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Abstract—Energy autonomy and system lifetime are critical
concerns in wireless sensor networks (WSNs), for which energy
harvesting (EH) is emerging as a promising solution. Neverthe-
less, the tools supporting the design of EH-WSN are limited to
a few simulators that require developers to re-implement the
application with programming languages different from WSN
ones. Further, simulators notoriously provide only a rough ap-
proximation of the reality of low-power wireless communication.

In this paper we present SENSEH, a software framework that
allows developers to move back and forth between the power
and speed of a simulated approach and the reality and accuracy
of in-field experiments. SENSEH relies on COOJA for emulating
the actual, deployment-ready code, and provides two modes of
operation that allow the reuse of exactly the same code in real-
world WSN deployments. We describe the toolchain and software
architecture of SENSEH, and demonstrate its practical use and
benefits in the context of a case study where we investigate how
the lifetime of a WSN used for adaptive lighting in road tunnels
can be extended using harvesters based on photovoltaic panels.

I. INTRODUCTION

Wireless sensor networks (WSNs), whose market value is
growing steadily, are delivering their promise of enabling new,
low-cost, and ubiquitous sensing applications. However, one of
the main limiting factors of current applications comes from
energy autonomy, which typically keeps the system lifetime
(or the mean-time-before-maintenance) very far from the tens
of years expected by industry stakeholders. It is therefore
not surprising that the idea of equipping WSN nodes with
an energy harvesting (EH) subsystem has gained quite some
momentum in recent years. Scavenging energy directly from
the environment around WSN nodes appears to be an ideal
solution to alleviate, and possibly solve, the energy problem.
Indeed, in many cases the energy density—whether solar,
wind, vibrational or thermal in nature—available in the target
environment is often compatible with the energy demands of
the low-power devices participating in the WSN application.

While energy harvesting appears to be a very promising
technology for extending WSN lifetime, new tools are required
for accelerating time-to-market for these systems. Indeed, to
ease the industrial development of Energy Harvesting WSNs
(EH-WSNs), pre-prototyping tools must provide fast and re-
liable results at low cost, to inform appropriate hardware
design choices or validate them. Furthermore, prototyping an
application by deploying complete EH-WSN nodes, including
their sensing, harvesting, and communication subsystems, is
both a lengthy and expensive process, possibility inhibiting
the wide-scale development of EH-WSNs.

For these reasons, a simulation approach is often preferred
over hardware prototyping to limit costs and also to enable
a precise analysis of each component’s internal states. This
approach also allows to investigate a greater system scale,
the evaluation of design tradeoffs for system components
(hardware and/or software) that may even not be physically
implemented yet, the ability to replay specific scenarios or
study the influence of given environmental parameters, and
finally the possibility of observing the WSN behavior over
extended periods of time. These benefits motivate the recent
emergence of simulation tools for EH-WSNs we concisely
survey in Section II. Simulation has its drawbacks, however,
most notably the fact that all existing tools require that the
simulated system is implemented in a programming framework
(e.g., C++ or Matlab) different from the one of the final WSN
implementation (e.g., TinyOS/nesC or Contiki/C). This makes
the execution of simulations fast and efficient, but significantly
widens the gap between the behavior of the EH-WSN that is
simulated and the one that is actually deployed. The gap may
be so significant that the considerations about energy sustain-
ability derived in the former may actually become invalid once
confronted with the reality of the latter. A typical example is
provided by the simulation of wireless communication, which
is known to provide only a very rough approximation of the
real conditions, which are strongly affected by the deployment
environment.

In contrast, SENSEH improves over the current state by
providing a software framework that allows developers to
move back and forth between the power and speed of a
simulated approach and the reality and accuracy of in-field
experiments, as shown in Table I. Further, this is achieved
through two modes of operation, depending whether a real
harvester is actually available or not. For simplicity, we call
these modes MEMORY and PINS, for reasons that will become
evident next.

In MEMORY mode, the harvester is only simulated: a real
harvester does not necessarily exist, and in any case its

harvester WSN nodes environment interface
simulated simulated simulated MEMORY
simulated real simulated or real MEMORY
simulated simulated simulated PINS

real real real PINS

TABLE I
SENSEH: FROM SIMULATION TO THE REAL-WORLD—AND BACK.



integration at code level is not a concern. SENSEH is designed
in such a way that the same code using (and including) the
simulated harvester can be used both in a simulator and in
a real deployment. This allows developers to test the system
first through the more efficient and scalable means offered by
simulation, and then validate the results in the more realistic
environment provided by an actual deployment—something
that normally requires real harvesters, which is both expensive
and risky in an experimentation phase where the “right”
harvester is to be selected. For instance, this is very useful
to verify whether the actual connectivity affects the estimates
derived in simulation, e.g., due to interference or other causes
generating communication overhead. The harvester operation
depends on environmental parameters. Moreover, we use of
serial communication to feed the harvester with traces from
sensors (e.g., light for solar harvesters, temperature for thermal
ones) to replicate real-world environmental trends affecting
energy density. This is particularly useful during intermediate
development steps where the WSN is tested in a testbed, which
often provides out-of-band communication via USB cables. In
the case of an in-field deployment, we also provide the option
to acquire environmental parameters directly from on-board
sensors, specified at configuration time.

The PINS mode, instead, is conceived to support the same
ability to switch from simulation to the real-world, but in
the case where a real harvester is available. In this case, we
support through different mechanisms w.r.t. the first mode, the
simulation of a WSN application where the MCU of nodes
access directly the harvester via pin-level communication.

The toolchain and software architecture of SENSEH are de-
scribed in Section III. From an implementation standpoint, our
ability to directly reuse the code simulated into real-world is
enabled by our reliance on COOJA [1] and specifically MSP-
Sim, a hardware emulator for the MSP430 MCU. However,
our first mode of operation assumes that some components
simulating the behavior of the harvester are actually part of
the binary deployed on the real WSN nodes. We achieve this
goal by supporting the Contiki operating system, although
it is straightforward to port our code to TinyOS or other
operating systems. For the second mode of operation, instead,
we directly extend COOJA, and therefore inherit its ability to
simulate directly at the binary level applications written for
either TinyOS or Contiki.

We illustrate concretely the use of our system through a
case study, described in Section IV, concerned with a WSN
application installed in a road tunnel [2], [3]. In this context,
we analyze the effect of equipping the WSN nodes with
photovoltaic panels. As light is non-uniform during the day
and along the tunnel, this affects the energy density available
to harvesting, and in turn the sustainability of our network.
This case study is also the opportunity to reassert quantitatively
the difference between findings from simulated and real-world
experiments. Section V ends the paper with brief concluding
remarks.
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Wu et al. [4] X X
Sanchez et al. [5] X X X
HarvWSNet [6] X X X

GreenCastalia [7] X X
WSNsim [8] X X X

Jeong & Culler [9] X X X
SIVEH [10] X X
PASES [11] X X X

TOSSIM [12] X
COOJA/MSPSim [1] X

SENSEH X X X X
TABLE II

SENSEH VS. STATE OF THE ART.

II. RELATED WORK

The recent interest in EH-WSN has determined a surge of
approaches providing simulation support for these systems,
typically through extension of available simulators.

Generic network simulators such as ns-3, OMNeT++, or
OPNET, are not well-suited for energy-aware simulations of
WSNs. The support for models of the energy harvester and
storage as well as power consumption, all crucial to EH-
WSNs, is limited or even absent. Several extensions of these
generic simulators are proposed to incorporate energy models.
Wu et al. [4] extend ns-3 with models for the node power
consumption and its consequent effects on the battery; Sanchez
et al. [5] additionally provides also a model of a solar harvester
based on empirically collected radiation data.

Other approaches are instead based on existing WSN sim-
ulators, or develop dedicated ones. HarvWSNet [6] is an
extension of WSNet [13]. It implements models for harvester,
battery, and power consumption in Matlab, and interfaces
them with the network stack of WSNet via TCP sockets.
GreenCastalia [7], is an extension of Castalia [14], itself
an extension of OMNeT++ providing realistic channel mod-
els. GreenCastalia provides modeling for multi-source, multi-
storage EH architectures. It models both an ideal and empirical
energy storage. WSNsim [8] is a standalone simulator, whose
flexible software structure allows integration of diverse models
for EH-WSNs. However, it consists only of a prototype
implementation not currently available to research community.

Finally, PASES [11] is a flexible design space exploration
framework which features also accurate power consumption
analysis of WSNs. It does not target specific platforms and
needs detailed power models of the digital architectures on
board (i.e., MCU, memory, radio, sensors) to provide statis-
tics about the power consumption and suggest the optimal
hardware configuration. Its cycle-accurate because it is based
on the SystemC framework, which significantly increases the
simulation time. In a similar vein, system-level simulators [9],
[10] trade simulation speed for more accurate modeling of
low-level details of the harvesting system. Complexity of these
models is a major obstacle in adopting them for the assessment



compiler

application

SensEH models

001010
101001
111100

binary COOJA

real WSN

environment 
data traces

Fig. 1. SENSEH toolchain for MEMORY mode.

compiler

application

SensEH models

001010
101001
111100

binary COOJA

real WSN
environment 
data traces

Fig. 2. SENSEH toolchain for PINS mode.

of EH systems.
Interestingly, some well-known WSN simulators such as

TOSSIM [12] and COOJA are designed to use directly
(through emulation) binary, deployment-ready code, and there-
fore provide the ability to move between simulated and real
experiments. TOSSIM is designed for running only TinyOS
based applications, while COOJA coupled with MSPSim, a
hardware emulator for MSP430-based motes, allows simu-
lation of both Contiki and TinyOS applications. However,
neither include support for modeling power consumption or
battery discharge, let apart energy harvesting.

Table II summarizes the related work we just surveyed,
and compares against SENSEH. The table visually reasserts
how SENSEH combines the emulation capabilities of COOJA
with the models for power consumption, battery, and harvester
similar to other simulation approaches. The combination of
the two provides developers with a flexible tool enabling
one to move back and forth between simulated and in-field
experiments, as described next. To the best of our knowledge,
SENSEH is the first software framework to provide such
capabilities.

III. SENSEH

In this section we describe in more detail our software
framework, SENSEH. We begin by describing in Section III-A
the toolchain or, better, the toolchains that enable the two
modes of operation described in Section I. An integral element
of these toolchains is the actual modeling of the harvester,
and the associated profile for power consumption, described
in Section III-B. Finally, in Section III-C we describe the
software architecture, supporting both modes of operation.

A. Toolchains

As we anticipated in Section I, SENSEH supports two
distinct modes of operation. In MEMORY mode, the harvester is
only simulated, even in a real deployment, and is fed real traces
of environmental data to compute the harvested power. In
PINS mode, the application accesses the harvester directly via
pin-level communication, and is therefore deployment-ready.
These two modes of operation result in different toolchains.

Both revolve around the following elements, which are how-
ever positioned in different places in each toolchain:

• Harvester model. Describes how the harvester (e.g., a
solar panel) collects energy from the environment, based
on some input parameters (e.g., light intensity).

• Battery model. Describes how the battery behaves when
connected to the harvester, taking into account the dis-
charging due to the node activity, but also the recharging
determined by the harvester.

• Power consumption model. Describes the power con-
sumption of the WSN node, based on information about
the time it spends in the various states (e.g., radio active
vs. idle).

The toolchain for MEMORY mode is shown in Figure 1.
All of the aforementioned models are input, as Contiki/C
source code, to the standard platform compiler, along with
the application. Indeed, in MEMORY mode the behavior of
the harvester is simulated not only when the compiled code
is input in COOJA, but also when such code is deployed
in a real WSN. The models must therefore be part of the
binary deployed on the WSN nodes. The first two models
are provided as part of SENSEH; the power consumption
module, instead, reuses the Energest [15] part of the Contiki
distribution. Input traces are fed to the harvester module via
the serial port.

The toolchain for PINS mode is shown in Figure 2, and is
essentially identical to the standard toolchain one would use
to compile applications and then either simulate them with
COOJA or directly deploy them in-field. The only difference
is that, in this case, we provide a modified version of COOJA
that provides support for the aforementioned models, and
to process traces of environmental parameters affecting the
harvester.

B. Modeling the Energy Harvester
An energy harvester normally consists of three main com-

ponents: the micro transducer which converts environmental
energy into electrical energy, the voltage shifter which reg-
ulates the generated voltage, and an accumulator. The micro
generator and the conversion circuit are usually considered
together as the real energy harvesting system, while batteries
or other kind of energy storage need a separate model because
they exhibit performance variations (e.g. state of charge, aging,
leakage, number of charging/discharging cycles) during the
lifetime of the system. In this paper we are considering the
State of Charge (SoC); other features are future work.
Harvester. Models of energy harvester circuits often treat the
micro-generator as a voltage/current source and the efficiency
of the whole system depends mainly on the input power
delivered by the transducer and on the required output voltage.
When an accumulator is connected directly to the harvester,
the output voltage of the latter is correlated with the state of
charge of the former, which therefore has a runtime impact on
the conversion efficiency of the harvester.

Moreover, another important feature, which must be con-
sidered in modeling energy harvesters, is the capability of the
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Fig. 3. Efficiency of the photovoltaic harvester as a function of the power
intake and of the SoC of the battery.

scavenger to achieve the maximum conversion efficiency, un-
der any environmental conditions and circuit states. Particular
circuit implementations, called Maximum Power Point Track-
ers (MPPT), are responsible for maximizing the performance
runtime.

In this paper, as an example, we provide the model of a
photovoltaic (PV) harvester to SENSEH. Usually, when a PV
module is directly connected to a load, the operating point is
rarely at the maximum conversion efficiency. The principle
of MPPT is to guarantee an impedance matching between
the load and the PV module, and to regulate the DC/DC
parameters so that the maximum available power is extracted
and used to recharge the battery.

Hence, implementing a MPPT circuit boosts the average
efficiency and the energy converted from the environment. On
the other hand, it adds complexity to the harvester and causes
additional losses due to more electronic components. For this
reason, power losses must be kept remarkably lower than the
incremental energy collected thanks to the MPPT. This is a
critical condition which must be considered at design time
and must be available in the models during simulations.

In conclusion, knowing the kind of harvester and its avail-
able features, is quite easy to extract a model, whose efficiency
is dependent on the power input and on the State of Charge of
the battery. A lookup table (LUT) can easily provide such a
model. For example, Figure 3 shows the efficiency curve of the
harvester used in SENSEH, and specifically in the case study
of Section IV. For the sake of clarity, we indicated also the
luminous emittance (lux) necessary to achieve specific input
power values from the solar cell.

Batteries. A fundamental piece of information, needed when
batteries are modeled, is the state of charge (SoC) of the
accumulator. Many existing network simulations assume very
simple battery models such as considering ideal energy storage
devices. In this case, batteries are modeled as containers of
finite capacity, containing a certain amount of energy units
spent during the execution of application tasks, and added
when the balance between the energy intake and the energy
consumption is positive.

Real batteries, however, do not operate in such a simple
way: they have a certain amount of non-ideal properties, that
a simple energy model is not able to capture. These non-

idealities strongly affect the behavior, the delivered capacity,
and the lifetime of a real battery. For instance, all batteries
suffer from self-discharge: a cell that simply sits on the shelf,
without any connection between the electrodes, experiences
a reduction in its stored charge due to internal chemical
reactions, at a rate depending on the cell chemistry and
the temperature. Batteries also have charge and discharge
efficiency strictly less than one, i.e., some energy is lost when
charging and discharging the battery. Additionally, batteries
have some non-linear properties [16], such as temperature
effects and recovery effects.

These properties should be taken into account when di-
mensioning and simulating energy harvesting systems, because
they can easily lead to errors in the battery lifetime estimates.
For example, if the harvester uses a rechargeable battery to
store the energy from the environment, it is important to
consider that the battery capacity reduction, at each recharge
cycle, affects and reduces also the lifetime. To estimate the
SoC of the batteries, on-line techniques, normally used in real
operating devices, can be efficiently exploited as simulation
models. They save complex computation, at the cost of less
accuracy of the simulation results. In fact, these methods
usually do not take into account aging and the change of
parameter after several cycles.

SoC estimation techniques can be classified roughly into
two main categories: i) direct voltage lookup tables (LUT) [17]
derived from Peukert’s equation; and ii) coulomb counting
techniques [18]. LUT is a popular and simple method es-
pecially for WSNs [19], because it replaces the runtime
computation with a simpler association (Vbattery, SoC) in an
array. Since the LUT is usually pre-computed and static, this
technique does not produce accurate results because it does
not take into account the effect of aging and the variations of
the component characteristics after several charging/discharges
phases. Coulomb counting may lead to more accurate simu-
lation results, but in this case the charge flowing in or out
of the battery is counted by integrating the current over time.
Therefore the simulator must take into account the current
profile of each activity of the system (current profile of the
load) and, concerning systems with energy harvesting, also
the current intake from the harvester during the time of
operation, with remarkable runtime computation. Our current
implementation relies on the LUT technique.

C. Software Architecture

We designed the software architecture of SENSEH to be
easily extendable to encompass various energy sources, stor-
age, and harvesters. Both toolchains rely on the same high-
level conceptual view of the relevant components, shown by
the class diagram in Figure 4. The only difference between
two toolchains, apart from the implementation language (C
for MEMORY, Java for some of PINS modules) is how these
components are used by the rest of the system, be it the
application or the simulator.

1) Conceptual view: The architecture can be broadly di-
vided into three parts, described next.



Fig. 4. Class Diagram of SENSEH.

Harvester. The behavior of the harvester is intimately con-
nected with the one of the environment in which it is
immersed, and from which energy is scavenged. These as-
pects are reified into two classes, EnergySource and
Harvester.

The former is an abstract class, which can therefore ac-
commodate different types of energy sources, and the related
models. Of the examples shown in the picture, SENSEH
currently provides support for harvesters based on photo-
voltaic cells, modeled using the LUT method described in
Section III-B. The producer datasheet of the solar panels
usually only provides output power for few reference light
levels, therefore we apply a piecewise linear approximation to
estimate the power at the intermediate points. The behavior
of EnergySource, in turn, depends on the actual environ-
mental parameters. These are fed to EnergySource via
the package EnvironmentalDataProvider, which can
be configured to feed data coming offline from pre-recorded
experimental traces or online from on-board sensor readings.

Depending on the amount of current generated from
EnergySource, the efficiency of the modeled harvester is
different, as discussed in Section III-B. The Harvester class
estimates the output power of the harvester considering an

empirical efficiency curve, which is a non linear function
of input source power. In our current implementation of
the photovoltaic harvester, we rely on the harvester model
described in [20]. This output power is then fed to the
EnergyStorage, via its charge method.
Energy Storage. As in the case of EnergySource,
EnergyStorage is an abstract class that can in prin-
ciple accommodate multiple types of devices. In the cur-
rent implementation we provide a model for a rechargeable
Battery, but in principle (super)capacitors could also be
included. EnergyStorage keeps track of the state of charge
(SoC), which is affected by the two methods charge and
discharge. The former is called from the Harvester,
as discussed earlier. The second, instead, can be called
from the Leakage class, which models the leakage cur-
rent characteristic of the energy storage device, or by the
PowerConsumption class, which models the discharge due
to the actual operation of the WSN device. The former contri-
bution to discharge is typically negligible w.r.t. the contribution
of the latter, described next.
Power Consumption. An accurate profiling of the node
power consumption is key to estimate whether the EH-
WSN is energy-neutral. This functionality is provided by the
PowerConsumption class, which effectively measures the
time spent by each mote component in each of its operation
modes (e.g., radio on for transmission or reception, MCU on
or in low-power mode). By multiplying these time intervals
by the power consumed by the respective mode we get an
estimate of the amount of energy consumed by the nodes over
time, which is therefore discharged from EnergyStorage.

2) Implementation details: Although they share the same
conceptual architecture, the software implementations are dif-
ferent for each toolchain.
MEMORY . The code of the MEMORY version is writ-
ten in C, to enable its direct integration in Contiki. The
PowerConsumption module reuses the Energest [15] mod-
ule already provided inside Contiki, which provides the power
profiling required.
EnvironmentalDataProvider relies directly on the

on-board functionality of the WSN node. In the case of offline
input via recorded traces, these are fed through the serial port;
if real sensed data are to be acquired instead, this is obtained
via direct access to the sensor specified at configuration time.
To retain the ability to use unmodified code, the same solution
is adopted also when using COOJA.
PINS . In this variant of SENSEH, the implementations of
EnergyStorage, EnergySource, and Harvester are
directly provided as extensions to COOJA, implemented in
Java. Therefore, they can be used to emulate both operating
systems supported by COOJA, i.e., Contiki but also TinyOS.

Our implementation interfaces with MSPSim, an
instruction-level emulator for the MSP430 MCU that
offers also emulation of other on-board components for
popular platforms such as TMote Sky. We access MSPSim to
i) extract the information about power consumption of MCU



and radio; ii) access analog-to-digital converter pins to assign
realistic battery voltage and harvester power to ADC pins.

The first functionality is necessary because, unlike Contiki,
COOJA does not provide a power profiling functionality akin
to Energest. Therefore, we essentially reimplemented the same
logic of the latter inside COOJA, accessing MSPSim to derive
the necessary power profiles during simulation.

The second functionality, instead, is necessary because
COOJA does not emulate the battery; reading the emulated
battery voltage returns a random value. Therefore, once we
have estimated the battery SoC and consequently the variation
in voltage, we force these values back to MSPSim, so that
applications can read them directly through the (emulated)
pins. Accessing directly MSPSim in this fashion allows us
to offer accurate emulation of the harvester and its effect on
the battery SoC to any operating system supported by COOJA.

IV. SENSEH IN ACTION
To illustrate concretely the use of SENSEH we resort to the

application case study that motivated the research described in
this paper, constituted by a WSN deployed in a road tunnel to
acquire light readings [2]. These are relayed in multi-hop to a
gateway, and from there to a Programmable Logic Controller
(PLC) that closes the control loop by setting the intensity of
the lamps inside the tunnel. In contrast with the state of the art
in tunnels, where light intensity is pre-set based on the current
date and time, or at best determined by the external conditions,
this closed-loop adaptive lighting system maintains optimal
light levels by considering the actual conditions inside the
tunnel. This increases safety, and enables considerable energy
savings. However, the lifetime of the WSN is determined by
batteries. Although we showed [3] that this lifetime can be
tripled by using data prediction techniques, we want to explore
the potential of EH-WSN to approximate energy-neutrality and
reduce the maintenance costs to replace depleted batteries.

A. Experimental Setup

Figure 5 shows the placement of WSN nodes inside our
260 m-long, two-way, two-lane tunnel. Overall, 40 nodes are
split evenly between the tunnel walls and placed at a height of
1.70 m, compatible with legal regulations. Their data reports
are collected by a gateway, installed 2 m from the entrance.
Each node is functionally equivalent to a TMote Sky mote,
augmented with a sensor board equipped with 4 ISL29004
digital light (illuminance) sensors. Every 30 s each node
reports an aggregate of the light readings gathered in the
period. Further details are provided in [2].

Here, we want to put SENSEH to play to answer a very
simple question: to what extent the WSN can be made energy-
neutral by equipping nodes with energy harvesters?

To answer this question we use a slightly different network
stack w.r.t. the one in [2], and resort to the popular CTP [21]
protocol, collect in the Contiki distribution. We rely on
ContikiMAC with a sleep time of 125 ms.

Further, we assume that a photovoltaic panel is available as
an energy harvester. Indeed, nodes very close to the tunnel
entrance have direct exposure to sunlight during the day

and can harvest a considerable amount of energy. However,
starting few meters deep into the tunnel, nodes have only
exposure to the artificial light, which provides much less
energy. Nevertheless, with photovoltaic cells optimized for
indoor environments and able to achieve high efficiency at low
illuminance, even these nodes can harvest some energy. For
this study we assume nodes are provided with the Panasonic
AM-1816 [22], which fits this requirements. As we conduct
our experiments with the MEMORY toolchain, however, this
harvester is only simulated in both our simulation and in-field
experiments.

To estimate the amount of energy harvested from our panels,
we use the same dataset in [3], containing traces of light
values collected during winter 2010 from the 40-nodes WSN
in Figure 5. This implies that we are using the MEMORY mode
of SENSEH, to feed traces to both the simulated and real-world
WSN. The light is assumed to be fluorescent, the one our
panels are optimized for. We assume a harvesting efficiency
of 79% [20], derived from the light conditions in our dataset
and the curve in Figure 3, a 100% charging efficiency, and no
battery leakage.

Finally, we assume that nodes are equipped with 2 NiMH
rechargeable batteries, each providing 2,100 mAh.

B. Results

To evaluate the performance of the WSN vs. the EH-WSN,
we first compute the average consumption of the nodes of
the network and see how many of them can operate in an
energy-neutral manner. Then, we analyze what is the expected
improvement in the lifetime of our tunnel WSN.

Consumed vs. Harvested Energy. We analyze the expected
amount of energy consumed by the nodes on an average day.
This has been computed as an average among a high number of
COOJA simulations, trying to reproduce as close as possible
the radio propagation conditions of the WSN in the tunnel.
From these experiments we derived that a node needs, on
average, 72 J/day to be self-sufficient; the harvester should
therefore provide an average power of 0.834 mW during the
24 hours.

However, our light dataset shows that it is not possible
to achieve a large amount of energy in this environment, as
expected. By estimating the energy production achieved per
day by an AM-1816 solar panel, we saw that only 8 nodes
out of 40 can become self-sufficient with a solar cell array
made of less than 10 solar panels, while the others cannot gain
enough energy to compensate the one consumed. We therefore
provided all the nodes which cannot self-sustain with 10 solar
panels each, which already corresponds to a rather large array
dimension of 20× 30 cm.

Peering at lifetime. To analyze the expected improvement
in node lifetime, we compare the initial battery charge with
the remaining one when the WSN operates with and without
the (simulated) energy harvester. Moreover, we compare the
results achieved from COOJA simulations with those yielded
by experiments in an indoor testbed. Both experiments have a
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Fig. 5. Physical placement of WSN nodes in the tunnel.
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(b) Testbed

Fig. 6. Battery level and energy harvested for a node close to the entrance.
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(b) Testbed

Fig. 7. Battery level and energy harvested for a node in the transition area.

duration of 48 hours, so that the daily cycle is respected, and
consider the exact same period of the light dataset. As a feature
of SENSEH, the same binary code has been used both inside
COOJA and on the real nodes; in both cases, light values from
traces are injected into the nodes through the serial interface.

Figure 6(a) shows the battery depletion of node 1, the one
closest to the tunnel entrance, for the COOJA simulation. We
can see that when the node runs without the energy harvester
its energy consumption is about 76 J/day, while when energy
harvesting is applied the node achieves energy-neutrality: the
energy consumed during the night is recovered during the day.
This is not the case for node 8, shown in Figure 7(a), which is
placed in the transition area between the entrance and the cen-
ter of the tunnel. The chart shows how nodes in the transition
area cannot reach energy-neutrality. As we already discussed,
this is because nodes few meters inside the tunnel are never
hit by direct sunlight, so their solar panel can only rely on
artificial light or reflected sunlight. Still, the harvester reduces
energy consumption from 88 J/day to 28 J/day, increasing
the expected lifetime by 70%. Nodes placed deep inside the
tunnel, with no contribution from sunlight, are exposed only to
a very low light intensity coming from artificial illumination.
This makes their energy production very scarce, with no
appreciable difference with and without our energy harvester,

and are therefore not commented further.
An interesting question is whether the same tradeoffs hold

when the WSN is deployed in a real setting, in our case
an indoor testbed in one of our institutions. Although the
latter does not replicate the target tunnel environment, and
in particular its topology, it is nonetheless representative of
the leap between simulation and the real world, and therefore
instructive to investigate, also as a concrete application of our
MEMORY toolchain. Indeed, Figure 6(b) shows the battery
depletion for the same node 1, but in the experiment run
in the testbed. The node is fed exactly the same light traces
as in the simulated experiment. In the testbed case the node
shows a much higher battery discharge, and it cannot operate
in an energy-neutral manner. The higher energy consumption
of the node is possibly a function of the different topology,
but also of radio propagation phenomena like interference and
signal reflection, which the simulator grossly approximates.
In the testbed experiment the energy depletion of the node
without energy harvester is of about 152 J/day, more than
twice than in simulation. Nevertheless, when energy harvesting
is simulated in the testbed, the battery depletion of node 1 is
of 65 J/day, still yielding an expected lifetime improvement of
60%. Similar considerations hold for node 8 in Figure 7(b).

Estimating lifetime through battery voltage decrease.
Among the advantages offered by our SENSEH toolchain is
the capability of estimating, in simulation, the voltage decrease
of the energy source over time, a feature not provided by the
original COOJA simulator. This is useful because, when a sim-
ulated harvester is not present as in our MEMORY toolchain,
applications often use the direct access to the voltage pin as a
coarse means to estimate lifetime. This is directly mirrored in
the PINS mode, which therefore provides a means to utilize this
feature both in simulation and in the final deployed application.
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Fig. 8. Voltage depletion of NiMH batteries over time for different positions
inside the tunnel.



As an example of what can be inferred from this informa-
tion, from the 2-day simulations used to achieve the previous
results we can derive the trends of voltage decrease of the
NiMH batteries and provide an approximation of lifetime.
Figure 8 shows the results, for nodes placed in different
positions inside the tunnel. The battery of a node close to
the tunnel entrance, which can be recharged over the day for
the same amount of energy consumed during the night, has
an almost constant (and close to full) voltage. The battery
voltage for nodes placed in the transition area decreases over
time, since the amount of energy consumed is higher than the
one harvested. The same holds for nodes placed in the middle
of the tunnel, with the very low amount of energy achievable
from the environment. These nodes reach 1 V, the battery death
point, after 62 weeks of operation, about the same obtained
without a harvester.

V. CONCLUSIONS

Energy harvesting is becoming increasingly popular as a
solution to achieve energy-neutral WSN, and therefore dras-
tically increase their lifetime. However, the tools supporting
the design of EH-WSN applications are limited to a few
simulators. Developers must implement their application for
these simulators using non-WSN programming languages, and
then re-implement it for the final WSN deployment. This
makes simulation efficient, but jeopardizes its accuracy w.r.t.
real-world deployments.

SENSEH fills the gap between simulation and deployment
by providing a unified software framework that allows one
to move back and forth between the power and speed of a
simulated approach and the reality and accuracy of in-field
experiments. In MEMORY mode, a simulated harvester and
associated models are linked with the WSN application, which
can therefore be either simulated or tested in-field without
having several physical harvesters. In PINS mode, the same
can be done for the real code using pin-level communication.

We exemplified the use of SENSEH, specifically the MEM-
ORY mode, in a real case study where we investigated to what
extent photovoltaic panels can achieve energy-neutrality in a
WSN used for adaptive lighting in road tunnels.

Future work will involve the development of models for
other types of harvesters, and the study of their advantages
by using both MEMORY and PINS modes in the actual tunnel
environment.
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