
1 

 

 

Prognostic biomarker detection, machine learning bias correction, and differential 

coexpression module detection 

 

 

 

 

 

 

 

by 

Ying Ding 

B.E. in Bioinformatics, Huazhong University of Science and Technology, 2007 

 
 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

The School of Medicine in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2014 

 



ii 

 

UNIVERSITY OF PITTSBURGH 

School of Medicine 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Ying Ding 
 
 
 

It was defended on 

April 8, 2014 

 

Dr. Etienne Sibille, Associate Professor, Department of Psychiatry  

Dr. Daniel E. Weeks, Professor, Departments of Human Genetics and Biostatistics  

Dr. Takis Benos, Associate Professor, Departments of Computational and Systems Biology  

Dr. Ziv Bar-Joseph, Associate Professor, Department of Machine Learning  

Dissertation Advisor: Dr. George Tseng, Associate Professor, Department of Biostatistics  

 

 

 



iii 

 

  

Copyright © by Ying Ding 

2014 



iv 

 

 

In this thesis, we present three projects on prognosis biomarker detection, machine 

learning bias correction and identification of differential coexpression modules in complex 

diseases. In the first project, we aimed to identify fusion transcripts that are of predictive value 

on prostate cancer prognosis, an important task to avoid overtreatment to patients. We 

discovered eight fusion transcripts from 19 RNA-seq datasets and validated its predictive value 

on >200 patients from three sites (Pittsburgh, Stanford and Wisconsin). The constructed 

prediction model showed consistently high accuracy on predicting prostate cancer recurrence and 

aggressiveness in all three cohorts. In the second project, we consider a common practice to 

apply many (up to several hundred) machine learning classifiers to a dataset and report the best 

cross-validated accuracy. We demonstrated a downward bias using this approach and proposed 

an inverse power law (IPL) method to correct the bias. The method was compared with several 

existing methods using simulation and real datasets and showed superior performance. For the 

third study, we developed a computational algorithm (MetaDiffNetwork) to identify 

coexpressioin modules that are consistently differential across disease conditions in multiple 

transcriptomic studies. We demonstrated good performance of the algorithm using simulated 

data and applied it to combine eight major depressive disorder studies (cases vs. controls) and 

four breast cancer studies (ER+ vs. ER-). The identified modules were validated by existing 

knowledge of disease pathways. These modules can be used to help generate new hypotheses 

regarding suspected disease genes. In conclusion, the three areas of research covered in this 

thesis are critical bioinformatic elements for biomedical applications and can be used to help 

understand the underlying disease mechanism and ultimately improve patient treatment. 
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1.0  INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

The search for disease-related biomarker detection and their related predictive values is 

an important task in biomedical research. Biomarkers have wide applications from diagnosis and 

prognosis to treatment selection and preventative intervention. The definition of biomarkers may 

vary by different researchers and fields; here we refer to the definition by the Biomarkers 

Definitions Working Group (Atkinson et al., 2001; Ziegler et al., 2012): “A biomarker is a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes or pharmacologic responses to a therapeutic intervention.” With 

the advance of new technologies, high-throughput experimental techniques have revolutionized 

biomedical research with various array based platforms and now next-generation sequencing. An 

increasing amount of high-throughput datasets are available, which allows a genome-wide 

screening for potential biomarkers and the related prediction model. The analysis of high-

throughput omics data usually has two major objectives (see diagram in Figure 1). The first 

common objective is to understand the underlying biological or disease mechanisms through 

analysis of a patient cohort or various treatment/perturbation of samples. Bioinformatics 

techniques are often used to explore and discover the useful relationships and patterns in 

biological data such as differential expression (DE) analysis, clustering analysis, pathway 
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analysis and network analysis (Figure 1-1) (Hawkins, Hon and Ren, 2010; Quackenbush, 2001). 

These analyses identify potential candidate biomarkers, co-expressed module networks and 

associated biological pathways. The results can help elucidate the underlying biological/disease 

mechanisms, assist novel hypothesis generation, identify potential drug targets and guide 

preventive procedures or disease management for patients (Zografos, Liakakos and Roukos, 

2013). 

For the second common objective, researchers analyze high-throughput omics data to 

develop classifiers for disease diagnosis or prognosis prediction, treatment selection and 

preventative intervention. For example, in prostate cancer, biomarker tests can be used to 

determine whether radio- or chemotherapy can be obviated. Therefore, the overtreatment of this 

disease can be reduced with the help of the biomarker classifiers. Biomarkers for constructing 

classifiers can come from the accumulation of biological knowledge from experiments combined 

with the exploratory bioinformatics analyses, or can come solely from machine learning 

approaches which demonstrate good prediction performance. Discoveries or translational 

products from the first objective mentioned above may need extensive validation and evaluation 

(e.g. multi-center clinical trial) under this approach. Machine learning, clinical trial design and 

decision theory are common methodologies used for this aim. In many situations, the underlying 

disease mechanisms related to the gene features used in the classification model are unknown. It 

is therefore of particular importance to apply unbiased and generalizable machine learning 

techniques to ensure translational potential of the discovered biomarkers and classification 

model. 

Machine learning methods have been broadly extended in the bioinformatics community 

with successful applications in many areas (Baek, Tsai and Chen, 2009). High-throughput 
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genomic, proteomic and metabolomic data with a large number of variables and a relatively 

small number of samples still pose a problem for constructing robust prediction models. Model 

building with effective feature selection and unbiased performance assessment are two important 

components in the development of a biomarker classifier.   

In summary, developing new methods to discover novel biomarkers which can be used to 

better understand underlying disease mechanisms (Objective 1) and new methods for evaluation 

of prediction model performances (Objective 2) can help facilitate the field of personalized 

medicine and provide clinical utility. In this thesis, we construct prediction models for predicting 

prostate cancer recurrence and aggressiveness using novel fusion transcripts detected by RNA-

Seq technology (Chapter 2) and present a solution to correct the classification error bias when 

many machine learning methods are applied (Chapter 3). Finally, we present a network-based 

method by searching differential coexpression patterns between disease and control conditions 

by combining multiple studies in order to understand potential disease mechanisms (Chapter 4). 

Taken together, the methods and analyses make a valuable contribution to studying disease 

mechanisms and biomarker classifier development to ultimately improve disease classification 

and management.  
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Figure 1-1 An overview of high-throughput data analysis. 

 

1.2 HIGH-THROUGHPUT TECHNIQUES FOR BIOMARKER DISCOVERY 

As demonstrated in Figure 1-1, high-throughput omics technologies generate 

experimental data that help elucidate disease biology and enhance disease treatment. In this 

section, we will mainly introduce microarray and RNA-seq technologies for gene expression and 

fusion transcript analyses that are relevant to the later three chapters in the thesis. Many other 

technologies, such as mass spectrometry, proteomics assays and imaging techniques (e.g. fMRI 

and PET scan), also generate useful data that apply to methods and concepts we cover in this 

thesis (especially for the machine learning and network methodologies in Chapter 3 and 4). 
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1.2.1 Microarrays 

DNA microarray is a high-throughput technology that allows for the analysis of the 

expression of multiple genes in an efficient manner. On a microarray, thousands of probes with 

known sequence identity are immobilized on a solid support, such as a microscope glass slide or 

silicon chips. The labeled target sequence binds to probe, allowing for the identification of 

unknown sequences such that gene expression of thousands of genes can be analyzed 

simultaneously.  In a typical microarray experiment, mRNA is reverse transcribed, amplified and 

hybridized to the DNA template. The amount of mRNA bound to different sites on the array 

reflects the expression profiles of thousands of genes, or even the whole genome. Microarrays, 

with additional specialized design, can also be used to detect single nucleotide polymorphisms 

(SNPs), copy number variation (CNVs), methylation, and protein-DNA binding. 

With microarray technology increasingly used by the scientific community, a multitude 

of microarray datasets have accumulated, necessitating the creation of databases for storage and 

public access. The National Center for Biotechnology Information (NCBI) has set up the Gene 

Expression Omnibus (GEO), which stores many gene expression datasets for ease of public 

access.  Large-scale microarray datasets are also available upon request through METABRIC 

(Molecular Taxonomy of Breast Cancer International Consortium), which contains  a collection 

of over 2000 clinically annotated primary fresh-frozen breast cancer specimens from tumor 

banks in the UK and Canada (Curtis et al., 2012). 

In this thesis, several GEO microarray datasets as well as METABRIC microarray 

datasets have been used to demonstrate the performance of IPL, a bias correction tool we 

developed to correct the bias of reporting the minimal cross-validation error rate when multiple 
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machine learning models are applied. This further enabled us to compare IPL’s performance with 

several other existing bias correction tools (Chapter 3). GEO breast cancer datasets and 

METABRIC microarray dataset have also been used to combine with other breast cancer gene 

expression datasets, to demonstrate the performance of MetaDiffNetwork, a method to detect 

differential modules across disease conditions  across multiple studies we developed (Chapter 4). 

1.2.2 RNA sequencing 

RNA-Seq (RNA Sequencing), which makes use of the capabilities of next-generation 

sequencing, has been increasingly popular and surpasses microarray as the preferred choice for 

gene expression analysis at a much higher resolution (McGettigan, 2013). In an RNA-Seq 

experiment, sample RNA first undergoes fragmentation by Poly-A selection, then RNA 

fragments are reverse transcribed and amplified into cDNA fragments. After size selection, the 

fragments are ligated by sequencing primers and sequenced by a sequencing machine such as 

Illumina Genome Analyzer and Hi-Seq in a massively parallel fashion. Illumina sequencing 

technology can generate relatively long paired-end reads, up to 100bp, which can enable better 

mappabilty.  After aligning the short reads to the genome, read coverage depth can be counted to 

estimate gene expression level. The advantages of RNA-Seq over microarrays include but are not 

limited to: (1) providing much richer information beyond quantification such as alternative exon 

usage and novel splicing junction detection; (2) non-biased design which is not limited by probe 

oligo design and can discover novel exons and genes; and (3) providing higher specificity and 

sensitivity with very low background noise from contaminating genome DNA and higher 

sensitivity by detecting more genes and differential genes. Paired-end RNA-Seq is also suitable 
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to detect fusion genes. Candidate fusion transcripts can be preliminarily identified by aligning 

each end of the paired reads to two different genes or two distant regions. The Cancer Genome 

Atlas (TCGA) projects have also used the RNA-Seq approach to profile thousands of primary 

tumor samples from 30 different tumor types to understand the underlying mechanism of 

malignant transformation and progression (http://tcga-data.nci.nih.gov/tcga). 

In this thesis, RNA-Seq experiments were conducted on 19 prostate tissues to find tumor 

specific fusion transcripts (Chapter 2). We also utilized an RNA-Seq breast cancer dataset from 

TCGA to demonstrate the performance of IPL (Chapter 3) and construct a gene coexpression 

network (Chapter 4).  

1.3 BIOINFORMATICS ANALYSES ON HIGH-THROUGHPUT DATA 

In this section, we will introduce several popular bioinformatics analyses that are 

commonly encountered in high-throughput omics data analysis. We will also link their usage to 

the three major projects (Chapter 2-4) in this thesis. 

1.3.1 From differential expression to differential coexpression 

Differential gene expression analysis is typically conducted by comparing gene 

expression levels, either from microarray or RNA-Seq, between two conditions such as disease 

and control. It aims to find a set of genes whose mean expression levels are significantly 

different between two set of samples through statistical tests. Due to the fact that thousands of 
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genes are being tested simultaneously, the multiple hypotheses testing problem is usually solved 

by controlling the false discovery rate (Reiner, Yekutieli and Benjamini, 2003) . The genes found 

to have an increase or decrease in mean expression levels may associate with the disease 

phenotype. 

Gene expression datasets contain more information than differential expression studies 

can extract. In addition to testing differential expression, differential coexpression (generally 

measured by pairwise correlations) can help reveal the dysfunctional regulation in a disease. The 

pairwise relationships between gene expression levels can reflect various regulatory sources 

(Figure 1-2) such as transcription factor (TF) binding (Gaiteri et al., 2014; Marco et al., 2009), 

the affect of histones on access of transcription factors to DNA (Chen and Zhao, 2005; Deng et 

al., 2010),  miRNA regulation (Baskerville and Bartel, 2005; Dong et al., 2010) and so on.  

Differential coexpression between two genes or groups of genes may or may not accompany 

differential expression. As shown in Figure 1-3, two genes with similar mean expression levels 

between disease and control conditions could have completely different coexpression patterns 

due to the disruption of transcription factor regulation of one of the genes in the disease 

condition. Therefore, changes in gene-gene correlation may occur in the absence of differential 

expression, meaning that a gene may undergo changes in regulatory pattern that would be 

undetected by traditional differential expression analyses (Gaiteri et al., 2014). 

1.3.2 Differential coexpression network 

Studies of differential coexpression involve constructing two networks in two groups of 

samples under two conditions, such as healthy versus disease samples. To build gene 
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coexpression networks, the gene-gene correlations are commonly detected using Pearson 

correlations or other robust forms (e.g. Spearman correlation or leave-one-out jackknife 

correlation). For a gene expression dataset of n samples and p genes, a raw correlation matrix of 

    is calculated. After various transformations, this becomes an adjacency matrix that 

describes the existence of links between pairs of genes. Transforming correlation matrices into 

adjacency matrices is important because the selection of links will affect the biological 

conclusions drawn from network structure. Usually, for an unweighted network, a threshold is 

used to decide how large the correlation value will create a link between two genes.  Taking a 

fraction (e.g. 1%) of top correlation values has been shown to select genes with related functions 

(Lee et al., 2003). Comparing the structure of two coexpression networks could provide insight 

into the disease-relevant regulatory changes underlying the coexpression patterns. One simple 

way is to look at the genes with differential connectivity (Reverter et al., 2006).  The other 

alternative is to examine the differential relationship at the module level to greatly reduce the 

number of statistical tests and to check for coherent correlation changes in the disease state 

(Amar, Safer and Shamir, 2013; Kostka and Spang, 2004).  

In this thesis, coexpression networks are the focus in MetaDiffNetwork, a method we 

developed to identify differentially co-expressed modules that are consistently observed across 

multiple studies (Chapter 4).  

1.3.3 Pathway analysis 

When a set of genes is obtained from differential expression analysis or differential 

coexpression analysis, the next questions are how to interpret the results and how to gain insights 
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into biological mechanisms. Pathway analysis is a useful class of methods to provide such 

information based on checking over-enrichment of the detected genes in gene sets based on prior 

biological information such as published biochemical pathways. Many tools have been 

developed to check gene set enrichment. The most common way is to apply the Fisher’s exact 

test or the so-called cumulative hypergeometric test on the set of discovered genes and assess the 

p value of over-enrichment. More advanced methods are available, such as Gene Set Enrichment 

Analysis (GSEA) (Subramanian et al., 2005) which considers all the genes in the experiment, not 

just those passing a pre-specified significance threshold. 

In this thesis, pathway analysis is conducted on output module gene sets from 

MetaDiffNetwork to provide insight on potential biological mechanisms that contribute to 

differential regulatory patterns (Chapter 4). 

1.3.4 Machine learning methods 

Machine learning methods are essential for biomarker discovery and translational 

validation process. Due to the availability of many high-throughput experimental data, the 

applications of machine learning techniques are growing. The two most common classes of 

machine learning algorithms are supervised learning and unsupervised learning. Supervised 

learning starts with a known training data and known classification labels (such as case and 

control labels) and its goal is to construct a prediction model to predict target output of future test 

data with unknown class label. This problem is also known as classification when the output 

values are discrete. Unsupervised learning starts with training data with the goal of discovering 

the clusters so that the data in each cluster are similar to each other without the need to know the 
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labels of the data. One commonly encountered problem of biomedical applications is the small 

sample size but large number of features (small-n-large-p), which could dilute the performance 

of machine learning techniques, therefore, feature selection is also a key component in the 

classifier construction. 

In this thesis, we applied many (up to hundreds) supervised learning methods on a 2-D 

toy model and two large breast cancer gene expression datasets to illustrate the machine learning 

bias problem and demonstrate the performances of IPL and several other existing methods 

(Chapter 3). 

1.4 OVERVIEW OF THE THESIS 

 

This thesis composes of three parts, one application study and two novel methodological 

approaches, which are tightly related to various aspects of biomarker detection and subsequent 

translational research as shown in Figure 1-1. Below we present a brief overview of this thesis. 

In Chapter 2, from a collaborative study, we presented a set of eight fusion transcripts, 

detected from 19 RNA-Seq data with deep coverage and validated by experiments, are of 

predictive value for prostate cancer recurrence and aggressiveness. After analyzing these fusion 

transcripts of more than 200 patients from three different centers across Pittsburgh, Stanford and 

Wisconsin, prediction models constructed from Pittsburgh training cohort show consistent 

prediction performance on Pittsburgh test cohort, Stanford cohort and Wisconsin cohort.  
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In Chapter 3, we present a new method, inverse power law (IPL) method, for correcting 

the bias of reporting the minimal cross validation error rate when multiple (can be as large as 

several hundred) machine learning methods are used. We first illustrate this downward bias 

problem and the relationship among sample size, bias and number of classifiers with a simple 2-

D toy model. Then we show that IPL gives more robust estimates of true minimal error rates 

compared to three existing bias correction methods on both simulation datasets as well as two 

large breast cancer microarray datasets: TCGA and METABRIC.  IPL is a useful tool to provide 

corrected classification error rate when multiple machine learning methods are applied, 

especially for clinical study with a small sample size with no external validation datasets. The 

bias correction is critical to avoid overly optimistic accuracy estimate that cannot be validated in 

subsequent translational research and clinical evaluation. 

In Chapter 4, we propose a method MetaDiffNetwork, for detecting differentially 

coexpressed modules between different disease conditions across multiple studies. 

MetaDiffNetwork outputs modules with consistent density differences between two conditions 

by optimizing a weighted target function. It contains steps to control the false discovery rate of 

detected modules by permutation as well as to tune the weights of the target function. By 

incorporating the step of pathway guided module assembly, it can assembly small modules into 

larger modules with respected to a potential disease related pathway. We demonstrate this 

method on a simulation dataset and show good performance on four breast cancer datasets (ER+ 

vs ER-) and eight major depressive disorder datasets (MDD vs control). The identified modules 

are validated by significant enrichment in specific disease relevant pathways.  

In summary, this thesis presents topics studying disease mechanisms and biomarker 

classifier development which may ultimately improve disease classification and management.  
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Figure 1-2 Summary of molecular, cellular, tissue and technical regulatory sources of observed gene-

gene correlations/coexpression links.  

This figure and caption are used with permission from a previous publication (Gaiteri et al., 

2014). 
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Figure 1-3 Gene expression patterns translate regulatory changes into networks links.  

This figure and caption are used with permission from a previous publication (Gaiteri et al., 

2014). 
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Abstract 

Importance: Predicting the clinical progression of prostate cancer remains a major 

challenge. An accurate and reproducible test to assess the potential behavior of prostate cancer is 

urgently needed.  

Objective: To identify biomarkers that are predictive of prostate cancer recurrence or 

prostate cancer specific death. 

Design: Genomic DNA and/or total RNA from 19 specimens of prostate cancer (T), 

matched adjacent benign prostate tissues (AT), matched blood samples (B) and organ donor 

prostates (OD) were sequenced. Eight novel fusion transcripts were discovered and validated.  

These eight novel fusion transcripts were then analyzed on 289 prostate samples from University 

of Pittsburgh Medical Center, Stanford University Medical Center and University of Wisconsin 

Madison Medical Center, including 279 prostate cancer and 10 prostate organ donor samples.  

Setting: University of Pittsburgh Medical Center, Stanford University Medical Center, 

and University of Wisconsin Madison Medical Center. 

Participants: Two hundred seventy-nine prostate cancer patients who underwent radical 

prostatectomy from 1992-2013 were selected for fusion transcript expression analysis. The 

definitive clinical outcomes (recurrence or non-recurrence for more than 5 years after surgery) 

were known for 83.5% (233/279) of the cohort.  

Main measure: To identify the presence of any of the following fusion transcripts in 

prostate cancer samples: TMEM135-CCDC67, KDM4B-AC011523.2, MAN2A1-FER, 

TRMT11-GRIK2, CCNH-C5orf30, SLC45A2-AMACR, MTOR-TP53BP1 and LRRC59-

FLJ60017. 
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Results: Prostate cancer recurrence, metastases and/or prostate cancer-specific death 

after radical prostatectomy occurred in 91% (69/76) of men carrying at least one of eight of these 

fusion transcripts (TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1, LRRC59-

FLJ60017, TMEM135 –CCDC67, KDM4-AC011523.2, MAN2A1-FER and CCNH-C5orf30), 

while these outcomes occurred in only 37% (58/157) of men not carrying those fusion 

transcripts.  Three fusion transcripts occurred exclusively in prostate cancer samples from 

patients who experienced recurrence or prostate cancer related death. The formation of these 

fusion transcripts is the result of genome recombination events.    

Conclusion and relevance: Specific transcript fusion events are associated with prostate 

cancer recurrence and might underlie biological aggressiveness.  
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2.1 INTRODUCTION 

Despite a high incidence (Jemal et al., 2012; Siegel, Naishadham and Jemal, 2012), only 

a fraction of men diagnosed with prostate cancer (PCa) develop metastases and even fewer die 

from the disease.  The majority of prostate cancers remain asymptomatic and clinically indolent. 

The precise mechanisms for the development of progressive, clinically relevant PCa remain 

elusive. Furthermore, the inability to predict PCa’s potential aggressiveness has resulted in 

significant overtreatment of the disease. The dichotomous nature of PCa —a subset of life-

threatening malignancies in the larger background of histological alterations lacking the clinical 

features implicit with that label —is a fundamental challenge in disease management.  

2.1.1 Fusion genes 

Fusion genes (also called chimeric transcripts), formed by two different regions in the 

chromosomes, are found from cancer. They result from post-transcription and chromosomal 

rearrangements such as large segment deletion (the well-known fusion TMPRSS2-ERG in 

prostate cancer (Tomlins et al., 2005), chromosome translocation (the well-known fusion BCR-

ABL1 in chronic myeloid leukemia), trans-splicing (Gingeras, 2009) or read-through (two 

adjacent genes) (Kaye, 2009). Two of the most well-known fusion genes are BCR-ABL1 found in 

Chronic myeloid leukemia CML (Fernandez-Luna, 2000; Tkachuk et al., 1990), and EML4-ALK 

in non-small-cell lung cancer (Soda et al., 2007). To date, many fusion genes have been found 

and collected in fusion gene databases. There are 9054 fusion genes in COSMIC (release 66) 

(Bamford et al., 2004; Forbes et al., 2011), 1374 fusions genes in TICdb (release 3.3) (Novo, de 
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Mendibil and Vizmanos, 2007), 1603 fusion genes in the Mitelman database (updated on August 

2013) (Mitelman, Johansson and Mertens, 2007; Mitelman, Mertens and Johansson, 2005) and 

16261 fusion genes in ChiTaRS (Frenkel-Morgenstern et al., 2013). These databases also 

gathered related literature regarding these fusion genes. Some of the databases, such as COSMIC, 

TICdb and ChiTaRS collected fusion gene sequences as well. COSMIC and ChiTaRS offer 

further summaries of the original tissue type of the fusion genes. 

2.1.2 Existing tools on fusion gene/transcript detection with RNA-Seq 

Since 2010, many computational tools have been developed for detecting fusion genes 

using RNA-Seq data especially with paired-end reads. Different properties of eight detection 

tools were summarized in Table 1-1. These included the well-known Tophat-Fusion (Kim and 

Salzberg, 2011), ChimeraScan (Iyer, Chinnaiyan and Maher, 2011), and the latest tools, 

including Fusioncatcher (Asmann et al., 2011), SOAPfuse (Jia et al., 2013), and FusionQ (Liu et 

al., 2013), which claim their own advantages over several existing tools they chose in their study 

for performance comparison. Some detection tools utilized machine learning techniques to 

improve performance, such as deFuse (McPherson et al., 2011) and EricScript (Benelli et al., 

2012) and Breakfusion, which assembles reads around the fusion breakpoint (Chen et al., 2012). 

These fusion gene detection tools differ from the others from a variety of aspects, from 

alignment tools to different advanced filtering criteria to final output information. Different tools 

may apply different alignment tools or a combination of alignment tools. Most tools align all 

reads to the reference sequence with bowtie (Langmead et al., 2009) such as Tophat-Fusion, 

ChimeraScan, deFuse, Fusioncatcher, and FusionQ. Other alignment tools such as EricScript and 
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Breakfusion use bwa (Li and Durbin, 2009) and SOAPfuse uses soap2 (Li et al., 2009). Some 

also use more than one alignment tool trying to align more reads and locate the fusion 

breakpoints more accurately. For example, SOAPfuse also uses bwa and blat, while 

ChimeraScan, deFuse, EricScript, Fusioncatcher, and Breakfusion also use blat. In addition, 

some detection tools also use assembly tools to construct new references with the alignment 

results. FusionQ uses cufflinks, Breakfusion uses TIGRA-SV and Fusioncatcher uses velvet 

which could improve the true positive rate but requires more time and memory. 

As shown in Table 2-1, most of the eight fusion detection tools filter away fusion events 

with the number of supported spanning/split reads below a certain threshold, with one exception: 

Breakfusion. Table 2-1 also indicates that some of those tools further use the anchor length filter, 

where the minimum number of nucleotides in one end of the split reads aligning to the left or 

right of fusion breakpoints must be greater than a threshold. The other important filtering 

criterion, which can rule out many false positives due to multiple mapping problems, is the 

homology based filter. Utilized by Tophat-Fusion, deFuse, EricScript, Fusioncatcher, and 

FusionQ, it removes fusion events with reads mapped to homologous or repetitive regions, or 

pseudo genes. In addition, Defuse and EricScript further quantify several important 

characteristics of fusion genes, such as information regarding supported spanning/split reads, 

anchor length, fusion boundary di-nucleotide entropy and so on, as input features fed into the 

AdaBoost classifier to evaluate and improve prediction performance by simultaneously 

considering true positives and false positives.  

There are also other filters considered in those detection tools. For example, the read-

through filter removes the molecule formed by adjacent genes and most of the detection tools use 

this filter except for Breakfusion and FusionQ. The PCR artifact filter only applied by EricScript, 
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removes the duplicated reads from PCR artifacts. Some detection tools, such as Tophat-Fusion 

and Fusioncatcher, also provide annotation information about known fusion genes to verify the 

novelty of the identified fusion genes by checking against the existing fusion gene databases. 

Table 2-1 A summary of eight fusion detection tools 

 
Tophat-Fusion 

(v.2.0.8) 

ChimeraSca

n 

(v.0.4.5) 

deFuse 

(v.0.6.1) 

SOAPfuse 

(v.1.25) 

EricScript 

(v.0.4.1) 

Fusioncatcher 

(v.0.97) 

Breakfusion 

(v.1.0.1) 

FusionQ 

(v.1) 

Anchor length filter O (20) O (4) O (4) O (5) X O (17) X X 

Read-through transcript filter O O O O O O X X 

Supported reads filter  

(spanning/split = 1) 
O (2/3) O (2) O (5/3) O (1/1) O (3/) O (3/2) X O (1/1) 

PCR artifact filter X X X X O X X X 

Homology based filter O X O X O O X O 

Alignment tools bowtie Bowtie/blat 
Bowtie/bl

at 

soap2/bwa/bl

at 
bwa/blat bowtie/blat bwa/blat bowtie 

Assembly (#) / Machine 

learning (o) 
X X O X O #velvet #TIGRA-SV 

#cufflink

s 

Fusion gene database 

information 
O X X X X O X X 

 

2.1.3 Existing measures for predicting prostate cancer recurrence 

Prostate cancer diagnosis and treatment could be improved with new and effective 

biomarkers. For example, the ability to distinguish between the indolent prostate cancer and 

aggressive prostate cancer could avoid overtreatment, especially unnecessary biopsies. A number 

of biomarkers have been studied; however, only prostate specific antigen (PSA) is routinely used 

by urologists, which unfortunately often led to overdiagnosis and overtreatment. Some new 

biomarkers shown to be statistically significant in one study are often not validated by others 
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(Check, 2004).  The only food and drug administration approved tests are PSA 3 and an isoform 

of proPSA (Romero Otero et al., 2014). 

Whether the most prevalent fusion TMPRSS2-ERG could predict prostate cancer 

recurrence or has risk associated with diseases progression is controversial. One study of 165 

patients shows that the expression of TMPRSS2-ERG fusion is a strong prognostic factor and is 

independent of grade, PSA level and stage (Nam et al., 2007). Another report shows this fusion 

is significantly associated with prostate cancer specific death with a cohort study of 111 patients 

(Demichelis et al., 2007) . Some authors show this fusion has no association with prostate cancer 

outcome (Gopalan et al., 2009). 

There are other studies which claim findings of recurrent fusion genes in prostate cancer. 

A study on a Chinese population showed two novel frequently occurred fusion genes in 

their patient cohort (Ren et al., 2012). Other fusion genes with the TMPRSS2 are also reported 

but they are of individually low frequency (Salagierski and Schalken, 2012). Other types of high-

dimensional features such as CpG island methylation could also be used to predict prostate 

cancer recurrence (Luo et al., 2013; Yu et al., 2013). 

There are many challenges of developing biomarkers for prostate cancer such as 

standardization of the diagnostic test, sample size of the test cohort, quality control, cost and 

benefit tradeoff and so on. Although the road of biomarker detection is filled with obstacles, the 

benefits greatly outweigh the costs in terms of patient care and cost to the health care system. 
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2.2 DESIGN AND HYPOTHESIS 

To identify genome markers for PCa, tumor (T), adjacent normal prostate tissue (AT) and 

peripheral blood samples (B) were obtained from 5 men having prostate cancer with an 

aggressive clinical course.  In one patient, normal adjacent prostate tissue was not available. For 

whole genome sequencing, an average of 200 GB was sequenced per sample to achieve 33 fold 

coverage of the entire genome. Total RNA from all T and AT samples was sequenced to achieve 

>1333 (average 400 million reads/sample) fold coverage per gene. Total RNA from four age-

matched, entirely histological benign prostate tissues harvested from organ donors was similarly 

sequenced as a tissue control.  The sequencing data were aligned to human reference genome 

HG19(Li and Durbin, 2009).  Fusion transcripts were then identified and validated.  It was our 

hypothesis that the presence of these fusion transcripts in the primary tumor would be associated 

with disease recurrence, development of metastatic disease or prostate cancer-specific death.  

Therefore, the fusion transcripts were analyzed on 90 PCa samples from men with known 

clinical outcomes and 10 benign prostates harvested at the time of organ donation.  A prediction 

model for PCa recurrence and short post-operative prostate specific antigen doubling time 

(PSADT) was built. This model was then applied to 89 additional PCa samples from University 

of Pittsburgh Medical Center, 30 samples from Stanford University Medical Center, and 36 

samples from University of Wisconsin Madison Medical Center with follow-up ranging from 1 

to 15 years.  One hundred twenty-seven of these samples are from patients who experienced PCa 

recurrence after radical prostatectomy, and 106 are from patients with no evidence of recurrence 

for at least 5 years after the surgery. The remaining 46 samples are from patients who had less 
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than 5 years of follow-up and had not yet experienced biochemical recurrence.  The association 

of fusion transcript expression with PCa recurrence was analyzed. 

2.3 METHODS 

2.3.1 Tissue samples 

Two hundred and eighteen specimens of PCa, 4 matched AT, 5 matched B and 14 organ 

donor prostates (OD) were obtained from University of Pittsburgh Tissue Bank in compliance 

with institutional regulatory guidelines. To ensure high purity (>80%) of tumor cells, needle-

microdissection was performed to isolate the tumor cells from adjacent normal tissues (3 mm 

distance from the tumor). For AT and OD samples, similar needle-microdissections were 

performed to achieve 80% epithelial purity. Genomic DNA of these tissues was extracted using a 

commercially available tissue and blood DNA extraction kit (Qiagen, Valencia, CA). The 

protocols of tissue procurement and procedure were approved by Institution Board of Review of 

University of Pittsburgh. PCa samples of Stanford University Medical Center cohort and 

University of Wisconsin Madison Medical Center cohort were obtained from corresponding 

institutional tissue banks and approved by Institutional Review Boards. Information about 

PSADT and time to recurrence were not available for Wisconsin cohort. 
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2.3.2 Whole genome and transcriptome sequencing library preparation and sequencing 

To prepare the genomic DNA libraries, 50 ng DNA was subjected to the tagmentation 

reactions using the NEXTERA DNA sample prep kit (Madison, WI) for 5 min at 55oC. The 

DNA was then amplified with adaptor and sequencing primers for 9 cycles of the following 

procedure: 95°C for 10s, 62°C for 30s and 72°C for 3 min. The PCR products were purified with 

Ampure beads. The quality of genomic DNA libraries was then analyzed with qPCR using 

Illumina sequencing primers and quantified with Agilent 2000 bioanalyzer.  For transcriptome 

sequencing, total RNA was extracted from prostate samples using Trizol, and treated with 

DNAse1. Ribosomal RNA was then removed from the samples using RIBO-ZeroTM Magnetic kit 

(Epicentre, Madison, WI). The RNA was reverse-transcribed to cDNA and amplified using 

TruSeq™ RNA Sample Prep Kit v2 from Illumina, Inc (San Diego, CA). The library preparation 

process such as adenylation, ligation and amplification was performed following the manual 

provided by the manufacturer. The quantity and quality of the libraries were assessed as those 

described in genome DNA library preparation. The procedure of 200 cycle paired-end 

sequencing in Illumina HiSeq2000 followed the manufacturer’s manual.  

 

2.3.3 Read alignment 

Whole genome DNA-seq reads from 5 Ts, 4 ATs and 5 Bs were aligned by BWA (Li and 

Durbin, 2009) version 1.4.1 against the UCSC hg19 human reference genome allowing maximal 

2 base mismatches per (100 nucleotide) read. After alignment, the average coverage of whole 
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genome was above 30X for all 14 samples. Picard tool (http://picard.sourceforge.net) was 

applied to remove duplicate reads after the alignment. RNA-seq reads (from 5 T, 4 matched AT 

and 4 OD samples) were at an average of 1333X coverage. A maximum of 2 mismatches per 

read was allowed.  

 

2.3.4 Fusion transcript detection 

To identify fusion transcript events, we applied the Fusioncatcher (v0.97) algorithm 

(Edgren et al.) to the RNA sequencing samples. Embedded in fusioncatcher, BOWTIE and 

BLAT were used to align sequences to the reference genome. Fusion genes were visualized with 

CIRCOS software (Wei Zeng, 2013) as shown in Figure S1 in .  

 

2.3.5 Machine learning classifier to predict recurrence status 

8 fusion genes from 5 tumor samples validated by RT-PCR, Sanger sequencing and 

Fluorescence In-situ Hybridization (FISH) analyses were used as features to predict non-

recurrence vs recurrence and the nature of the recurrence  (PSADT<4 months vs PSADT>15 

months or non-recurrent). A prediction model based on the presence of any of these 8 fusion 

transcripts in the sample was constructed to predict recurrent status, while linear discriminant 

analysis (LDA) algorithm based on calculated prediction weight of each fusion transcript was 

used to predict PSADT. Leave-one-out cross validation (LOOCV) was used to assess prediction 

http://picard.sourceforge.net/
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performance in both models (UPMC training cohort, Step I in Figure 2-4A). A prediction model 

of prostate cancer recurrence was first built on a subset of Pittsburgh cohort of 90 samples. The 

performance of the selected best model was then applied to a separate cohort of 89 samples to 

assess the accuracy and applicability (Step II in Fig 2-4A). The same model was also applied to 

predict the Stanford and Wisconsin cohorts (Step III and IV in Fig 2-4A). A similar strategy was 

used to predict PSADT<4 months. 

2.3.6 RT-PCR and FISH 

Double strand cDNA was synthesized as described previously (Luo et al., 2002; Yu et al., 

2004). PCR assays were conducted using the following conditions: 94oC for 5 min, followed by 

30 cycles of 94oC for 30 seconds, 61oC for 1 min and 72oC for 2 min. The procedure of probe 

preparation and FISH were described previously (Ren et al., 2006; Yu et al., 2007). 

 

2.4 RESULTS 

2.4.1 Fusion transcripts discovered by RNA and whole genome sequencing 

To identify fusion transcripts, analysis of RNA sequencing was performed on 5 PCa 

samples. A total of 76 RNA fusion events were identified using the Fusioncatcher (Edgren et al.) 

program.  Thirteen of these fusion events were confirmed by genome sequencing. To control for 

tissue-based normal fusion transcript events, fusion transcripts present in any of the four age-
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matched organ donor prostate tissues were eliminated. Further, fusion transcripts with less than 

20 kb between each element and read in the cis direction were also eliminated.  As a result of this 

filtering, 28 of 76 fusion transcript events were identified as PCa specific (Figure S1). Among 

these fusion events, TMPRSS2-ERG, the most common PCa fusion transcript (Baca et al.; 

Berger et al.; Tomlins et al., 2005), was found in two PCa samples.  The majority of the fusion 

events identified were novel. No fusion transcripts were identified in any of the AT samples. To 

validate these fusion transcripts, RT-PCR was performed using primers specific for fusion 

transcript regions encompassing the fusion breakpoints, and the PCR products were sequenced. 

The experimental validation was conducted on all novel fusion transcripts and eight out of them 

were validated through sequencing with four shown in Figure 2-1.  

Five of the eight fusion events resulted in truncation of a head gene and frameshift in 

translation of a tail gene. One of the fusion transcripts produced a truncated cyclin H and an 

independent open reading frame of a novel protein whose function is not known. Two fusion 

events, however, are predicted to produce chimeras that possibly retain at least partial function of 

both genes. For example, a fusion transcript between the N-terminus 703 amino acids of α-

Manosidase 2A (MAN2A1) and the C-terminus 250 amino acids of FER, a Feline tyrosine 

kinase retains the glycoside hydrolase domain of MAN2A1 but replaces the manosidase domain 

with the tyrosine kinase domain from FER. Another fusion transcript couples 5 of 10 

transmembrane domains of the membrane transporter protein SLC45A2 with the methyl-acyl 

CoA transferase domain from AMACR. Interestingly, both MAN2A1-FER and SLC45A2-

AMACR fusions are in the trans-direction, eliminating the possibility of a fusion event from 

simple chromosome deletion or collapse of extremely large RNA transcript.  
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The most frequent fusion events observed in PCa were TRMT11-GRIK2 (7.9%, or 

22/279) and SLC45A2-AMACR (7.2%, or 20/279) (Figure 2-3). TRMT11-GRIK2 fusion 

represents a giant truncation of TRMT11, a tRNA methyltransferase, and elimination of GRIK2, 

a glutamate receptor but reported to possess tumor suppressor activity(Sinclair et al., 2004). 

Indeed, when GRIK2 expression was examined in 14 TRMT11-GRIK2 positive PCa samples, it 

was undetectable, while it was detected in organ donor prostate samples. Only 4 of 14 samples 

with TRMT11-GRIK2 expressed full length TRMT11 transcripts. Thus, the fusion event of 

TRMT11-GRIK2 likely produces a loss of function.  

2.4.2 Fluorescence in situ hybridization suggests genome recombination underlying 

fusion transcript formation 

To investigate the mechanism of these fusion events, fluorescence in situ hybridization 

(FISH) was performed on PCa tissues where the fusion transcripts were present. Using the 

probes surrounding the MAN2A1 breakpoint, a physical separation of signals between 5’ and 3’ 

MAN2A1 in cancer cells containing the fusion was observed, while the wild type alleles in 

normal prostate epithelial cells showed overlapping fluorescent signals (Figure 2-2). Similar 

“break-apart” hybridization occurred in SLC45A2-AMACR positive PCa samples (Figure 2-2 

(B)). These findings indicate that MAN2A1-FER and SLC45A2-AMACR fusions are the result 

of chromosomal recombination events and validate the fusion transcripts found by RNA-seq. 

Interestingly, in PCa cells containing “break-apart” signals of MAN2A1, only 31% of the cells 

retained the 3’ end signal, suggesting that the recombination event results in truncation of the C-

terminus of MAN2A1 in most PCa cells. A similar “collateral loss” of the N-terminus of 
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AMACR was found in PCa cells expressing the SLC45A2-AMACR fusion transcript (29% 

retaining the N-terminus signal of AMACR). Other FISH analyses confirmed that genome 

translocations occur in cancer cells expressing TRMT11-GRIK2, MTOR-TP53BP1, LRRC59- 

FLJ60017, TMEM137- CCDC67, CCNH-C5orf30 and KDM4B- AC011523.2 fusion transcripts. 

These fusion transcripts are either separated widely on a single chromosome (TRMT11-GRIK2, 

TMEM135-CCDC67, CCNH-C5orf30 and KDM4B-AC011523.2) or located on separate 

chromosomes (MTOR-TP53BP1 and LRRC59-FLJ60017).  The overlapping signals of 

hybridizations in PCa cells offered additional validation of these fusion events. Finally, the 

genomic breakpoints were identified in 3 fusion pair through Sanger sequencing of the cancer 

genomic DNA (CCNH-C5orf30, TMEM135-CCDC67 and LRRC59-FLJ60017) (Figure S2). 

2.4.3 Fusion transcripts associate with PCa recurrence 

To investigate the clinical and biological significance of the fusion transcripts, their 

presence was assessed in PCa specimens obtained from 213 men and in histologically confirmed 

benign prostate tissues obtained from 10 organ donors free of urological disease aged 20 to 70.  

For 179 of the 213 PCa samples, clinical outcome data after radical prostatectomy were 

available, and 81 had no detectable prostate specific antigen (PSA) recurrence after a minimum 

of five years of follow-up, while 98 developed biochemical recurrence (defined as a measurable 

PSA ≥0.2 ng/ml).  In the patients without recurrence, only 7.4% (6/81) primary prostate cancers 

expressed one of the fusion transcripts.  In contrast, 52% (51/98) primary prostate cancers who 

developed biochemical recurrence expressed at least one fusion (Figure 2-3).  No fusion 

transcripts were detected in benign prostate tissues obtained from healthy organ donors. Three 
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fusion events were observed exclusively in recurrent PCa after radical prostatectomy (TRMT11-

GRIK2, MTOR-TP53BP1 and LRRC59-FLJ60017). 

Fisher’s exact test showed a significant difference in recurrence status among patients 

with at least one of the 8 fusion transcripts and those without (p=2.9 x10-11).  A simple 

classification rule was used so that a sample with the presence of  top (N) fusion genes will be 

predicted to have PCa recurrence. N from 1 to 8 was attempted and feature selection was based 

on p values from Fisher’s exact test. The model selection was conducted on Pittsburgh training 

cohort, a randomly selected 90-sample training cohort from UPMC.  N=8 was found to perform 

best in this training cohort, which  yielded an accuracy of PCa recurrence prediction of 71% with 

89% specificity and 58% sensitivity (p<0.005). When this model was applied to a separate cohort 

of 89 samples (test set), the model correctly predicted recurrence in 70% of patients.  To further 

validate this model, we tested its performance in a 30-patient cohort from Stanford University 

Medical Center and a 36-patient cohort from University of Wisconsin Madison Medical Center. 

Once again, the model correctly predicted recurrence with 76.2% accuracy and with 89% 

specificity and 67% sensitivity on the PCa cohort from Stanford, and 79% accuracy and with 

100% specificity and 59% sensitivity on the cohort from Wisconsin. Interestingly, when fusion 

transcript status was combined with Gleason Grade>8, a mild improvement of prediction was 

found for all 4 cohorts: 72% for the training cohort, 73% for the test cohort, 81% for the Stanford 

cohort and 85% for the Wisconsin cohort. Prostate cancer recurrence, metastases and/or prostate 

cancer-specific death after radical prostatectomy occurred in 91% (69/76) of men carrying at 

least one of the eight fusion genes, while these outcomes occurred in only 37% (58/157) of men 

not carrying those fusion transcripts. 
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In itself, recurrence does not signal an aggressive prostate cancer, since many patients 

with PSA recurrence do not develop metastases or die from their disease. A PSA doubling time 

(PSADT) less than four months after radical prostatectomy is strongly associated with the early 

development of metastatic disease and prostate cancer-specific death, whereas these events are 

rare and remote in men with a PSADT of greater than 15 months (Antonarakis et al.; Freedland 

et al., 2007). The presence of one or more fusion transcript in the PCa tissue showed a strong 

association with PSADT less than four months (p=6 x 10-9).  To examine whether these fusion 

transcripts have prognostic value for PCa clinical outcome, a prediction model was built with 

linear discriminant analysis (LDA). A combination of feature selection from 1 feature to 8 

features and the prior probability of LDA from 0.05 to 0.95 with 0.05 spacing were attempted. 

Feature selection was conducted based on p value ranking as before from Fisher’s exact test and 

the best model was with eight features with prior probability 0.6. The panel of eight fusion 

transcripts correctly predicted 74.4% for PSA doubling time in the 90-sample training cohort 

(blue dot). When the same algorithm was applied to a separate 89-sample test set from 

University of Pittsburgh Medical Center and 21-sample cohort from Stanford University Medical 

Center, the prediction rate for PSADT<4 months was found to be 78% and 71%, respectively. To 

examine the impact of fusion transcripts on patients’ PSA free survival, a Kaplan-Meier analysis 

was performed on the PCa cohort from University of Pittsburgh. As shown in figure 2-4 (C), 

84.2% of patients had an observed disease recurrence within five years of radical prostatectomy 

if they carried any of the 8 fusion transcripts. No patient survived five years without recurrence if 

their primary PCa contained a TRMT11-GRIK2, or MTOR-TP53BP1 transcript fusion.  In 

contrast, 68% patients were free of disease recurrence if none of the fusion transcripts were 

detected in their primary PCa. Similar findings were also identified in the Stanford cohort: 88.9% 
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patients experienced recurrence of PCa if they carried any fusion transcript, while 75% patients 

were free of the disease recurrence if they are negative.   

2.5 DISCUSSION 

Transcriptome sequencing revealed numerous fusion RNA transcripts occurring not just 

in PCa but also in benign adjacent tissues and histologically normal organ donor prostate 

samples. Whether these transcripts encode functional fusion proteins is not known. Deep 

sequencing of the whole genome and RNA revealed a significant number of prostate cancer-

specific fusion transcripts. These fusions are not detectable in either benign organ donor prostate 

or benign prostate tissues from PCa patients.  Most of these fusion transcripts appear to express 

in low abundance, with only an average 6.6 reads of these fusion transcripts detected in >1333x 

sequencing. Indeed, when the coverage was reduced to 600x in simulation studies, only MTOR-

TP53BP1 was detected consistently. One general characteristic of these fusion transcripts is that 

they either have a large distance between the gene targets or they are oriented in trans, features 

that could only occur as a result of chromosome recombination events. In either scenario, the 

fusions must be the product of significant structural DNA rearrangements.  

Although the association between the eight novel fusion transcripts and prostate cancer 

recurrence is striking, the biological roles of these fusion transcripts are not yet elucidated.  

Given the known function of the genes contributing to the fusion transcripts, their formation  

may have impact on several cell pathways such as RNA stability (Towns and Begley, 2012) 

(TRMT11-GRIK2), protein glycosylation (Misago et al., 1995) (MAN2A1-FER), cell cycle 
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progression(Fisher and Morgan, 1994) (Wang et al., 2012; Yang et al., 2013) (CCNH-

C5orf50and MTOR-TP53BP1), fibroblast growth factor nuclear import (Zhen et al., 2012) 

(LRRC59-FLJ50017), histone demethylation (Yang et al.) (KDM4B-AC011523.2), and fatty 

acid metabolism (Savolainen et al., 2004) (SLC45A2-AMACR). Many of these pathways appear 

to be fundamental to cell growth and survival. Even though the prevalence of each fusion 

transcript in prostate cancer samples is low (ranging from 2.9% to 7.9%), up to 60% of prostate 

cancers that later recurred and had short PSADT were positive for at least one of these fusion 

transcripts.  The specificity of these fusion transcripts in predicting prostate cancer recurrence 

appears remarkably high, ranging from 89-100% among 4 separate prediction cohorts.  There 

were no long term recurrence-free survivors if the primary tumor contained either TRMT11-

GRIK2, MTOR-TP53BP1 or LRRC59-FLJ60017 fusion transcripts.  

To our knowledge, it is the first study showing that a set of fusion transcripts is strongly 

associated with PCa prognosis. If these fusion transcripts are found to have a biological role in 

prostate cancer progression, it may provide new targets for therapeutic intervention. 

 
 



49 

 

 

Figure 2-1 Unique fusion gene events. 

 Left panel: Miniature diagrams of genome of the fusion genes, the transcription directions, the 

distances between the joining genes and directions of the fusions. Middle panel: Representative 

sequencing chromograms of fusion transcripts. The joining gene sequences were indicated. Right 

panel: Diagrams of translation products of fusion transcripts. Blue-head gene translation product; 

Red-tail gene translation product; Orange-novel translation products due to framshift or 

translation products from a non-gene region. 
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Figure 2-2 Fluorescence in situ hybridization suggests genome recombination in prostate cancer cells.  

 

(A) Schematic diagram of MAN2A1 and FER genome recombination and FISH probe positions. 

Representative FISH images were shown for normal prostate epithelial cells and cancer cells 

positive for MAN2A1-FER fusion. Orange denotes probe 1; Green denotes probe 2. Break-apart 

signals are indicated by orange arrows. (B) Schematic diagram of SLC45A2 and AMACR 

genome recombination and FISH probe positions. Representative FISH images were shown for 

normal prostate epithelial cells and cancer cells positive for SLC45A2-AMACR fusion. Orange 

denotes probe 1; Green denotes probe 2. Break-apart signals are indicated by orange arrows. (C) 

Schematic diagram of MTOR and TP53BP1 genome recombination and FISH probe positions. 
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Representative FISH images were shown for normal prostate epithelial cells and cancer cells 

positive for MTOR-TP53BP1 fusion. Orange denotes probe 1; Green denotes probe 2. Fusion 

joining signals are indicated by green arrows. (D) Schematic diagram of TRMT11 and GRIK2 

genome recombination and FISH probe positions. Representative FISH images were shown for 

normal prostate epithelial cells and cancer cells positive for TRMT11-GRIK2 fusion. Orange 

denotes probe 1; Green denotes probe 2. Fusion joining signals are indicated by green arrows.  

 

Figure 2-3 Fusion transcripts expressed in prostate cancer.  

(A) Distribution of 8 indicated fusion transcripts in 213 prostate cancer samples from University 

of Pittsburgh Medical Center, in 30 samples from Stanford University Medical Center and in 36 

samples from University of Wisconsin Madison Medical Center. Samples from patients who 

experienced  recurrence were indicated with light grey (PSADT15 months) or dark grey 



52 

 

(PSADT<4 months) or intermediate grey (PSADT=5-14 months), samples from patients who 

have no recurrence for at least 5 years with green, and samples from patients whose clinical 

follow-up is ongoing but less than 5 years with white (undetermined). (B) Correlation of fusion 

transcript events with prostate cancer recurrence. Percentage of prostate cancer experiencing 

recurrence from samples positive for fusion transcripts was plotted for each fusion transcript. 

Left, University of Pittsburgh Medical Center cohort; Middle, Stanford University Medical 

Center cohort; Right, University of Wisconsin Madison Medical Center cohort.  

 

Figure 2-4 Fusion genes predict recurrence of prostate cancer. 

(A) Schema of training and validation steps in building fusion gene prediction models for 

prostate cancer recurrence and short PSADT. The algorithm of fusion gene prediction of prostate 
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cancer recurrence and PSADT<4 months was obtained from 90 randomly-assigned prostate 

cancer samples from the University of Pittsburgh Medical Center. The algorithm was then 

applied to 89 samples from the University of Pittsburgh Medical Center, 21 samples from 

Stanford University Medical center and 33 samples from the University of Wisconsin Madison 

Medical Center. (B) Sample sizes of cohorts of University of Pittsburgh Medical Center, 

Stanford Medical Center, and University of Wisconsin Madison Medical Center involved in the 

prediction of prostate cancer recurrence as well as PSADT < 4 months. (C) Kaplan-Meier 

analysis of patients who were positive for any of TRMT11-GRIK2, SLC45A2-AMACR, 

MTOR-TP53BP1, LRRC59-FLJ60017, TMEM135 –CCDC67 and CCNH-C5orf30 versus those 

who were negative for these fusion events. Top, Kaplan-Meier analysis of prostate cancer sample 

cohort from University of Pittsburgh; Bottom, Kaplan-Meier analysis of prostate cancer sample 

cohort from Stanford University Medical Center. 
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Abstract 

Motivation: Supervised machine learning is commonly applied in genomic research to construct 

a classifier from the training data that is generalizable to predict independent testing data. When 

test datasets are not available, cross-validation is commonly used to estimate the error rate. Many 

machine learning methods are available and it is well-known that no universally best method 

exists in general. It has been a common practice to apply many machine learning methods and 

report the method that produces the smallest cross-validation error rate. Theoretically, such a 

procedure produces a negative selection bias. As a result, many clinical studies with moderate 

sample sizes (e.g. N=30~60) risk to report a falsely small cross-validation error rate, which could 

not be validated later in independent cohorts.  

Results: In this study, we illustrated the probabilistic framework of the problem and explored the 

statistical and asymptotic properties. We examined three existing methods, nested cross 

validation (nestedCV) weight mean correction (WMC and WMCS), and Tibshirani’ procedure. 

We propose a new bias correction method based on learning curve fitting by inverse power law 

(IPL). All the methods were applied to simulation datasets, five real datasets as well as two large 

breast cancer datasets. The result showed IPL gave a competitive estimate with smaller variance 

for estimating the unconditional error rate and its additional advantage to extrapolate error 

estimates for larger sample sizes, a practical feature to recommend whether more samples should 

be recruited to improve the prediction model and accuracy. A R package “MLbias” and all 

source files are publicly available. 

Availability: tsenglab.biostat.pitt.edu/software.htm 
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3.1 INTRODUCTION 

In the past two decades, fast development in bioinformatics was accompanied by the 

rapid production of high-throughput genomic data, such as gene expression, genotyping and 

various types of next generation sequencing data. Such high dimensional data usually come with 

small sample sizes and a large number of genes/features (a.k.a. “large p, small n” problem) and 

pose many new challenges in statistical learning and data mining. In the content below, we focus 

on machine learning of gene expression profile data, but the concept and theoretical issues also 

apply to other high-throughput genomic (e.g. copy number variation, DNA methylation) or 

proteomic data. In gene expression profile analysis, it is of great interest to predict or diagnose a 

disease status (e.g. classify cases versus controls or treatment responders versus non-responders). 

Since no universally best machine learning method exists in general (Allison et al., 2006), to 

fulfill this task, multiple models are often constructed with different combinations of features 

(genes), different machine learning methods as well as different tuning parameters in the 

methods.  To choose among such large number of classifiers (models), it is a common practice to 

select the model with the smallest cross validation error rate, named as the minimal error 

classifier (MEC), and report its associated error rate. 

The MEC error rate is, however, generally downward biased and an overly optimistic 

estimator of the true optimal classification error rate. This is because taking the minimum of 

cross validation error rates, where the estimates are random variables, will inevitably yield a 
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downward bias. Such a selection bias has great adverse impact in many biomedical pilot studies 

with moderate sample sizes (e.g. N=30~60). The problem, however, has often been overlooked 

in applications. For example, one can examine the small pilot data using ~10 popular machine 

learning methods and simultaneously choose among many different numbers of features and 

tuning parameters in each method. This easily increases the number of tested classifiers to 

several hundreds and selects the MEC classifier with a falsely small error rate due to the 

selection bias. When the model proceeds to a large cohort validation for translational research, it 

will likely fail. In the METABRIC example that will be demonstrated in Section 3.3., we will 

show that the MEC bias can mistakenly reduce the error rate from 28.2% to an overly optimistic 

19.1% in early and late stage classification (i.e. a -9.11 % error rate bias). Many researchers have 

recognized this problem (Bernau, Augustin and Boulesteix, 2013; Berrar, Bradbury and 

Dubitzky, 2006; Efron, 2009; Fu, Carroll and Wang, 2005; Tibshirani, 2009; Varma and Simon, 

2006; Wood, Visscher and Mengersen, 2007). Dupuy and Simon recommended to “report the 

estimates for all the classification algorithms not just the minimal error rate” (Dupuy and Simon, 

2007). Some proposed to compare the minimal error rate with the median error rate from the 

original data sets with permuted class labels (Boulesteix and Strobl, 2009). These suggestions, 

however, did not provide a real solution. Yousefi et al. provides a careful probabilistic analysis 

of this “multiple-rule bias” and quantitative demonstrate the large degree of overoptimism when 

sample size is small and recommends the problem could be mitigated by averaging performance 

of multiple datasets (Yousefi, Hua and Dougherty, 2011). Three existing methods have been 

proposed in the literature, the Tibshrani’s procedure (Tibshirani, 2009) the nested cross 

validation (nestedCV) (Varma and Simon, 2006) procedure and the weighted mean correction 

(WMC/WMCS) (Bernau et al., 2013). Tibshirani proposed a simple bias estimation method 
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which is computationally efficient and could be calculated through a traditional K-fold cross 

validation. They claimed that the bias is only an issue when     where p is the number of genes 

and n is the number of samples. The nestedCV, proposed by Varma and Simon, introduced 

another outer loop of cross validation so that the model selection stage is wrapped in the training 

samples of the outer loop. This double loop procedure, which amounts to nested double leave-

one-out cross validation, is computationally expensive with complexity of        WMC/WMCS 

was proposed as a smooth analytical alternative to nestedCV based on subsampling, which yields 

a competitive estimates compared to nestedCV at a much lower computational price. 

Theorectically Tibshirani’s method estimates the conditional error rate while nestedCV and 

WMC/WMCS are estimating unconditional error rate (see detailed discussion in (Bernau et al., 

2013). We are putting these methods together because of the purpose of this study is to show 

what should be reported given a fixed dataset with multiple machine learning methods in hand. 

    In this paper, we first illustrate the MEC bias by a 2-D toy example and discuss its 

asymptotic theory and statistical properties. The performance of the nestedCV and , 

WMC/WMCS and Tibshirani’s procedure will be examined. A subsampling-based inverse 

power law (IPL) method will be proposed for the bias correction and compared to the other three 

existing methods in both simulated and real datasets. In real data evaluation, we will use five 

GEO datasets and two large breast cancer datasets (TCGA and METABRIC). 
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3.2 METHODS 

3.2.1 Problem setting and formulation under simulation scheme 

Assume that an observed dataset D with sample size n and number of features p is to be 

analyzed for machine learning. Assume that D is generated from an underlying data 

distribution    .     classification methods are used to learn a good classifier for future 

prediction. M can be very large (e.g. several hundred) since different feature selection or 

different parameter settings under a machine learning method are considered different classifiers. 

Suppose the unknown true error rate of classification method m for data distribution    is     . 

The theoretical best machine learning method for data distribution    is                

and the resulting error rate is                    (Box A of Figure 3-1). 

We will illustrate the problem in a simulation framework in the remaining of Figure 3-1 

since the underlying truth and error rates can be estimated well from repeated simulations. 

Suppose B datasets            are independently generated from   . We use cross-

validated error rate (from leave-one-out cross validation) to approximate the error rate for     of 

sample size n using method m, denoted as        . (i.e.               ), we have      

              , where                   
 
      . Denote by                            . 

We will show later that                               
     (see Box B of Figure 1). In 

other words, the true best classifier error rate       can be estimated by           when many data 

sets (i.e. B is large) can be repeatedly simulated from   . In real data analysis, such repeated 

simulation is, however, not possible. When a single simulated dataset Db is given, the MEC is 
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chosen by the minimal error rate:    
     

                     and         

               . The expected value of the MEC error rate can be estimated as            

              , where                   
 
       (Box C in Figure 3-1). Finally, the bias of 

MEC classifier error rate can be estimated as                      
      

   
         

     
     , where the first term is the estimated expectation of MEC error rate and the second term 

is the estimated true best classifier error rate. In Section 3.2.2, a 2D toy example will be used to 

demonstrate the issue and properties of the MEC bias     . In Section 3.2.3, we will show that 

         
       

  is always true and the MEC error rate is always downward (optimistically) 

biased (i.e.       ). 

3.2.2 Illustration by a 2-D toy model 

Below we present the problem in a 2D toy simulation model. Although the simple 

simulation model is not intended to mimic a real gene expression profile setting, it illustrates the 

MEC bias issue with known underlying truth. We simulate B  =  1000 training sets  ,…, 

      ,   from    where    contains n = (20, 30, 40, 60, 80, 120, 160, 320, 640, 1280, 2560) data 

points in a two-dimensional Euclidean space. Data points from two equal-size classes are 

simulated, one (with n/2 data points) from    
 
 
   

  
  

  ,  and the other from 

   
 
  

   
  
  

  .  M=10 classifiers are applied to each dataset: k-nearest-neighbors (KNN) 

with k = 1, 3, 5, diagonal linear discriminant analysis (DLDA), quadratic discriminant analysis 

(QDA), shrunken centroids discriminant analysis (SCDA), support vector machines (SVM-
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linear) with linear kernel, support vector machines (SVM-nonlinear) with radial basis kernel, 

random forest (RF), neural networks with one hidden layer (NNET). The R 

package CMA (Slawski, Daumer and Boulesteix, 2008) is applied to implement all the 

classification methods. Given the Gaussian assumptions and non-identical covariance matrixes in 

two classes, QDA is expected to be the optimal Bayes classifier and the best decision boundary 

is of quadratic form. Figure 2 left panel shows the averaged error rate for classification method 

m at sample size n (i.e.         )  estimated from B=1000 independently simulated datasets. As 

expected, QDA (solid line) is the optimal Bayes classifier and has the lowest error rates for all 

different n. However, in real data analysis we are only given one observed data set. Figure 3-2 

right panel shows the probability of the methods chosen as the minimal-error classifier (MEC) 

(i.e.    
     ) for different n. When the sample size is small, MEC may not necessarily select the 

best method QDA. Particularly, when n=20 and 30, KNN methods (K=1 with dashed line and 

K=3 with dotted line) generate a smaller error rate than QDA with higher probability. When the 

sample size becomes large (n>160), the data set contains enough information for QDA to be 

dominantly (greater than 50% probability) selected by MEC. In the Figure 3-3 (a), the true 

minimal error rate               
  from QDA (cross) and expectation of MEC error rate 

                     (circle) are shown for different n. In Figure 3-3 (b), the estimated MEC 

biases                        
      are shown for different n. The result clearly demonstrates 

a downward bias of MEC error rate and the bias is greater for small sample sizes and diminishes 

to 0 when sample size is large. It is notable that the bias can be up to 3-5% for n=20-30.  Figure 

3-3(c) shows the MEC bias for different n when the number of classifiers examined reduce from 

ten methods (circle) to four methods (QDA, LDA, SVM-linear and SVM-nonlinear) (triangle) or 
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two methods (QDA and LDA) (cross). The result shows that the bias increases as more methods 

were compared. To our knowledge, few studies have recognized the increasing trend of MEC 

bias magnitude when sample size is small or when the searching space of machine learning 

methods is large. For example, Figure 2 in (Boulesteix and Strobl, 2009) indirectly showed that 

bias increases with decreasing sample size and it showed a counter-balance between the 

optimization bias and generally decrease of accuracies among all classifiers when sample size is 

small, which results in a fluctuating minimal error rate when sample size is small as confirmed in 

Figure 3-3(a) here.                                   

To further study the relationship between the bias and number of classifiers employed, 

we fix n=20, started with employing the classifier of KNN with k=1 and keep adding one 

classifier at a time until all the ten classifiers were used. The true optimal classification error 

rates           (cross) and MEC error rate                  (Figure 3-3(d)) and the MEC error rate 

biases (Figure 3-3(e)) for different number of classifiers are shown.  The result shows that the 

bias increased from ~2%  for 2 classifiers (KNN K=1 and QDA) to ~5% for 10 classifiers, while 

the true optimal error rate           (cross) no longer decreases once QDA is added as the 2nd 

classifier. This result indicates that including additional low-performing classifiers inflates the 

bias to the extent which may not be compensated by the decrease of the true best classification 

error rate. In other words, examining too many classifiers and choosing the best is not a good 

practice, especially if the added classifiers are likely not the top performers. Therefore, caution is 

called in the small sample size regime when reporting minimal error rate from multiple 

classifiers in practice and it is advantageous if the optimal classifiers can be applied as early as 

possible without adding more low-performing classifiers. The theorems in the next subsection 
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show that the increasing magnitude of bias for small sample sizes or large numbers of examined 

classifiers are common statistical properties in data analysis. 

3.2.3 Properties and asymptotic theorems of MEC bias 

The proofs of the following theorems are included in Appendix A:  

Theorem 1: Given a smaller set of classifiers, adding more classifiers will decrease the 

true best classification error rate. 

Theorem 2: For a given observed dataset      from   ,               
 , , where        

                        is the cross-validation error rate of       using classifier m. In other 

words, the bias of MEC error rate             
       

  is strictly less than 0. 

Theorem 3: For observed datasets     from    of varying n and a fixed number of 

classifiers   , it holds that            
            

 . In other words,        as     

for fixed M.  Theorem 1 shows that when we have two sets of classifiers and the smaller set is a 

subset of the larger set, the larger set classifiers will yield a smaller true best classification error 

rate. Theorem 2 shows that the expected MEC error rate           always underestimates the true 

minimal error rate       and the negative bias always strictly holds. This is consistent with the 

result in Figure 3-3. In Theorem 3, when the number of classifiers M is fixed, the bias diminishes 

to 0 as the sample size n increases to infinity. This is also consistent with the 10-classifier result 

in Figure 3-3(b) where the bias diminishes to around 0 when n is beyond 320. According to 

Figure 3-3(d), we observe that although the true best classification error rate does not decrease 

after the QDA is applied; the MEC bias estimate continued to decrease as more classifiers are 
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included. This theoretical result brings clear caution to use MEC without bias correction. In other 

words, if a researcher runs n=20-30 samples of pilot study and examines M=300 classifiers via 

conventional cross-validation to choose the best, the minimal error rate from the 300 classifiers 

will likely generate low (or almost zero) error rate while the underlying true error rate may stay 

high. The researcher may be misled to expand the study to a larger cohort or a prospective 

clinical trial and eventually find it difficult to validate the model and cannot translate into a 

clinically useful diagnostic tool.  

3.2.4 Three existing bias correction methods  

In the literature, several methods have been developed to correct the downward bias of 

MEC error rate. Below we describe three (Bernau et al., 2013; Tibshirani, 2009; Varma and 

Simon, 2006). Bernau, et.al did assess the condition with multiple machine learning methods 

while the rest two focused on correcting the bias of parameter tuning via cross validation (e.g. 

estimate K for KNN) for a given machine learning method (Bernau et al., 2013). In practice, if 

one considers many machine learning models along with feature selection and parameter tuning, 

the number of classification methods (M) examined can easily reach several hundreds. All the 

three methods considered here can be generalized to this condition.  

Below we describe existing methods that can be applied for MEC error rate bias 

correction. 

Nested cross validation (nestedCV): Instead of using a single loop cross validation to find 

the minimal error estimate for a particular classifier, nestedCV utilizes two CV loops.  The 

dataset is initially divided into training and testing sets. Then leave-one-out cross validation 
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(LOOCV) is applied on the training set  using all the classifiers and the classifier with the 

smallest error rate is selected and used to build the model based on the training set and then 

evaluate the error rate on the testing set in the end. Therefore, the testing set is independent is 

independent of the model selection stage, including the selection of MEC. Finally, the process is 

repeated until each sample acts as testing set once, thus it is a double LOOCV with two CV 

loops. The computation therefore scales with the square of the sample size. Instead of LOOCV, it 

is possible to use 5 fold or 10 fold cross validation to accelerate the computing when sample size 

is large.  

Weighted mean correction (WMC/WMCS): It is proposed to be a smooth analytical 

alternative to nestedCV, which is a weighted mean of the resampling error rates, obtained using 

the different machine learning models/parameter values. It estimates the unconditional error rate 

as     
        

                     where         stands for the average error rate for 

method k from subsampling and            is the weight for classifier k. It was shown in a 

prior study to give comparable estimate, more stable and with a much lower computational price. 

WMC and WMCS are two variants in terms of estimating             

Tibshirani’s procedure (BC):  Tibshirani’s procedure applies the idea of estimating the 

bias and adding back to the minimal error rate estimate to correct for the bias in the setting of K-

fold cross validation. It estimates the true best classification error rate as 

        
 

 
        

 
    where        is the biased MEC error rate and         is the minimal 

error rate in the kth fold among all classifiers (Tibshirani, 2009). It does not require a significant 

amount of additional computation as in nestedCV and scales linearly with the number of cross 

validation folds. Due to the calculation of          Tibshirani’s method is not suitable for leave-
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one-out cross validation (LOOCV) or when the size of left-out test set is too small and this 

estimate was shown to over-estimate the bias in some settings (Christoph Bernau, 2011).  

3.2.5  The resampling-based inverse power law (IPL) method 

All the above three methods estimate the error rates based on a smaller sample size other 

than n. The Tibshirani’s method generally uses a small number of folds K. NestedCV relies on 

inner loop with a smaller sample size.WMC/WMCS estimates based on subsamples. In order to 

estimate at the sample size n as well as give insights on estimates beyond n, we propose a new 

resampling-based inverse power law (IPL) method to correct the MEC error rate bias and 

estimate the true optimal classification error rate      . By constructing learning curves for each 

individual classifier from repeated resampling of the original dataset at different subsample sizes 

(Mukherjee et al., 2003), we could estimate the error rate of each classifier by fitting a learning 

curve. Consider sample sizes                           . For a given machine learning 

method m, assume that the true error rate equals      
 and these true error rates follow an inverse 

power law function:      
     

 α    . Normally we assume       α    since 

theoretically larger sample size contains more information to produce lower prediction error rate. 

To estimate  ,    and α , we first estimate the underlying       from subsampling    samples 

from the whole data  and repeat for B times. The resulting observed cross-validated error rate of 

each of the sub-sampled data is denoted by         
    (1 ≤ b ≤ B) and the averaged error rate 

is       
              

    
      . The least squared error (LSE) method is then used to 

estimate   ,    and α . 
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         α                  α          
        

 α      
 

   

  

           α          

 

The inverse power law has been found to fit well in simulation and many real data sets 

(Mukherjee et al., 2003). It has the advantage to obtain an accurate estimate of          

    
 α       for      for any sample size n. 

The bias of MEC error rate can then be estimated by                   
     where       

denotes the MEC error rate for a fixed dataset and                  
   . 

The IPL approach has two advantages. Firstly, through subsampling and fitting by 

constructing learning curves, the IPL method borrows information from neighboring estimates at 

different sample sizes which has the potential to reduce the random noise of the true best 

classification error rate estimate and the estimator will be more stable and accurate. The second 

advantage for IPL is its potential to extrapolate the learning curves to estimate the true best 

classification error rate beyond the current sample size so that it can provide a prediction on how 

the error rate will further decline if more samples are included in future studies. For example, 

from an existing observed data of n=40 samples, IPL can estimate the expected accuracy at 

n=100 or n=250 samples and inform researchers whether it is worthwhile to extend the study to a 

larger cohort. 
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3.3 RESULTS 

3.3.1 Bias correction of the simulated 2D example 

We evaluated the performances of all four bias correction methods, Tibshirani’s 

algorithm, nestedCV, WMC/WMCS and IPL, on the 2D toy model. We calculated both bias 

corrected estimates with M=2 classifiers (DLDA and QDA) and all M=10 classifiers and 

compared them with true best classification error rate at sample size n=20, 40, 80, 160, 640, 1280 

with B=100 simulated datasets. As shown in the left panel of Figure 4, nestedCV method 

generally overestimated the true best classification error rate and the overestimated bias was 

larger when using 10 classifiers compared with 2 classifiers. Considering each inner cross 

validation model selection stage of nested cross validation, if the true best classifier (QDA in this 

example) was not selected frequently (i.e.    
         using the notation in Section 3.2.1), the 

final minimal error rate was estimated with other suboptimal mix of classifiers. In this respect, 

on average, without being able to select the true best classifier to estimate the error rate on the 

test dataset, nestedCV resulted in an overestimate of the true best classification error rate. The 

upward bias problem could get more severe with more classifiers included which make the true 

best classifier less likely to be selected.  Tibshirani’s procedure sometimes overcorrects the bias 

as we can see the estimates at 40 and 80 when using 2 classifiers and 80 and 160 when using 10 

classifiers, which are consistent with a prior technical report (Christoph Bernau, 2011). IPL 

methods under-estimate the true optimal error rate at sample size 20, but perform well for larger 

sample size. For WMC/WMCS, especially when using 10 classifiers, it can sometimes be 
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conservative and sometimes anti-conservative. Overall, WMC/WMCS and IPL yield less 

variable estimates compared with nestedCV and BC. 

To illustrate the advantage of IPL of extrapolating to predict performance in larger 

sample size, Figure 3-5 shows the estimated best error rates for sample sizes n=20, 30, 40, 60 

and 80 using IPL (i.e.       ) from an observed dataset of n=40. The true best error rates (     ) are 

marked by “cross” for reference. The IPL extrapolations generally estimated the truth pretty 

well. The result shows that increasing sample size from n=40 to n=80 only slightly improved the 

prediction accuracy and it is probably not worthwhile to collect an additional 40 samples. 

3.3.2 Application on five GEO datasets 

We applied all four methods (BC, nestedCV, WMC/WMCS and IPL) on 5 randomly 

selected GEO real datasets (see Appendix A for details on selection criteria). Since BC method is 

not applicable for leave-one-out cross validation, we applied it to 5-fold cross validation and 10-

fold cross validation. For WMC/WMCS, B=30 subsampling times were applied with 80% 

portion .Ten machine learning methods were applied: KNN (K nearest neighbor with k=1, 3, and 

5), DLDA (diagonal linear discriminant analysis), QDA (quadratic discriminant analysis), Neural 

network (NNET), SVM (support vector machine) with linear kernel, SVM with nonlinear kernel 

(radial), RF (random forest) and SCDA (shrunken centroids discriminant analysis). Feature 

selection was done by simple t-test with 2 to 30 top features selected by p-value in each cross 

validation to construct the classifiers separately, therefore, a total of 290 classifiers were utilized. 

Table 3-1 shows the best error rate after bias correction by the all four methods.  
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The results show that MEC have a significant downward bias compared to the estimates 

from those correction methods especially for datasets GDS2190 and GDS2415. IPL generally 

gives smaller estimates compared to the rest methods which may be a result extrapolation at 

sample size n. NestedCV sometimes gives larger estimates compared to WMC/WMCS and 

sometimes smaller. 

3.3.3 TCGA and METABRIC breast cancer data 

Due to lack of the underlying truth in the real data in Section 3.3.2, the results could not 

be conclusive. To circumvent this shortcoming, we applied the three methods to two large breast 

cancer gene expression profiles, one from TCGA and one from METABRIC. The TCGA breast 

cancer dataset was downloaded from the Cancer Genome Atlas (TCGA) website (http://tcga-

data.nci.nih.gov/tcga) in October 2012. Level 3 RNA-Seq data were extracted from the Illumina 

HiSeq 2000 platform. We selected the TCGA breast cancer data set that contained expression 

data of n=406 tumor samples. We defined two classification problems: one is to classify between 

ER positive (n=391) and ER negative (n=89) and the second is to classify between early stage 

(stage I and II, n=292) and late stage (stage III and IV, n=114) tumors. The METABRIC gene 

expression and clinical data are retrieved from Synapse 

(https://www.synapse.org/#!Synapse:syn2133309). We obtained 1897 samples, consisting of 945 

early stage (stage I and II) and 952 late stage (stage III and IV) tumors (Curtis et al., 2012). We 

applied the same set of 290 classifiers in Section 3.2 to both datasets. Since the datasets 

contained a large sample size, we mimicked the simulation scheme described in Section 2.1. and 

randomly split the data into equal parts of ~40 samples. Under this setting, we pretended that we 
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obtained B=10 independent data sets of n=40-41 from an unknown underlying distribution    in 

the TCGA dataset. Similarly, we have B=47 and n=40-41 for the METABRIC dataset. The 

random partition was also constrained such that sample sizes in two classes are as balanced as 

possible. By following the workflow of Figure 1, we generate the estimated best error rate 

     
     (denoted as “truth”) and MEC error rates                 (denoted as “MEC”) in 

Figure 3-6. Five-fold cross validation was used for Tibshirani’s procedure,leave-one-out was 

used for nestedCV and IPL. 

30 subsampling were used for both IPL and WMC/WMCS. For WMC/WMCS, 

subsampling was at proportion 80%.  The results showed the nestedCV gives the most variable 

error estimates spanning a large range, which is confirmed also in (Bernau et al., 2013). 

WMC/WMCS yields more stable estimates compared with nestedCV.  BC gives relatively stable 

estimates and can either overcorrect or under-correct the bias in terms of unconditional error rate, 

although in theorem it estimates the conditional error rates(Bernau et al., 2013). IPL gives the 

most stable and accurate error rates in terms of range of estimates as well as the closeness to the 

true minimal error rate especially in the case of classifying tumor stage in TCGA. The averaged 

MEC bias is as large as 1.69% in TCGA ER status classification, 6.15% in the TCGA tumor 

stage classification and 9.11% in the METABRIC tumor stage classification respectively. 

Without bias correction, an overly optimistic conclusion will be drawn. 
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3.4 CONCLUSION AND DISCUSSION 

In this paper, we illustrated the downward bias of minimal-error classifier (MEC) error 

rate when selecting from many machine learning models in biomedical classification problems. 

In the application of high-throughput genomic data, this problem is especially magnified since 

the addition of feature selection easily increases the number of classification models to several 

hundreds. We firstly demonstrated the problem using a 2D toy example where QDA is known to 

be the best classifier. The simulation results and asymptotic theoretical results both illustrated the 

need of bias correction for MEC especially when the sample size (n) is limited and the number of 

classifiers examined (M) is large. We discussed two existing methods (the nested cross 

validation and Tibshirani’s procedure) and developed a new inverse power law (IPL) method 

from the concept of learning curve fitting. Application of the three methods to the 2-D toy 

example, five selected GEO data sets and two large breast cancer data sets concluded that the 

NestedCV consistently overestimated the error rate and Tibshirani’s procedure produced 

unstable bias correction. IPL provided a stable and accurate solution. The method has an 

additional advantage to extrapolate and predict the optimal error rate for larger sample sizes, a 

useful feature to help decide whether it is worthwhile to expand the study to recruit more 

samples.  

With the advance of high-throughput genomic and proteomic techniques, data are 

generated at an unprecedentedly increasing pace. Machine learning methods have become a 

powerful tool in almost all biomedical research of complex diseases to seek new diagnostic or 

treatment selection tools. In most studies, small sample sizes are encountered (n=30-60) and 

researchers are tempted to test many classifiers and select the best to report (i.e. applying the 
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minimal-error classifier; MEC). Our paper provides a careful framework and theoretical 

investigation of the problem and our result shows that severe bias can be generated for MEC 

with small sample size (e.g. n=30-60) and a large number of classifiers (e.g. M=300). Without 

bias correction, one runs the risk to obtain an overly optimistic error estimate of the classification 

model, excitedly expand the investigation to larger independent cohorts and eventually fail to 

validate and translate into a useful clinical tool. The IPL method we proposed in this paper not 

only generates more accurate bias correction, but also provide extrapolation estimates to 

determine whether larger cohorts might warrant improved accuracy. In the era of pursuing 

translational research and personalized (or precision) medicine, rigorous evaluation and 

interpretation of the machine learning results are essential to evaluate the clinical potential of a 

research finding. 

There are a few limitations of our study. Firstly, The IPL method has the modeling 

assumption that learning curves of each classifier could be fitted by an inverse power law, 

although, as shown in the simulations as well as real datasets, this shows to be a reasonable 

assumption. Secondly, the error rates estimated by the correction methods included in this study 

are different which makes them less comparable, i.e. conditional error rate by Tibshirani’s 

method, unconditional error rate by WMC/WMCS, nestedCV, IPL.  Thirdly, the IPL methods 

are more costly compared to WMC/WMCS due to its subsampling at different points, however, 

since all the classifiers are fitted independently, it is very suitable for parallelization which will 

greatly reduce the cost and the feature is now included in the version of the package. Lastly, we 

sum up all different feature selection, machine learning methods and their associated parameter 

setting into M classifiers in the investigation. Theoretically different sources of classifiers have 

different correlated performance. Understanding their correlations may elucidate the contribution 
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of bias from different sources and develop a better solution. In practice, one may determine high- 

and low-performance methods for empirical studies (e.g. comparison of performance in similar 

studies in large databases, such as GEO). How to systematically integrate the information to 

decide the set of classifiers for investigation is still an open question. All code and source files 

are available at http://tsenglab.biostat.pitt.edu/publication.htm to reproduce the results in the 

paper. A R package “MLbias” is also available. 

 

 

Figure 3-1 The framework for estimating the true optimal classification error rate, MEC error rate 

and its bias from independent simulated data sets. 

 

http://tsenglab.biostat.pitt.edu/publication.htm
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Figure 3-2 Error rate estimates in two dimensional toy model.  

Left panel: The estimated classification error rate of each method at different sample sizes from 

1000 independent simulations of the 2-D toy model in which QDA was the top classifier in this 

context. Right panel: Probability for each classifier to be chosen as the minimal error rate 

classifier in the 1000 simulations. 
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Figure 3-3 Illustration of the downward bias of MEC error rate  

(a) trend of true optimal classification error rate (cross) and MEC error rate (circle) as sample 

size increased. (b) bias estimate of the MEC error rate diminishes as the sample size increased. 

(c) bias estimate when using all 10 classifiers (cross), 2 classifiers QDA and DLDA (circle) and 

4 classifiers QDA, DLDA, SVM-linear and SVM-nonlinear (triangle). (d) For a fixed sample 

size n=20, the true minimal error rate (cross) and bias of MEC error rates (circle) as more 

classifiers were added in the sequence of  KNN k=1, QDA, DLDA, KNN k=5, PAM, KNN K=3, 

SVM-linear, SVM-radial basis, RF and NNET. (e) The corresponding bias as the number of 

classifiers used increased from 2 to 10. 
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Figure 3-4 Comparison of minimal error rate estimates from all four bias correction methods.  

Comparison of minimal error rate estimates from all four bias correction methods with 2 

classifiers (QDA and DLDA), as well as with all 10 classifiers. 
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Figure 3-5 IPL estimates along with extrapolation.  

Estimated minimum error rate (circle) using IPL extrapolation (      ) for a fixed dataset with 

n=40. The bars reflect 95% coverage interval from 100 simulations. The true minimum error rate 

(     ) is shown (cross) as a reference. 

 

Table 3-1 Error rate estimates on 5 GEO datasets 

GEO 
datasets 

 
n 
 

MEC BC 
(5) 

BC 
(10) nestedCV IPL 

 
WMC 

 
WMCS 

GDS1627  
22 

0
0.00 

0
0.00 

0
0.00 

 
0.02 

 
    0.00 

 
0.04 

 
0.04 

GDS2190  
61 

0
0.32 

0
0.45 

0
0.44 

 
0.39 

 
0.38 

 
0.45 

 
0.42 

GDS2362  
49 

0
0.00 

0
0.00 

0
0.00 

 
0.06 

 
0.00 

 
0.04 

 
0.03 

GDS2415  
59 

0
0.32 

0
0.47 

0
0.45 

 
0.49 

 
0.38 

 
0.44 

 
0.42 

GDS2520  
44 

0
0.02 

0
0.04 

0
0.05 

 
0.05 

 
0.03 

 
0.08 

 
0.08 
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MEC error rate and corrected error rates by Tibshirani’s procedure (5 fold and 10 fold cross 

validation), nested CV,IPL WMC, WMCS. 

 

Figure 3-6 Error ratas estimates on real datasets.  

MEC error rate estimates from all four correction methods along with the true best optimal 

classification error rate and MEC error rates on the TCGA and METABRIC datasets. Left panel: 

classification between ER positive and ER negative in TCGA. Middle and right panel: 

classification between early and late tumor stage in TCGA and METABRIC. 
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4.1 INTRODUCTION 

Differential coexpression refers to changes in gene-gene correlations between two 

conditions (e.g. cases and controls). Changes in gene-gene correlation may occur in the absence 

of differential expression, meaning that a gene may undergo radical changes in regulatory pattern 

that would be undetected by traditional differential expression (DE) analyses. A specific 

phenotype could be contributed by differential coexpression without altering the expression 

levels of genes. This phenomenon has been found in aging (Southworth, Owen and Kim, 2009) 

as well as other biological conditions.  Disease-associated changes in the regulatory systems that 

create coexpression relationships may be revealed through comparing gene-gene correlations that 

are computed separately from control and disease populations. Therefore, differential co-

expression (DC) analysis can provide complementary information to standard differential 

expression (DE) analyses. Differential coexpression in two conditions could shy light on the 

potential biological mechanism. For example, a group of genes may be under the control of a 

common regulator (e.g. transcription factor or epigenetic modifications) which is active in one 

condition but disrupted in the other. 

To detect differential coexpression between different conditions, some studies have 

aimed at detecting pairs (Lai et al., 2004) while others aim at detecting gene modules (Amar et 

al., 2013; Bhattacharyya and Bandyopadhyay, 2013). Some other method detect differential 

coexpression using predefined gene sets such as those based on known gene annotations, such as 

GO categories (Choi and Kendziorski, 2009). Although this approach incorporate prior 

information, it lacks the ability to detect novel differential modules. Another class of methods 

detect differential modules based on detecting modules in one reference condition but test the 
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difference in the other condition. This type of methods rely on a clustering algorithm on one 

reference condition which may induce a bias towards one of the conditions (Ihmels et al., 2005; 

Watson, 2006). To circumvent this problem, methods have been developped for detecting 

differential coexpression modules independent of choosing a reference condition (Tesson, 

Breitling and Jansen, 2010). 

The differential correlation relationship could arise from several biological and non-

biological sources (Gaiteri et al., 2014). Any mechanism that synchronously regulates 

transcription of multiple genes, unwanted batch effect, mixture of tissues could potentially 

generate coexpression relationships. Therefore, instead of looking for differential coexpression 

between two conditions in a single study with classical application, differential coexpression 

may be confirmed across multiple datasets via meta-analyses to increase the detection power. 

Differential modules that are significant in one dataset may become more convincing if the 

differential patterns are preserved across multiple datasets. For instance, MDD (major depressive 

disorder) networks and control networks can be constructed separately in multiple studies and 

differential modules can be detected across multiple studies simultaneously so that the pattern 

occurs frequently in MDD networks but not in the control networks. Differences between 

modules can be assessed by different choices of measures; for example, differential modules 

with a predominant measure such as density (Li W, 2011) , other network measures (Kugler KG, 

2011) or a weighted measure incorporating multiple network properties (Langfelder et al., 2011). 

Few studies attempted to detect differential coexpressed modules with respect to certain 

phenotype across multiple studies. (Michael R. Mehan and Zhou, 2009) first proposed a 

simulated annealing based methods to detect differential modules which has density higher in 

one group but not the other. However, their method built pathway enrichment in the object 
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function while searching, that is, the optimization phase heavily depends on the prior knowledge 

and also the output module size is small. In this study, we extend their idea and search the 

modules without any prior information. Moreover we propose ways to tune the weight 

parameters and control the false discovery rate (FDR) of detected modules.  We evaluate the 

method on simulated data and two real datasets on breast cancer (ER+ vs ER-) and MDD (cases 

vs controls). The identified differential network modules are significantly enriched in many 

cancer and depression related pathways and shed light on the underlying disease mechanisms.  

 

4.2 METHODS 

4.2.1 Network construction 

Starting with N datasets from N studies, e.g. gene expression arrays, we divided the 

samples in each dataset into two groups (referred as group1 and group2) with respect to the 

phenotype of interest such as case and control. For each study, we built two gene coexpression 

networks with 2N networks in total. 

Gene coexpression networks could be generated with weighted or unweighted edges, we 

demonstrated our method based on unweighted networks, but the approach can easily be 

extended to weighted ones. To build unweighted networks and normalized across different 

studies, we first calculated all pair-wise gene-gene Pearson correlations, and then decide the 

cutoff for edge connections so that only the top 0.4% of possible connections in each network are 
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kept (Lee et al., 2003). This is because different studies may have different sample sizes with 

different experiment platforms, which could result in relatively high or low correlation 

distributions.  

The objective is to search for the module (network from a subset of genes) in one group 

that has consistently higher paired density difference than the other group. We examine the 

paired difference which can potentially cancel out potential differences between studies.   

4.2.2 Target function 

We propose to minimize the following energy function (target function) for identification 

of differential networks. : 

                                                     

This target function searches modules with larger densities in group 1 than those in group 

2 across N studies. The proposed target function comprises of the following four components: 

(1)       for the size of the module. (2)              for the minimum density in networks of 

group 1. (3)            for the average of the density differences between the two groups across 

N studies. (4)           for the consistency of the density difference between the two groups 

across N studies. The first three terms have been employed by (Michael R. Mehan and Zhou, 

2009). Note that, group1 and group2 can be switched in order to find higher density modules in 

group 2 than in group 1. 

Let us first denote by   the genes in a module,     as the size of the module and       as 

the density of the module in study  . The first component        
    

   

 
     is related to the size 
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of the modules which encourages the algorithm to output larger modules while penalizing very 

small modules (controlled by parameters       ). Without this term, dimmers and triplets which 

have density values 1 could easily dominate the output. The second component              

                            penalizes the module with small density in any one of the studies in 

group1 with parameters    . The third component            
                       

 
 gives small 

values to the module with large average density differences between two groups. And the fourth 

component is the variance of the paired difference of density under two different conditions in 

each study which encourages consistent finding across studies with 

term            
                                

 

 
. To incorporate all these terms, we weighted each 

term to get the total energy term as the final target function. 

4.2.3 Optimization with simulated annealing 

To minimize     , due to its nonconvex nature, we applied simulated annealing, a 

stochastic optimization algorithm for non-convex optimization (Kirkpatrick, Gelatt and Vecchi, 

1983). In each Monte Carlo step with simulated annealing, a new state is proposed denoted as 

    , which is either adding or removing a node (gene). If the resulting energy is smaller, then 

the state is accepted, if  not, then the state is accepted with an acceptance probability as follows : 

            
                  

                  
) 

where      is the acceptance probability and is             is the transition probability 

from old state to the new state, if the probability of removing and adding a node is the same, both 

terms cancel.         is the Boltzmann distribution of the energy function to be minimized: 
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 . T is a temperature parameter. When temperature is high, new trial 

moves will be accepted easily and thus more freely cross the local minimum, while when 

temperature gets lower, it tends to converge to a local minimum. We apply the temperature 

schedule                and stop the annealing run if the acceptance ratio is smaller than 

2%, where the acceptance ratio is calculated as the ratio of steps accepted in every 400 MC steps.  

Due to large searching space, we bounded the module size between 3 and 30. If module 

size is 3, a node will be added for a new state while if module size is 30 then one node will be 

removed. A trial move gene set is updated in each step so that once a node is added, that 

corresponding gene is removed from the trial set while when removing a node, the node is added 

to the trial set. At the beginning, the trial set is determined as the genes which have at least one 

edge connected with the seed module genes in any of the networks in group 1, which enables 

local searching. 

4.2.4 Seed module generation before optimization  

A good starting point is critical for optimization in high dimensional space. Instead of 

randomly selecting a subset of genes from the genome, an edge-study matrix was constructed 

where rows represent all edges and columns represent all studies in two conditions of size 2N 

(Walley et al., 2012). A simple statistical paired t test is used to get initial set of differential 

coexpressed edges with a preset p value threshold (p<0.1). Based on these initial differential 

coexpressed edges, an initial network is constructed and connected components are generated. If 

the size of the connected component is larger than 30, then we randomly subsample 10 genes 

from it as the seed module for optimization starting points, otherwise, the optimization starts 
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from the connected components directly. Other community detection algorithm may also be 

applied in this stage in order to generate better seed modules (Fortunato, 2010). 

4.2.5 Control of False Discovery Rate (FDR) 

In each simulated annealing run, a resulting module which is a suboptimal solution from 

the target function will be obtained. Suppose starting from K seed modules, M simulated 

annealing repeats, we will generate KM candidate differential modules. To control FDR of each 

module, we permute the labels of the case and control samples at the beginning with same 

procedures to obtain null modules. The null hypothesis here is that the case and control networks 

have no differences. Let     denotes the optimized energy value of module     from the i-th seed 

module and j-th simulated annealing repeat where       and      . Suppose the 

permutation is conducted B times and the energy value after same procedure of optimization is 

denoted as     
    where      ,          ,       .Therefore, the p value for each 

module     could be estimated as  

       
      

   
    

   
 
      

   
       

          
   

. 

Pseudo-count one is added to both the denominator and the numerator to avoid the zero 

p-values. FDR is derived from Benjamini & Hochberg correction to account for multiple 

comparison. 



89 

 

4.2.6 Assembly of small modules 

Since the current approach limits the size of the module between 3 and 30, small modules 

may not yield significant pathway enrichment to inspire further hypothesis generation. 

Therefore, in order to obtain larger modules, we proposed to use statistical significance of 

pathway enrichment to guide module assembly. We applied pathway enrichment analysis on all 

detected modules under certain FDR cutoff (e.g. FDR<0.3).  The enrichment was checked 

against 2,141 pathways downloaded from MSigDB 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp) that contained Biocarta, KEGG, 

Reactome and GeneOntology databases (excluding large pathways with more than 200 genes). 

One sided Fisher’s exact test (overrepresentation) was applied to calculate the statistical 

significance of overrepresentation.    

Pathway enrichment was applied on each of the modules passing FDR<0.3. Then the 

enrichment p value for each pathway for those modules were combined with the sum of log2 

enrichment p and ranked. The small negative combined value indicates several modules were all 

enriched in the same pathway, which may hint the potential relevance of the module to that 

pathway. We then examined the modules with enrichment p value <0.05 and assembled all those 

modules with respect to the specific pathway so that the new enrichment p value is the smallest. 

In this study, we limit the maximum modules to combine to be 3 due to computational issue. 

Assembling the modules can yield larger modules with more genes involved in specific pathway 

which might be of more interest to biologists. 

 

http://www.broadinstitute.org/gsea/msigdb/index.jsp
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4.2.7 Weight parameter tuning 

To tune the parameters             in the target function, we first constrain the sum of 

the four parameters to be 1000, i.e.                     In our experience, we found 

that the weight       are only to prevent singular solutions (very tiny modules) and their 

weights do not contribute much to the quality of differential network identification. As a result, 

we fix the        and        and there is only one parameter    remained (       

   .  We search    from 100 to 700 with spacing 100. Then the problem is reduced as the 

tradeoff between the size of the density differences and the consistence of the density 

differences. Under each set of parameters, same permutation procedures described in Section 

4.2.5 will be used to calculate the FDR for each identified module. To decide which parameters 

to choose, we output a table of all assembled modules, their associated energy function p values 

and pathway enrichment p values for users to decide. In general, we select    such that the 

number of identified modules under FDR cutoff 0.3 is largest.  

 

4.3 RESULTS 
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4.3.1 Simulation datasets 

To illustrate the method, we first applied to simulated datasets of 4 studies. We simulated 

100 artificial genes named from 1 to 100 and generated a module involving genes 1 to 15 with 

probability              of having an edge between any pair of these 15 genes. This module 

was treated as underlying true differential coexpressed module. We then simulated 4 pairs of 

networks with two conditions (group 1 and group 2), group 1 with the module densely connected 

while group 2 not. To model the noise in different studies, among the 4 networks in group 1, the 

module has a probability                 of adding an edge and probability 

                   of deleting an edge. Here we chose a beta distribution simply to treat the 

noise on each edge differently and the probability of adding edges larger than missing edges. For 

the rest of genes 16-100 as well as the networks under condition 2, the edges are generated 

randomly with probability      . In this simulation, we chose the parameters as         

           . 

With these four pairs of simulated datasets, we constructed the edge-study matrix, 

obtained the differential coexpressed edges and calculated the connected components. The initial 

configuration for simulated annealing with an energy value ~2052 is shown in Figure 4-1 (A). 

After ~1500 Monte Carlo steps with trace plot shown in Figure 4-2, the energy is converged at 

~1105. In this final configuration, 13 of the 15 genes in the true module were recovered and it 

has a better density contrast between the networks of two groups compared with the initial 

configuration as shown in Figure 4-1 (B). 
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4.3.2 Breast cancer datasets  

We then applied our method to four large breast cancer datasets, including two GEO 

datasets, TCGA breast cancer datasets and METABRIC. The TCGA breast cancer dataset was 

downloaded from the Cancer Genome Atlas (TCGA) website (http://tcga-data.nci.nih.gov/tcga) 

in October 2012. Level 3 RNA-Seq data were extracted from the Illumina HiSeq 2000 platform. 

We selected the TCGA breast cancer data set that contained expression data of n=406 tumor 

samples. The METABRIC gene expression and clinical data are retrieved from Synapse 

(https://www.synapse.org/#!Synapse:syn2133309) where we obtained 1981 samples, (Curtis et 

al., 2012). The four breast cancer datasets are described in Table 4-1. Here we attempted to 

identify differentially coexpressed modules between networks from ER positive patients and 

networks from ER negative patients. 

Microarrays were scanned and summarized by manufacturers’ defaults. Data from 

Affymetrix arrays were processed by robust multi-array (RMA) method and data from Illumina 

arrays by manufacturer’s BeadArray software for probe analysis. Oligonucleotide probes (or 

probesets) were matched to gene symbols using hgu133plus2.db and illuminaHumanv4.db 

Bioconductor packages. If multiple probes match to the same gene, then the gene with the largest 

inter-quantile range (IQR) is used.  After matching all the genes across the four studies and filter 

away genes with an average standard deviation smaller than 0.2 across all studies, which left 

10674 genes for following analysis. 

  4 pairs of gene coexpression networks were constructed for ER+ patients and ER- 

patients in the 4 studies. The cutoff for each unweighted network is chosen such that 0.4% 

possible edges are maintained among all possible edges. Edge-study matrices were calculated 

https://www.synapse.org/#!Synapse:syn2133309
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and connected components were obtained as starting seeds for simulated annealing algorithm 

with repeat number M=20. FDR was calculated for each of the modules with permutation time 

B=20.  The same procedure was conducted with different parameter sets of    from 100 to 700 

with spacing 100.    was then selected to be 700 for breast cancer datasets by the criterion of 

largest number of output modules passing the FDR <0.3 threshold. 

With       , two example modules, one densely connected in ER+ networks with 22 

genes and one densely connected in ER- networks with 16 genes are illustrated in Figure 4-3(A), 

and Figure 4-3(B) respectively. Both modules achieved FDR 0.02.  Although we found some 

modules with striking average paired differences, small modules (small sets of genes) usually did 

not yield significant pathway enrichment results. Therefore, module assembly was applied 

according to the procedures outlined before. Top list of pathways enriched by those assembled 

modules with q value < 0.005 are listed in Table 4-2 and Table 4-3. 

 For top pathways associated with assembled modules densely connected in ER+ status,  

many are cell cycle related pathways such as cell cycle pathway from KEGG, cell cycle 

checkpoint, S phase pathway and M_GI transition pathway from REACTOME, which are known 

to play an important role in cancer (Ouhtit et al., 2013). Activation of calpain is shown to induce 

anti-tumor activity in breast cancer and melanoma (Colunga et al., 2014).  Also MTOR and EIF4 

pathways are tightly related, inhibitor of mTOR haven been used as cancer therapy and EIF4E 

activity predicts sensitivity to mTOR inhibition in breast tumours  (Satheesha et al., 2011). Also 

some other cancer pathway such as prostate cancer pathway is also enriched. 

 By examining the top pathways associated with assembled modules densely connected in 

ER- status, some immune related pathways are in the top list such as immune response pathway 

from GO, immunoregulatory interactions between a lymphoid and a non-lymphoid cell pathway 
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and humoral immune response from REACTOME, B cell receptor signaling pathway from 

KEGG (Schmidt et al., 2008).  It is shown that PD-L1 expression has association with tumor 

cells and objective response (Topalian et al., 2012). JAK-STAT signaling pathway is also highly 

related to different cancers.  

4.3.3 Major depressive disorder (MDD) example  

Then we applied our procedures to eight MDD microarray studies which contain a total 

of 51 MDD subjects and 50 control subjects. A description of the eight studies is listed in Table 

4-4. Major depressive disorder is widely known for its weak signal provided by the evidence of 

genome-wide association studies (GWAS) (Major Depressive Disorder Working Group of the 

Psychiatric et al., 2013). 

Microarrays were scanned and summarized by manufacturers’ defaults. Data from 

Affymetrix arrays were processed by robust multi-array (RMA) method and data from Illumina 

arrays by manufacturer’s BeadArray software for probe analysis. Batch effects were evaluated 

and normalized. Oligonucleotide probes (or probesets) were matched to gene symbols using 

hgu133plus2.db and illuminaHumanv4.db Bioconductor packages. The potential bias caused by 

this selection was addressed by permutation analysis in the following analytical steps. 16,689 

unique genes were matched across the eight studies. Two sequential steps of gene filtering were 

then performed. First, genes with very low expression across studies were filtered out. 

Specifically, mean intensities of each gene across all samples in each study were calculated and 

the corresponding ranks were obtained. The sum of such ranks across eight studies of each gene 

was calculated and genes with the lowest 20% rank sum were considered non-expressed and 
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were filtered out. Secondly, genes displaying very small variation in expression (i.e., lowest 20% 

rank sum of standard deviations) were filtered out, together leaving 10,680 unique genes. Then 

we further filtered away genes with average standard deviation smaller than 0.2 across all 

studies, which left 8121 genes for following analysis. 

8 pairs of gene coexpression networks were constructed for MDD subjects and control 

subjects for the 8 studies. The cutoff for each unweighted network is chosen such that 0.4% 

possible edges are maintained among all possible edges. Simulation annealing repeat was chosen 

to be 20 (M=20). FDR was calculated on each output module based on permutation time B=25.  

The same procedure was conducted with different parameter sets of    from 100 to 700 with 

spacing 100 as before.    was then selected to be 200 since it has the largest number of detected 

modules with FDR<0.3 which contain 20 modules densely connected in MDD group and 37 

modules densely connected in control group. 

We showed two example modules when       , one densely connected in MDD 

networks and one densely connected in control networks as illustrated in Figure 4-4 (A), and 

Figure 4-4 (B) respectively. The former module achieved FDR 0.07 with 6 out of 8 studies have 

paired density difference more than 0.1 and the latter module achieved FDR 0.28 with 5 out of 8 

studies have more than 0.1 difference. Although it is not consistent across all eight studies, the 

density difference relationship is preserved across the majority of the studies. This situation 

could come from either the heterogeneity of the studies (different brain region, gender) or could 

come from the cutoff selection when selecting the edges, if the cutoff for a specific pair of 

studies both have too high correlation cutoff, then the module will have low density in both 

networks. Output modules densely connected in control networks and densely connected in 

MDD networks were assembled separately as shown in 4.2.6. The assembled modules with their 
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associated pathways enriched with q value <0.005 and other informations are shown in Table 4-5 

(module densely connected in control group) and Table 4-6 (module densely connected in MDD 

group). 

For assembled modules densely connected in control group shown in Table 4-5, the 

enriched pathways included three neurological diseases: Parkinson’s disease with 13 genes in 

that pathway, as well as Huntington’s disease with 11 genes and Alzheimer’s disease with 10 

genes in the pathway. These neurological diseases were shown to be associated with major 

depressive disorder (Folstein et al., 1983; Nilsson et al., 2002; Zubenko et al., 2003)  Also, it is 

highly enriched in mitochondria where mitochondrial abnormalities and deficiencies in oxidative 

phosphorylation have been reported in individuals with schizophrenia (SZ), bipolar disorder 

(BD), and major depressive disorder (MDD) in transcriptomic (Rollins et al., 2009). A decrease 

of electron transport chain have been reported in bipolar disorder (Benes et al., 2006). 

For assembly modules densely connected in MDD group shown in Table 4-6,  there are 

also enriched pathways related to the mitochondria. Also there are cell cycle, apoptosis related 

pathways in the top list. It has been reported that depression could contribute to atrophy and cell 

loss in hippocampus and antidepressant treatment could increases neurogenesis (Duman, 2004). 

As a whole, the identified differentially coexpressed modules could help elucidate the 

underlying disease mechanism and help generate new hypotheses to understand the molecular 

network basis of the disease. 



97 

 

4.4 CONLUSION 

In this study, we proposed a method to simultaneously detect differential coexpression 

modules across multiple studies with respect to certain phenotype of interest. The method 

utilized prior free target function which is an extension of  pathway guided target function 

proposed in (Michael R. Mehan and Zhou, 2009).  We also presented the procedures to control 

the FDR as well as tuning the weights in the target function. The applicability of the optimization 

algorithm is illustrated in the simulation datasets. Then we applied the procedures on 4 breast 

cancer datasets as well as 8 MDD datasets. We showed the algorithm could output modules with 

large average paired density differences as well as consistent density differences. With module 

assembly guided by pathway analysis, we showed it is able to generate assembled modules 

highly enriched in cancer related pathways in the breast cancer example as well as depression 

related pathways in the MDD example. 

 

 

 

 



98 

 

 

 

Figure 4-1 Module output before and after optimization in simulation datasets. 

(A) Before optimization (B) After optimization.  
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Figure 4-2 Energy trace plot in simulated annealing.  

 

 

Table 4-1 Data description of four breast cancer datasets 

Data sets  Sample size  Array platform  

GSE7390  198 (134 vs 64) Affymetrix Human Genome 
U133A Array  

GSE2034  286 (209 vs 77) Affymetrix Human Genome 
U133A Array 

TCGA-breast cancer  406 (319 vs 87) RNA-Seq  
METABRIC  1981 (1512 vs 469) Illumina  
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Table 4-2 Top pathways enriched after module assembly for breast cancer datasets (densely connected in 

ER+ group). 

Pathway name FDR (q value) size Genes 
in set 

Mean density 
difference 

Module 
assembled 

KEGG_CELL_CYCLE 4.28e-10 46 9 0.29 M1,M3,M4 

KEGG_HUNTINGTONS_DISEASE 4.81e-09 46 9 0.14 M1,M3,M33 

KEGG_OXIDATIVE_PHOSPHORYL

ATION 5.46e-08 41 7 0.19 M1,M4,M8 

REACTOME_CELL_CYCLE_CHEC

KPOINTS 1.7e-07 49 7 0.17 M2,M3,M17 

REACTOME_ELECTRON_TRANSP

ORT_CHAIN 3.2e-07 31 5 0.20 M1,M9 

REACTOME_PLATELET_ACTIVAT

ION 5.11e-07 54 8 0.23 M2,M5,M8 

BIOCARTA_MCALPAIN_PATHWA

Y 8.3e-07 35 4 0.26 M1,M3 

REACTOME_S_PHASE 9.41e-07 40 6 0.33 M2,M3,M4 

REACTOME_HIV_INFECTION 4.33e-06 29 6 0.24 M1,M3 

KEGG_PROGESTERONE_MEDIATE

D_OOCYTE_MATURATION 3.94e-06 36 5 0.24 M1,M2 

BIOCARTA_INTEGRIN_PATHWAY 4.21e-06 33 4 0.22 M1,M2 

REACTOME_DNA_REPLICATION_

PRE_INITIATION 6.31e-06 43 5 0.34 M1,M2,M3 

BIOCARTA_UCALPAIN_PATHWA

Y 8.93e-06 28 3 0.19 M1,M11 

GO_MF_ENZYME_INHIBITOR_AC

TIVITY 1.05e-05 50 6 0.28 M1,M4,M6 

REACTOME_M_G1_TRANSITION 1.65e-05 32 4 0.30 M1,M2 

BIOCARTA_MTOR_PATHWAY 2.23e-05 30 3 0.18 M1,M22 

BIOCARTA_EIF4_PATHWAY 2.23e-05 30 3 0.18 M1,M22 
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BIOCARTA_PTDINS_PATHWAY 2.99e-05 33 3 0.22 M2,M3 

REACTOME_SYNTHESIS_OF_DNA 7.81e-05 32 4 0.30 M2,M3 

GO_MF_ENDOPEPTIDASE_ACTIVI

TY 0.0001 54 5 0.30 M1,M2,M3 

KEGG_PROSTATE_CANCER 0.0002 36 4 0.24 M1,M2 

 

Table 4-3 Top pathways enriched after module assembly for breast cancer datasets (densely connected in ER- 

group). 

Pathway name FDR (q 
value) size Genes 

in set 
Mean density 

difference Module assembled 

GO_BP_IMMUNE_RESPONSE 8.5e-12 31 12 0.47 M1,M5,M7 

REACTOME_COSTIMULATION_BY

_THE_CD28_FAMILY 1.2e-06 38 6 0.42 M3,M8,M10 

REACTOME_IMMUNOREGULATO

RY_INTERACTIONS_BETWEEN_A

_LYMPHOID_AND_A_NON_LYMP

HOID_CELL 3.5e-06 26 5 0.47 M3,M4 

KEGG_JAK_STAT_SIGNALING_PA

THWAY 4.3e-06 37 7 0.41 M1,M5,M6 

REACTOME_PD1_SIGNALING 7.3e-06 37 4 0.43 M3,M5,M10 

KEGG_B_CELL_RECEPTOR_SIGNA

LING_PATHWAY 9.4e-06 29 5 0.48 M5,M6 

KEGG_LEISHMANIA_INFECTION 1.2e-05 37 5 0.43 M1,M2,M4 

GO_BP_HUMORAL_IMMUNE_RES

PONSE 1.2e-05 32 4 0.45 M3,M6,M8 

GO_MF_CYTOKINE_BINDING 1.3e-05 24 4 0.51 M4,M5 

GO_CC_EXTERNAL_SIDE_OF_PLA

SMA_MEMBRANE 1.8e-05 26 3 0.47 M5,M7 

KEGG_CELL_ADHESION_MOLECU

LES_CAMS 2.1e-05 23 5 0.49 M2,M4 

GO_BP_CALCIUM_MEDIATED_SIG

NALING 2.4e-05 28 3 0.49 M3,M6 
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BIOCARTA_NKCELLS_PATHWAY 3.0e-05 24 3 0.51 M4,M6 

GO_BP_CELLULAR_DEFENSE_RES

PONSE 3.0e-05 28 4 0.48 M1,M4 

GO_MF_INTERLEUKIN_BINDING 5.5e-05 24 3 0.51 M4,M5 

KEGG_NATURAL_KILLER_CELL_

MEDIATED_CYTOTOXICITY 0.0001 36 5 0.45 M2,M3,M4 

KEGG_FOCAL_ADHESION 0.0005 29 5 0.25 M3,M4 

GO_BP_ANTI_APOPTOSIS 0.0005 29 4 0.47 M1,M5,M7 
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(A) 
 

 
(B) 
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Figure 4-3 Two example modules in breast cancer datasets. Example module densely connected in 

ER+ group but not in ER- group. (B) example module densely connected  in ER- group but not in 

ER+ group. 

 

Table 4-4 Data description of eight MDD microarray studies. 

Study name Gender Brain region Sample size Array platform 

1-MD_ACC_M Male ACC 30 (15 pairs) Affy. HG-U133 Plus 2 

2-MD_ACC_M Male ACC 18 (9 pairs) Affy. HG-U133 Plus 2 

3-MD_ACC_F Female ACC 28 (14 pairs) IlluminaHumanHT-12 

4-MD_ACC_F Female ACC 22 (11 pairs) IlluminaHumanHT-12 

5-MD_AMY_M Male AMY 28 (14 pairs) Affy. HG-U133 Plus 2 

6-MD_AMY_F Female AMY 42 (21 pairs) IlluminaHumanHT-12 

7-MD_DLPFC_F Female DLPFC 28 (14 pairs) Affy. HG-U133 Plus 2 

8-MD_DLPFC_M Male DLPFC 32 (16 pairs) Affy. HG-U133 Plus 2 
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Figure 4-4 Two example modules in MDD datasets. (A)  Example module densely connected in MDD group 

but not in control group. (B) example module densely connected  in control group but not in MDD group. 

 

Table 4-5 Top pathways enriched after module assembly for MDD datasets (densely connected in control). 

Pathway name FDR (q value) size Genes 
in set 

Mean density 
difference 

Module 
assembled 

KEGG_PARKINSONS_DISEASE 5.2e-11 72 13 0.10 M2,M5,M8 

REACTOME_GLUCOSE_REGULATI

ON_OF_INSULIN_SECRETION 3.3e-09 72 13 0.10 M8,M13 

KEGG_OXIDATIVE_PHOSPHORYL

ATION 3.3e-09 72 12 0.10 M6,M9 

REACTOME_REGULATION_OF_IN

SULIN_SECRETION 3.1e-08 72 13 0.10 M7,M12 

KEGG_HUNTINGTONS_DISEASE 7.3e-08 72 11 0.10 M1,M3 

GO_CC_MITOCHONDRIAL_ENVEL

OPE 3.4e-07 69 9 0.10 M1,M6 

REACTOME_ELECTRON_TRANSP

ORT_CHAIN 4.7-07 70 8 0.10 M1,M2,M3 

GO_CC_MITOCHONDRIAL_RESPIR

ATORY_CHAIN 5.2e-07 69 6 0.09 M4,M5 

KEGG_ALZHEIMERS_DISEASE 5.3e-07 72 10 0.10 M4,M9 

GO_CC_NADH_DEHYDROGENASE

_COMPLEX 1.3e-05 52 4 0.11 M1,M2 

GO_MF_ELECTRON_CARRIER_AC

TIVITY 0.001 69 5 0.11 M4,M9 

GO_MF_ISOMERASE_ACTIVITY 0.001 48 3 0.12 M1,M3 

GO_MF_OXIDOREDUCTASE_ACTI

VITY_ACTING_ON_NADH_OR_NA

DPH 

0.002 53 3 0.11 M1,M3 

KEGG_EPITHELIAL_CELL_SIGNA

LING_IN_HELICOBACTER_PYLOR

I_INFECTION 

0.005 41 3 0.14 M1,M2 
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Table 4-6 Top pathways enriched after module assembly for MDD datasets (densely connected in MDD). 

Pathway name FDR (q 
value) size Genes 

in set 
Mean density 

difference Module assembled 

GO_BP_RESPONSE_TO_BIOTIC_ST

IMULUS 0.002 58 5 -0.13 M2,M5,M8 

GO_BP_APOPTOTIC_PROGRAM 0.005 45 3 -0.14 M6,M9 

GO_BP_MITOCHONDRION_ORGA

NIZATION_AND_BIOGENESIS 0.005 46 3 -0.13 M1,M3 

KEGG_EPITHELIAL_CELL_SIGNA

LING_IN_HELICOBACTER_PYLOR

I_INFECTION 0.005 62 4 -0.14 M1,M2,M3 

KEGG_OXIDATIVE_PHOSPHORYL

ATION 0.005 47 5 -0.12 M4,M5 

GO_BP_MEMBRANE_ORGANIZATI

ON_AND_BIOGENESIS 0.005 61 5 -0.14 M1,M3,M4 

GO_BP_CELLULAR_COMPONENT_

DISASSEMBLY 0.005 50 3 -0.13 M1,M2 

REACTOME_CELL_CYCLE_CHEC

KPOINTS 0.005 47 4 -0.15 M1,M2 

GO_MF_SMALL_CONJUGATING_P

ROTEIN_LIGASE_ACTIVITY 0.005 46 3 -0.16 M1,M2 

KEGG_CITRATE_CYCLE_TCA_CY

CLE 0.005 45 3 -0.17 M1,M2 
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 SUMMARY OF CONTRIBUTIONS 

Disease biomarkers are increasingly important in this era of personalized medicine, as 

they can both help predict the progress of a disease as well as its response to a treatment. How to 

discover biomarkers and how to construct models with biomarkers and evaluate their prediction 

performances are important methodological questions that could facilitate the progress of this 

field. In this thesis, we have presented one application study and two computational methods that 

contribute to the biomarker research field. 

Firstly, in a collaborative study, we constructed prediction models based on eight novel 

fusion genes detected from RNA sequencing with consistent prediction accuracies on prostate 

cancer recurrence (defined by relapse within 5 years) and aggressiveness (defined by PSA 

doubling time < 4 months) across three centers in Pittsburgh, Stanford and Wisconsin. Our 

prediction models could potentially help reduce the overtreatment of the disease. This finding 

was the first study combining fusion genes alone to predict prostate cancer prognosis. We 

showed that fusion genes, although individually rare, can predict prostate cancer recurrence and 

aggressiveness. 

We next developed a new method, IPL, which corrects the bias of reporting the minimal 

cross validation error rate when multiple machine learning methods are applied. The IPL method 
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estimates the true minimal error rate based on fitting the individual learning curve of each 

classifier independently. The error rate of each classifier is then extrapolated to the sample size 

we want to estimate.  IPL was able to provide more robust estimates compared to existing bias 

correction methods as shown in the 2-D toy model and two large breast cancer datasets. Prior to 

the development of IPL, existing bias correction methods depended on evaluating performances 

based on cross validation or subsampling; therefore, error rates were estimated on part of the 

dataset. These methods thus may give estimates that either overestimate the bias or are more 

variable (Bernau et al., 2013; Tibshirani, 2009; Varma and Simon, 2006). The use of extraction 

in the IPL method avoids these problems. IPL is of particular value to researchers who conduct 

small clinical studies with the objective of building prediction models to predict disease status or 

prognosis. Moreover, the ability to extrapolate beyond the existing sample size can aid study 

design by exploring how much additional prediction value can be gained if more patients are 

recruited. 

Finally, we presented a computational algorithm (MetaDiffNetwork) to identify 

coexpression modules that are consistently differentially coexpressed across disease conditions 

in multiple transcriptomic studies. By modifying a previous target function (Michael R. Mehan 

and Zhou, 2009), our method does not rely on prior information at the initial module searching 

stage. Our method also includes steps to control the false discovery rate of output modules and to 

tune the weight in the target function. In order to generate larger modules, our method uses a 

pathway guided approach to assemble statistically significant modules to maximize pathway 

enrichment with respect to specific biological pathways. We demonstrated good performance of 

this algorithm via simulation as well as testing on two real datasets including a set of eight major 

depressive disorder transcriptome studies (postmortem brain samples from MDD patients versus 
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matched control subjects) and four breast cancer studies (ER+ vs ER-). The identified modules 

were validated using knowledge of existing disease pathways for each disease. This method is 

useful for researchers with multiple expression datasets of similar designs at hand who wish to 

find a set of genes which give consistent differential coexpressed patterns across disease 

conditions. This enables researchers to generate biological hypotheses on the potential 

mechanisms that could contribute to the differential patterns.  

In conclusion, the thesis first demonstrated in a collaborative study that eight novel fusion 

genes detected from transcriptome sequencing under deep coverage could predict prostate cancer 

recurrence as well as prostate cancer aggressiveness with consistent results across three sites 

with >200 patients. The thesis then presented two new methods intended to aid biomarker 

research: IPL and MetaDiffNetwork. The first of these methods corrects the bias when reporting 

minimal cross validation error rates when multiple machine learning methods are applied, which 

is a common problem in small clinical studies. The latter provides a method to detect network 

modules which are consistently differentially coexpressed between disease conditions across 

multiple studies. Taken together, this thesis provides new contributions to biomarker research 

which can eventually be used to benefit clinical decision-making, including evaluating the 

prediction performance of biomarker models and revealing potential novel biomarkers from a 

network perspective.  

5.2 FUTURE DIRECTIONS 

Below I briefly discuss possible future directions from this thesis. 
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5.2.1 Combining fusion gene with existing measures to improve prediction 

In Chapter 2, we only considered using fusion genes to predict cancer recurrence and 

aggressiveness. Future studies may combine fusion genes with other measures, such as Gleason 

score, tumor stage and PSA (prostate-specific antigen) level.  It would also be useful to compare 

the current model to the existing nomogram by Memorial Sloan-Kettering Cancer Center 

(Kattan, Wheeler and Scardino, 1999), which used a simple regression model incorporating 

common diagnoses measures such as the patient’s PSA value prior to surgery or other treatment, 

the primary Gleason grade at surgery, secondary Gleason grade at surgery, year of 

prostatectomy, number of months the patient has been disease-free, whether surgical margins 

were positive, and so on. It would be helpful to evaluate how much additional value can be 

added by combining both the fusion gene and nomogram models. Also the current design of this 

study did not consider the most prevalent TMPRSS2-ERG2 fusion; it would be of interest to 

assess the value of the model if that fusion is included. 

5.2.2 Power analysis on fusion gene analysis using RNA-Seq 

The findings in Chapter 2 suggest that down-sampling the original RNA-seq datasets of 

1300X coverage would miss some of the previously detected fusion genes. This could result 

from two factors: 1) tumor tissues are often contaminated by normal tissues; and 2) even within 

tumor tissues, not all cells would harbor the fusion genes. Therefore, good quality control of the 

samples used to detect features is of utmost importance. Missing features reduces the number of 

possible predictors, resulting in a low sensitivity. Future work may involve modeling the power 
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of fusion gene detection. For example, a patient carrying a low-allelic-fraction fusion gene may 

not be detected if sequencing depth R is low and will be falsely diagnosed. The power 

calculation framework can involve three major factors of the specific fusion gene, prevalence φ, 

allelic fraction λ and abundance of expression β. Prevalence φ is the proportion of patients 

among the population that carry the fusion gene. Low prevalence will require a large sample size 

(N) to detect fusion genes with high sensitivity. Allelic fraction λ is the proportion of cells 

carrying the fusion gene and abundance β is the proportion of fusion transcripts relative to the 

entire transcriptome. A fusion gene with small λ and/or small β will require high sequencing 

depth (R) to guarantee detection. As a result, the power function Pow(N,R) of a target fusion 

transcript would provide useful information to investigators given pre-specified φ, λ and β. 

5.2.3 Increasing the speed of IPL and taking into consideration the dependence structure 

of classifiers in bias correction 

Although IPL gives a more robust estimate compared to existing methods, as shown in 

Chapter 3, it can be more computationally extensive due to subsampling multiple times at 

smaller sample sizes. Future work could involve improving the IPL method by making it more 

computational efficient. Since the learning curves of all classifiers are fitted independently, it 

would be very suitable for parallelization which would greatly reduce the computational cost. 

For example, computation for different classifiers could be sent to different cores.  

Another aspect of the method that could be optimized is the strategy for combining the 

classifiers. Currently, we sum together all the different feature selections, machine learning 

methods and their associated parameter setting into M classifiers without taking into 
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consideration the correlation structure of the classifiers. Understanding their correlations may 

elucidate the contribution of bias from different sources and may yield a better solution. In 

practice, if one could determine high- and low-performance methods for empirical studies, this 

could aid in the selection of the set of classifiers for investigation. 

5.2.4 Improving module assembly process 

Currently, our method MetaDiffNetwork for assembling small modules into larger 

modules guided by pathway enrichment, as shown in Chapter 4, solved the problem of small 

sizes of output modules (<30) (Michael R. Mehan and Zhou, 2009). However, this module 

assembly stage does not consider the decrease of average density difference, and instead only 

considers the significance gain in the enrichment p value. It would be useful to assemble the 

modules with another round of simulated annealing by incorporating both enrichment p values 

with respect to specific pathways as well as average density differences into the target function. 

This stage could help trim the larger module to provide a balance between pathway enrichment 

and density differences between disease conditions across multiple studies. 

5.2.5 Summarizing differential coexpressed modules to aid biological exploration 

Our method MetaDiffNetwork (Chapter 4) has focused primarily on detecting modules 

which have consistent density differences between two conditions across multiple studies as well 

as associating the modules after assembly with the existing pathway knowledge. However, to let 

biologists better explore the results and generate biological hypotheses, it would be beneficial to 



114 

 

summarize the differential modules across multiple studies into one module which can be easily 

visualized and explored using tools such as Cytoscape (Shannon et al., 2003).  To summarize the 

differential module, a standardized score could be designed to represent the weight on each edge. 

Denote    
    as the correlation between gene i and j in study k in group 1, while    

    as the 

correlation between gene i and j in study k in group 2. Let    
     

   
    

     and let    
     be the 

mean of paired correlation differences,     be the standard deviation of paired correlation 

differences and    be the fudge parameter that could be estimated by the median of all standard 

devision of correlation difference. Then the edge weight of the summarized module could be 

represented by the standardized score     
       

      
 . In visualization, edge width and node size 

could be adjusted to represent the magnitude of the weight as well as the degree of the node. To 

better understand the biology, the nodes (genes) that are enriched in transcription factors, 

protein-protein interactions as well as drug interactions could be highlighted and the edges which 

overlap with known interaction could be highlighted as well. This would provide a useful tool for 

biologists to explore the network and generate biological hypotheses on potential disease 

mechanisms.  
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APPENDIX A- Supplementary information for  Chapter 2 

 

TRANSLOATION AND FUSION TRANSCRIPTS IN PROGRESSIVE PROSTATE 

CANCER 

Supplementary Figure and Tables 
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Supplementary Figures and Tables 

 
Figure S-5-1 Circus plots of prostate cancer functional genome translocation. 

Five prostate cancer functional translocations were based on RNA sequencing. Fourteen of these 

functional translocations were supported by whole genome sequencing analysis. Functional 

translocation is defined as at least one transcript identified in the translocation process. 

Translocations in non-gene area were excluded.  
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Figure S-5-2 Genome breakpoint analysis of fusion genes 

Top panel: Miniature diagrams of genome of the fusion genes, the transcription 

directions, the distances between the joining genes and directions of the chromosome joining. 

Middle panel: Miniature of fusion genome and transcription direction. Bottom: Representative 

sequencing chromograms encompassing the joining breakpoint of chromosomes. 
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APPENDIX B- Supplementary information for  Chapter 3 

BIAS CORRECTION FOR SELECTING THE MINIMAL-ERROR CLASSIFIERS 

FROM MANY MACHINE LEARNING MODELS 

 

Supplementary Proofs for theoretical results 

Supplementary Method - Selection of the 5 GEO datasets. 
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B.1 SUPPLEMENTARY PROOFS FOR THEORETICAL RESULTS 

Proof for Theorem 1 

 

Proof. This is trivial, since     always implies that                   . 

 

Proof for Theorem 2 

 

Proof. For   = {  ,…,  } with      , let us a function       as 

        
 
     

then obviously        is a concave function, which implies that by Jensen inequality, it holds 

                        

 

which is equivalent to 

   
 

                
 

                 
       

  

 

Recall that the equality holds only if       is linear and or       is constant. Obviously this is not 

true for our case, therefore the strict inequality holds, i.e., 

       
       

  

 

Proof for Theorem 3 
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Proof. Let us denote by       and         the estimated and the true class of sample i predicted 

by classifier m respectively for          and        , then the estimated error rate 

of classifier m is       
   
               

 
, where      is the indicator function. Obviously 

        follows a binomial distribution with mean     and variance   
      

  

 
. 

Without loss of generality, let us assume                  
   (i.e., there is only one 

optimal classifier) and define 

     
    

    
     

    

then by Chebyshev inequality, it holds 

       
    

   
 

 
  

   
      

  

            . 

which implies that for any     , it holds 

           
  

 

 
          . 

and therefore 

                
            

           
   holds with probability 1.  

The proof can be easily extended to the case where more than one classifier have the same 

minimal error rate. Therefore this theorem states that when sample size is large enough, one 

always can find one classifier with minimal error rate. 

B.2 SUPPLEMENTARY METHODS-SELECTION OF THE 5 GEO DATASETS 

1. Search "Homo sapiens [porgn: txid9606]" at http://www.ncbi.nlm.nih.gov/geo/ 



121 

 

2. Obtain 984 human datasets and 324,059 human samples. 

3. Normalization: log transform, median-center to 0, and normalize SD 

to 1. Note: expression can be null. 

4. Selected 764 datasets with # samples >= 6.  

5. For the gene ID with multiple probe IDs, take average expression. 

After obtaining all the datasets, the five representative datasets are selected randomly among the 

datasets larger than 40. 
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