential exons of regulated genes in response to DNA damage. For

example, camptothecin induces increased MDM2 cotranscrip-

tional splicing, resulting in exon skipping and production of alter-

nate MDM2 splice variants (Dutertre et al., 2010). Additionally,

UV-induced DNA damage has also been shown to affect cotran-

scriptional alternative splicing of a subset of UV-responsive

genes through inhibition of RNA Pol II elongation during tran-

scription of these genes (Muñoz et al., 2009).

Given the multiple DDR processes within which BRCA1 plays

a role, in comparison to BCLAF1, another surprising finding of

this study was that BCLAF1 depletion was unable to sensitize

BRCA1 mutant cells to IR, as measured by clonogenic survival

assays, suggesting that BRCA1 and BCLAF1 function in

an epistatic manner within the same pathway. However, clono-

genic survival assays only demonstrate cellular survival following

a specific genotoxic insult and do not allow the functional

separation of different pathways that contribute to cell death.

Therefore, although demonstrating that the pathway in which

BRCA1 and BCLAF1 cooperate is required for cellular survival

following IR, it is unlikely that all of BRCA1’s tumor-suppressive

function is mediated through its role in mRNA splicing with

BCLAF1 alone.

Taken together, our data suggest that the BRCA1/BCLAF1

mRNA splicing complex may act as a tumor suppressor com-

plex, functioning to promote the splicing and stability of genes

required for DNA repair and maintenance of genomic stability.

In support of this, a number of SNPs within BCLAF1 have been

associated with increased risk of non-Hodgkin’s lymphoma

and a number ofmicroRNAs encoded by the oncogenic Kaposi’s

sarcoma-associated herpes virus (KSHV) target BCLAF1, result-

ing in BCLAF1 depletion and sensitivity to DNA damaging agents

(Kelly et al., 2010; Ziegelbauer et al., 2009). Additionally, a num-

ber of recent studies have found a high incidence of mutually

Figure 6. BRCA1/BCLAF1-Mediated mRNA Splicing Is Required for Maintenance of ATRIP, BACH1, and EXO1 Protein Expression

(A) Representative western blots demonstrating that depletion of either BRCA1 or BCLAF1 results in downregulated expression of ATRIP, BACH1, and EXO1

proteins in response to DNA damage.

(B) Representative western blot demonstrating DNA damage-dependent accumulation of ATRIP, BACH1, and EXO1 proteins over time following inhibition of

proteosomal mediated protein degradation with MG132 (10 mM). Cells were mock treated or treated with etoposide (1 mM) for 30 min prior to MG132 treatment.

(C) Representative western blots demonstrating DNA damage-dependent increased protein turnover in control and BRCA1- or BCLAF1-depleted cells following

inhibition of protein translation with Cyclohexamide (10 mg/mL). Cells were mock treated or treated with etoposide (1 mM) for 30 min prior to Cyclohexamide

treatment.

(D) Representative western blots demonstrating BRCA1 and BCLAF depletion in cells used for experiments shown in (C).

(E–G) Quantification of ATRIP, BACH1, and EXO1protein levels shown in (C). Image densitometry valueswere normalized to 0 hr and decay curves fitted and used

to calculate protein half-lives.
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Figure 7. BRCA1/BCLAF1-Mediated mRNA Splicing of ATRIP, BACH1, and EXO1 Promotes Resistance to DNA Damage and Efficient DNA

Repair

(A) Clonogenic survival assays demonstrating that ectopic expression of ATRIP, BACH1, and EXO1 (A/B/E) in BRCA1- or BCLAF1-depleted 293T cells partially

rescues their sensitivity to IR. Mean surviving fraction of three independent experiments is plotted ± SEM.

(B) Clonogenic survival assays demonstrating that depletion of BCLAF1 or U2AF65 induces sensitivity to IR in 293T cells. Mean surviving fraction of three

independent experiments is plotted ± SEM.

(C) Representative immunofluorescent staining of g-H2AX marked DNA damage in untreated 293T cells depleted of either BCLAF1 or U2AF65 and 1 and 24 hr

following 2Gy IR.

(legend continued on next page)
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exclusive somatic mutations within members of the BRCA1/

BCLAF1 mRNA splicing complex, including BCLAF1, U2AF65,

U2AF35, SRSF2, SF3A1, SF3B1, and PRPF40B within various

cancer types including myelodysplasia, chronic and acute

myeloid leukemias, breast cancers, and lung cancers (Ding

et al., 2012; Forbes et al., 2008; Merz et al., 2007; Nik-Zainal

et al., 2012; Quesada et al., 2012; Yoshida et al., 2011).

Finally, given BRCA1’s role in predisposition to breast and

ovarian cancer, it may also be prudent to investigate the status

of these genes in familial cancers not linked to BRCA1/2

mutation. Indeed, mutations within Prp22, a Prp8-interacting

protein involved in pre-mRNA splicing, were previously found

to cosegregate with breast and ovarian cancer (Friedman

et al., 1995).

EXPERIMENTAL PROCEDURES

Cell Lines

Cell lines were obtained from the following sources: London Research Insti-

tute, London, for 293T; and ECACC for MCF7 cells. All cell lines were verified

by STR profiling (ATCC-LGC Standards, Middlesex, UK).

siRNAs

siRNAs were obtained from QIAGEN. See Supplemental Information for full

sequences.

Peptide Pull-Down Assays

Peptide pull-down assays were carried out as previously described

(Stucki et al., 2005) using the following biotinylated peptides BRCA1-S1423:

AVLEGHGSGPSNSYP; BRCA1-phospho-S1423: AVLEGHGpSGPSNSYP

(Genscript).

mRNA Splicing Analysis

Introns/exons were chosen for assessment in splicing assays based on their

inclusion in expressed transcripts and their suitability for optimal qRT-PCR

primer design. Postspliced to prespliced ATRIP, BACH1 and EXO1 mRNA

levels were quantified using qRT-PCR and normalized to ACTB mRNA levels.

The ratio of spliced to postspliced to prespliced mRNA was then calculated

by dividing the normalized expression levels of postspliced mRNAs by

the normalized levels of prespliced mRNAs. See Supplemental Information

for a detailed description of the methods and primer sequences used.

Clonogenic Survival Assays

Clonogenic survival assays were performed as previously described (Franken

et al., 2006).

Plasmids

Flag-tagged BRCA1 construct Fl4-BRCA1 was a kind gift from Professor

Richard Baer, Columbia University, New York, USA. Myc-DDK tagged ATRIP

(RC223562), BACH1 (RC224085), and EXO1 (RC200547) plasmids were

purchased from Origene. Plasmids were transfected with Genejuice (Merck)

as per the manufacturer’s instructions.

Coimmunoprecipitations

Coimmunoprecipitations were carried out as previously described

using (BRCA1; Ab1, Millipore) or BCLAF1 (BTF-608A, Bethyl Laboratories)

antibodies.

Western Blotting

Western blotting was performed using the invitrogen Novex system and the

following antibodies: BRCA1 (D9, Santa-Cruz), BCLAF1 (BTF 608A, Bethyl

Labs), U2AF65 (MC3 or H300, Santa-Cruz), Prp8 (E5, Santa-Cruz), BACH1

(4578, Cell Signaling), ATRIP (H300, Santa-Cruz), Exo1 (N18, Santa-Cruz),

g-tubulin (GTU-88, Sigma), SF3B1 (A300-996A, Bethyl Laboratories), and

U2AF35 (A307-079A, Bethyl Laboratories).

Chromatin Immunoprecipitations and ChIP-Chip

Chromatin immunoprecipitations (ChIP) and ChIP-chip were carried out

as previously described (Gorski et al., 2011) using the NimbleGen Human

3 3 720k RefSeq promoter array. See Supplemental Experimental Proce-

dures for detailed protocol. Immunoprecipitated DNA was quantified by

qPCR and expressed as fold enrichment over input compared to enrich-

ment of a nonspecific negative control region. Additionally, to ensure spec-

ificity of ChIP antibodies, all ChIP experiments were accompanied by two

negative control ChIPs performed with a nonspecific isotype-matched IgG

and an anti-HA tag antibody. Nonspecific binding of these antibodies to

DNA regions was quantified by qPCR. ChIP with these antibodies never

revealed specific enrichment of any of the DNA regions quantified (data

not shown).

RNA Immunoprecipitations

See Supplemental Experimental Procedures for detailed RNA immunopre-

cipitation (RIP) protocol. Immunoprecipitated RNA was quantified by qRT-

PCR and expressed as fold enrichment over input compared to enrichment

of a negative control region within the ACTB 50 UTR. Additionally, to ensure

specificity of RIP antibodies, all RIP experiments were accompanied by

two negative control RIPs performed with a nonspecific isotype-matched

IgG and an anti-HA tag antibody. RIP with these antibodies never revealed

specific enrichment of any of the mRNA regions quantified (data not

shown).

Immunofluorescent Cytochemistry

Immunofluorescent cytochemistry was carried out as previously described

(Paul et al., 2011) using anti g-H2AX, (05–636, Millipore), BCLAF1 (BTF

608A, Bethyl Labs), and U2AF65 (MC3, Santa Cruz) antibodies.

Ionising Radiation and Etoposide Treatment

Irradiations were carried out using an X-RAD 225 X-ray generator (Precision

X-ray Inc. Branford, CT, USA) at a dose rate of 0.591 Gy.min�1. Unless other-

wise stated, etoposide treatments were using 1 mM for 16 hr.

Metaphase Spreads and Chromosomal Aberration Analysis

Metaphase spreads and chromosome 1 and 2 FISH were carried out as previ-

ously described (Manti et al., 2006) using XCP1 and XCP2whole-chromosome

paint probes (MetaSystems, Zeiss, Germany).

ACCESSION NUMBERS

BCLAF1 ChIP-chip data can be found at the Gene Expression Omnibus under

accession number GSE47016.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article at http://dx.doi.org/10.

1016/j.molcel.2014.03.021.

(D. Quantification of three independent experiments described above (R200 cells were scored/experiment). The mean fraction of cells containing R5 g-H2AX

foci is plotted ± SEM. Significant differences in the fraction of cells containingR5 g-H2AX foci were assessed using Student’s two-tailed t test and are indicated

by ***p < 0.001.

(E) Clonogenic survival assays demonstrating that ectopic expression of ATRIP, BACH1, and EXO1 (A/B/E) in U2AF65-depleted 293T cells partially rescues their

sensitivity to IR. Mean surviving fraction of three independent experiments is plotted ± SEM. See also Figure S7.
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