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Abstract    

Enterococci are important nosocomial pathogens with Enterococcus faecalis most commonly 

responsible for human infections.  In this study, we used several measures to test the hypothesis that 

house flies, Musca domestica (L.), acquire and disseminate antibiotic resistant and potentially virulent E. 

faecalis from wastewater treatment facilities (WWTF) to the surrounding urban environment.  House flies 

and sludge from four WWTF (1-4) as well as house flies from three urban sites close to WWTF-1 were 

collected and cultured for enterococci. Enterococci were identified, quantified, screened for antibiotic 

resistance and virulence traits, and assessed for clonality.  Of the eleven antibiotics tested, E. faecalis 

was most commonly resistant to tetracycline, doxycycline, streptomycin, gentamicin and erythromycin and 

these traits were intra-species horizontally transferrable by in vitro conjugation. Profiles of E. faecalis 

(prevalence, antibiotic resistance, and virulence traits) from each of WWTF sludge and associated house 

flies were similar, indicating that flies successfully acquired these bacteria from this substrate.  The 

greatest number of E. faecalis with antibiotic resistance and virulence factors (i.e., gelatinase, cytolysin, 

enterococcus surface protein, and aggregation substance) originated from WWTF-1 that processed meat 

waste from a nearby commercial meat processing plant, suggesting an agricultural rather than human 

clinical source of these isolates. E. faecalis from house flies collected from three sites 0.7 - 1.5 km away 

from WWTF-1 were also similar in their antibiotic resistance profiles; however, antibiotic resistance was 

significantly less frequent.  Clonal diversity assessment using pulsed-field gel electrophoresis revealed 

the same clones of E. faecalis from sludge and house flies from WWTF-1 but not from the three urban 

sites close to WWTF-1. This study demonstrates that house flies acquire antibiotic resistant enterococci 

from WWTF and potentially disseminate them to the surrounding environment.    
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Introduction 

The burden posed by antibiotic resistant (AR) bacteria is increasing worldwide [29, 39].  The rise 

of AR pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

enterococci (VRE) has increased morbidity and mortality associated with bacterial infections and made 

effective treatment a significant challenge [5, 59, 61].  

Enterococci are Gram-positive, lactic acid bacteria and their primary niche is the digestive tract of 

animals, including humans.  Enterococcus faecalis and E. faecium are two of the most prevalent 

enterococcal species in the human gastrointestinal tract [6, 20, 21, 53, 62].  Over the past few decades 

enterococci have emerged as the third most common nosocomial pathogen [6, 21], and among 

enterococci, E. faecalis is responsible for the majority of hospital-associated infections [32, 68].  Antibiotic 

resistance of enterococci has been reported to every major class of antibiotics [34, 40].  A number of 

virulence factors associated with clinically significant enterococci aid in avoidance of host immune 

responses and/or help breakdown of host tissues [20].  In addition to being opportunistic pathogens, 

enterococci are also reservoirs of antibiotic resistance genes, thus playing an important role in AR gene 

ecology.  Antibiotic resistance genes have been reported to transfer from enterococci to other bacteria 

such as Staphylococcus aureus [34, 66].   

The house fly, Musca domestica (L.) is the most common fly species in the family Muscidae and 

is distributed worldwide.  House flies are a significant nuisance pest due to their large populations and 

synanthropic nature.  Additionally, house flies are recognized as an efficient mechanical vector of a 

number of parasites and pathogens including protists, viruses, fungi, and bacteria [23, 25].    

Several studies have specifically focused on the association of M. domestica and enterococci in 

animal agriculture environments including poultry [24], swine [1], and cattle [11, 41]. Each of these studies 

provided evidence that house flies acquire AR and potentially virulent enterococci from the animal 

manure. Previously, we analyzed the digestive tracts of M. domestica for enterococci at five fast-food 

restaurants in northeastern Kansas and found AR enterococci very common [44]. In a follow-up study we 

found that food from the same restaurants was commonly contaminated with AR enterococci and 

contamination was positively correlated to seasonal house fly activity [43]. In a laboratory based study we 

showed that house flies can readily contaminate ready-to-eat food with enterococci [42].  These studies 
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provided both direct and indirect evidence that animal agriculture (i.e., poultry, swine, cattle operations) 

can be a source of AR enterococci and that house flies are a likely vector.   

Another potential source of AR enterococci in M. domestica is human fecal material; especially 

feces of the hospital origin.  Though it is unlikely that flies gain access to hospitals or health clinics in 

developed countries, sewage waste from these facilities can be accessed as a potential point source at 

municipal wastewater treatment plants where wastewater is processed from multiple sources including 

household, healthcare, and industrial sites. 

  A 2007 report from the North East Biosolids and Residuals Association (NEBRA) estimated that 

there were approximately 17,000 operating wastewater treatment facilities (WWTF) in the USA [52].  

Waste received from environments under significant antibiotic pressure, such as hospitals, consistently 

contains a greater proportion of singly and multiple drug-resistant bacteria [9, 22, 26, 28, 38, 60] and AR 

enterococci are commonly recovered from sewage [2, 8, 9, 28, 38, 47, 51, 55].  House flies and other filth 

flies often have direct and unhindered access to many steps in the waste processing flow and therefore 

may acquire bacteria associated with the waste.  Once house flies disperse from the WWTF, they may 

disseminate microbes to other areas, with potential impacts on human health. In this study, we 

investigated whether house flies acquire antibiotic resistant and potentially virulent E. faecalis from 

WWTF and disseminate them to the surrounding urban environment.   

 

Methods 

Study duration and sites 

Samples of sludge and flies were collected during 25 visits to four WWTF (1-4) over three years.  

The wastewater operations utilized the activated sludge technique for processing liquid waste with forced 

aeration during primary treatment [12, 33].  Criteria for sludge collection at the facilities involved 

identifying locations that offered access to house flies and where flies were most visually abundant.  The 

term sludge represents here three specific sources of solids: bar screening waste, insoluble grit, and 

treated biosolids [7, 12, 33].   

WWTF-1 served a northeast Kansas community of 21,000 and received approximately 2.8 million 

liters of waste daily from two sources; residential sewage (95,000 liters) and industrial waste from a 
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nearby commercial sausage plant (1.9 million liters) but no waste from hospitals.  The sausage plant was 

a 17,000 m
2
 facility that produced ready-to-eat cooked sausage.  Waste from this facility arrived through a 

dedicated line and was initially kept separated from the sewage.  The solids of the industrial waste 

(primarily meat remains) were separated and temporarily stored in open containers (garbage dumpsters) 

and were removed weekly.  Due to the abundance of flies at this source, the stored meat waste solids 

were the focus of sludge and house fly sampling at WWTF-1.    

WWTF-2 served the same community of 21,000 and processed approximately 6.8 million liters of 

waste daily, including influent from a small community hospital with a four-bed ICU.  Sludge and biosolids 

were digested and stored in closed containers that limited fly access.  Flies and sludge from this site were 

collected at the initial bar screen and the grit removal stations.   

WWTF-3 served a community of 53,000 and received 20.8 million liters of waste daily, including 

waste from a medium-sized hospital with an eight-bed ICU and a four-bed intermediate ICU.  Flies and 

solids were sampled from three locations: the bar screen, grit removal station, and on the margins of the 

secondary clarifier (where floating scum was removed and consolidated).     

WWFT-4 received 1.7 million liters of waste daily from a community of 4,400.  The community 

was served by a small medical facility of 25 beds with no ICU.  Sludge was processed using aerobic 

digestion [7] for approximately 20 days, after which it was dried by use of a belt press and stored in an 

open field onsite.  Sludge and solids from Site 4 were collected at the bar screen and from treated 

biosolids that were stored onsite.    

All study sites were sampled equally with regard to house fly/sludge samples and isolates 

characterized during the first year to estimate the overall fly activity, enterococcal diversity and antibiotic 

resistance/virulence.  Based on the results of WWTF-1, including the antibiotic resistance profiles of 

enterococci, the abundance of flies and the unique source of industrial waste received, this site became 

the focus of more intensive sampling in year 2, and was exclusively sampled in year 3.  Over the course 

of the study, 89 sludge samples were taken (41 from WWTF-1, 15 from WWTF-2, 14 from WWTF-3 and 

19 from WWTF-4) and 276 house flies sampled (83 from WWTF-1, 84 from offsite of WWTF-1, 28 from 

WWTF-2, 43 from WWTF-3 and 38 from WWTF-4) (Table 1).    
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 Three offsite locations were selected near WWTF-1: Sites were selected based on the greatest 

potential for human/fly contact: at a recreational vehicle (RV) park located approximately 0.7 km (housing 

approximately 30 residents), a fast-food restaurant located approximately 1 km, and a 600 unit apartment 

complex apartment complex with approximately 1200 tenants, located 1.5 - 2 km from WWTF-1. No 

offsite sampling occurred at WWTF 2-4. 

Isolation and identification of enterococci from sludge and house flies  

House flies were collected with a sweep net, transferred to a self-sealing plastic bag and placed 

on ice for transport to the laboratory.  Sludge samples were placed into sterile containers and set on ice 

for approximately 2 h.  All samples were processed immediately upon arrival at the laboratory.  One gram 

of sludge was homogenized in 10 ml of sterile phosphate buffered saline (PBS).  House flies were surface 

sterilized as described by Zurek et al. [74] and homogenized individually in 1 ml of sterile PBS.  All sludge 

and fly samples were 1/10 serially diluted and drop plated on m-Enterococcus (m-Ent) agar (Difco, 

Franklin Lakes, NJ).  Plates were incubated at 37ºC for 48 h upon which the concentration of enterococci 

was determined by counting colony forming units (CFU).  Up to five dark purple colored colonies, 

presumptive of the Enterococcus genus, were picked from each sample for confirmation testing.  To 

confirm the Enterococcus genus, an esculin hydrolysis test was utilized [57].  All positive isolates were 

transferred into TSBA (0.3% agar) in 2.0 ml vials and stocked at 8°C.   

E. faecalis and E. faecium were identified by multiplex PCR with primers for D-alanine– 

D-alanine ligase (ddl) specific for each species [18, 35].  Enterococcus faecalis V583 and E. faecium 

ATCC 19434 were used as positive controls.  Isolates not identified as E. faecalis or E. faecium during 

the 2008 season were instead identified by sequencing the superoxide dismutase gene (sodA) [56].  The 

gene was amplified by PCR and purified with the DNA Clean & Concentrator
TM

-5 Kit (Zymo Research, 

Irvine, CA).  DNA samples were then sequenced at the Genome Core Facility (University of California, 

Riverside) using the same primers. Sequences were manually inspected in the CodonCode 4.1.1. 

(CodonCode Corp., Centerville, MA) and identified by BLAST search in the NCBI GenBank database 

(http://blast.ncbi.nlm.nih.gov).  For years 2 and 3, only E. faecalis and E. faecium were identified (via 

species specific PCR as described above) and characterized due to the dominance of these two species 

and their clinical significance.   
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Antibiotic resistance  

All identified isolates were assessed for antibiotic susceptibility.  Screening for nine antibiotics 

was done by disk diffusion technique on Mueller-Hinton agar (Difco, Franklin Lakes, NJ) using the 

protocols of the Clinical and Laboratory Standards Institute [13].  The eight antibiotics tested were 

doxycycline (30μg), gentamicin (120 μg), erythromycin (15 μg/), ampicillin (10 μg), ciprofloxacin (5 μg), 

vancomycin (30 μg), nitrofuratoin (300 μg), and tigecycline (15 μg).  The agar dilution technique was used 

to determine resistance to streptomycin (2 g/L), tetracycline (16 mg/L), and linezolid (8 mg/L) added to 

Mueller-Hinton agar.  Quality controls were E. faecalis OGIRF, E. faecalis OG1SSP, and E. faecalis 41-

31. 

Virulence  

E. faecalis were screened with multiplex PCR for the following virulence genes: gelE (gelatinase 

activity), cylA (cytolysin, hemolytic activity), esp (enterococcal surface protein), and asa1 (aggregation 

substance) [69].  E. faecalis MMH 594 was used as a positive control for all genes.  Gelatinase activity 

was determined on Todd Hewitt Broth (THB) (Difco, Franklin Lakes, NJ) agar plates with 1.5% dry skim 

milk powder [41].  Isolates were streaked on TSB plates and grown overnight at 37ºC and then spotted 

onto the THB/skim milk plates. Following incubation at 37ºC for 24 h, plates were examined for a 

clearance zone to assess gelatinase activity. Isolates were characterized as either gelatinase negative 

(no clearance), weak gelatinase (some clearance) or strong gelatinase (wide area of clearance).  

Cytolysin gene expression was evaluated as described by Ahmad et al. [1]. Isolates were streaked on 

Columbia blood agar (Difco, Franklin Lakes, NJ) with 5% human blood and incubated at 37ºC for 24 h. 

Hemolytic activity was assessed by measuring the clearing zone around colonies. A large clearance zone 

was scored as β-hemolysis and considered positive for cytolysin gene expression. E. faecalis 

OG1X:pAM1 was used as a positive control for β-hemolysis. Enterococcal aggregation substance was 

screened phenotypically by the clumping assay for all E. faecalis strains from WWTF-1 positive for the 

asa1 gene [17].  Briefly, E. faecalis JH2-2 was used for cCF10 peptide formation. THB was used to grow 

E. faecalis JH2-2 and incubated at 37°C for 18 h. The pheromone peptide in the supernatant was 

collected by centrifugation (10,000 rcf for 10 min) and then sterilized by autoclaving for 15 min. E. faecalis 

isolates were cultured in THB broth for 18 h at 37ºC and 1 ml E. faecalis JH2-2 supernatant was added to 
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each culture and incubated at 37°C overnight in a shaker incubator. After the incubation period, isolates 

were considered positive if clumping or aggregations of cells were visually observed. E. faecalis OG1RF 

(pCF10) was used as a positive control and E. faecalis OG1SSP a negative control with every batch of 

isolates tested.   

Horizontal gene transfer 

Conjugation assays were performed for eight multiple antibiotic resistant strains of E. faecalis to 

test for horizontal transfer of resistance determinants.  Selection of antibiotics used in brain heart infusion 

broth (BHI) agar plates was done based on the resistance pattern of each of the donor and recipient 

strains.  Concentrations of antibiotics added to BHI agar are listed below.  The recipient strain for transfer 

of gentamicin (500 mg/L), tetracycline (16 mg/L), doxycycline (0.5 mg/L) and erythromycin (32 mg/L) 

resistance was E. faecalis OG1SSP using the marker antibiotic spectinomycin (250 mg/L).  Due to cross-

resistance with spectinomycin, the recipient for streptomycin (2 g/L) resistance was a wild-type isolate E. 

faecalis 41-31 with a linezolid marker (8 mg/L).  Conjugation frequencies were determined both by filter 

mating and broth mating assays using donor and recipient cultures grown overnight at 37ºC in BHI broth 

as described previously [16, 67].  Tansconjugate rate was calculated by dividing the transconjugate CFU 

count by the donor CFU count (T/D). 

Pulsed-field gel electrophoresis (PFGE) 

PFGE was performed to genotype isolates from WWTF sludge and house flies following the 

protocol of Amachawadi et al. [4] with the following modifications: Agarose plugs were restriction digested 

with 40U of ApaI (Promega) for 4 h at 37°C. The digested plugs were run on to a 1.0% SeaKem Gold 

Agarose (Lonza) gel using CHEF Mapper (Bio-Rad) with initial pulse time for 1 s and final time for 20 s at 

200 V for 21 h. Cluster analysis was performed with BioNumerics (Applied Maths) by using the band-

based Dice correlation coefficient and the unweighted pair group mathematical average algorithm 

(UPGMA). E. faecium ATCC 19434 was used as the reference strain. 

Statistical analysis 

Statistical analysis was performed to evaluate differences in prevalence of antibiotic resistance 

and virulence genotypic profiles among E. faecalis based on wastewater treatment site (WWTF 1-4) and 

isolate source (sludge, onsite house flies, offsite house flies).  A mixed-effect logistic regression model 
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was used to test for differences in attributes such as resistance among E. faecalis from the four 

wastewater treatment sites and three sources while accounting for the within cluster dependence effect 

both by sample and source [70].    

The antibiotic resistance profiles among E. faecalis from WWTF-1 were then compared to the 

combined results from WWTF 2, 3, 4 due to the fundamental differences in the waste received (industrial 

meat waste at WWTF-1 versus sewage at WWTF-2,3,4).  A mixed-effect logistic regression model used 

site (WWTF-1 vs. 2,3,4) and isolate source (sludge, onsite house flies) as fixed effects, variance 

components due to repeated observations within site and flies as random effects, and isolate 

resistance/susceptibility to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin as the 

binary response variables [15, 70].      

Antibiotic resistance prevalence among E. faecalis at WWTF-1 was further subanalyzed by 

adding a third source, offsite house flies, to the two already mentioned.  The regression model in this 

analysis used source (sludge, onsite house flies, offsite house flies) as the fixed effect, variance 

component due to repeated observations within flies as the sole random effect, and isolate 

resistance/susceptibility to tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin as the 

binary response variables. 

The virulence genotype of E. faecalis at WWTF-1 was also analyzed using a mixed-effect logistic 

regression with source (sludge, onsite house flies, offsite house flies) as the fixed effect and 

presence/absence of gelE, asa1, esp and cylA as the response variables [15, 70]. Significance level for 

all analyses was P < 0.05. 

 

Results 

Prevalence, quantification and identification of enterococci  

During the first year of the study, all enterococcal isolates chosen from selective media plates 

were identified to species in order to appraise the diversity in this environment.  Two hundred twenty five 

enterococci were identified consisting of 11 species, of which the majority (76.9%) was either E. faecalis 

(60.4%) or E. faecium (16.4%) (Fig. S1).  The other species identified were E. flavescens, E. 
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casseliflavus, E. gallinarum, E. malodoratus, E. sulfureus, E. durans, E. avium, E. moraviensis, and E. 

hirae (Fig. S1).   

Antibiotic resistance of E. faecalis   

E. faecalis were tested for resistance to 11 antibiotics.  Isolates were most commonly resistant to 

one or more of five antibiotics: tetracycline, doxycycline, streptomycin, gentamicin and erythromycin, with 

tetracycline resistance the most frequent (Fig. 1).  None of the E. faecalis isolates were resistant to 

ampicillin, vancomycin, linezolid, and tigecycline (Fig. 1).  E. faecalis from WWTF-1 consistently 

expressed significantly higher resistance than those from WWTF 2-4 (erythromycin and streptomycin, P < 

0.01; tetracycline, doxycycline and gentamicin, P < 0.0001) (Fig. 1).   

The pattern of multiple antibiotic resistances from WWTF-1 corresponded well among E. faecalis 

isolates from sludge and onsite house flies and less among isolates from offsite house flies (Table 2).  For 

example, co-resistance to the combination of tetracycline, doxycycline and gentamicin was observed 

among sludge, onsite HF and offsite HF at 15.9%, 12.5% and 1.0%, respectively, while co-resistance to 

the five antibiotics tetracycline, doxycycline, erythromycin, streptomycin and gentamicin occurred at 

25.0%, 20.0% and 1.0%, respectively (Table 2).    

Resistance profiles were compared between WWTF-1 E. faecalis and the combined patterns of 

WWTF 2-4, which provided a contrast of E. faecalis from WWTF-1 industrial meat waste versus human 

sewage at WWTF 2-4.  The prevalence of resistance was significantly different for tetracycline (P < 

0.0001), erythromycin (P < 0.01), streptomycin (P < 0.01) and gentamycin (P < 0.0001) but did not differ 

for doxycycline (P > 0.05).     

Horizontal transfer of antibiotic resistance traits 

Eight multiple-resistant E. faecalis isolates from six WWTF-1 house flies (three from offsite flies, 

five from onsite flies) were selected for AR gene horizontal transfer assays using broth and filter mating 

for gentamicin, streptomycin, tetracycline, doxycycline and erythromycin resistance traits.  All of the 

isolates tested resulted in transconjugates to at least one of the antibiotics at transconjugate/donor (T/D) 

rates ranging from 2.9 x 10
-8 

to 7.3 x 10
-3

 (Table 3).  Three of the eight isolates transferred all resistances 

tested in broth and/or filter assays at T/D rates of 6.9 x 10
-7

 to 7.3 x 10
-3

.
 
 During broth mating, 

streptomycin resistance was transferred most often (5/8, 62%) at rates from 1.1 x 10
-6

 to 5.5 x 10
-3

.  
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During filter mating assays, all isolates tested (8/8) transferred doxycycline resistance at rates from 8.5 x 

10
-8

 to 7.3 x 10
-3

 (Table 3). 

Enterococcus faecalis virulence traits 

All E. faecalis from WWTF-1 were tested genotypically with multiplex PCR for gelE, asa1, esp, 

and cylA.  Virulence phenotypic tests were performed for gelatinase, aggregation substance and cytolysin 

activity.  The virulence gene, gelE was commonly detected from all three sources (sludge, onsite and 

offsite  HF) followed by asa1, and cylA, while esp was the least common trait (Table 4).  When compared 

statistically, the overall prevalence of the genes among E. faecalis from the three sources did not differ for 

gelE.   The asa1 prevalence was not different from sludge and onsite house flies; however, asa1 

prevalence was lower (P < 0.01) comparing offsite HF to sludge and onsite HF.  The prevalence of esp 

was not different from sludge and onsite HF but was higher (P < 0.05) from offsite HF.  Finally, cylA 

prevalence did not differ among the three sources (Table 4).   

Among the gelE isolates, the majority exhibited the strong gelatinase phenotype (Table 4).  

Among asa1 positive isolates, 11.7% from sludge, 16.7% from onsite HF and 2.7% from offsite HF 

exhibited the clumping phenotype (Table 4).  Among cylA positive isolates, 5.9% from sludge, 12.5%  

from onsite HF and 30.0% from offsite HF exhibited β-hemolysis (Table 4).      

 For WWTF 2-4, only gelatinase phenotypic screening was performed.  With the exception of 

sludge isolates from WWTF-2, the majority of isolates from both sources (sludge or house flies) exhibited 

either the strong or weak gelatinase phenotype (data not shown).  For all locations, the strong gelatinase 

phenotype was most commonly observed over weak gelatinase, ranging from 22.6% of sludge isolates at 

WWTF-2 to 84.6% of sludge isolates at WWTF-4.   

Clonality of E. faecalis from and around WWTF-1 

Isolates from WWTF-1 were genotyped using pulsed-field gel electrophoresis (PFGE) to 

determine their clonality within and among the three sources.  From the second year, 40 E. faecalis were 

genotyped.  Selection of isolates was based on identifying groups with similar antibiotic resistant and 

virulence profiles across the three sources.  Overall genotypic diversity was high both among and within 

the sources (majority between 65-85% similarity) (Fig. S2).  One clone was detected from two separate 

sludge samples collected one week apart.  Another two clones from the same sludge sample were similar 
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(> 95%); however, no other similar genotypes were identified.  Further, there was little to no apparent 

grouping of isolates by source (Fig. S2).   

In the third year, efforts were made to increase the likelihood of detecting similar strains by 

genotyping isolates collected on the same day.  Two sampling dates were selected where eight or more 

isolates were available from each of the three sources resulting in a group of 51 E. faecalis isolates.  A 

high level of genotypic variation was observed among the isolates; however, three clonal matches 

involving eight isolates were detected among bacteria recovered from sludge and onsite house flies (Fig. 

2) but none from the offsite house flies.  

 

Discussion 

Wastewater treatment facilities play a significant role in the ecology of many microbes [47, 63].  

Due to easy access of house flies to WWTF, these insects may be involved in dissemination of bacteria, 

including pathogens and antibiotic resistant strains to the surrounding urban environment.  The focus of 

this study was to employ multiple phenotypic and genotypic approaches to characterize enterococci from 

wastewater sludge and house flies collected directly at WWTF and from the surrounding urban sites.   

During the first year of the study, all enterococcal isolates from the selective medium were 

identified to the species level. Due to the dominance of E. faecalis and E. faecium (77%), as well as the 

clinical significance of these two species, they were the exclusive focus during two subsequent years. 

From these two species, E. faecalis was the most prevalent from both, sludge (78%) and house flies 

(83%), and therefore, the majority of effort was applied to characterizing this species.  The prevalence of 

E. faecalis in this study is consistent with previous surveys of sewage [9, 51]. 

Enterococci were isolated from 94% of sludge samples from the four sites at a concentration of at 

least 10
6
 CFU/g.  This prevalence and concentration is comparable to other studies that have screened 

sewage for the enterococci [2, 9, 19, 47, 51].  Sixty six percent of house flies were positive for enterococci 

at a concentration ~10
3
 CFU/fly.  This is comparable to previous surveys [1, 11, 44], although the overall 

prevalence among flies is lower in this study. In other studies enterococcal prevalence in house flies 

occurred at rates of 90-98% in environments such as swine operations, cattle feedlots, and restaurants 

[1, 11, 44]. 
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Of the four WWTF involved in the study, WWTF 2, 3 and 4 were similar as they received and 

processed only human sewage.  WWTF-1 was unique in receiving industrial waste from a commercial 

sausage plant.  Sludge sampled from this site consisted entirely of the solids (meat waste) from this 

source, which were not mixed with residential sewage.  The abundance of fly activity, amount of meat 

waste, and prevalence of antibiotic resistant and potentially virulent enterococci made this location of 

particular interest.  As such, more extensive sampling was conducted at WWTF-1 and it offered the best 

opportunity to test the study hypothesis.  The sausage facility did not actively slaughter animals but 

received meat (beef, pork and poultry) to be used in the final product.  Therefore, there were multiple 

types of meat that likely arrived from multiple sources.  Consequently, enterococci from the sludge of 

WWTF-1 were likely of animal rather than human origin so it is appropriate to compare our findings to 

reports from other meat processing facilities and their products.  The ratio of E. faecalis/E. faecium at 

WWTF-1 was 9:1, which is similar to other studies that have surveyed enterococci at meat processing 

operations (beef, pork and poultry) and from associated meat products.  In most of those studies, E. 

faecalis was dominant followed by E. faecium [14, 30, 36, 45, 49, 54, 58].  In the current study, the 

species composition among sludge and house flies was comparable with E. faecalis being the most 

abundant species from both sources (Fig. S1).   

Enterococci from WWTF-1 were more frequently antibiotic resistant than those from WWTF 2-4.  

The resistance was mainly detected to tetracycline and doxycycline (tetracyclines), streptomycin and 

gentamicin (aminoglycosides), and erythromycin (macrolide).  It has been reported that the enterococcal 

resistance patterns from food items often reflect the use of antimicrobials in the source animal [40, 64].  

Each of the antimicrobial classes that enterococci in this study were commonly resistant to are used for 

growth promotion in food animals [64].  Tetracycline resistance has also been commonly reported among 

enterococci from a variety of meat products [30, 48, 49, 53, 54].  Erythromycin and gentamicin resistant 

enterococci are widespread in pork [48], beef, and chicken [37] meat products.  High level resistance to 

aminoglycosides (streptomycin, gentamicin) is common among enterococci from food animals and 

associated meat products [10, 27, 37].   

There was good overall agreement among E. faecalis antibiotic resistance profiles from sludge 

and house flies captured onsite of the WWTF. Further, there was high concurrence between the two 
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sources when considering the specific combinations of resistances.  These observations are consistent 

with the hypothesis that the flies acquired the bacteria from the sludge.   

Another noteworthy characteristic of E. faecalis from WWTF-1 was the prevalence of virulence 

factors, particularly for gelatinase (gelE) and aggregation substance (asa1).   This prevalence of putative 

virulence factors is common among food-animal enterococci [46, 49]. The virulence data for E. faecalis 

are also consistent with the hypothesis that the flies acquired E. faecalis from sludge.  Both genotypic and 

phenotypic virulence patterns were similar for each source.    

Genotyping of E. faecalis collected in the second year from WWTF-1 did not reveal clonal 

matches between sludge and house flies (Fig. S2).   This is likely due to the very large genotypic diversity 

among sludge isolates because of various sources in the meat processing plant.  Due to this diversity, 

genotyping efforts of E. faecalis collected during the third year focused on only two collection dates in an 

effort to detect clonal matches among the respective sources.  Among these isolates, three clonal 

matches between sludge and onsite house flies were detected.  This provides a strong evidence to 

support the study hypothesis that flies acquired enterococci from WWTFs. 

It should be noted that only one WWTF processing non-human waste (WWTF-1) was included in 

this study and additional sites of this type need to be investigated.  Further, the microbial community in 

the flies prior to their exposure to WWTFs is unknown and therefore the contamination of the sludge with 

AR bacteria by flies cannot be ruled out. However, we expect that fly to sludge bacterial transfer was 

much less extensive due to the amount and abundance of sludge relative to the number of flies at 

WWTFs.  

Eight multi-drug resistant E. faecalis isolates from flies were selected for in vitro conjugation 

assays to evaluate the potential for horizontal transfer of AR genes.  Transfer of one or more resistance 

determinants was observed among all E. faecalis at transconjugant/donor (T/D) rates from 2.9 x 10
-8 

to 

7.3 x 10
-3

.  Enterococci are well recognized as AR gene reservoirs and readily transfer genes both intra- 

and inter-specifically [31, 38, 73].  A number of mobile genetic elements (MGE) such as plasmids and 

transposons are present in enterococci which facilitate AR gene transfer [31, 73].  Further, we have 

demonstrated previously that the house fly digestive tract provides an environment conducive for conjugal 

transfer of antibiotic resistance genes among E. faecalis [3]. Horizontal gene transfer as well as clonal 
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propagation in the house fly digestive tract, represent the two main ways of amplifying clinically significant 

enterococci and their associated resistance determinants and may lead to enhanced house fly vector 

competence for these bacteria.   

As outlined above, numerous independent measures of E. faecalis from WWTF-1 support the 

hypothesis that house flies acquired these bacteria at the facility.  The other part of the study focused on 

fly dispersal from WWTF-1 and dissemination of AR enterococci.  Here we offer circumstantial evidence 

for house flies carrying enterococci from the WWTF-1 to distances up to 2 km.  Although the overall 

prevalence of antibiotic resistance among E. faecalis from offsite house flies was significantly lower, the 

profile of specific antibiotics that the bacteria were resistant to matched that of E. faecalis from both, 

sludge and onsite house flies.  The same general trend was found among virulence genes and 

phenotypes.  There were no clonal matches among offsite flies to either sludge or onsite flies.  This is not 

unexpected given the high level of diversity of E. faecalis from sludge.  Further, flies collected away from 

the WWTF-1 could have migrated from other areas and therefore a considerable level of dilution is 

expected.  Finally, it is possible that enterococci acquired from the WWTF-1 have diminished in 

prevalence during the time it took the flies to migrate to the offsite locations.     

WWTF 2- 4 received exclusively human sewage and therefore represent more typical wastewater 

operations.  Among the three sites, E. faecalis antibiotic resistance occurred to the same five antibiotics 

as observed at WWTF-1 although at a lower overall prevalence.  This pattern of phenotypic resistance is 

comparable to other studies assessing E. faecalis resistance from sewage [9, 19].   No resistance to 

streptomycin was observed from E. faecalis at WWTF 2 and 3.  This was the case among isolates from 

both sludge and house flies as would be expected if the sludge is a source of enterococci for flies.  

Further, WWTF 2 and 3 had similar resistance profiles to tetracycline, doxycycline, gentamicin and 

erythromycin among the two sources (sludge and flies).   

It is unknown to what extent human-clinical sources of E. faecalis contributed to the bacteria 

recovered and analyzed from WWTF 2, 3 and 4.  WWTF-3 had the greatest potential for contribution from 

this source as it received waste from the largest hospital with a 12 bed ICU.  However, it also had the 

largest municipal population; therefore, dilution in the sewage stream from the overall community was 
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greatest.  Risk assessments based on these parameters would be beneficial for predicting AR bacterial 

exposure and management/containment of AR gene spread.    

This study assessed an environment where house flies may play a role in AR enterococcal 

ecology.  Our data support the hypothesis that flies acquire and disseminate AR enterococci from 

WWTFs.  The best evidence originates from WWTF-1 which apparently involved primarily a food animal 

source of enterococci.  Though at the outset the goal of the study was to investigate a human source of 

AR enterococci to flies, the nature of waste processed at WWTF-1 points to yet another animal source of 

the AR bacteria.  Despite this, our results are broadly applicable to more typical WWTFs that receive 

human sewage.  It should be noted that while this study focused on enterococci, there are a number of 

other bacteria of medical/veterinary clinical importance that could be acquired and disseminated by house 

flies from WWTF.  Examples of bacteria that have been cultured from wastewater and at various points 

along the waste treatment stream include multi-drug resistant Escherichia coli [22, 65, 72], Salmonella, 

both Typhi and non-Typhi serovars [22, 63], Acinetobacter spp. [26], Staphylococcus aureus, Legionella  

pneumophila, and Clostridium difficile [71].   

Our results enhance understanding of risks associated with dissemination of AR bacteria.  

Factors such as the access of house flies to various wastewater treatment processes should be 

considered when operating and designing new facilities.  Further, WWTF management should 

incorporate insect management during the peak season of fly activity to limit AR bacterial spread.    
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Table 1.  Prevalence of Enterococcus faecalis and E. faecium from sludge and house flies (HF) at four wastewater treatment facilities 

(WWTF). 

 

       

                    Sludge  

 

 

 

 

 

 

 

                House flies 

1 83/56 (67.5) 4.5 ± 1.0 x 10
3
 124    120 (96.8)   4   (3.2) 

Offsite 1  84/51 (60.7) 1.5 ± 1.0 x 10
4
 130      98 (75.4) 32 (24.6) 

2 28/16 (57.1) 3.7 ± 1.8 x 10
3
 25      19 (76.0)   6 (24.0) 

3 43/30 (69.8) 1.3 ± 1.1 x 10
4
 34      26 (76.4)   8 (23.5) 

4 38/28 (73.7) 7.0 ± 2.0 x 10
3
 43      33 (76.8) 10 (23.2) 

Total or mean 276/181 (65.6) 

 

8.9 ± 3.4 x 10
3
 

 

356 

 

   296 (83.1) 

 

60 (16.9) 

 

 

 

 

WWTF 

 

 

No. of samples 

analyzed/ 

no. positive (%) 

 

CFU/g or HF 

(mean ± SEM) 

 

Total no. of isolates 

characterized 

 

No. (%) of isolates 

 

       E. faecalis E. faecium 

1 41/39 (95.1) 4.9 ± 1.5 x 10
6
 100      88 (88.0)   12 (12.0) 

2 15/13 (86.7) 2.6 ± 1.7 x 10
5
 37      31 (83.8)     6 (16.2) 

3 14/14 (100) 5.5 ± 2.6 x 10
4
 37      29 (78.3)     8 (21.6) 

4 19/18 (94.7) 2.5 ± 0.6 x 10
4
 32      13 (40.6)   19 (59.4) 

   Total or mean 89/84 (94.4) 

 

2.3 ± 0.8 x 10
6
 

 

206 

 

   161 (78.2) 

 

  45 (21.8) 
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Figure 1.  Resistance profiles of E. faecalis to 11 antibiotics from sludge and house flies (HF) at 

four wastewater treatment facilities (WWTF) and HF from nearby (offsite) of WWTF-1.  

WWTF-1 resistance profile is contrasted with the combined profiles of WWTF 2, 3, and 4.  A -  

isolates from WWTF-1, B - combined isolates from WWTF 2, 3, 4.  TET-tetracycline, D-

doxycyline, S-streptomycin, GM-gentamicin, ERY-erythromycin, AMP-ampicillin, CIP-

ciprofloxacin, VAN-vancomycin, NIT-nitrofurantoin, LZO-linezolid, TGC-tigecycline. 

 

 

 
 
* 

number of E. faecalis isolates/number of samples 
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Table 2.  Antibiotic resistance profile among E. faecalis from sludge and house flies (HF) onsite and nearby (offsite) of WWTF-1.  

TET-tetracycline, D-doxycyline, ERY-erythromycin, S-streptomycin, GM-gentamicin, NIT- nitrofuratoin. 

 

Resistance profile         Sludge (n=88/24) *     HF onsite (n=120/44) 
*
       HF offsite (n=98/31) 

*
 

 

     no. of resistant isolates (%) no. of resistant isolates (%) no. of resistant isolates (%) 

 

TET        6 (6.8)    11 (9.2)      7 (7.1) 

ERY        3 (3.4)      2 (1.6)     

GM                5 (5.1) 

D          1 (1.1) 

TET, D      11 (12.5)   11 (9.2)        6 (6.1) 

TET, S        2 (2.3)      2 (1.6) 

TET, ERY           5 (4.2) 

TET, D, GM     14 (15.9)   15 (12.5)     1 (1.0) 

TET, D, ERY       6 (6.8)      6 (5.0)      4 (4.1) 

TET, ERY, S       3 (3.4)          2 (2.0) 

TET, ERY, NIT           1 (0.8) 

TET, D, S       1 (1.1)          1 (1.0) 

D, ERY, GM       1 (1.1) 

TET, D, ERY, GM      8 (9.1)      6 (5.0) 

TET, D, ERY, S      2 (2.3)      1 (0.8) 

TET, ERY, S, GM          2 (1.6) 

TET, D, S, GM           1 (0.8) 

TET, D, GM, NIT          1 (0.8) 

TET, D, ERY, S, GM    22 (25.0)   24 (20.0)     1 (1.0) 

 

Pan-susceptible       8 (9.1)    32 (26.7)   71 (72.5) 
 

*
 number of E. faecalis/number of samples 
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Table 3.  Horizontal transfer of antibiotic resistance traits by broth and filter mating among E. faecalis from house flies at and near 

WWTF-1.  Recipient for streptomycin E. faecalis 41-31 (wild isolate), recipient for all other resistance genes E. faecalis OG1SSP.  

OFHF, offsite house fly; ONHF, onsite house fly.   

 

  Donor Broth mating transfer rate (T/D)* 

streptomycin gentamicin tetracycline doxycycline erythromycin 

 

OFHF 7-2  

 

        0 

           

          NR
a
 

  

       0 

 

       0 

 

     NR
a
 

OFHF 7-3 1.7 x 10
-3

 NR
a
 0 0 0 

OFHF 7-4 5.5 x 10
-3

           NR
a
 0 3.6 x 10

-7
  2.9 x 10

-8
  

ONHF 5-4 1.1 x 10
-6

           0 6.3 x 10
-8

  0 0 

ONHF 6-1 0           0  0  0  0  

ONHF 8-3 1.9 x 10
-6

           2.9 x 10
-5

  6.8 x 10
-6

  1.3 x 10
-6

  1.8 x 10
-6

  

ONHF 10-1 0           2.9 x 10
-5

  3.4 x 10
-4

  3.4 x 10
-4

  1.4 x10
-4

  

ONHF 16-4 1.5 x 10
-4

           7.1 x 10
-5

  8.2 x 10
-6

  8.2 x10
-6

  

  

0 

 Filter mating transfer rate (T/D)* 

 

OFHF 7-2 

 

        0 

           

          NR
a
 

  

       9.3 x 10
-8

 

 

       5.3 x 10
-7

 

 

     NR
a
 

OFHF 7-3 0 NR
a
 0 1.8 x 10

-7
 3.9 x 10

-7
 

OFHF 7-4 0           NR
a
 0 3.5 x 10

-6
  1.1 x 10

-7
  

ONHF 5-4 1.4 x 10
-7

           2.7 x 10
-7

 1.1 x 10
-7

  1.2 x 10
-7

 0 

ONHF 6-1 0           3.1 x 10
-7

 1.4 x 10
-7

  8.5 x 10
-8

 0  

ONHF 8-3 0           3.3 x 10
-3

  9.1 x 10
-4

  4.9 x 10
-3

  2.2 x 10
-3

  

ONHF 10-1 1.1 x 10
-6

           2.1 x 10
-3

  3.1 x 10
-4

  7.3 x 10
-3

  1.2 x10
-3

  

ONHF 16-4 0           1.3 x 10
-4

  4.6 x 10
-6

  1.8 x10
-5

  

  

6.9 x 10
-7

 

      

* T, transconjugant; D, donor 
a 

 NR, not resistant. Donor isolate was not phenotypically resistant to the antibiotic, therefore no transconjugate assay was performed 
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Table 4.  Prevalence of virulence genes and correlation to the corresponding phenotype (excluding esp phenotype) among E. faecalis 

from WWTF-1.  gelE – gelatinase, asa1  –  aggregation substance, cylA – cytolysin, esp – enterococcal surface protein, SG – strong 

gelatinase phenotype,  WG – weak gelatinase phenotype,  CP – clumping phenotype 

 

Genotype  

Source gelE  asa1  
 

cylA
 

 

esp 
 

Sludge (88/24)*             84 (95.5)^              60 (68.2)              17 (19.2)                2 (2.3) 

Onsite HF (120/44)           112 (93.3)              60 (50.0) 8 (6.7)                1 (0.8) 

Offsite HF (98/31) 
 

            92 (93.8)              36 (36.7)              10 (10.2)              15 (15.3) 

Phenotype 

 

gelatinase
 

aggregation substance
 

cytolysin
 

 
SG

 
WG

 
CP

# 
β-hemolysis

 

Sludge 77 (87.5)
 
    7 (8.0)     7 (11.7)  1 (1.1) 

Onsite HF                  103 (85.8)    12 (10.0)     6 (10.0)                    1 (0.8) 

Offsite HF  76 (77.5)    12 (12.2)    1 (2.8)                    3 (3.1) 

 

*  
number of isolates/number of samples 

^ number of positive isolates (%)  
#
 only isolates positive for the asa1 gene were analyzed
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Figure 2.  Pulsed-field gel electrophoresis (PFGE) dendogram based on Apa1 restriction of E. 

faecalis from sludge, house flies (HF) onsite and house flies offsite (RV park and apartments) 

from WWTF-1 collected during season 3.  Frames denote clonal matches between isolates from 

sludge and onsite house flies. 
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Supplementary Figures  

Figure S1.  Diversity of enterococci at four wastewater treatment facilities (all enterococcal 

isolates identified to species during the year 1).  A - isolates from WWTF- 1, B - combined 

isolates from WWTF 2-4, HF - house flies.      

 

 

* 
number of enterococcal isolates/number of samples 

  

* 

* 

* 

* 
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Figure S2.  Pulsed-field gel electrophoresis (PFGE) dendogram of E. faecalis based on Apa1 

restriction from sludge, house flies (HF) onsite and HF offsite (restaurant and apartments) of 

WWTF-1 collected during the season 2. 
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